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We consider the voter model dynamics in random networks with mean-field approach. We apply a
Poisson process in the election of the neighbor whose state will be copied by an active node, which is
also chosen according to the same process at each time step. For simplification, we consider only two
possible Poisson rates distributed in two groups, a fast minority and a slow majority. We find that,
for a critical set of parameters, the system exhibit characteristic patterns, with abrupt alternation
between two consensus states in the fast group. After the analysis of Langevin equation, an effective
potential for the fast group is found that models the transition between the state of two alternate
consensus and another state where the fast minority oscillates around majority opinion trend.

I. INTRODUCTION

Statistical physics have proven useful in the modeling
of so called complex systems. In this context, it may
be interesting to detect behavioral patterns in systems
where it is necessary to handle high levels of disorder. In
other words, it may be interesting to model social systems
[1]. Some ingredients are necessary for this purpose, the
first of them being heterogeneity. Indeed, interactions be-
tween humans usually lack symmetry, thus giving rise to
emerging patterns, society itself being its main example.
But it is also true that sometimes people leave its idiosyn-
cratic believes, adopting the so called herding behavior.
This can be seen in many context, including business,
stock market, and general social networks. In this work
we study a well known case of majority rule, the voter
model. First appeared in 1973 for modeling competition
between species, now it is perhaps on of the simplest and
more paradigmatic model of opinion dynamics, and it has
produced many interesting applications. For example, in
[2] is used to reproduce empirical statistical data from
US presidential elections, a system with binary opinion.

In this work we analyze the effects of introducing het-
erogeneity in both the activation and neighbor selection
rules. In this case active agents revise their opinion with
higher frequencies, but at the same time their state is
copied with higher probability by neighbors. We con-
sider a set of agents divided in two homogeneous groups
with different activation rates, a fast paced minority and
a slow majority. Their opinions are competing in a ran-
dom mean-field network, and our aim is to study the
emergence of patterns in both groups, exploring in which
conditions the influence of an active minority produces
macroscopic effects in global dynamics.

II. THE VOTER MODEL

The general idea for the simple voter model is the fol-
lowing: we have a set of agents with a binary state of
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opinion (sell or buy, right-handed or left-handed,up or
down, etc) controlled by an activation rule which make
them interact purely by imitation. In the current work,
this rule is determined by a Poisson process with an indi-
vidual rate ;. The whole system activation process will
be that of a Poisson with a total rate of Ay = Zivzl A
This implies that the inter-activation time of the process
will depend inversely on the size of the system, At %
In our simulations, we have followed the standard
update rules known as Random Asynchronous Update
(RAU) . That is, at each simulation step (activation)
one agent will update its opinion (the probability of be-
ing chosen is directly proportional to the Poisson rate of
each agent) and will choose randomly one of his neigh-
bors and copy its state. For considerations about the
effects of non-Poissonian update rules, please see [3].

We start by defining a network of N nodes, where con-
nections between agents are ruled by the matrix P{j|i},
which determines the conditional probability for agent j
to be copied by the previously chosen agent i. Is easy
to see that for a generic network (including lattices),
P{jli} = 9%, where a;; is the adjacency matrix and k;
the node’s degree. For a mean-field random network this
is P{jli} = *<. In these cases we are assuming that
there is no priority when choosing a neighbor.

The current binary opinion of each agent is coded by
n;(t). After an infinitesimal time step dt, the opinion
of each agent will be determined either by its previous
opinion or by herd behavior. The probability of herding

depends on the dichotomic variable &;(dt):

_ _ | 1 with probability A;dt
§ildt) = { 0 with probability 1 — Adt (1)

In case of herding, the opinion of a neighbor will be cho-
sen according to P{i|j}:

1 with probability ., P{jli}n;(t)

ni(t) =
0 with probability 1 — 3", P{jli}n;(t)

(2)
The opinion of agent ¢ in the instant ¢ + dt will be [4]:

n(t+dt) = n; (1) (1 — &) + n: ()& (3)
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After taking the expected value conditioned by the state
of the system 7i(¢) and averaged over the ensemble, we
can define p;(t) = (n;(t))7. Time evolution of the average
opinion can be expressed, from equation (3), as:

N

dpi .

o =N | Do PUliYes — i (4)
j=1

A. Global magnitude conservation

Here we shall prove that finding the conservation law
in the voter model is equivalent to find the eigenvector
@(4) of eigenvalue 1 of P{j|i}, which satisfies:

o(j) = Z (i) P{j|i}. (5)

Indeed, it is clear that by multiplying (4) by ¢(i) and
summing over every agent in the system, the right side
of the equation vanishes. Therefore, we find the conser-
vation of the following magnitude:

N .
> 290, (©
i=1 7"

For a network with no priority in the choice of neighbors,
@(i) o k;, where k; is the degree of agent ¢. This will be a
constant for a mean-field random network (or a lattice).

