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6 Theoretical methodology for single

bacteria dielectric characterization

6.1 Abstract

There are complex geometries, such as the one treated in the
present thesis, for which it is not possible to find an analytical
theoretical expression for the electrostatic force acting on the
measuring probe. In these cases, one has to restore to numerical
computations of the forces. In this chapter | will describe the study |
performed to find the best way to numerically calculate the electric
forces for the problems investigated. In this study | went from the
easiest geometries (e.g. sphere on a plane) to the more complex ones
(similar to the real geometry), to find the right tradeoff between
complexity and accuracy.

In this part of the study | received important and valuable inputs
from Dr. Martin A. Edwards to whom | am indebted.

6.2 Introduction

In the present thesis we are interested in a system geometry
composed by a probe and a conductive substrate where our biological
samples (bacteria, nanoparticles and viruses), will lie. As have been
exposed in section 3.3 of the present thesis the measurements will
mainly be carried out with the help of an AFM to perform electric force
measurements using conductive probes. They will go from small tip apex
radius (< 10 nm) for nanoparticles or viruses to larger ones (> 100 nm)
for bacteria. The latter are the ones mostly used in this thesis.



The axisymmetric probe will be approximated as a disc
cantilever with a thickness (T), and a length (L..) and a tip attached
symmetrically underneath of such cantilever. This tip will be
approximated as a cone with an aperture angle (0) and a height (H)
truncated to a tangent sphere with a radius (R). The sample has to be
modeled with a thickness (h) a length (L) and a dielectric permittivity (&)
and the substrate as a reference electrode (potential = 0 volts). The
limits of the simulation are set to insulating edges. To avoid the
influence of them in the final solution, a variable transformation that
approximates the radial length away from the active region to be infinite
is used. All the edges of the cantilever are set to 1 Volt (see Figure 6.1a
for a scheme of the model). Note that we are assuming an axially
symmetric geometry. Depending on the actual geometry of the
experiment a two dimensional axial symmetric geometry (cylindrical
geometry) with just radial (r) and z dimensions might be considered. In
this case the only allowed probe movement is in z direction
(approximation-retraction) from the substrate. This is enough for the
force vs. distance curves but insufficient for a lateral resolution study.
This case has the limitation of not being able to simulate the realistic
asymmetric probe (with the tip at one end of the lever). On the other
hand the benefit of this axial symmetry is a much easier simulation to
model avoiding most of the meshing problems and computing problems
that in a three-dimensional analysis one has to face (degenerated
tetrahedrons and/or cavities).

A 3D model would be good for a more realistic geometry and for
highly non-symmetric samples (were axial symmetry approximations are
not possible), taking into account cantilever geometry, tip holder, and
scaling up. The biggest difficulty is that this modeling in three dimension
and the very high aspect ratio of the tip (nanometer range for tip apex
vs. micrometer to millimeter range of the larger structures) is almost
impossible to mesh and the physical geometry (tilting angles, cone and
tip etching, real cantilever and tip holder geometry, etc.) is very hard to
obtain. Although we describe below some 3D calculations, they are
something that should still be considered as future perspectives ahead
of the present thesis.



Since this problem does not have an analytical solution, the only
way to check the accuracy of the numerical calculations is to perform
simulations by changing the simulation parameters (infinite limits,
better mesh refinements, etc.) in the simulation model until arriving to a
convergent solution. Besides the computational power limitation there
is a need to check the convergence in as much situations as possible (at
least in the range of the experimental parameters) what requires a
systematic study of the experiment.
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Figure 6.1 Schematic representation of a truncated cone plus a tangent

sphere and a cantilever (a) (not to scale). The figure also
shows where the infinite elements are and the sample (a
hemi-ellipsoid in this case).

All of this gives an idea of the very high complexity and time
consumption that accurate simulations can take. We have obtained
additional, and valuable information, about the effects of the
parameters on the simulations by analysing simpler problems for which
an analytical solution is known and which bear some similarity with the
problem at hand. With this objective in mind, | have performed a
number of computations by assuming the probe can be modeled as a
sphere.

In what follows | describe a number of models that have been
analyzed in order to find the best numerical calculations conditions and
to elucidate the effects of a number of geometric parameters into the
calculated values.



