Unit III: Real Functions of Several Variables

Exercise 1. Represent graphically the following real functions of one variable:
a) $f(x)=3 x-2$
b) $f(x)=-x^{2}+6 x-7$
c) $f(x)=\frac{2}{x}$
d) $f(x)=\sqrt{x}$

Exercise 2. Compute the derivatives of the following real functions of one variable.
a) $f(x)=x^{4}-2 x^{3}+\frac{1}{2} x^{2}-4 x+5$
b) $f(x)=(3 x-4)^{2}$
c) $f(x)=e^{x}$
d) $f(x)=\ln \left(x^{2}+1\right)$

Exercise 3. Given $f(x)=\sqrt{x^{2}+1}$ and $g(x)=e^{x}$, compute:
a) $f \circ g$ and $(f \circ g)^{\prime}$.
b) $g \circ f$ and $(g \circ f)^{\prime}$.

Exercise 4. Compute the domain of f in the following cases:
a) $f(x)=\frac{2 x-1}{x^{2}-1}$
b) $f(x)=\sqrt{-x^{2}-3 x+4}$
c) $f(x)=\ln \left((x-2)^{2}-4\right)$
d) $f(x)=\frac{x}{x^{2}-9}$

Exercise 5. For each of the domains computed in Exercise 4, check if it is a closed, open, bounded, compact, or convex set.

Exercise 6. Draw the set $A \subseteq \mathbb{R}^{2}$ and discuss its topological properties in the following cases:
a) $A=\left\{(x, y) \in \mathbb{R}^{2}: y^{2}-2 x+1<0\right\}$
b) $A=\left\{(x, y) \in \mathbb{R}^{2}:(x-2)^{2}+(y+1)^{2} \leq 1\right\}$
c) $A=\left\{(x, y) \in \mathbb{R}^{2}: x y>1\right\}$
d) $A=\left\{(x, y) \in \mathbb{R}^{2}: x y \geq 1\right.$ or $\left.x^{2}+y^{2} \leq 1\right\}$
e) $A=\left\{(x, y) \in \mathbb{R}^{2}: x y \geq 1\right.$ and $\left.x^{2}+y^{2} \leq 1\right\}$
f) $A=\left\{(x, y) \in \mathbb{R}^{2}: y \geq(x-2)^{2}\right\}$
g) $A=\left\{(x, y) \in \mathbb{R}^{2}:|y| \geq(x-2)^{2}\right\}$

[^0]Exercise 7. Compute and describe graphically the domain of the following real functions of two variables. For each of the computed domains discuss the topological properties of the sets.
a) $f(x, y)=\frac{3 x-1}{x^{2}-y-1}$
b) $f(x, y)=\sqrt{6 x^{2}+3 y-9}$
c) $f(x, y)=\sqrt{x^{2}+y^{2}-9}$
d) $f(x, y)=\ln (x+y)$
e) $f(x, y)=\frac{\sqrt{x y}}{x}$
f) $f(x, y)=\sqrt{1-|x y|}$

Exercise 8. Compute and describe graphically the level curves of the following real functions of two variables.
a) $f(x, y)=\frac{x}{y}$
b) $f(x, y)=2 x^{2}+4 y^{2}$
c) $f(x, y)=2 x^{2}+2 y^{2}$
d) $f(x, y)=4 x y$
e) $f(x, y)=x^{2}+y+1$
f) $f(x, y)=\frac{\sqrt{x^{2}-y}}{3 x}$

Exercise 9. Compute all the partial derivatives of the following real functions.
a) $f(x, y)=5 x^{3} y^{2}-2 x$
b) $f(x, y)=\cos \left(x^{3}+y^{4}\right)$
c) $f(x, y)=\frac{x^{2} y-x y^{2}}{x+y}$
d) $f(x, y)=x e^{x+y^{2}}$
e) $f(x, y, z)=\sqrt{x e^{x+y}+y z^{3}}$
f) $f(x, y, z)=\ln \left(\frac{x y-6}{x^{2}-z}\right)$

Exercise 10. Compute the gradient of the real function f and evaluate it at the given point in the following cases:
a) $f(x, y)=\sin (x-y)+\cos (x+y)$ at point $\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$.
b) $f(x, y)=x^{3} e^{x-y}+x y^{3}$ at point $(2,2)$.
c) $f(x, y)=\ln \left(x^{2}+y^{4}\right)$ at point $(1,3)$.
d) $f(x, y, z)=\frac{x+y+z^{3}}{x^{3}+y^{2}+z}$ at point $(1,0,1)$
e) $f(x, y, z)=\sqrt{2 y z-x y^{2}}$ at point $(1,1,1)$.
f) $f(x, y, z, t)=4 x^{3}+y z^{2}-6 t^{5}$ at point $(2,3,1,4)$.

