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Abstract: The microstructural behavior of ferromagnetic shape memory alloys (FSMAs) is stud-
ied by means of simulations of a magnetoelastic model. The elastic part consists of a Ginzburg-
Landau free energy, extended to include both long-range anisotropic interactions and disorder,
whereas the magnetism is based on the micromagnetic theory. The model is able to reproduce
several experimental microstructures. First, the pure elastic model is tested and the structural
martensitic transformation, the shape memory effect (SME) and the superelastic effect are found.
Simulations of the full magnetoelastic model show, at temperatures T' < T, magnetic stripes within
martensitic twins. The martensitic transformation and the evolution of the magnetization with T'
is observed by different values of applied magnetic field. Also, the magnetic shape memory effect is
obtained and the evolution of microstructure is presented in the magnetic field-temperature-strain
curve. The parameters used in these simulations are experimental values corresponding to Fe-Pd

FSMA.

I. INTRODUCTION

Ferromagnetic materials are the most paradigmatic
among ferroic materials. Ferroic materials are character-
ized by the existence of a phase transition from a high-
symmetry (disordered) phase towards a low-symmetry
(ordered) phase when lowering the temperature (') [1].
This transformation can be characterized by an order
parameter (OP) that vanishes above the transition tem-
perature and takes non-zero values below it. Particu-
larly, the ferromagnetic systems exhibit a spontaneous
net magnetization below the Curie Temperature. Other
examples of ferroics are ferroelectrics and ferroelastics,
where the OPs are respectively the polarization and the
strain. All of them, show in the ordered phase a mul-
tidomain mesostructure due to, among other causes, the
presence of long-range interactions. The phase transition
can also be induced by the application of the external
field and presents hysteresis behavior.

Materials that show multiple ferroic behaviors are
called multiferroics. These materials present a coupling
among two (or more) ferroic properties and they exhibit
a relevant cross-variable response by the application of a
non-conjugate external field (Fig. [I) [2]. For example, a
multiferroic that presents ferromagnetism and ferroelec-
tricity at the same time has a magnetoelectric coupling
so that an electric field can affect the magnetization as
well as the magnetic field affects the polarization. The
effect of cross-variable responses opens a wide range of
technological applications.

The study presented in this report is focused in ferro-
magnetic shape memory alloys (FSMAs). These mate-
rials exhibit a structural transition in the ferromagnetic
phase, specifically a first-order displacive transformation,
where the low-symmetry phase is usually called marten-
site and the high-symmetry one austenite.

These alloys show a magnetoelastic coupling and
therefore they have a cross-response of strain-magnetic
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FIG. 1. The table (left) shows order parameters associated
to some ferroic systems and their respective conjugate fields.
The diagram (right) shows the coupling between different
magnitudes giving rise to a cross-variable response in mul-
tiferroics. Extracted from Ref [3].

field and magnetization-stress field. This gives rise to
various interesting effects such as shape memory ef-
fect and superelasticity both induced by external mag-
netic field, hysteresis loop in strain-magnetic field and
magnetization-stress field curves, etc. [4]-[5]

The goal of this study is to reproduce the above men-
tioned effects by means of numerical simulations of a 2D
system using a Ginzburg-Landau model for the descrip-
tion of square-to-rectangular martensitic transformation
(MT) that also includes contributions due to disorder
and anisotropic long-range interations, and micromag-
netic model for the description of magnetics interactions.
Also, the model takes into account a term for magne-
toelastic coupling which is the term that will allow us
to reproduce cross responses between elasticity and mag-
netism.

II. MODEL:
A. Elastic Model

The description of the MT is given by the Ginzburg-
Landau theory [6]. According to elasticity theory, any de-
formation undergone by a system with square symmetry
can be described as a superposition of three symmetry-


mailto:jgebbimo8@alumnes.ub.edu

Numerical study of the microstructure in ferromagnetic shape memory alloys

Jonathan F. Gebbia

adapted strains [7]: compressive ej, deviatoric es and
shear eg strains (see Fig. . As it can be seen, the ap-
propiate Landau OP for the square-to-rectangular tran-
sition is the deviatoric strain es.

