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GLUT2-mediated glucose uptake and availability are required
for embryonic brain development in zebrafish
Rubén Marín-Juez1,3, Mireia Rovira1, Diego Crespo1,4, Michiel van der Vaart2, Herman P Spaink2 and Josep V Planas1

Glucose transporter 2 (GLUT2; gene name SLC2A2) has a key role in the regulation of glucose dynamics in organs central to
metabolism. Although GLUT2 has been studied in the context of its participation in peripheral and central glucose sensing, its role
in the brain is not well understood. To decipher the role of GLUT2 in brain development, we knocked down slc2a2 (glut2), the
functional ortholog of human GLUT2, in zebrafish. Abrogation of glut2 led to defective brain organogenesis, reduced glucose
uptake and increased programmed cell death in the brain. Coinciding with the observed localization of glut2 expression in the
zebrafish hindbrain, glut2 deficiency affected the development of neural progenitor cells expressing the proneural genes atoh1b
and ptf1a but not those expressing neurod. Specificity of the morphant phenotype was demonstrated by the restoration of brain
organogenesis, whole-embryo glucose uptake, brain apoptosis, and expression of proneural markers in rescue experiments. These
results indicate that glut2 has an essential role during brain development by facilitating the uptake and availability of glucose and
support the involvement of glut2 in brain glucose sensing.
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INTRODUCTION
Glucose represents the main energy source for many organisms
and its cellular uptake is facilitated by passive diffusion glucose
transporters (GLUTs). GLUTs are integral membrane proteins that
contain 12 membrane-spanning helices with the amino and
carboxyl termini exposed to the cytosol. Each GLUT isoform has a
specific role in glucose metabolism as determined by its pattern of
tissue expression, substrate specificity, transport kinetics, and
regulated expression under different physiological conditions.
Particularly, the intestine, endocrine pancreas, kidney, and liver,
tissues that have key roles in carbohydrate metabolism, express
GLUT2, a low-affinity transporter for glucose, fructose, mannose,
and galactose, that is also a high-affinity transporter for gluco-
samine.1 The ability of GLUT2 to transport different types of
hexoses at a wide range of concentrations ensures fast equilibra-
tion of glucose between the extracellular space and the cell
cytosol.1 GLUT2 participates in the intestinal and renal absorption
of glucose, the stimulation of insulin secretion by glucose in
β-pancreatic cells and the entry and output of glucose by the liver.
Mutations in the GLUT2 gene cause hepatorenal glycogen
accumulation, nephropathy, and defects in glucose homeostasis
in humans (i.e., Fanconi–Bickel syndrome; FBS).2 In addition,
GLUT2 is also expressed in the central nervous system, particularly
in neurons and glial cells of brain areas known to participate in the
central glucose sensing system that regulates glucose home-
ostasis and food intake.3 In glial cells, GLUT2 is involved in the

detection of hypoglycemia and has an important role mediating
the counter-regulatory response to glucose deficit.4 Evidence for
the important role of GLUT2 in the regulation of feeding comes
from observations indicating that individuals from two Canadian
populations harboring a single-nucleotide polymorphism in the
GLUT2 gene (Thr110Ile) show abnormal sugar intake.5 Similarly,
abnormal feeding behavior has been observed by blocking GLUT2
intracerebroventricularly in rats,6 in GLUT2- null mice,7 or in
GLUT2-SDD mice.8 Unfortunately, to date, the neuronal functions
of GLUT2 are poorly understood and the importance of GLUT2
during brain development is not known.
In the present study, we have used the developing zebrafish

embryo model to examine in vivo the physiological role of glut2.
The ease of genetic manipulation, rapid development, and optical
transparency of the zebrafish embryo provide a unique opportu-
nity to unravel the mechanisms following the perturbation of
glucose homeostasis associated with loss of function of this
transporter. Our findings indicate that abrogation of zebrafish
glut2 in vivo results in severe abnormalities in the development of
the brain and particularly in neural progenitor cells. These
alterations are associated with impaired glucose uptake and a
significant increase in cell apoptosis in the brain of morphant
embryos. Our results support the notion of an important role of
GLUT2 in the development of the brain, particularly in regions
involved in glucose sensing.
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MATERIALS AND METHODS
Zebrafish Maintenance
Wild-type zebrafish of the AB/TL and Casper strains were handled
following a procedure approved by the Ethical Committee of Animal
Experimentation of the University of Barcelona and maintained according
to standard protocols (http://zfin.org). Embryos were grown at 28.5 °C in
egg water (i.e., water used to raise young embryos; 60 μg/mL Instant Ocean
Sea Salts, Blacksburg, VA, USA).