B. Probability of absorption

In a finite size system, a frozen consensus is always the
final fate of the dynamics. Interestingly, the conserved
quantity derived in the previous subsection allows us to
evaluate the probability of the system being trapped in
one of the two possible absorbing states. Then p;(t =
o0) = Pp, where P is the probability of ending in the
"up” state. Hence, it follows from (6) that

N )
dim1 ¢/\(:)pi(t =0)
N ¢(i)
Y 5
When initial probability of being ”"up” is uniform for
every node, P; = p;(t = 0), regardless of topology. Fig-
ure 1 exemplifies this conservation in some systems.
All this results have already been derived with other

methods,as can be seen for example in [1], pag.9, where
one-body correlation function is used.

P =

(7)

III. HETEROGENEITY IN ACTIVATION
RATES

As explained before, the activation rate of each agent
depends on its A;. In the homogeneous case, all agents
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FIG. 1: Convergence of P1 for different situations: after 2000
realizations, probability converges to the initial condition.

will update its state with the same pace. But it can
be imagined that in real life social systems, decisions
are taken by agents who typically behave with different
temporal frequencies. It could also be asserted that, in
general, high-frequency agents are outnumbered by slow
ones, since their positions are often more radical or risky.
This differences can be seen in stock market between
noise-traders and funds, or in more everyday situations,
like a debate with very active speakers and more reflexive
ones. In this last scenario, a minority of active speakers
will contrast their opinion between them in a shorter time
scale than those reflexive orators. The question is, how
will these differences affect global opinion dynamics?

A. Two-compounded heterogeneous networks

We can easily model this effect by assuming a dis-
crete distribution of A;’s with only two possible values,
As (fast) and A (slow), with Ay > A,. It is clear that Ay
will imply a shorter inter-activation time of fast agents
and, when Ay > A,, we can consider that time scales are
completely separated for each kind of agent.

Besides, we consider nodes placed in a mean-field ran-
dom network with homogeneity in degree distribution
(for a deep analysis of the effect of heterogeneous degree
distribution, please see [5]).

In this case, we set new rules for the choice of the
copied neighbor. Instead of taking one of them randomly,
we assume that neighbors will also be chosen with a prob-
ability proportional to their rates. Therefore:

s

P{jli} = —F2—, 8

{Jli} SRy (8)

which implies that ¢(z) oc A; and, thus, that ), p;(t) is
the conserved quantity.

Figure 2 shows particular realizations of the process for
different values of A\;/Af. As it can be seen, periods of
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FIG. 2: Evolution of the fraction of agents in ”up” state of a
two-compounded heterogeneous system, in a mean-field ran-
dom network of N=5000 agents, where 20% of them are fast.In
all cases A\y = 1.Top: A\s = 1072, Center: \; = 10~*. Bot-
tom: \; = 107°

regular growing appears as we increase the separation of
time scales. This continuous evolution is suddenly broken
by sharp peaks. Although the system ends up absorbed
in one of the two absorbing states, the peculiar pathway
to reach consensus cannot be observed in the standard
voter model (for example Figure 1 in [3]).
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FIG. 3: Evolution of the fraction of agents in "up” state of a
two-compounded heterogeneous system, in a mean-field ran-
dom network of N=5000 agents, where 20% of them are fast.
In this case Ay = 1 and s = 1075.T0p: Evolution of the
fast group. Center: Evolution of the slow group. Bottom:
Expanded time period showing fast (blue), slow (indigo) and
global (black) dynamics.

For a better understanding of this phenomenon, we
show in Figure 3 the separated temporal evolution of
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both groups. It appears then clear that this sharp peaks
and this exponential decays are not casual but are the
result of very differentiated dynamics between fast and
slow agents. As mentioned before the global dynamics is,
in general, governed by exponential increasing or decreas-
ing decays, which are closely related to the slow group
evolution. On the other hand, transitions between two
consensus states in the fast group produces sharp peaks
in both global and slow temporal series. Due to the huge
differences between time scales, from the fast group per-
spective slow agents will seem as if being frozen in their
state, while from the slow group perspective fast agents
will be in the absorbing state and thus they will also seem
at rest. We shall show that this differences are responsi-
ble of the emergence of the observed behavior.