FIG. 2. Symmetry adapted strains: ei, ez and e3 stand for
the bulk, deviatoric and shear strains. Extracted from Ref [3]

The twofold degeneracy of the low temperature phase
requires that fr(es) = fr(—e2) in the Landau expansion.
On the other hand, a system undergoing a MT typically
achieves a multivariant structure, with the presence of
domain boundaries. Ginzburg proposed an extra ener-
getic penalty for variations of the OP, fg = §|V62|2.
Therefore, the Ginzburg-Landau free energy density is
fua=fr+ fa:

A K
fraled = 23+ Det+ 18+ vl (1)
where Ay = ap(T-T.), 8 < 0,7 > 0and k > 0. Here T,
is the low-stability limit of the high temperature phase.

As a consequence of the symmetry reduction, the
nucleation and subsequent growth of the martensitic
phase take place embedded within a host matrix of the
austenitic phase. When the transformation goes on, in
order to perserve coherency, the lattice is forced to re-
duce the average deformation along the phase boundary
and hence the total energy. This process is called self-
accommodation and gives rise to a microstructure of al-
ternating variants of opposite strain.

A contribution from the non-OP strains (e; and ez)
is also included up to the harmonic term: fyxon-op =
%e%(r) + %e%(r). Notice that in 2D the three strain
components e1, eo and e3 are not independent but they
are linked by the so-called Saint-Vénant compatibility
condition [8]. Moreover, the contributions of the non-OP
strains e; and e3 are energetically costly and therefore
the domain structure should adopt the morphology that
minimizes the total energy. These two conditions allow
to express fnon-op in terms only of es. This free energy
shows, in real space, anisotropic long-range interactions
whereas it becomes local in Fourier space:

Ay (R K2
20217 (Z)k + 8(ksk,)

fNon-oP = 3 lea(k) ‘2’ (2)

where ez (k) is the Fourier transform of es(r). We recall
that A; and As are the elastic constants A1 = C11 + C1a
and A3 = 4Cyy [9]. Indeed, cross-hatched correlations
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along the diagonal k, = £k, are favored. The self-
accommodation of martensite variants gives rise to a mul-
tidomain pattern called twinning where each of the vari-
ants is a twin.

Thus, the pure elastic energy is fo; = fL.¢ + fNon-0P-

B. Magnetic model

The spatial distribution of the local magnetization
M(r) is used to describe the magnetic domain structure.
This is a three dimensional continuous vectorial (spin)
field. We define m = M/Mg = (mg, my, m.) as the unit
magnetization vector with Mg the saturation magnetiza-
tion.

According to the micromagnetic theory [3],[10],[11],
the magnetic energy in a solid magnetic body can be
decomposed in the sum of the following terms:

fm:fan+fexch+fms+fext (3)

fan is the magnetocrystalline anisotropy energy density,
that is associated to the interaction of the magnetization
with the anisotropic crystallographic undeformed lattice
inducing a specific orientation of the spins. In a cubic
system, f., takes the form

Jan = Kl(mimi +m2m? + mimg) + Kgmimzmg. (4)

Here, K7 and K5 are the magnetocrystalline anisotropy
constants. This potential will favor the diagonal direc-
tions (easy axis of magnetization).

The exchange energy density, fexch, accounts for vari-
ations of the magnetization through the solid:

fexch = A|vm|27 (5)

where A is the exchange stiffness constant, that is posi-
tive (negative) for the ferromagnetic (antiferromagnetic)
system. This term would correspond to the short-range
dipole-dipole interaction of the Heisenberg model.

The magnetostatic energy density, fi,s accounts for the
contribution coming from the long-range interactions be-
tween all local magnetic moments in the system via the
demagnetization field Hy, since from Maxwell equation
V-H=-V-M.

1
fms = _§N0Mst - m, (6)

where po is the vacuum permeability.
Finally, fext is the interaction energy density between
the magnetization and the external field.

1
fext = *i,ufOMsHext -m (7)

This energy orientates the spins along the direction of
the field.
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C. Magnetoelastic coupling

The model takes into account the magnetoelastic cou-
pling where the magnetization is coupled to the symme-
try adapted strains [12]:

B,
\/i[(m +m2)er + (m} —m?)es] ®)

+ BQ (mzmy)e?n

fme =

where By and Bs are constants of magnetoelastic cou-
pling.

