

Unit I: The \mathbb{R}^n Vector Space

Exercise 1. Given the vectors $\vec{u} = (1,0,3), \vec{v} = (-2,1,2)$, and $\vec{w} = (1,-2,-4)$ compute the following linear combinations

- a) $\vec{u} + (\vec{v} + \vec{w})$
- b) $2\vec{u} 3\vec{v}$
- c) $2\vec{v} \vec{u} + \vec{w}$

Exercise 2. Draw and describe geometrically (line, plane...) all linear combinations of

- a) $\{(1,3)\}$
- b) $\{(1,-1),(-3,3)\}$
- $c) \{(0,1),(1,0)\}$

Exercise 3. Draw and describe geometrically (line, plane...) all linear combinations of

- a) $\{(-1,-1,-1),(-4,-4,-4)\}$
- b) $\{(2,0,0),(1,2,2)\}$
- c) $\{(2,2,2),(1,0,2),(3,2,3)\}$
- d) $\{(2,-1,3),(1,4,1),(5,2,7)\}$

Exercise 4. Is the vector $\vec{u} = (2, 1, 4)$ a linear combination of $\{\vec{u}_1 = (2, 2, 1), \vec{u}_2 = (5, 3, 2)\}$?

Exercise 5. Is the vector $\vec{u} = (1, -1, 3)$ a linear combination of $\{\vec{u}_1 = (2, -1, 0), \vec{u}_2 = (3, 1, 1), \vec{u}_3 = (0, -1, 1)\}$?

Exercise 6. For what values of the parameter k is the vector $\vec{u} = (k, 2, 1)$ a linear combination of $\{\vec{v} = (5, 2, 0), \vec{w} = (3, 0, 1)\}$?

Exercise 7. Let \vec{u}, \vec{v} , and \vec{w} be three vectors of \mathbb{R}^3 . Suppose that the determinant of the matrix build from the three vectors is different from 0. Is \vec{w} a linear combination of $\{\vec{u}, \vec{v}\}$?

Exercise 8. Find the equation of the plane that contains (2, -1, 3), (1, 4, 1), and passes through the origin. Check if the point (5, 2, 7) is contained in the plane. Is the vector (5, 2, 7) a linear combination of $\{(2, -1, 3), (1, 4, 1)\}$?

Exercise 9. Let $\vec{u}_1 = (1,0,0)$, $\vec{u}_2 = (0,1,0)$, $\vec{u}_3 = (0,0,1)$, and $\vec{u}_4 = (-2,3,1)$. Show that the four vectors are linearly dependent

- a) By writing one of the vectors as a linear combination of the rest.
- b) Using the rank of the matrix built from the vectors.

Exercise 10. Explain why any set containing the $\vec{0}$ vector is linearly dependent.

M. Álvarez Mozos 1 ADE - 2014/2015

Exercise 11. Study the linear dependence/independence of the following sets:

a)
$$\{(1,-2,3),(3,1,2),(2,-3,1)\}$$

b)
$$\{(-2, -3, 3), (3, 4, 1), (1, 2, -7)\}$$

c)
$$\{(5,6,2),(2,3,5),(3,2,-1)\}$$

When the set is linearly dependent, write one of the vectors as a linear combination of the rest.

Exercise 12. Let $\vec{u}=(0,2,3)$ and $\vec{v}=(-1,-4,1)$. Find a vector \vec{w} such that $\{\vec{u},\vec{v},\vec{w}\}$ is linearly independent.

Exercise 13. Find the largest number of linearly independent column vectors of:

$$A = \begin{pmatrix} -2 & 1 & 2 & 3 \\ 0 & 0 & 6 & -1 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} -3 & 0 & -6 & 3 \\ 2 & 0 & 4 & 2 \\ 1 & 0 & 2 & 1 \\ 1 & 0 & 2 & 7 \end{pmatrix}$$

Exercise 14. Show that if a=0, d=0, or f=0, the column vectors of the matrix

$$A = \left(\begin{array}{ccc} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{array}\right)$$

are linearly dependent.

Exercise 15. Let $\vec{u} = (2, 2, 1), \ \vec{v} = (k, 1, 2), \ \text{and} \ \vec{w} = (-3, k, 1).$ For what value of k is $\{\vec{u}, \vec{v}, \vec{w}\}$ linearly independent?

