Unit I: The \mathbb{R}^{n} Vector Space. Solutions

Exercise 1.

a) $(3,-2,1)$
b) $(-4,17,3)$
c) $(-1,10,-4)$
d) $(1,-4,-5)$

Exercise 2. It is not a linear combination.
Exercise 3. It is not a linear combination.
Exercise 4. For any k different from 0 . That is, for $k \neq 0$.
Exercise 5. They are linearly independent.
Exercise 6. For any value of k different from 1 and $\frac{1}{2}$. For $k \neq 1$ and $k \neq \frac{1}{2}$.
Exercise 7. For no value of k.

Exercise 8.

a) True
b) False
c) False
d) False

Exercise 9. It is a spanning set of \mathbb{R}^{3}.

Exercise 10.

a) For any a that satisfies $a \neq 5$ and $a \neq-5$.
b) For any a that satisfies $a \neq 5$ and $a \neq-5$.

Exercise 11.

a)
b) $(0,1,-1)$ are the coordinates of \vec{u} with respect to $\left\{\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right\}$.

Exercise 12.

a)
b) $(5,4,9)$ are the coordinates of \vec{u} with respect to $\left\{\vec{w}_{1}, \vec{w}_{2}, \vec{w}_{3}\right\}$.

Exercise 13. $\{(7,1)\}$ is a basis (note that the answer is not unique). $\operatorname{dim}(S)=1$.
Exercise 14. $\{(2,1,-3)\}$ is a basis. $\operatorname{dim}(S)=1$.
Exercise 15. $\{(1,-1,-1)\}$ is a basis. $\operatorname{dim}(V)=1$.
Exercise 16. $\{(2,-3,1)\}$ is a basis. $\operatorname{dim}(V)=1$.
Exercise 17. $\{(3,2,2),(-4,3,1)\}$ is a basis. $\operatorname{dim}\left(\operatorname{Span}\left(\left\{\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right\}\right)\right)=2$.
Exercise 18. $\{(2,-3),(1,4)\}$ is a basis. $\operatorname{dim}\left(\operatorname{Span}\left(\left\{\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}, \vec{u}_{4}\right\}\right)\right)=2$.
Exercise 19. $\operatorname{Span}(\{\vec{u}\})=\left\{(x, y) \in \mathbb{R}^{2}: 2 x=y\right\}$.
Exercise 20. $\operatorname{Span}\left(\left\{\vec{u}_{1}, \vec{u}_{2}\right\}\right)=\left\{(x, y, z) \in \mathbb{R}^{3}: z=2 x-\frac{7}{2} y\right\}$.

Exercise 21.

a) True
b) False
c) False

Exercise 22.

a) True
b) True
c) False
d) False