Exponential decay of system’s opinion is consistent
with the interaction of the slow group with the fast one.
In fact, in the slow time scale the subgroup of fast agents
will be a coherent nucleus in consensus, which will almost
always determine the copied opinion for any slow agent.
In the case of this nucleus being condensed at "up” state,
it can be asserted that the total of agents in this state
(N7) will follow 4t oc Ny oc (N — Ny). This implies an
increasing exponential decay saturating in N. In the op-
posite case, is easy to see that dé\? o< —N1p, then we will

have a decreasing exponential decay collapsing at zero.

On the other hand, transitions in the small group can
be explained by the opposite interaction. Despite the
tinny probability of a fast agent to copy a slow one, its
time scale is small enough to visualize this interactions
many times during the process. When they occur, fast
agents (which are in a consensus context) may copy an
opposite opinion from a slow outsider, thus introducing
some noise in the small subsystem preventing it to be
trapped in the consensus states. When the fast nucleus
is moved out from consensus, it can evolve to the op-
posite state, in a similar way as an homogeneous voter
model system could do. This change of consensus must
be abrupt as long as the probability of transition dimin-
ish with the time necessary to carry it on. As we have
seen, this change of nucleus consensus will change the
sign of the exponential decay of global dynamics.

B. Characteristic consensus time

In this subsection, we proceed with an analysis of fast
agents transitions in the context of Langevin equation.
As will be seen, competition between diffusion and drift
plays a main role in the presence of ordered behavior.

As seen in [4], the Langevin equation for a general
stochastic process X (t) can be written as:

dX(t) = —V'(z)dt + /D(z)dW, 9)

where dW is the differential Wiener process, and the drift
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and the diffusion term are respectively defined as:

(X(t+dt)|X(t)) — X()
dt ’

(10)
(X2(t+dt)| X (1)) — (X (t+ dt)| X (t))?
dt ’

Vi(x) = -

D(z) =

In general, voter models are pure diffusive processes. But
in this case, P{j|i} introduces an interaction that gener-
ates a drift in both slow and fast dynamics.

Here we redefine p = 3 >,y ni(t), so it can be con-
sidered a stochastic variable following (9). Working with
the expressions of (10), and using (3),(4) and with the
prescription of (8), we can find the terms of our Langevin
equation. We only show results for the fast group, since
we want to study its transitions, although the results for
the slow group are equivalent:

_dpp Ny
dt 1+ ks

Vilpy) = (pr—ps) (11)

A
Df(ps) = 2L (Pf +

(1 - 2pf)(kfspf + ps)
Ny ) 12)

1 + kfs

where we define ky, = %% We will assume that
from one group the density of “up” states of the other
is a constant of time, a quasistatic approximation that
makes sense for very differentiated timescales. Depen-
dence with fast ratio can be omitted by considering time
units consistent with Ay = 1.

A first approach to the calculation of mean transition
time comes when considering the fast nucleus as an inde-
pendent and homogeneous voter system moving between
two barriers, on of them absorbing and the other reflect-
ing. The reflecting barrier models the interaction be-
tween fast and slow paced agents, since this interaction
can move fast agents out of consensus. In this case, the
diffusion term is D/ (py) = %;pf(l —pr)-

Now, we are going to study the transition time for the
case of fast agents beginning near the zero state consen-
sus, at py ~ 1/Ny (the other case is symmetric). First
Passage Time T'(a,b, p) is defined [6] as the mean time
necessary for a system to escape from a space enclosed
between two barriers ¢ and b (a < b) beginning from p.
We will consider an absorbing barrier b = 1 in the "up”

consensus and a reflecting one a = p = Nif Therefore:
N
T(a,b,p) x )\—f In Ny (13)
f

We have taken some measurements of transition times in
two-compounded heterogeneous systems for different fast
subsystems sizes. To asses the goodness of our assump-
tions, we have performed this operation with a system
with no further restrictions and also with a system with
an artificial reflecting barrier.
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FIG. 4: Experimental mean First Passage Time (T) for fast
nucleus starting at py = 1/Ny and slow agents beginning at
ps = 1/2. Diamond points correspond to measurements in
simulations with an imposed barrier in 1/Ny. Circle points
simulations don’t have explicit barrier. High values of kjs
correspond to low coupling situations. The dashed line corre-
spond to predictions of equation (13).