The calculations presented in this chapter have been performed
with the finite element numerical software COMSOL Multyphiscs® 3.4
(Comsol AB) running on a Pentium 4 dual core, with 4Gb RAM. The used
solver was the direct Pardiso with default parameters unless otherwise
stated. To run the scripts Matlab® Livelink with Matlab® 2007
software were used. COMSOL is a commercial finite-element package
that solves the Poisson’s equation numerically by using a mesh to sub-
divide the whole geometry (in partial differential equations). From these
the expected forces on a probe are obtained as a function of the tip-
sample separation, geometry and the electrical properties of the
sample.

6.3 Sphere over infinite conductive substrate

As it has been said in the introduction of the section we have started by
simulating a system with a known solution. There exist analytical
solutions for the capacitance and electrostatic force of a sphere at a
certain distance (z) from an infinite conductive substrate [35]. Here the
numerical simulations for the approaching of the sphere to the surfaces
are compared with the exact formula, in order to find the best meshing
conditions for such problems.
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Figure 6.2 (a) Model of a sphere over a substrate with its boundaries

defined (not to scale).



The sphere is a conductor and it is connected to the infinite
conductive substrate (metal) at a certain AC potential. As it has been
said in the introduction of this section the simulation area is
approximated to infinite in the radial direction (r) from the sphere
centre and in the positive z direction while the edges are set as electrical
insulators (see Figure 6.2).

The sphere is set to an arbitrary 1 Volt and the substrate is set to
0 Volts (reference electrode). The exact formula from [35] gives us the
capacitance of the system:

#(2+%)

2 %

Cretal(R, 2) = 4meyR Y. (6.1)

[
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and the equation used to compare with the force simulations is
19C .,

Fmetal = ZEV (62)
from where
a4
= ﬁF (6.3)

which is the magnitude that is going to be compared with the analytical
formula, after derivation of Eq. (6.1).

After an extensive analysis of the presented case it has been
elucidated that the most significant parameter to get accurate
simulations is the refinement of the mesh in the edge of the sphere. A
standard of quality to the simulation accuracy has been set to an error
smaller than 5 % for the force analysis. To achieve this level of accuracy
the maximum element size in the sphere edge has been found to be a
twentieth of the sphere radius (i.e. 0.5 nm in the case of a 10 nm radius
sphere). This refinement will be named fine mesh for the rest of the
section, whereas the default meshing of the finite element software will
be named coarse mesh.



8C/8z (@F/nm)

01F

001 |

The comparison of the real values (analytical formula) with the
simulated ones for the capacitance gradient 6C/6z against the distance
to the substrate (150 nm to 1.5 nm) for different radius (10 nm, 30 nm
and 100 nm) can be seen in Figure 6.3a. The error percentage against
the distance is also plotted for the 30 nm radius sphere in Figure 6.2b.

R___=100nm

sphere

L -\
10 100

sphere substrate distance (nm)

Figure 6.3

b)

100

fine

P T T
40 60 80 100 120 140

sphere substrate distance

(a) 5C/ oz vs. distance curves for three different radius spheres

(10 nm red, 30 nm black. Simulated values for a fine mesh on
the sphere boundary (squares) and with a coarse mesh on the
sphere boundary (circle and dashed line). The comparison with
the analytical formula is given by the solid line. (b) Error
percentage of the simulations compared to the analytical
formula for the refined mesh (squares and solid line) and the
coarse mesh (circles and dashed line) for the case of a 30 nm

radius sphere.

We clearly see that the refinement of the mesh on the edge of the
sphere affects the results of the simulation to a big extent. While the
coarse mesh give an error of up to 400 % in some points (circles and
dashed line in Figure 6.3b the refined mesh shows a much smaller error
where all the points lye below 3% of error (squares and solid line in

Figure 6.3b).



6.4 Sphere over infinite length thick dielectric

A second model that has been analyzed is the case of a sphere
over a laterally infinite insulator film on a metal. As the thickness of the
bacteria is going to be in the order (and larger) of the tip radius it is
interesting to see the effect of the dielectric thickness in the calculated
electric forces.
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Figure 6.4 (a) Model of a sphere over a thick dielectric with its
boundaries defined (not to scale).

