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Abstract: In this work the validity of an analytic approximation expression [1] for the critical
number of atoms that a Bose-Einstein Condensate can hold before collapsing when the interaction
between them is attractive is checked. In order to do this the system is treated in a more precise
way by numerically solving the Gross-Pitaevskii equation. One finds that the variational approach
underestimates the number of atoms that can fit in a Bose-Einstein Condensate before it collapses.

I. INTRODUCTION

Bose-Einstein Condensation is among the most fas-
cinating phenomena in nature as its surprising proper-
ties are direct consequences of quantum mechanics. In
essence, it is a macroscopic quantum phenomena. Unlike
the classical ideal gas or the Fermi-Dirac gas, the Bose-
Einstein ideal gas has a thermodynamic phase transition
which is driven by the particle statistics and not by their
interaction. A Bose-Einstein Condensate (BEC from now
on) is a state of matter of a dilute gas of cold atoms
obeying Bose-Einstein statistics below a certain critical
temperature (Tc), which is often called condensation tem-
perature in analogy with the liquid-gas transition. This
transition occurs when the de Broglie wavelength of the
characteristic thermal motions becomes comparable to
the mean interparticle separation. When this condition
is attained, a macroscopic fraction of the bosons occupy
the lowest single particle quantum state, even if the tem-
perature is high enough to populate other states.

This omnipresent phenomenon plays remarkable roles
in atomic, nuclear, elementary particle and condensed
matter physics, as well as in astrophysics [2]. The study
of BEC in weakly interacting systems has at its heart the
possibility of revealing new macroscopic quantum phe-
nomena that can be understood from first principles, and
may also help advance our comprehension of superfluid-
ity and superconductivity.

BEC was predicted by Bose (1924) and Einstein (1924,
1925) but eluded direct and unquestioning observation
until 1995 as the experimental techniques for trapping
and cooling atoms in magnetic and laser traps had been
improved. The time-of-flight measures carried on these
experiments on gases of rubidium [3] and sodium [4]
showed a clear signature of the BEC: when the confining
trap was switched off and the atoms were left to expand,
a sharp peak in the velocity distribution below a certain
critical temperature appeared.

Not all bosons can form condensates. For example, He-
lium, which is among the most famous bosons in Physics
can not form BEC when it is in its ground state. This is
because it is liquid at T=0 K and therefore correlations
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can not be neglected. On the other side, there are other
atoms such as alkali that can be in this state of matter.

A. The stability problem

All BEC are essentially metastable gases that lack of
cohesion and therefore it is compulsory to use a trap to
confine them. Most of the times, the confining traps
are well approximated by harmonic potentials of frequen-
cies ωx, ωy, ωz. Playing with these trap frequencies dif-
ferent shapes of the condensate can be achieved. For
ωx = ωy = ωz the cloud will be spherical, while axially
symmetric geometries such as the so called cigar shape
and disk/pancake shape can also be created both numer-
ically and experimentally. A characteristic length scale
for the systems can be defined: aho = [~/(mωho)]1/2,
where ωho = (ωxωyωz)1/3 is the geometric mean of the
harmonic frequencies, m is the mass of the atoms in the
gas and ~ is the reduced Plank constant.

Interactions between atoms can be either attractive or
repulsive. While a trapped repulsive interacting BEC
will always be stable, it is different if the interactions are
attractive because that can imply instability to collapse
if the number of atoms in the condensate is large enough.
That shows that attractive interacting condensates can
exist, but only up to a critical number of atoms Ncr.
Thus, there are stability conditions for a small number
of atoms such as lithium-7 [5] in trapped condensates. In
these cases, the zero-point kinetic energy provided by the
trap can balance the increase of the center density due
to the attraction of the atoms for each other. It should
be noted that cigar and pancake geometries are obviously
less stable than the spherical one if atoms interact attrac-
tively because less atoms can fit in one of the directions
of the trap and the critical number Ncr is thus reached
sooner. Stability conditions in this last two geometries
are analytically more difficult to consider, only the spher-
ical geometry will be studied here because the aim of this
work is to check the approximate expression given in [1],
which treats only spherical symmetries.

