Unit IV: Optimization. Solutions

(Extra Material)

Exercise 1.

a) The Extreme Value Theorem can be applied because f is continuous in A and A is a compact set. Then, $\exists p, q \in A$ such that $\forall x \in A, f(p) \leq f(x) \leq f(q)$, in other words, we know that there are both a global maximum and a global minimum in A.
b) The Extreme Value Theorem cannot be applied because f is not continuous in B.
c) The Extreme Value Theorem cannot be applied because f is not continuous in C and C is not compact (it is not bounded).

Exercise 2.

a) The Extreme Value Theorem can be applied because f is continuous in A and A is a compact set. Then, $\exists p, q \in A$ such that $\forall x \in A, f(p) \leq f(x) \leq f(q)$, in other words, we know that there are both a global maximum and a global minimum in A.
b) The Extreme Value Theorem can be applied because f is continuous in B and B is a compact set. Then, $\exists p, q \in B$ such that $\forall x \in B, f(p) \leq f(x) \leq f(q)$, in other words, we know that there are both a global maximum and a global minimum in B.
c) The Extreme Value Theorem cannot be applied because C is not compact (it is not closed).

Exercise 3.

a) The Extreme Value Theorem can be applied because f is continuous in A and A is a compact set. Then, $\exists p, q \in A$ such that $\forall x \in A, f(p) \leq f(x) \leq f(q)$, in other words, we know that there are both a global maximum and a global minimum in A.
b) The Extreme Value Theorem cannot be applied because f is not continuous in B and B is not compact (it is not bounded).
c) The Extreme Value Theorem cannot be applied because f is not continuous in C.

Exercise 4. The only stationary point is $(-1 / 4,0,0)$.

Exercise 5. The point, p, is not stationary. Therefore it cannot be a local extreme point. The only thing we can say is that f is (strictly) convex at point p.

Exercise 6. There is no stationary point because the partial derivative with respect to z never cancels. Thus, there is no local extreme point.

Exercise 7. $\left(q_{1}, q_{2}\right)=(9,12)$.

Exercise 8.

a) $(15 / 16,-99 / 16)$ is a saddle point.
b) $(11 / 7,8 / 7)$ is a local maximum.
c) $(1,3)$ is a local minimum.
d) $\forall n \in \mathbb{N},(2 \pi n, 0)$ are local maxima and $(\pi+2 \pi n,-2)$ are saddle points.
e) $(0,0,0)$ are saddle points.

Exercise 9. a),d) are true and b),c) are false.
Exercise 10. No, it is a saddle point.
Exercise 11. c) is the only true statement.
Exercise 12. The point is a local minimum.
Exercise 13. If $a \in[-2,2], f$ is convex. If $a \in(-2,2), f$ is strictly convex. Otherwise, f is neither convex nor concave.

Exercise 14. $(0,0)$ is the global minimum of f in \mathbb{R}^{2}.
Exercise 15. $(2,-2)$ is the global minimum of f in \mathbb{R}^{2}.

Exercise 16.

a) $x=100$ and $y=200$
b) $x=70$ and $y=210$

Exercise 17.

a) $q_{1}=136$ and $q_{2}=74$.
b) $q_{1}=81$ and $q_{2}=19$.