Imaging
Embryos were examined with a Leica MZ16 FA fluorescence stereomicro-
scope and images were acquired with a DFC420C camera (Leica, Wetzlar,
Germany) and Leica Application Suite 3.8 (LAS) Microscope Software.
Pictures were analyzed using ImageJ 1.45 software (National Institutes of
Health). TUNEL-positive cells were analyzed and quantified using Icy 1.2.4.1
bio-imagining software (www.bioimageanalysis.org).

In Situ Hybridization and Immunohistochemistry
Antisense probes were generated for zebrafish glut29 and for pre-
proinsulin, atoh1b, atoh1c, ptf1a, and neurod that were amplified by PCR
and subcloned into pGEM-T Easy vector (Promega, Barcelona, Spain). glut2
was linearized with SpeI and atoh1b, atoh1c, ptf1a, and neurod were
linearized with SalI and used as template for the generation of riboprobes
using the DIG and Fluorescein labeling kits (Roche, Mannheim, Germany).
For whole-mount immunostaining, zebrafish embryos were fixed in 4%
paraformaldehyde and washed with PBS (pH7.4) containing 1% dimethyl
sulfoxide (Merck, Darmstadt, Germany) and 0.3% Triton X-100 (Sigma-
Aldrich, Alcobendas, Spain; phosphate-buffered saline-dimethyl sulfoxide-
Triton X100 (PBS-DTx)) at room temperature. Embryos at 24 and 48 hours
post fertilization (hpf) were digested with collagenase type IA (Sigma-
Aldrich) diluted in PBS-DTx (1mg/mL) at 37 °C for 10 and 20 minutes,
respectively. Next, after 2 to 5 hours of incubation in blocking solution
(PBS-DTx with 5% sheep serum) the specimens were incubated with an
antibody against acetylated tubulin (Sigma-Aldrich) diluted (1:200) in
blocking solution during 16 hours at 4 °C under slow stirring (30 to 50 rpm).
Embryos were then washed thoroughly with PBS-DTx and incubated with
the secondary antibody, goat anti-mouse Alexa-conjugated 488 diluted
(1:500) in blocking solution for 12 to 24 hours at 4 °C. After extensive
washing with PBS-DTx (pH7.4), the specimens were stored in PBS.

Morpholino Design and Injections
To knockdown zebrafish glut2 expression, we designed antisense morpho-
linos targeting the translational start site (5′-ACTGCTTCTCCATTTTGCATG
AAGT-3′) and the splice acceptor site of exon 6 (5′-ATGACCTGCAGAC
AACAAGGACACC-3′). Morpholinos were reconstituted in RNAse-free water
according to manufacturer’s instructions (Gene Tools LLC, Philomath, OR,
USA). Morpholinos targeting the translational start site (ATG MO) and the
splice acceptor site (splice MO) were titrated at doses of 2.2 to 8.4 ng into
single-cell embryos and the lowest effective dose was determined (3.1 ng)
and used for all subsequent experiments. A standard control morpholino
(5′-CCTCTTACCTCAGTTACAATTTATA-3′) (Gene Tools LLC) was used as
negative control. Capped mRNAs were synthesized from rat and zebrafish
GLUT2 full-length cDNAs cloned into pcDNA3 and pBK-CMV vectors,
respectively, using mMessage mMachine kit (Life Technologies, Barcelona,
Spain). Two hundred and fifty picograms per embryo of rat GLUT2
and 150 pg/embryo of zebrafish glut2 mRNAs were co-injected with
3.1 ng/embryo of the ATG MO and the splice MO, respectively.