There are different experimental ways in which a BEC
can be produced, but they all share two common features:
cooling down to the temperatures (between µK and nK)
at which the condensates take place and trapping [6].
These techniques are laser cooling and magneto-optical
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trapping, which combines Doppler cooling and magnetic
trapping. This laser based-methods were developed in
the 1980s and were the key to the first observations of
this phenomenon.

II. THEORY

A. Gross-Pitaevskii equation deduction

Although in the standard literature the Gross-
Pitaevskii equation is usually obtained in the framework
of the second quantisation formalism, it is possible to
motivate the derivation of the GPE in relationship to
concepts from statistical physics.

As it was discussed above, a BEC is obtained from
a collection of N bosons in their ground state at very
low temperatures. The general N -body Hamiltonian for
identical particles of mass m can be expressed as follows

Ĥ =

N∑
i=1

[
− ~2

2m
∇2

i + Vext(~ri)

]
+

1

2

N∑
i=1

N∑
i 6=j

V (|~ri − ~rj |),

(1)
where the first term in the Laplacian is the kinetic en-
ergy, Vext represents the external trapping potential and
V represents the pair interaction between the N parti-
cles.

The ground state of the system corresponds to the min-
imum energy, which can be found approximately by min-
imizing the expectation value of (1) using a totally sym-
metric trial wave function that is the product of single
particle states:

|Ψ(1, 2, ..., N)〉 = |ϕ(1)〉 ⊗ |ϕ(2)〉 ⊗ ...⊗ |ϕ(N)〉 . (2)

This ansatz can be made as in the dilute situation one
can expect that correlations are negligible. Furthermore,
the bosons interact weakly, so that a mean field approx-
imation can be used, which means that the action felt
by a given particle due to the rest is substituted by the
average effect of the interactions of this particle and the
(N − 1) other particles.

Following a similar deduction to the Hartree-Fock
equations for fermions that can be found in standard
textbooks [7], the GPE can be obtained. The total en-
ergy 〈Ψ|H |Ψ〉 will be minimized together with the con-
straint of normalization 〈Ψ |Ψ〉 = N , so |Ψ|2 represents
the number of particles:

δ[〈Ψ|H |Ψ〉 − λ 〈Ψ |Ψ〉 ] = 0. (3)

It can be proved that the Lagrange multiplier λ used in
the minimization can be identified with the chemical po-
tential µ of the system (the energy required to add one
more atom to the condensate), which what the Koop-
man’s theorem [7] states. That leads to the following

equation:

− ~
2m
∇2ϕ(~r) + Vextϕ(~r) + (N − 1)×[∫

d~r′V (|~r − ~r′|)|ϕ(~r)|2
]
ϕ(~r) = µϕ(~r). (4)

As condensate atoms interact by means of binary colli-
sions, at low temperatures only s-wave collisions are im-
portant. Assuming that the gas is dilute and weakly in-
teracting, the interaction between particles can be writ-
ten in term of the scattering length using a zero-range
interaction potential such that

V (|~r − ~r′|) = gδ(~r − ~r′) =
4π~2

m
asδ(~r − ~r′), (5)

where g is the coupling constant and as is the s-wave scat-
tering length, which measures the interactions between
the bosons and can be attractive (as < 0) or repulsive
(as > 0). It is worth noting that this quantity is nowa-
days tuneable by means of Feshbach ressonances [8].