Summarizing, the total free energy density is given by
the summation,

fT:fel+fvrz+fme~ (9)

D. Dynamics

The aim of the model is the study of stabilized states,
which consist of magnetization and strain configurations
that minimize the total energy @ On the one hand, the
stabilized strain configurations are reached by means of
a pure relaxational dynamics defined by:

des(r) 3 0FT
ot dey(r)

(10)

On the other hand, the micromagnetic dynamical equa-
tion makes the magnetization evolve according to the
Landau-Lifshitz-Gilbert (LLG) equation [I1]:

oM
(1+a*) 5 —VOMxHeﬂ—}O;‘Mx(MxHeH) (11)

The first term in eq. involves a precessional motion
around the effective magnetic field Heg and 7y is the
gyromagnetic ratio. The second term is a damping term,
that reduces the precession of spins around Heg until
reaching a static state of minimum energy. Here « is a
dimensionless damping constant. The effective field can
be calculated as Hog = 71%088%' It is worth noting that
the magnetoelastic couplig contributes to both dynamics,
which gives rise to correlations between the strain and
magnetization contributions.

III. SIMULATION RESULTS

The numerical values for the model parameters are
mainly those corresponding to FezoPdsg alloy (shown in
table [I)). For the simulations, the model described above
has been reformulated in reduced units [3], [II]. Dis-
cretization of the model and dynamics is carried out and
implemented in a square mesh with periodic boundary
conditions. The system is let evolve until reaching a sta-
bilized configuration in both strain and magnetization
degrees of freedom.
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’Symbol‘ Value (S.I units) HSymbol‘ Value (S.I units) ‘

ar [2.4-10° N/(m’K)| A 4.55-107%m
As 28 - 10'° N/m? M, 1.08-10° A/m
Ay 14 - 10" N/m? K —5.2-10% N/m?
T. 257 Ko —6.6-10* N/m?
B 1.7- 10" N/m? By —1.85 - 10® N/m?
v 3-10 N/m? B, —6.72-107 N/m?
K 3.5306-107° N A 1072 107 N/m?

TABLE I. Symbols and values in S.I of the parameters of the
model. Extracted from Ref [3].

A. Preliminary results

In this section, we start studying the pure elastic
model, without the magnetic contribution. Figure
shows the MT induced either by temperature (a) or by
an external stress field (), simulated in a 256x256 cell.
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FIG. 3. Martensitic transformation: (a) The strain-
temperature curve at zero applied stress field. (b) The strain-
stress curve at constant temperature (T > T¢).

In panel (a) we can observe that below T, the system
exhibits non-zero values of (|es|) with a multidomain mi-
crostructure, that corresponds to the martensitic phase
with twinning pattern. Above T., the stable phase is
austenite so that the local strain is zero. In panel (b),
we can see the MT induced by external stress field. Ini-
tially, we start from austenitic phase and, progressively,
we increase the external stress field. During the load of
the stress, the system first undergoes simple elastic de-
formation. Then, for certain value of the stress field,
a sharp increase in the average strain is observed due to
the stress-induced transition giving rise to a monovariant
martensitic phase. Unloading the stress field, the system
transforms back to the austenitic phase so that the unit
cell recovers its initial shape. This effect corresponds
to the superelastic behavior and, during the load-unload
process, it can gives rise to hysteresis effects.

Figureshows the (0-e5-T") curve corresponding to the
shape memory effect (SME). The snapshots show rep-
resentative configurations at a given value of (o,e2,T).
They have been labeled to make clear the order of the
sequence. We can identify different processes. Focusing
on the (o-e3) curve at T = 0.52 (< T), pseudoplastic
behavior is observed: (i)-(iii) correspond to increasing
the stress, starting from twinned martensite (with an av-
erage strain near zero), until a monovariant martensitic
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phase is obtained due to the reorientation of the twins.
(iii)-(iv) correspond to unload of the stress and we can
see that the system maintains the single domain config-
uration. Finally, (iv)-(vi) show the (e; —T') curve where
the system is heated at zero external stress field until
it transforms to the austenitic phase, where the initial
macroscopic shape is recovered.

(iii)

FIG. 4. Shape memory effect (SME). Snapshots show the evo-
lution of the microestructure in different points of the curve.