In Vivo Glucose Uptake Assay
Control and ATG morphants and rescued embryos were injected at 24 hpf
in the yolk sac with 2.5 mg/mL 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)
amino)-2-deoxyglucose (2-NBDG), a fluorescent glucose analog (Life
Technologies), and incubated at 28.5 °C for 60 minutes. At the termination
of the incubation period, seven embryos per condition were anesthetized
with 3-aminobenzoic acid ethyl ester methanesulfonate (Sigma-Aldrich)
and analyzed under a fluorescence stereomicroscope. The fluorescent
signal was measured as described above. To visualize the transport of
glucose, the embryos were embedded in 1% methylcellulose.

Detection of Cell Death
Cell death was detected in vivo using the vital dye acridine orange
(acridinium chloride hemizinc chloride; Sigma-Aldrich). Embryos were
dechorionated and incubated with acridine orange (5 μg/mL) for
30 minutes at 28.5 °C in the dark. At least seven embryos per condition
were washed three times with egg water for 5 minutes and immediately
visualized with a fluorescence stereomicroscope and the fluorescent signal
was measured as described above. Apoptosis in zebrafish whole-mount
embryos fixed with 4% paraformaldehyde was detected by TUNEL using
the In Situ Cell Death Detection Kit (Roche) following the manufacturer’s
protocol. For the quantification of TUNEL-positive cells, at least four
embryos per condition were analyzed as described above.

Microarray Analysis
Control and ATG morphant embryos were sampled at 72 hpf and RNA
samples were obtained from pools of 20 embryos per condition and three
pooled biologic replicates of control and ATG morphants were analyzed.
Single-color microarray-based gene expression analysis was performed
using an Agilent Technologies (Santa Clara, CA, USA) custom oligo
microarray 4 × 44 K with eArray design ID 021626 and containing in total
43,371 probes of a 60-oligonucleotide length. Total RNA was amplified and
labeled with Cy3 dye using the single-color Low Input Quick Amp Labeling
kit (Agilent) following the manufacturer’s indications using 200 ng of RNA
in each reaction. Next, 1,65 μg of labeled cRNA were hybridized to the
arrays. Overnight hybridization (17 hours, 65 °C and 10 rpm rotation) was
performed in a Microrarray Hybridization Oven (Agilent). After hybridiza-
tion, microrarrays were washed with Gene Expression Wash Buffers 1 and 2
(Agilent Technologies) and scanned using the High-Resolution C Scanner
(Agilent). Feature Extraction Software 10.7.3.1 (Agilent) was used for spot
to grid alignment, feature extraction and quantification. Processed data
were subsequently imported into GeneSpring GX 11.5 (Agilent). Signifi-
cance cutoffs for the ratios of control versus ATG morpholino were set at
1.5-fold change at Po0.05 (sample t-test), respectively, for differentially
expressed genes (DEGs). For the DEGs, gene IDs were converted to human
ENSEMBL gene IDs using g:orth function from G:profiler (http://biit.cs.ut.ee/
gprofiler), taking advantage of the more complete gene ontology anno-
tations of the human genes and improving, in this way, the subsequent
analysis of the functional categories. The complete microarray data have
been deposited in NCBI’s Gene Expression Omnibus and are accessible
through GEO Series accession number GSE57836 (http://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc =GSE57836). Gene ontology enrichment analy-
sis was performed using Database for Annotation, Visualization, and
Integrated Discovery (DAVID) software tools (http://david.abcc.ncifcrf.gov),
and the resulting categories were considered significant at Po0.05.

Quantitative Real-Time Polymerase Chain Reaction
Ribonucleic acid was isolated with TRIzol (Life Technologies), DNAse
treated with RQ1 DNAse (Promega) and reverse transcribed using
Superscript III (Life Technologies). For the quantification of mRNA
expression levels, quantitative PCR was performed. cDNA was diluted
1:25 for target genes and 1:2,000 for rps18, and used as a template. The
reactions (20 μL final volume) contained 10 μL of SYBR GreenER qPCR
SuperMix (Life Technologies), 500 nmol/L of forward and reverse primers
and 5 μL of cDNA. Reactions were run in a MyiQ Real-Time PCR Detection
System (Bio-Rad, Madrid, Spain) using the following protocol: 2 minutes at
50 °C, 8 minutes at 95 °C, followed by 40 cycles of 15 seconds denaturation
at 95 °C and 30 seconds at the corresponding melting temperatures, and a
final melting curve of 81 cycles from 55 °C to 95 °C (0.5 °C increments every
10 seconds). Samples were run in triplicate and fluorescence was
measured at the end of every extension step. Fluorescence readings were
used to estimate the values for the threshold cycles. Primer sequences are
shown in Supplementary Table 1.