Exercise 16. Let \vec{u}_1 and \vec{u}_2 be two linearly independent vectors. Reason out if the following statements are true or false.

- a) The vectors \vec{w}_1 and \vec{w}_2 given by $\vec{w}_1 = \vec{u}_1$ and $\vec{w}_2 = \vec{u}_1 + \vec{u}_2$ are always linearly indepen-
- b) The vectors \vec{w}_1 , \vec{w}_2 , and \vec{w}_3 given by $\vec{w}_1=\vec{u}_1$, $\vec{w}_2=\vec{u}_1+\vec{u}_2$, and $\vec{w}_3=\vec{u}_1-\vec{u}_2$ are always linearly independent.

Exercise 17. Let $\vec{u}_1 = (3, \frac{1}{2}), \vec{u}_2 = (\frac{9}{2}, \frac{3}{4}), \text{ and } \vec{u}_3 = (-\frac{3}{2}, 2).$

- a) Is the linear span of $\{\vec{u}_1\}$ a line in \mathbb{R}^2 ?
- b) Is $\{\vec{u}_3\}$ a spanning set of \mathbb{R}^2 ?
- c) Is $\{\vec{u}_1, \vec{u}_2\}$ a spanning set of \mathbb{R}^2 ?
- d) Is $\{\vec{u}_1, \vec{u}_3\}$ a spanning set of \mathbb{R}^2 ?
- e) Is $\{\vec{u}_2, \vec{u}_3\}$ a spanning set of \mathbb{R}^2 ?

M. Álvarez Mozos 2 ADE - 2014/2015

- f) Is $\{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$ a spanning set of \mathbb{R}^2 ?
- g) Is $\{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$ a spanning set of \mathbb{R}^3 ?

Exercise 18. Let $\vec{u}_1 = (3, 2, -1)$, $\vec{u}_2 = (0, 2, 2)$, $\vec{u}_3 = (3, 0, -3)$, and $\vec{u}_4 = (0, 3, 3)$.

- a) Is the linear span of $\{\vec{u}_1, \vec{u}_2\}$ a plane in \mathbb{R}^3 ?
- b) Is the linear span of $\{\vec{u}_2, \vec{u}_4\}$ a plane in \mathbb{R}^3 ?
- c) Is $\{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$ a spanning set of \mathbb{R}^3 ?
- d) Is $\{\vec{u}_1, \vec{u}_2, \vec{u}_3, \vec{u}_4\}$ a spanning set of \mathbb{R}^3 ? If not, what is the linear span of the set of vectors?

Exercise 19. Is $\{(2,1,3), (4,3,1), (0,2,2)\}$ a spanning set of \mathbb{R}^3 ?

Exercise 20. Reason out if the following statement is true or false:

"A set of vectors of \mathbb{R}^n is a basis of the \mathbb{R}^n vector space if every vector of \mathbb{R}^n is a linear combination of the vectors of the set and if no vector of the set is a linear combination of the rest".

Exercise 21. Let $\vec{u}_1 = (a,0,a)$, $\vec{u}_2 = (1,1,1)$, and $\vec{u}_3 = (2,5,a)$. For what value of a is the set $\{\vec{u}_1,\vec{u}_2,\vec{u}_3\}$ a basis of \mathbb{R}^3 ?

Exercise 22. Let $\vec{u}_1 = (-1, 2, 3)$, $\vec{u}_2 = (0, 2, 2)$, and $\vec{u}_3 = (5, -2, -3)$.

- a) Check that the three vectors above form a basis of \mathbb{R}^3 .
- b) Find the coordinates of $\vec{u} = (4, 2, 2)$ with respect to the basis $\{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$.

Exercise 23. Let $\vec{u}_1 = (0, 1, 4)$, $\vec{u}_2 = (2, 1, 0)$, and $\vec{u}_3 = (7, -1, 2)$.

- a) Check that the three vectors above form a basis of \mathbb{R}^3 .
- b) Find the coordinates of $\vec{u} = (-9, 2, 6)$ with respect to the basis $\{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$.

Exercise 24. Is it possible to have a basis of \mathbb{R}^3 composed of four vectors? Is it possible to have a spanning set of \mathbb{R}^3 composed of four vectors?

Exercise 25. Explain why the columns of every n-by-n invertible (non-singular) matrix form a basis of \mathbb{R}^n .