In the model, the sphere is a conductor and it is connected to
the infinite conductive substrate (metal) at 1 Volt with a dielectric
infinite in the radial direction on top of the conductive substrate. The
simulation area is approximated to infinite in the radial direction (r)
from the sphere center and finite in the z direction. The edges are set as
electrical insulators. For this problem, an analytical solution exists in the
limit where the thickness of the dielectric tends to infinite [36]

_ . -1 z o ﬁ n—1 1
Cenick(R, 2,&,) = 4meyR sinh( cosh™ (1 + R)) Yy (£+1) —sinh(ncosh_1(1+%))

(6.4)



which can be used to obtain the electric force acting on the sphere in

this limit by using Eq. (6.2).

The first question that arises in this situation is finding the
thickness of the substrate that makes the simulation to converge to the
infinite thickness limit. In order to elucidate it, we have performed
numerical calculations for different dielectric thicknesses and compared
the results with the analytical formula. The thickness will be considered
infinite when the calculated value with respect to the analytical formula
is below a 3%. An example of the calculated values is shown in Figure 6.5
for the case of a substrate with a relative permittivity of 2 (which is the
smaller value reported in biological samples) [28].
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Capacitance derivative difference vs. substrate thickness
curves for three different radii of the sphere and at a fixed tip-
substrate distance of 10 nm for a sphere of R = 100 nm black
line, R= 30 nm red line and R= 10 nm blue line. The dotted line
is the analytical limit when the substrate tends to infinite in
the z direction for the three different radii. The reference
distance is in all cases z,,=150 nm.

The tip substrate distance is fixed to zo = 10 nm (which is equal to a
distance 10 + h nm over the metal electrode, where h is the sample



thickness) and calculations are done with respect to a reference point at
a distance z. = 150 nm, which are about the distances used in the
experimental part. Calculations for the capacitance gradient difference
AC'(zo) against the substrate thickness (2 nm to 10 um) for different
radius (10 nm, 30 nm and 100 nm) have been done (Figure 6.5).

We can see that the capacitance gradient decreases by
increasing the film thickness until a saturation limit (different for each
sphere radius) is reached. This limit can be seen to corresponds to the
analytical formula presented in equation (6.4) represented with dot lines
in Figure 6.5. We note that with the chosen simulation parameters, the
error with the analytical formula in the infinitely thick limit is of less than
a 3% as desired, meaning that the simulations are performing correctly
in this case also.

We note that to achieve the infinite thickness limit the thickness
of the substrate has to be thicker than around 20 times the radius of the
sphere (i.e. 200 nm, 600nm and 2um for the 10 nm, 30 nm and 100 nm
radius spheres respectively). Also we verified, that the smaller the
dielectric constant of the substrate the thicker it has to be to make the
solution converge what gives us a minimum thickness for every
substrates.

In the case of bacteria their height ranges from 200 nm to 700
nm which is not within the infinitely thick limit, and hence we would not
be able to approximate them by an infinitely thick sample, and hence,
analytical expressions of this type would not be useful.

6.5 Cone truncated to a tangent sphere over

an infinite (length and height) dielectric

In the previous section the thickness of the substrate has shown
to have an effect on the electric force acting on a sphere in close
proximity to it for thicknesses well beyond the sphere radius. In this
case, we show that also the probe geometry plays an important role in
these problems. [30]. To this end we considered a cone truncated
geometry as that shown in Figure 6.6. Finite element calculations were



used to calculate the force acting on the probe as a function of the
substrate thickness and dielectric constant. Figure 6.7 reports AC'(zy) at
a near tip-sample distance, zo = 10 nm, as a function of the thickness h,
for two reference distances, z,.s= 150 nm and 20 nm.
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Figure 6.6 (a) Model of a truncated cone + tangent sphere over a thick
dielectric with its boundaries defined (not to scale).