For a large enough number of atoms, one can use the
approximation that N−1≈ N , which leads to the Gross-
Pitaevskii equation (GPE):

− ~2

2m
∇2ϕ(~r) + Vext(~r)ϕ(~r) + g|ϕ(~r)|2ϕ(~r) = µϕ, (6)

where all the atoms are assumed to be in the condensate
at T =0 K. This equation considers that the system is
at zero temperature, which works fine for BEC as the
temperatures at which they take place are very low and
close to the absolute zero. Furthermore, when the gas is
very dilute and weakly interacting (na3s <<1), where n
is the average density, considering that all the atoms are
in the condensate fraction is very accurate. For example,
more than 99% of the alkali atoms are in the condensate
at T = 0 K.

Solving this nonlinear equation for the wave function
must be done numerically but nonetheless it shows a form
of BEC: the population of the lowest state in energy be-
comes macroscopic under the right conditions.

B. Stability deduction (collapse for attractive
forces)

If the trapped gas has attractive interactions (as <
0) its central density will increase when new particles
are added to the cloud. This happens in order to lower
the particle interaction density, which can be stabilized
by the zero-point kinetic energy. However, if the cen-
tral density increases too much, this kinetic energy is no
longer able to avoid the collapse of the gas. For a given
atomic species, the collapse is expected to occur when
the number of condensed particles exceed a critical value
Ncr.
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In the literature [1] there is an expression that explains
the behavior of the trapped gas with attractive forces at
T =0 K. It allows oneself to obtain the critical number
Ncr of bosons that a BEC can hold before it collapses.
It does it by means of a variational method that uses a
Gaussian as a trial wave function [9] due to its similarity
to the experimental density and for the sake of obtaining
a simple expression.

A spherical trap can be described by this ansatz, which
is expressed in oscillator length aho units:

ϕ(r) =

(
N

w3a3hoπ
3/2

)1/2

exp
(
− r2

2w2a2ho

)
, (7)

where w is a dimensionless parameter which fixes the
width of the Gaussian (condensate).

The energy functional that describes the system

E[ϕ] =

∫
d~r

[
~

2m
|∇ϕ|2 + Vext(~r)|ϕ|2 +

g

2
|ϕ|4

]
, (8)

is minimized giving as a result the energy per particle in
oscillator units:

E(w)

N~ωho
=

3

4
(w−2 + w2)− (2π)−1/2

N |a|
aho

w−3. (9)

Numerical calculation of the critical value wc = wcr

can be performed. As these value is reached when the
function (9) has an inflection point, it must be required
that its first and the second derivative vanish at the crit-
ical point. By doing this one founds wcr ≈ 0.6689 and
combining this value with equation (9) it can be found
the relationship between the critical number of atoms
that can be in the condensate and the adimensional ratio
between the s-scattering length and the oscillator char-
acteristic length:

Ncr|as|/aho ≈ 0.6706. (10)

This is plotted in Figure 1, which shows the energy
per particle in oscillator units that is obtained from the
variational method described above as a function of the
effective Gaussian cloud width w. Several curves for dif-
ferent values of N |as|/aho are shown in order to reflect
the behavior before and after the collapse. It can be seen
that the local minimum disappears at N = Ncr, value
for which the collapse happens. From (10) an estimation
of the critical number of particles in a condensate given
as and aho can be obtained.

C. Numerical calculation of the GPE

As the nonlinear equation (6) can not be solved ana-
lytically, a numerical code must be used in order to check
the validity of the variational result (9). This code solves
numerically the three dimensional GPE and provides the
energy of the fundamental state of the BEC. It is based
in a space discretization in a grid of 72×72×72 points

Figure 1: Energy per particle in oscillator units (~ωho) ob-
tained from the variational calculation for an attractive con-
densate in an spherical trap is plotted versus the adimensional
width of the Gaussian function w. The black thick line cor-
responds to Ncr.

with a separation of 0.5 Å, which means that the wave
functions will also be discretized on a three dimensional
spatial mesh. All the derivatives in the code are calcu-
lated using 13-point centered formulas in order to have
the maximum accuracy in the results.