Maintenance of MIN6 Cells
MIN6 pancreatic β-cells were kindly provided by Dr Albert Barbera
(IDIBAPS, Barcelona, Spain). Cells were maintained at 37 °C (95% O2, 5%
CO2) in Dulbecco’s Modified Eagle’s medium supplemented with 15%
heat-inactivated fetal bovine serum and 100 U/mL penicillin per 0.1 mg/mL
streptomycin. Medium was changed every 2 to 3 days. MIN6 cells used in
the present study were collected at passages 31 to 38.
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Generation of a Zebrafish glut2 Expression Construct and
Transient Transfection of MIN6 Cells
The full-length sequence of the zebrafish glut2 cDNA9 was amplified by
PCR and subcloned in pcDNA3 vector containing enhanced GFP (green
fluorescent protein). Approximately 1 × 105 cells/well were plated in 12-
well plates and transfected 24 hours later at a confluence of 70 to 80%
with Lipofectamine 2000 (Life Technologies) following the manufacturer’s
indications. Cells were stimulated and/or lysed at 48 hours post
transfection. Overexpression experiments were performed by transfecting
2 μg/well of zfglut2-GFP construct. Cells were lysed 24 hours post
transfection. Mock controls were transfected only with lipofectamine and
cultured in the same conditions as other transfected cells.

In Vitro Glucose Uptake Assays
MIN6 cells were washed twice with HEPES-buffered saline and incubated
with HEPES-buffered saline containing 50 μmol/L 2-deoxyglucose [0.5 μCi/
mL 2-[3H]-deoxyglucose (2-[3H]-DG)] for 30 minutes at room temperature.
After this period, the transport solution was removed and cells were rinsed
three times with ice-cold PBS containing 50mmol/L D-glucose. Finally, cells
were lysed with 0.05 N NaOH, and the radioactivity was determined by
scintillation counting using a β-counter (Packard Bioscience, Meriden, CT,
USA). Nonspecific uptake was carried out in the presence of 50 μmol/L
cytochalasin B in the transport solution, and these values were subtracted
from all other values. Glucose uptake was measured in triplicate,
normalized to total protein and expressed as fold induction with respect
to nonstimulated cells.

Glucose Measurements
Glucose measurements were performed using a fluorescence-based
enzymatic detection kit (Biovision Inc., Milpitas, CA, USA).

Statistical Analysis
Results are expressed as mean± s.e. Statistical differences were analyzed
by Kruskal–Wallis and Mann–Whitney nonparametric tests and considered
to be significant at Po0.05.

RESULTS
Zebrafish glut2 is Expressed in the Developing Brain, Liver,
Pronephric Tubules, and Endocrine Pancreas
We first determined the localization of the expression of zebrafish
glut2 during early development by in situ hybridization (ISH). At
24 hpf, glut2 expression was localized in the telencephalon, eyes,
hindbrain, and pronephric duct (Figures 1A and 1B). By 48 hpf,
strong expression of glut2 was observed in the head and in the
pronephric duct (Figure 1C). At 72 and 120 hpf, glut2 appeared
expressed in the liver, pronephric tubules, anterior intestine, and
endocrine pancreas (Figures 1E, 1E’, 1F, 1F’, 1H, 1H’, 1I, 1I’), as
demonstrated by the colocalization of preproinsulin, a specific
marker for this tissue (Figure 1I, inset). At 72 and 120 hpf, glut2 was
also expressed in the hindbrain, specifically in the cerebellum and
medulla oblongata (Figures 1D, 1D’, 1G, 1G’).