As for the case of the sphere results tend to become
independent from the insulator thickness for large thicknesses.
However, for the cone probe this happens at much larger distances, h >
100 um (thick film limit), a value not certainly related to the tip radius
but to the microscopic probe geometry. On the contrary when the
thickness of the dielectric is between the thin (< 50 nm) and thick film
limits, the film thickness matters and it has to be taken into account for
quantitative comparisons (this will be the case for the bacteria studies).
Figure 6.8 shows the calculated AC’(zg) as a function of the dielectric
constant of the insulator in the thick film limit (h = 250 um) overlaid with
some experimental points obtained by Dr. L. Fumagalli [30]. The
experimental results perfectly match the calculated values in this limit,
thus additionally validating the numerical approach developed.
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Figure 6.7 Calculated AC’(z5) as a function of the insulator thickness at

tip-sample distance zo= 10 nm for &, = 6.5. Reference distances
of: z,es = 150 nm (thick line) and 20 nm (thin line).

We note that by using the analytical model of a sphere on an
infinite dielectric instead of simulating the whole probe would
significantly under-estimate the dielectric constants and overestimate
the tip radius calibration on metal (see dashed line in Figure 6.8).

We then conclude, that it is important to include the total cone
height in the geometry as, despite the locality of the measurement, on a
thick insulator the micrometric region of the upper cone can influence
the shape of the electric field near the apex and the very lower part of
the cone, leading to a systematic under-estimation of the dielectric
constant if the whole cone is not included.

A similar effect was already discussed by Sacha and Sdenz [37]
where the cantilever was considered as an infinite plane. A further
refinement to the method shown here would require including the
cantilever into the simulated model and the full three-dimensional
simulation of the cantilever-probe system. An approximation of the
cantilever addition effect has been recently proposed in our group
(using axial symmetry) [38]. In the same article also the finite-size effects
of a dielectric film had been taken into account.
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Calculated AC’(zy) as a function of the insulator dielectric
constant at tip-sample distance z, = 10 nm for h = 250 um.
Two reference distances are considered: z,.; = 150 nm (thick
line) and 20 nm (thin line). Some experimental data are shown
for the two references (filled and unfilled symbols,
respectively). The prediction of the analytical model of a
sphere on an infinite dielectric is also shown dashed line for z,.
=20 nm and radius 38 nm (radius chosen to fit the calibration
measure).

The first conclusion of this section is that in the ranges of the

studied bacteria heights (200-700 nm) they cannot be considered

infinitely thick,

and hence the topography of each individual bacterium

should be analyzed in order to achieve a quantitative modeling of the

experiments. The second conclusion is that the spherical models are not

suitable for a quantitative study of neither the tip radius calibration

(metal substrate) nor the dielectric constant extraction. Hence, realistic

tip models need to be used.



6.6 Cone truncated to a tangent sphere over

an oblate spheroid

In addition to the probe geometry, also the sample geometry
can play an important role in the calculations. We illustrate it in the
present section by comparing the results obtained for a realistic
bacterial shape (Figure 6.9) and a rectangular bacterial shape (Figure
6.10). In this case the probe geometry is a truncated cone of H = 15 um,
R = 300 nm and 0= 30° over an oblate spheroid, representing the
realistic bacteria shape (see Figure 6.9), and over a rectangular
dielectric, representing the approximate bacteria shape (see Figure
6.12).
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Figure 6.9 (a) Model of a cone truncated to a tangent sphere over an

oblate spheroid with its boundaries defined (not to scale).

In Figure 6.11 the simulation of both geometries are plotted
with h = 600 nm and L = 700 nm in both cases for .= 3, 5 and 10. These
values are chosen as being the worst case of the ranges obtained
experimentally.
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Figure 6.10 (a) Model of a cone truncated to a tangent sphere over a thick
dielectric with its boundaries defined (not to scale).
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Figure 6.11 Simulations of AC’ (z) vs. distance to sample for a geometry

using a finite dielectric layer (circles and dashed line) and
using a dielectric oblate spheroid (squares and solid lines) for
different permittivities 3, 5 and 10 (blue, red and black
respectively). The simulation parameters are H = 15 mm, 6 =
30°, R =300 nm, L = 700 nm and h = 600 nm.



The difference AC’ (z) of the finite layer is higher as expected
since the volume is larger and the upper part is closer to the tip apex.
The error when using the finite layer instead of the oblate spheroid can
be up to 18 % or even larger for bigger permittivities. The error
percentage as a function of the proximity to the sample is shown in

Figure 6.12. As expected the further from the sample the less its
geometry affect the results.
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Figure 6.12 The error percentage of AC’ (z) using the finite dielectric layer

instead of an oblate spheroid geometry vs. distance to sample.