To compute the solution the code follows an itera-
tive numerical method based on the Imaginary step time
method [10]. To start the calculation, an initial guess
value must be provided; in this case, in order to avoid
any kind of bias a random function is used. In addition,
as the code relies on iterative procedures, the process fin-
ishes when a desired degree of convergence in energy is
reached, which means that an ad hoc value for the rela-
tive energy change between two steps has to be decided
previously in order to decide that the solution has been
achieved.

III. RESULTS AND DISCUSSION

Figure 1 can not be reproduced with the numerical cal-
culation performed in this work due to the fact that the
energy that results from this method once the number
of particles in the condensate exceeds the critical value
Ncr is nonsense. That is because, unlike the variational
approach, the code operates only under equilibrium con-
ditions and it is not the case when the condensate has
collapsed. When that happens, all the condensate den-
sity is concentrated in a central bin of the spatial mesh
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discretization, resulting in what looks like a Dirac delta
function. That means that all the particles are in a single
point, which can by no means be an equilibrium situa-
tion.

However, the results extracted from the numerical
method explained in section IIC can be compared to the
ones derived from the variational method of section II B
by means of the graphic plotted in Figure 2.

Figure 2: Comparison between the theoretical variational
model (in red) and the numerical calculation performed in
this work (blue squares connected with dashed lines). Criti-
cal number of bosons in the condensate Ncr as a function of
its characteristic length aho divided by the absolute value of
s-scattering lenght as.

Figure 2 shows the critical value of the condensate Ncr

before it collapses as a function of an adimensional pa-
rameter aho/|as|. It is done in this way in order to com-
pare the variational result to the numerical calculation
performed in this work. As expected from (10) the varia-
tional model gives a straight line with a slope of approx-
imately 0.6706. The numerical results have also a linear
behavior but have a slightly different slope, which results
to be 0.7127.

One can also see that the variational formula under-
estimates in about 5% the critical number of bosons
that can fit in the condensate before it collapses given
aho/as. This is because the Gaussian function it uses
is a good representation of the cloud roughly speaking,
but the real function that describes correctly the cloud
is slightly broader. For this reason, the numerical cal-
culation, which allows that the trial function has more
degrees of freedom, is closer to the correct description of
the system and gives a larger number of bosons under
the same conditions.

In Figures 3 and 4 the variational and the numerical
solutions are plotted for lithium-7 atoms in three dimen-
sional harmonic traps of two different frequencies. One
can see that while both the variational Gaussian func-

tion and the one that is used in this calculation are very
similar, the first is slightly narrower than the last.

This agrees with the fact that the variational method
underestimates the number of bosons that fit in the con-
densate, as the square modulus of the wave function can
be related to the cloud density.

Figure 3: Comparison between the Gaussian trial function
that the variational method uses (in red) and the numerical
function (in dashed blue) for a mean oscillator trap frequency
of ωho =75 Hz. For this frequency the variational approach
gives a Ncr of 1617 bosons while the numerical calculation
gives 1732 as the maximum of particles the condensate can
hold.

Figure 4: Another comparison between the Gaussian trial
function that the variational method uses (in red) and the
numerical function (in dashed blue) for ωho =175 Hz. For
this frequency the variational approach gives an Ncr of 1058
bosons while the numerical calculation gives 1125.
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IV. CONCLUSIONS

This work has studied two different ways of obtaining
the critical number of atoms in a trapped dilute Bose-
Einstein Condensate with attractive weak interactions
between the atoms at zero temperature. The expression
based on a variational method [1] has been proved to
be of a good quality in a coarse way. However, it hap-
pens to underestimate this value due to the fact that
the Gaussian Function that this approach uses as a trial
wave function is slightly narrower than the real density.
Instead, the numerical method studied in this work is
a better approximation to the experimental density be-
cause it allows the trial function to have more degrees

of freedom. Thus, the critical number of particles in a
condensate obtained from this last method is supposed
to be closer to the experimental value.
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