Knockdown of Zebrafish glut2 Disrupts Brain Development
To study the function of glut2 during the early development in
zebrafish, we investigated the effects of abrogation of glut2 by
using two different antisense morpholinos, one to inhibit
translation at the start methionine (ATG MO) and a second one
designed to interfere with splicing between exons 5 and 6 (splice
MO) that code for transmembrane helix 6, an important structure
for the glucose transport activity of class I GLUTs. Embryos
injected with the ATG MO showed a severe delay in the
development of the embryo, mainly in the brain area. Morphant
embryos at 24 hpf showed less developed eyes and a dense mass
was observed in the brain area instead of the hindbrain ventricle,
causing the loss of the midbrain/hindbrain structures (Figures 2D
and 2E). Embryos injected with the splice MO appeared to be a
phenocopy of the ATG morphants, confirming the specificity of

the morpholino (Figures 2G and 2H). By 48 hpf, morphant
embryos displayed a defective formation and enlargement of
the hindbrain ventricle associated with anterior displacement of
the telencephalon (Figures 2F and 2I). Morphant embryos did not
survive past 96 to 120 hpf. The incidence of the morphant
phenotype was 95.9 ± 1.4% (n= 765) in embryos injected with the
ATG MO and 93.4 ± 1.2% (n= 536) in embryos injected with the
splice MO. Furthermore, we confirmed the extent of the splice
blocking activity of the splice MO at different stages throughout
development in glut2 morphants. Analysis of glut2 mRNA
transcripts by reverse transcription PCR from embryos injected
with the splice MO revealed the appearance of aberrant splice
products from 24 hpf until 96 hpf (Supplementary Figure 1)
although the efficiency of the morpholino appeared to decrease
at 96 hpf. To further demonstrate the specificity of the glut2
morphant phenotype, we performed rescue experiments by co-
injecting the ATG MO or splice MO with the rat Glut2 or zebrafish
glut2 mRNA, respectively, lacking the morpholino target
sequences (Figure 3). Our results show that rat Glut2 mRNA
was able to rescue the phenotype in ATG morphant embryos
(Figures 3A, 3B, 3D, 3F, 3G, and 3I) and that zebrafish glut2 mRNA
was able to rescue the phenotype in splice morphant embryos
(Figures 3A, 3C, 3E, 3F, 3H, and 3J). To demonstrate the
functionality of the zebrafish glut2 mRNA in the rescue of the
splice morphants, we examined glucose uptake under basal
conditions in MIN6 cells transfected with a zebrafish glut2
expression construct. MIN6 cells overexpressing zebrafish glut2
showed a significant increase in glucose uptake compared with
control cells (Supplementary Figure 2). Taken together, these
results show that glut2 knockdown affects brain development in
zebrafish embryos.

Defective Glucose Uptake in glut2-Deficient Embryos
To evaluate the functional consequence of glut2 abrogation on
glucose metabolism, we performed glucose uptake experiments
using 2-NBDG, a non-metabolizable fluorescently labeled glucose
analog. We observed a significant decrease in 2-NDBG uptake in
the head and body in ATG morphant embryos, with most of the
glucose remaining inside the yolk (Figures 4d, 4e, 4g, and 4h). In
contrast, ATG morphants rescued with rat Glut2 mRNA recovered
glucose uptake as evidenced by the significant increase in the
amount of fluorescent glucose signal in the head and the body
and by the significant decrease in fluorescence in the yolk when
compared with ATG morphant embryos, yielding a similar 2-NBDG
distribution than control embryos (Figure 4B). In addition, to
further characterize the defect in glucose homeostasis, we mea-
sured free glucose levels in glut2-deficient embryos. Our results
show that ATG morphant embryos presented lower levels of free
glucose at 24 hpf (Supplementary Figure 3). These results strongly
suggest that glut2 morphant embryos may be experiencing
hypoglycemia due to the observed reduction in glucose uptake
from the yolk.

Knockdown of glut2 Influences Brain Development in Zebrafish by
Affecting Cerebellar Progenitor Cells
In view of the severe alterations in the hindbrain structure as a
result of glut2 abrogation, we set out to further characterize this
phenotype in the central nervous system (CNS) by performing
immunohistochemical analyses using an antibody against neuro-
n-specific acetylated tubulin. In control embryos, a basic axon
scaffold had formed in the embryonic zebrafish brain by 24 hpf,
consisting of two bilaterally symmetric longitudinal tracts
connected by commissures, providing a template for subsequent
development (Figures 5i and 5i’). In contrast, the neuronal
architecture of glut2 morphants was clearly altered, revealing
thinner, poorly fasciculated longitudinal tracts (Figures 5ii and 5ii’).
ATG morphant embryos co-injected with rat Glut2 mRNA
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recovered the brain structure similar to control embryos
(Figures 5iii and 5iii’). Surprisingly, control and ATG morphant
embryos showed no significant differences in axonal structure at
48 hpf (data not shown).