It is clear from Figure 4 that the assumption of the
fast nucleus as an homogeneous independent system with
barriers does not fit with the real model. Even in the
case of imposing a reflecting barrier, the expected lineal
tendency of time respect NyLnN¢ is only observed in a
certain range of sizes.

An important effect we are not considering here is
the feedback mechanism between the fast and slow sub-
groups. In fact, when the fast nucleus is in consensus,
it attracts slow dynamics to its position in exponential
decay. During this process, slow agents also influence
the nucleus with their mean opinion. In case that slow
agents are far from fast ones, the small system will suffer
a greater noise that could eventually produce a transition
to approach both systems. On the contrary, if fast and
slow agents are near the same state, the transition will
become improbable. Thus, when drift is more relevant
than diffusion transition times have long tails which are
difficult to observe. If we don’t consider them, we obtain
smaller mean values than it could be expected.

As fast group diffusion diminish with its size (12), this
could explain why in some systems (for example k;s =
5102 with and without barrier) transition time growth
rate decays,just before rising again. This increase can
be seen as a phase transitions for N sufficiently high.
For example, in the system with barrier with k¢s = 5 -
104, passage time suffers a sudden increase around N o~
200. This suggests that competition between diffusion
and drift becomes critical for some value of system size
and coupling. This can be easily modeled by finding the
effective potential of fast agent dynamics, where we can
naturally study this phase transition.
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C. Effective potential

We are now interested in finding the effective poten-
tial for our model. Using the corresponding drift and
diffusion coefficients for fast agents in an heterogeneous
two-compounded system, we can solve the Fokker-Planck
equation for this model in the stationary condition, thus
obtaining the effective potential V.r¢. We will con-
sider the particular case where slow agents are frozen
in ps = 1/2, and we will select the constant so that V.¢s
is zero when p; = 1/2. It is easy to see then that:

Nf (kfs+1)—/€f5(1—2pf)2
e = 1-— 1 .
Vers ( 2kfs) n{ ke + 1
(14)

Consequently, V.rr will always have an extremum at
pr = 1/2, which will be a maximum (minimum) if

(1 - ;Z—f) is positive (negative). When there is a maxi-
mum, p; = {0, 1} are minima of energy system, so we will
find the observed transition regime (the potential barrier
between both states will depend on k). Otherwise, mi-
nority opinion will oscillate around majority’s with an
amplitude also depending of the C(zupling. Therefore, we

N
_fs 1.
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fs
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FIG. 5: A: Effective Potential for Ny = 500 and ks, = 25.
B: Effective Potential for Ny = 500 and kys = 2500. C:
Simulation of process with conditions in A. D: Simulation of
process with conditions in B. For this parameters, k%, = 250.

IV. CONCLUSIONS

We have shown here how heterogeneity plays a spe-
cial role in random networks when applied to the pro-
cess of neighbor selection. Using a discrete distribution
of Poisson rates we have found the presence of a phase
transition between two clearly distinct regimes. If kyg
(which is inversely proportional to the coupling strength)
is great enough compared to the size of the fast minority
group, this core alternates between two low energy states
of consensus. As a result, global opinion exhibits sharp
discontinuities followed by changes in growing tendency
that can be very relevant in a macroscopic scale. By con-
trast, when we have a sufficiently large coupling strength
the consensus solution disappears from fast autonomous
dynamics. Instead they are engaged to the opinion of ma-
jority, oscillating around an equilibrium state centered in
majority state.

In further considerations it could be important to con-
sider how the effective potential changes when slow dy-
namics are not centered at 50%. Furthermore, it would
be interesting to find a way to relax the quasi-static hy-
pothesis and consider the feedback mechanism between
fast and slow agents in macroscopic timescales.

Next obvious generalization would come by consider-
ing more complex distributions in the Poisson rate. If
this is done, for example, with a very skew Weibull dis-
tribution of rates, it is easy to see that we will not be
able to consider two differentiated groups. This can be
seen as a way of introducing heterogeneity in the fast and
slow group, thus establishing a hierarchy in the process
of activation and in the process of being chosen. It can
be tested with simulations that in this case the global be-
havior will have much resemblances to our discrete case,
with more sharpened and less frequent discontinuities in
global opinion dynamics.
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