Unit II: The Euclidean Space. Solutions

Exercise 1.

b) $\vec{u} \cdot \vec{v} = 32$ d) $\vec{u} \cdot \vec{v} = 0$

Exercise 2.

<i>a</i>)	$(\vec{u} + \vec{v}) \cdot (\vec{u} - \vec{v}) = -20$	c) $(\lambda \vec{u}) \cdot (\mu \vec{v}) = -72$
------------	---	--

b) $(\vec{u} \cdot \vec{v}) \cdot \vec{v} = (-45, 0, -27)$ d) $[\lambda(\vec{u} + \vec{v})] \cdot (\mu \vec{v}) = 200$

Exercise 3.

- a) Not orthogonale) Orthogonalb) Not orthogonalf) Not orthogonalc) Orthogonalg) Not orthogonal
 - d) Not orthogonal h) Not orthogonal

Exercise 4. k = 1 or k = 2.

Exercise 5. k = 1.

Exercise 6. k = -1 or k = 5.

Exercise 7. k = 3 or k = -2

Exercise 8. We show by contradiction that $\{(a,b), (c,d)\}$ is linearly independent. Suppose that $\{(a,b), (c,d)\}$ is linearly dependent. Then one of the vectors is a linear combination of the other, that is, there is a $\lambda \in \mathbb{R}$ such that $(c,d) = \lambda(a,b)$. Moreover, $\lambda \neq 0$ because $(c,d) \neq (0,0)$. From the orthogonality of (a,b) and (c,d) we have that $(a,b) \cdot (c,d) = 0$. However,

$$(a,b)\cdot(c,d) = (a,b)\cdot\lambda(a,b) = \lambda ||(a,b)||^2 \neq 0,$$

because $\lambda \neq 0$ and $(a, b) \neq (0, 0)$. So, we have obtained a contradiction which proves that the hypothesis in the beginning ({(a, b), (c, d)} is linearly dependent) is false.

Exercise 9.

a) $\|\vec{u}\| = \sqrt{14}$ and $\|\vec{v}\| = \sqrt{17}$ b) $\|2\vec{u}\| = \sqrt{56} = 2\sqrt{14}$ c) $\|\vec{u} - \vec{v}\| = \sqrt{17}$ d) $\|2\vec{u} + \vec{v}\| = \sqrt{101}$

Exercise 10.

- a) $\|\vec{u}\| = \sqrt{29}$ and $\|\vec{v}\| = \sqrt{22}$ c) $\|-3\vec{u}\| = 3\sqrt{29}$
- b) $||3\vec{u}|| = \sqrt{261} = 3\sqrt{29}$

Exercise 11.

a) Schwartz inequality: $|\vec{u} \cdot \vec{v}| \le ||\vec{u}|| \cdot ||\vec{v}||$

For the particular vectors given by the exercise we compute: $|\vec{u} \cdot \vec{v}| = 7$ and $||\vec{u}|| \cdot ||\vec{v}|| = \sqrt{238}$. Then, since $7 < \sqrt{238}$ the Schwartz inequality is satisfied.

d) $\|\vec{u} + \vec{v}\| = \sqrt{97}$

b) Triangle inequality: $\|\vec{u} + \vec{v}\| \le \|\vec{u}\| + \|\vec{v}\|$ For the particular vectors given by the exercise we compute: $\|\vec{u} + \vec{v}\| = 3\sqrt{5}$ and $\|\vec{u}\| + \|\vec{v}\| = \sqrt{14} + \sqrt{17}$. Then, the Triangle inequality holds because $3\sqrt{5} \simeq 6,71 < 7,86 \simeq \sqrt{14} + \sqrt{17}$.

Exercise 12.

- a) The Schwartz inequality holds since $24 < 5\sqrt{26}$.
- b) The triangle inequality is a consequence of $\sqrt{3} < \sqrt{26} + 5$.

Exercise 13.

$$\frac{1}{\|\vec{u}\|} \cdot \vec{u} = \left(\frac{2}{\sqrt{29}}, \frac{5}{\sqrt{29}}\right) \quad \text{and} \quad \frac{1}{\|\vec{v}\|} \cdot \vec{v} = \left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right).$$

Exercise 14.

$$\frac{1}{\|\vec{u}\|} \cdot \vec{u} = \begin{pmatrix} 2 \\ 3 \\ , \frac{1}{3} \\ , \frac{-2}{3} \end{pmatrix} \quad \text{and} \quad \frac{1}{\|\vec{v}\|} \cdot \vec{v} = \begin{pmatrix} 1 \\ 2 \\ , \frac{-1}{2} \\ , \frac{-1}{2} \\ , \frac{1}{2} \end{pmatrix}.$$

Exercise 15. It is an orthogonal basis of \mathbb{R}^3 .

Exercise 16. The vectors form an orthogonal basis but not an orthonormal basis because \vec{u}_2 and \vec{u}_3 are not unit vectors.

Exercise 17. It is an orthonormal basis of \mathbb{R}^3 .

Exercise 18. k = 3 or k = -3.

Exercise 19. 55°33′.

Exercise 20. $k = 3\sqrt{43}$ or $k = -3\sqrt{43}$.

Exercise 21. $\alpha \simeq 59^{\circ}31'48''$.

Exercise 22. $\alpha = 60^{\circ}$.

Exercise 23. 0° .

M. Álvarez Mozos

Exercise 24. $d(\vec{u}, \vec{v}) = 5$. **Exercise 25.** k = 1. **Exercise 26.** $d(\vec{u}, \vec{v}) = 6$. **Exercise 27.** k = -3 and k = 5. **Exercise 28.** $k = \sqrt{\frac{7}{2}}$ and $k = -\sqrt{\frac{7}{2}}$.

Departament of Economic, Financial, and Actuarial Mathematics

Exercise 29. k = 6 or k = -56/10.