To assess the effects of glut2 abrogation in the hindbrain region,
we performed ISH for various proneural genes: ptf1a, atoh1b,
atoh1c, and neurod. ptf1a is a marker of progenitor cells of
GABAergic neurons in the ventricular zone.10 atoh1b and atoh1c
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Figure 1. Localization of the expression of glut2 in zebrafish. Whole-mount in situ hybridization showing expression of zebrafish glut2 mRNA at
24 hours post fertilization (hpf; A and B), 48 hpf (C), 72 hpf (D–F), and 120 hpf (G–I). Left (A–C, E, and H), right lateral views (F and I), and dorsal
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are markers of progenitor cells of glutamatergic neurons whereas
neurod is a marker of immature and mature granule cells.10

Embryos injected with ATG MO lacked expression of ptf1a at
24 hpf and their expression pattern at 48 hpf was similar to that in
control embryos at 24 hpf (Figures 5A–5F). Similarly, atoh1b
showed a marked delay in its pattern of expression in ATG
morphants at 24 and 48 hpf (Figures 5G–5L). In contrast, ATG
morphants showed no significant alteration in neurod expression
at 24 and 48 hpf (Figures 5M–5R). At 72 hpf, however, the pattern
of expression of atoh1b, neurod, and atoh1c, first expressed at this
stage, was not different between control and ATG morphants
(Supplementary Figure 4). Moreover, ATG morphant embryos
rescued with rat Glut2 mRNA recovered normal expression
patterns of atoh1b and ptf1a (Supplementary Figure 5).

Loss of glut2 Leads to an Increase in Apoptotic Cell Death
On the basis of the observed expression of glut2 in the hindbrain
and on the consequences of glut2 abrogation in this brain region,
we hypothesized that the loss of glut2 in zebrafish embryos could
affect the incidence of cell death. Examination of cell death in ATG
morphant embryos at 24 hpf using the vital dye acridine orange
showed a significant increase (1.6-fold, Po0.05) in cell death,
primarily in the brain area, over control embryos (Figures 6A–6C
and 6G). ATG morphants co-injected with rat Glut2 mRNA
presented similar levels of cell death as control embryos
(Figures 6D and 6G). To determine whether the observed increase
in cell death in glut2 morphant embryos corresponded to
apoptotic cell death, we performed TUNEL assays and observed
a significantly higher number of apoptotic cells present in the

hindbrain of glut2 morphants compared to control embryos at
24 hpf (Figures 6E, 6F, and 6H).

Transcriptome Profiling of glut2 Morphants Evidences Changes in
the Expression of Genes Involved in Neural Processes and
Apoptosis
To study the effects of glut2 abrogation on gene expression in
zebrafish embryos, we performed a transcriptome analysis of
zebrafish ATG morphant embryos at 72 hpf and compared it with
control embryos. Microarray analysis was performed setting
significance cutoffs at 1.5-fold change at Po0.05 (sample t-test).
A total of 1,912 genes (DEGs) were found to be regulated in glut2
morphant embryos: 1,025 upregulated and 887 downregulated
genes. A set of 11 selected DEGs were validated by quantitative
PCR (Supplementary Table 2). Next, to better characterize the
annotated DEGs, we performed a gene ontology analysis for
functional classification (Supplementary Table 3). Analysis of Gene
Ontology-Biological Process revealed a significant enrichment in
functional categories involved in neural processes (e.g., neuron
projection, neurotransmitter metabolic process, and visual percep-
tion), programmed cellular death (e.g., apoptosis and cell death),
patterning, muscle development, immune processes, and
response to hypoxia/oxygen levels in glut2 morphant embryos.
Among DEGs involved in neural development, several genes
known to participate in the organization and maintenance of the
mid-hindbrain boundary (eng2b, fgf13a, her8.2, pax2b), as well as
in glutamate and glycine neurotransmission (grin1b and glra4a)
were downregulated in glut2 morphant embryos (Table 1).
Furthermore, marker genes for GABAergic neurons (pvalb7, aldca),

