Unit I: The \mathbb{R}^n Vector Space. Solutions

Exercise 1.

- a) (3, -2, 1)
- **b**) (-4, 17, 3)
- c) (-1, 10, -4)
- d) (1, -4, -5)

Exercise 2. It is not a linear combination.

Exercise 3. It is not a linear combination.

Exercise 4. For any k different from 0. That is, for $k \neq 0$.

Exercise 5. They are linearly independent.

Exercise 6. For any value of k different from 1 and $\frac{1}{2}$. For $k \neq 1$ and $k \neq \frac{1}{2}$.

Exercise 7. For no value of *k*.

Exercise 8.

- a) True
- b) False
- c) False
- d) False

Exercise 9. It is a spanning set of \mathbb{R}^3 .

Exercise 10.

- a) For any *a* that satisfies $a \neq 5$ and $a \neq -5$.
- b) For any a that satisfies $a \neq 5$ and $a \neq -5$.

Exercise 11.

- a)
- b) (0, 1, -1) are the coordinates of \vec{u} with respect to $\{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$.

Exercise 12.

a)

b) (5,4,9) are the coordinates of \vec{u} with respect to $\{\vec{w}_1, \vec{w}_2, \vec{w}_3\}$.

M. Álvarez Mozos

Exercise 13. $\{(7,1)\}$ is a basis (note that the answer is not unique). dim(S) = 1.

Exercise 14. $\{(2, 1, -3)\}$ is a basis. dim(S) = 1.

Exercise 15. $\{(1,-1,-1)\}$ is a basis. dim(V)=1.

Exercise 16. $\{(2, -3, 1)\}$ is a basis. dim(V) = 1.

Exercise 17. $\{(3,2,2), (-4,3,1)\}$ is a basis. $dim(Span(\{\vec{u}_1, \vec{u}_2, \vec{u}_3\})) = 2$.

Exercise 18. $\{(2, -3), (1, 4)\}$ is a basis. $dim(Span(\{\vec{u}_1, \vec{u}_2, \vec{u}_3, \vec{u}_4\})) = 2.$

Exercise 19. $Span(\{\vec{u}\}) = \{(x, y) \in \mathbb{R}^2 : 2x = y\}.$

Exercise 20. $Span(\{\vec{u}_1, \vec{u}_2\}) = \{(x, y, z) \in \mathbb{R}^3 : z = 2x - \frac{7}{2}y\}.$

Exercise 21.

- a) True
- b) False
- c) False

Exercise 22.

- a) True
- b) True
- c) False
- d) False