Unit II: The Euclidean Space. Solutions

Exercise 1.

a) $\vec{u} \cdot \vec{v}=17$
c) Impossible
b) $\vec{u} \cdot \vec{v}=32$
d) $\vec{u} \cdot \vec{v}=0$

Exercise 2.

a) $(\vec{u}+\vec{v}) \cdot(\vec{u}-\vec{v})=-20$
b) $(\vec{u} \cdot \vec{v}) \cdot \vec{v}=(-45,0,-27)$
c) $(\lambda \vec{u}) \cdot(\mu \vec{v})=-72$
d) $[\lambda(\vec{u}+\vec{v})] \cdot(\mu \vec{v})=200$

Exercise 3.

a) Not orthogonal
b) Not orthogonal
c) Orthogonal
d) Not orthogonal
e) Orthogonal
f) Not orthogonal
g) Not orthogonal
h) Not orthogonal

Exercise 4. $k=1$ or $k=2$.
Exercise 5. $k=1$.
Exercise 6. $k=-1$ or $k=5$.
Exercise 7. $k=3$ or $k=-2$
Exercise 8. We show by contradiction that $\{(a, b),(c, d)\}$ is linearly independent. Suppose that $\{(a, b),(c, d)\}$ is linearly dependent. Then one of the vectors is a linear combination of the other, that is, there is a $\lambda \in \mathbb{R}$ such that $(c, d)=\lambda(a, b)$. Moreover, $\lambda \neq 0$ because $(c, d) \neq(0,0)$. From the orthogonality of (a, b) and (c, d) we have that $(a, b) \cdot(c, d)=0$. However,

$$
(a, b) \cdot(c, d)=(a, b) \cdot \lambda(a, b)=\lambda\|(a, b)\|^{2} \neq 0,
$$

because $\lambda \neq 0$ and $(a, b) \neq(0,0)$. So, we have obtained a contradiction which proves that the hypothesis in the beginning $(\{(a, b),(c, d)\}$ is linearly dependent) is false.

Exercise 9.

a) $\|\vec{u}\|=\sqrt{14}$ and $\|\vec{v}\|=\sqrt{17}$
b) $\|2 \vec{u}\|=\sqrt{56}=2 \sqrt{14}$
c) $\|\vec{u}-\vec{v}\|=\sqrt{17}$
d) $\|2 \vec{u}+\vec{v}\|=\sqrt{101}$

Exercise 10.

a) $\|\vec{u}\|=\sqrt{29}$ and $\|\vec{v}\|=\sqrt{22}$
b) $\|3 \vec{u}\|=\sqrt{261}=3 \sqrt{29}$
c) $\|-3 \vec{u}\|=3 \sqrt{29}$
d) $\|\vec{u}+\vec{v}\|=\sqrt{97}$

Exercise 11.

a) Schwartz inequality: $|\vec{u} \cdot \vec{v}| \leq\|\vec{u}\| \cdot\|\vec{v}\|$

For the particular vectors given by the exercise we compute: $|\vec{u} \cdot \vec{v}|=7$ and $\|\vec{u}\| \cdot\|\vec{v}\|=\sqrt{238}$. Then, since $7<\sqrt{238}$ the Schwartz inequality is satisfied.
b) Triangle inequality: $\|\vec{u}+\vec{v}\| \leq\|\vec{u}\|+\|\vec{v}\|$

For the particular vectors given by the exercise we compute: $\|\vec{u}+\vec{v}\|=3 \sqrt{5}$ and $\|\vec{u}\|+\|\vec{v}\|=\sqrt{14}+\sqrt{17}$. Then, the Triangle inequality holds because $3 \sqrt{5} \simeq 6,71<$ $7,86 \simeq \sqrt{14}+\sqrt{17}$.

Exercise 12.

a) The Schwartz inequality holds since $24<5 \sqrt{26}$.
b) The triangle inequality is a consequence of $\sqrt{3}<\sqrt{26}+5$.

Exercise 13.

$$
\frac{1}{\|\vec{u}\|} \cdot \vec{u}=\left(\frac{2}{\sqrt{29}}, \frac{5}{\sqrt{29}}\right) \quad \text { and } \quad \frac{1}{\|\vec{v}\|} \cdot \vec{v}=\left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right) .
$$

Exercise 14.

$$
\frac{1}{\|\vec{u}\|} \cdot \vec{u}=\left(\frac{2}{3}, \frac{1}{3}, \frac{-2}{3}\right) \quad \text { and } \quad \frac{1}{\|\vec{v}\|} \cdot \vec{v}=\left(\frac{1}{2}, \frac{-1}{2}, \frac{-1}{2}, \frac{1}{2}\right) .
$$

Exercise 15. It is an orthogonal basis of \mathbb{R}^{3}.
Exercise 16. The vectors form an orthogonal basis but not an orthonormal basis because \vec{u}_{2} and \vec{u}_{3} are not unit vectors.

Exercise 17. It is an orthonormal basis of \mathbb{R}^{3}.
Exercise 18. $k=3$ or $k=-3$.
Exercise 19. $55^{\circ} 33^{\prime}$.
Exercise 20. $k=3 \sqrt{43}$ or $k=-3 \sqrt{43}$.
Exercise 21. $\alpha \simeq 59^{\circ} 31^{\prime} 48^{\prime \prime}$.
Exercise 22. $\alpha=60^{\circ}$.
Exercise 23. 0°.

Exercise 24. $d(\vec{u}, \vec{v})=5$.
Exercise 25. $k=1$.
Exercise 26. $d(\vec{u}, \vec{v})=6$.
Exercise 27. $k=-3$ and $k=5$.
Exercise 28. $k=\sqrt{\frac{7}{2}}$ and $k=-\sqrt{\frac{7}{2}}$.
Exercise 29. $k=6$ or $k=-56 / 10$.