B. Magnetoelastic results

In this section we present the simulation results of the
full magnetoelastic model. In Figure a) we show the
stable magnetic configuration obtained on a 512x512 sys-
tem at T = 0.5 and compare it with the experimental
observation in the case of martensite with magnetization
domains (b). One can observe multidomain magnetic mi-

FIG. 5. Comparison between a stable magnetic configuration
obtained by numerical simulation (a) and the experimental
martensite with magnetization domains (b), extracted from

[13].

crostrucures. Here, arrows represent the direction of the
magnetization in a given domain in the plane X-Y. The
elastic twins induce the magnetization to align to specific
directions (horizontal or vertical) according to the partic-
ular variant due to the magnetoelastic coupling. There-
fore, the change in the magnetization vector from one
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twin to another occurs across 90° domain walls that co-
incide with the twin boundaries. Moreover, within each
twin, magnetic stripes separated by 180° type domain
walls are formed. Such a magnetic arrangement allows
the minimization of the overall magnetostatic energy.
Figure |§| shows the dependence of both strain (upper
panels) and magnetization (lower panels) on temperature
at zero magnetic field h = 0 [(a)-(b)] and at different
values of the applied h [(¢)-(d)]. We note that (a) ex-
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FIG. 6. Strain-temperature and magnetization-temperature
curves: (a)-(b) at zero applied external field, (¢)-(d) for dif-
ferent values of applied external field.

hibits a similar behavior to Fig. l(a ), and the martensitic
transformation is observed. The Fig. |§|(b is the corre-
sponding (my) dependence with the temperature. The
multidomain magnetic microstructure below T, is again
observed, where the different elastic twins determine the
preferred magnetization direction. We can observe at
high temperature that the austenite phase exhibits a
small strain and this is also reflected in the magnetiza-
tion direction due to the strong magnetoelastic coupling.
This behavior has been observed experimentaly in [I4]
When applying an external magnetic field , we can see
in panel (¢) that the average strain values in austenitic
phase increases for larger values of applied magnetic field.
This reflects the existence of a cross-response between the
strain and the applied magnetic field. On the other hand,
in a heating process, an increase of (my) (h field direc-
tion) is observed in Fig. [6[d) between the martensitic
phase and austenitic phase. This is in qualitative good
agreement with experimental observations [15].

The magnetic shape memory effect (MSME) is repro-
duced in Fig. [7] Initially, we start from twinned marten-
site at T' = 0.5 and zero applied magnetic field, where the
magnetic domains are oriented depending of the elastic
twin, according to the described for the Fig. In this
point, snapshot (i), the system exhibits (es) ~ 0 and
(mx) = (my) ~ 0. The increase of the magnetic field,
(i)-(iv), causes the reorientation of the magnetization in

Barcelona, June 2014



Numerical study of the microstructure in ferromagnetic shape memory alloys

Jonathan F. Gebbia

(iif)

Magnetic field

6] 0,0 3

FIG. 7. Magnetic Shape Memory Effect (MSME). Snapshots
of 64x64 simulation cells show the evolution of the microstruc-
ture of magnetic domains in representative points of the curve.

such a way that it leads to the growth of the elastic vari-
ant coupled to the magnetization component favored by
the external field. The system exhibits nonzero macro-
scopic strain when the magnetic saturation is reached.
Progressively, we decrease the magnetic field until it is
zero and we can observe that both strain and magnetiza-
tion are kept practically constant (snapshot (v)). Finally,
in the (ea — T') curve (snapshots (v)-(vi)) the system is
heated at zero applied magnetic field until it reaches the
austenitic phase, where the initial macroscopic shape is
recovered. The austentitic phase has a residual deforma-

tion which is sufficient to cause that the system remains
magnetically saturated. This behavior has been observed
in many FSMAs [], [5], [16], [17].

IV. CONCLUSIONS

The results presented in this work show that the pure
elastic model is able to reproduce the martensitic phase
with twinned pattern and the martensitic transition in-
duced both by temperature and by the external stress.
The shape memory effect and the superelasticity is also
obtained. The full magnetoelastic model is able to repro-
duce the typical magnetic microstructure at low temper-
ature. This microstructure consists of magnetic stripes
within martensitic twins. We can see the martensitic
transformation induced by temperature at different val-
ues of applied magnetic field and the MSME where we
could observe the elastic and magnetic configurations and
correlations between them due to the magnetoelastic cou-
pling. In light of preliminar results not shown here, the
model shows capabilities to reproduce other experimental
observations such as magnetic superelasticity.
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