The conclusion is that if a shape different than a finite dielectric
layer has to be studied (as is the case of bacteria) the simulated
geometry has to be as close as it can be to the reality since the finite
layer geometry is not a good approximation.



6.7 Cone truncated to a tangent sphere over

an oblate hemi-spheroid

In the search for the more realistic geometry, we have
considered also the case of modeling the bacteria as an oblate hemi-
spheroid, since this could better represent the shape of an adsorbed
bacterium. In this section the oblate hemi-spheroid will be compared
with the oblate spheroid (previous geometry). A description of the
geometry can be seen in Figure 6.13.
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Figure 6.13 (a) Model of a cone truncated to a tangent sphere over an
oblate hemi-spheroid with its boundaries defined (not to
scale).
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Comparing both geometries in simulations of approach curves
to the sample with H = 15 um, 6 = 30°, R = 300 nm, h = 600 nm and L =
700 nm (worst case scenario of experimental ranges) the difference go
up to 7.5 % in some cases (close to the sample and for high &) (Figure
6.14). Although the difference is not enormous it is still significant so
again an accurate topography of the sample will have an important role.
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Figure 6.14 Simulations of AC’ (z) vs. distance to sample for a geometry

using an oblate hemi-spheroid (circles and dashed line) and
using a dielectric oblate spheroid (squares and solid lines) for
different permittivities 2, 3 and 5 (blue, red and black
respectively). The simulation parameters are H = 15 mm, 6 =
30° R =300 nm, L = 700 nm and h=600 nm.

6.8 Cone truncated to a tangent sphere over a

tri-axial hemi-ellipsoid

As it has been commented 3D simulations are difficult to perform and
some random configurations can lead to impossible meshes, besides
higher errors due to coarser meshes in calculations (see Sphere over
infinite conductive substrate). We overcome these difficulties to an
extent to enable us to assess the axisymmetric models to the more
realistic non-axisymmetric model. The 3D model used in the comparison
is shown in Figure 6.15.
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Figure 6.15 Model of a cone truncated to a tangent sphere over a tri-axial

hemi-ellipsoid with its boundaries defined (not to scale). (a) is
the side view, whereas (b) is the top view.

For calculations with the tip above the center of the sample, the
oblate hemi spheroid geometry resulted in almost identical forces to the
tri-axial ellipsoidal one (errors < 3%) as long as the polar axis, h, is
maintained and the equatorial axis of the oblate hemispheroid, L, is
taken so that the volume of the sample is preserved, i.e. L = 1/2(I-w)1/2,
where | and w are the width and length, respectively. The results for L =
700 nm, I =2 um, w =1 pum, h =600 nm, R =300 nm, H=15mm and q =
30° (worst case scenario with experimental data) are shown in Figure
6.16.

A cone of H = 2um would have suffice (without a cantilever)
although the H = 15 mm have been used for consistency with the axial
symmetric simulations. This fact, though, could be used for further full-
3D studies of non-symmetric and/or non-homogeneous samples or
probes making them simpler.
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Figure 6.16 Simulations of AC’ (z) vs. distance to sample for a geometry

using an oblate tri-axial hemi-ellipsoid (circles and dashed
line) and using a dielectric oblate spheroid (squares and solid
lines) for different permittivities 2, 3 and 5 (blue, red and black
respectively). The simulation parameters are H = 15 mm, 6 =
30°, R =300 nm, L = 700 nm and h=600 nm.

The results show that for the particular case of bacteria and as
long as measurements are reduced to the bacteria center, an
axisymmetric model can be used, which facilitates enormously its

practical implementation.

6.9 Conclusions

For simplicity in mesh, accuracy and similarity to the realistic
system (topography) the Cone truncated to a tangent sphere over
symmetric hemi-ellipsoid has been chosen for the bacteria dielectric
characterization. In the case of the validation of the technique on a
silicon nitride pattern (see chapter 4) the model of the Cantilever plus
cone truncated to a tangent sphere over a rectangular dielectric is
used.