Exercise 26. Reason out if the following statements are true or false.

- a) In the vector space \mathbb{R}^3 , every set of more than three vectors is linearly dependent.
- b) In the vector space \mathbb{R}^4 , every set of four vectors is a basis of \mathbb{R}^4 .
- c) In the vector space \mathbb{R}^4 , every set composed of less than four vectors is linearly independent
- d) In the vector space \mathbb{R}^4 , every set of more than four vectors is a spanning set of \mathbb{R}^4 .

M. Álvarez Mozos 3 ADE - 2014/2015

Exercise 27. Show that if $\{\vec{u_1}, \vec{u_2}, \dots, \vec{u_k}\}$ is a spanning set of \mathbb{R}^n , then $\{\vec{u_1}, \vec{u_2}, \dots, \vec{u_k}, \vec{u_{k+1}}\}$ is also a spanning set of \mathbb{R}^n .

Exercise 28. Check that the linear span of

$$\{\vec{u}_1 = (2,2,1), \vec{u}_2 = (1,0,-2)\}\$$

is a plane in \mathbb{R}^3 and find its analytical expression.

Exercise 29. Find the analytical expression of the following vector subspace of \mathbb{R}^2 :

$$Span\left(\left\{\left(\frac{1}{2},-1\right)\right\}\right).$$

Exercise 30. Describe the subspace of \mathbb{R}^3 spanned by $\vec{u}=(-1,1,2)$ and find its analytical expression.

Exercise 31. Given the following vectors of \mathbb{R}^2

$$\vec{u}_1 = (-1, -1), \quad \vec{u}_2 = (0, 5), \quad \vec{u}_3 = (2, 3), \quad \vec{u}_4 = (4, -6)$$

Find a basis and the dimension of $Span(\{\vec{u}_1, \vec{u}_2, \vec{u}_3, \vec{u}_4\})$.

Exercise 32. Find the analytical expression of the following vector subspace of \mathbb{R}^3 :

$$Span(\{(-1,0,3),(2,2,-1)\}).$$

Exercise 33. Find a basis of the vector subspace of \mathbb{R}^3 that consists of all vectors of \mathbb{R}^3 whose coordinates coincide.

Exercise 34. Find a basis of the vector subspace of \mathbb{R}^3 that consists of all vectors of \mathbb{R}^3 whose coordinates add up to 0.

Exercise 35. Find a basis and the dimension of the vector subspace of \mathbb{R}^3 defined by

$$V = \{(x, y, z) \in \mathbb{R}^3 : x - y = 0, z = 0\}.$$

Exercise 36. Find a basis and the dimension of the vector subspace of \mathbb{R}^3 defined by

$$V = \{(x, y, z) \in \mathbb{R}^3 : x - y = 0, x - 2z = 0, y - 2z = 0\}.$$

Exercise 37. Find a basis and the dimension of the vector subspace of \mathbb{R}^3 defined by

$$V = \{(x, y, z) \in \mathbb{R}^3 : 4x - y = 0, x + y - 2z = 0\}.$$

Exercise 38. Find a basis and the dimension of the vector subspace of \mathbb{R}^3 defined by

$$V = \{(x, y, z) \in \mathbb{R}^3 : 3x + 2y - z = 0\}.$$

M. Álvarez Mozos 4 ADE - 2014/2015

Exercise 39. Given the set

$$S = \{(x, y, z) \in \mathbb{R}^3 : 2x + 3y = 0\}$$

- a) Show that S is a vector subspace of \mathbb{R}^3 .
- b) Find a basis of S and compute dim(S).

Exercise 40. Given the set

$$S = \{(x, y, z) \in \mathbb{R}^3 : x - z = 0, x + 3y = 0\}$$

- a) Show that S is a vector subspace of \mathbb{R}^3 .
- b) Find a basis of S and compute dim(S).

Exercise 41. Check if the set

$$S = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 1\}$$

is a vector subspace of \mathbb{R}^3 .

Exercise 42. Show that the set

$$S = \{(x, y) \in \mathbb{R}^2 : \frac{x}{y} = 0\}$$

is not a vector subspace of \mathbb{R}^2 .

Exercise 43. Show that the set

$$S = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 0\}$$

is a vector subspace of \mathbb{R}^2 .

M. Álvarez Mozos 5 ADE - 2014/2015