Exercise 11. Compute the directional derivative of the real function $f(x, y)=3 x^{2} y-y$ along the vector $(1,0)$ at point $(2,3)$.

Exercise 12. For each of the real functions in Exercise 10, compute the Hessian matrix of f and evaluate it at the given point.

Exercise 13. Let $f(x, y, z)=5 x^{4}+3 x y^{3}-6 y z$ and $p=(0,1,2)$.
a) Find the direction of the greatest rate of increase of f at point p.
b) Compute the directional derivative of f along the direction of the vector obtained in a) at point p.
c) Evaluate the Hessian matrix of f at p.

Exercise 14. Compute the equation of the tangent plane of f at p in the following cases:
a) $f(x, y)=\frac{e^{x^{2}}}{x+y}, p=(4,-3)$
b) $f(x, y)=\frac{\left(y-x^{2}\right)\left(y-2 x^{2}\right)}{x y}, p=(1,1)$

Exercise 15. Given a real function of two variables, $f(x, y)$, such that

$$
f(100,100)=5, \quad \frac{\partial f}{\partial x}(100,100)=2, \quad \text { and } \quad \frac{\partial f}{\partial y}(100,100)=4,
$$

compute the approximate value of $f(101,100)$ using the concept of marginality.
Exercise 16. A given company produces three different products, A, B, and C. The overall daily benefit of the company is described by the following function (in $€$)

$$
B(x, y, z)=e^{\frac{x}{100}+\frac{y^{2}}{1000}+\frac{z^{2}}{10000}}-1,
$$

where x, y, and z are the quantities of products A, B, and C produced daily.
Nowadays, 100 items of each of the three products are produced daily. Study how would the benefit of the company vary if the production of good C is incremented in one unit.

Exercise 17. Compute the partial elasticity of $f(x, y)=A x^{5} y^{3}$, where A is a fixed parameter, with respect to y.

Exercise 18. Suppose that the production cost (in €) of producing x units of good A and y units of good B is given by the following real function

$$
C(x, y)=\ln (x+1)+\ln (y+1)+2 x+3 y .
$$

Compute and interpret the elasticity of the production cost with respect to good A at the production level $(x, y)=(100,150)$.
Exercise 19. Given the Cobb-Douglas production function $Q(K, L)=K^{\frac{1}{2}} L^{\frac{1}{2}}$, where Q is the production, K is the capital, and L is the working time. If the capital and working time are functions of the time, $K=K(t)=100 e^{\frac{-t}{2}}$ and $L=L(t)=50 t^{\frac{1}{2}}$, compute $d Q / d t$ and evaluate it at $t=4$.

Exercise 20. Compute $\partial z / \partial t$ and $\partial z / \partial s$ where $z=\cos \left(x+y^{2}\right)-\sin \left(x^{2}-y\right), x=\ln (s-t)$, and $y=\ln (s+t)$.

Exercise 21. Let f be a real function of three variables $f(x, y, z)$, where $x=\ln (u+v)$, $y=u-v$, and $z=v-u$. Compute $\frac{\partial f}{\partial u}+\frac{\partial f}{\partial v}$.

Exercise 22. The equation $(x+y)^{2}+\ln (2 x-y-2)=0$ defines y as a function of $x(y=y(x))$ in a neighborhood of the point $(1,-1)$.
a) Find the value of $d y / d x$ at this point.
b) Compute the equation of the tangent line of $y(x)$ at $x=1$.

Exercise 23. The equation $x^{3}+x^{2} y-2 y^{2}-10 y=0$ defines y as a function of x in a neighborhood of the point $(2,1)$. Find the equation of the tangent line of the curve $y(x)$ at that point.

Exercise 24. The equation $x y z+x^{2} \ln (z)+y-2=0$ defines z as a function of x and y in a neighborhood of the point $(1,1,1)$. Evaluate $\partial z / \partial x$ and $\partial z / \partial y$ at this point.

Exercise 25. Decide whether the real function f is homogeneous or not and find its degree of homogeneity in case it is homogeneous in the following cases:
a) $f(x, y)=\sqrt{x y}$
b) $f(x, y)=\sqrt{x^{2}+y^{2}}$
c) $f(x, y, z)=x^{4}-x y^{2}+z^{2}$
d) $f(x, y, z)=x^{4}-x y^{2} z+y^{3} z$
e) $f(x, y, z)=x e^{\frac{x^{2}+y^{2}}{z^{4}}}$
f) $f(x, y, z)=\frac{x^{3} y+x y^{2} z}{x(y-z)}$

Exercise 26. Decide whether the real functions of Exercise 7 are homogeneous or not using Euler's Theorem.

[^0]: The first five Exercises are about real functions of one variable. This topic is a previous requirement that all students are supposed to know.