Figure 2. glut2 abrogation disrupts brain development. Phenotype of embryos injected with a control morpholino (Con MO) at 24 hours post
fertilization (hpf; A and B) and at 48 hpf (C), a morpholino targeting the translational start site (ATG MO) at 24 hpf (D and E), and at 48 hpf (F)
and a morpholino targeting the splice acceptor between exons 5 and 6 (Splice MO) at 24 hpf (G and H) and at 48 hpf (I). Embryos injected with
both morpholinos displayed a defective formation of the hindbrain that could be observed from 24 hpf onwards. Hindbrain ventricle (hbv),
midbrain/hinbrain boundary (mbh), tectal ventricle (tctv), telencephalon (t).
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glutamatergic neurons (atoh8, zic2a, tbr1b), and neural stem cells
(sox2) were upregulated in glut2 morphant embryos. Also
coincident with the increased apoptosis in glut2 morphant
embryos, several pro-apoptotic genes (aifm1,bnip3lb, badb, cideb,
cdip1, dram) were found to be upregulated. A number of genes
related to insulin/IGF-I signaling were also downregulated (e.g.,
insra, irs1, ifg1rb, igf2bp1, mtor, mapk1, mapk14b, pik3r2) in glut2
morphant embryos. In addition, the expression of genes involved
in the bone morphogenetic protein/wnt pathways (bmp4, tgfb1a,
fsta, fstb, dvl1a, dvl3a, wnt16, and wif1) were significantly altered in
embryos lacking glut2. Not surprisingly, the mRNA expression
levels of glut2 (slc2a2) as well as that of transferrin (tfa) and pdx1,
marker genes for the glut2-expressing tissues liver and endocrine
pancreas, respectively, were significantly decreased in glut2
morphant embryos (Table 1, Supplementary Table 2).

DISCUSSION
In this study we describe a vertebrate model of GLUT2 deficiency.
Using a reverse genetic approach, we have knocked down glut2
expression in zebrafish embryos causing disorganization of the
hindbrain, severe mispatterning of axonal scaffolds, and altera-
tions in the development of the neural progenitor cells.
Furthermore, we have related these observed functional con-
sequences of glut2 depletion to a reduction in glucose uptake and
availability and, consequently, to an increase in programmed cell
death in the brain region.
Expression analysis of zebrafish embryos by ISH showed that

glut2 is expressed in the liver, pronephric tubules, anterior
intestine, endocrine pancreas, and importantly, in the hindbrain,
particularly in the corpus cerebelli and medulla oblongata. In
mammals, GLUT2 expression has been reported in the cerebellum,

brain nuclei, hypothalamic nuclei, neurons, glial cells, and astro-
cytes,4,11–15 where GLUT2 is believed to be expressed in glucose
sensing neurons that regulate feeding behavior, energy metabo-
lism, and glucose homeostasis.3 Therefore, the similar neural
localization of the expression of glut2 in zebrafish is indicative of
the existence of a glucose sensing region in the zebrafish brain.
Despite current data strongly linking GLUT2 to central glucose

sensing in the mammalian brain, little is known on the importance
of GLUT2 in the development of the CNS. In the present study, we
show that abrogation of glut2 expression during early develop-
ment in zebrafish had critical consequences in the formation of
the CNS. The glut2 morphant embryos showed severe alterations
in the formation of the hindbrain ventricle, affecting the midbrain-
hindbrain structures. In view of the coinciding neurodegenerative
morphant phenotype and the localization of glut2 expression in
the hindbrain at early developmental stages, we hypothesized
that abrogation of glut2 may have affected the development of
neural progenitor cells. In zebrafish, as in mammals, neurons are
classified into two major groups: the excitatory glutamatergic, and
the inhibitory GABAergic neurons.16 In the mouse, glutamatergic
neurons derived from progenitor cells located in the upper
rhombic lip express the proneural gene Atoh1,17 whereas the
glutamatergic immature and mature granule cells express the
proneural gene NeuroD that is required for their generation and
differentiation.18 On the other hand, murine GABAergic neurons
are derived from progenitor cells expressing the proneural gene
Ptf1a.19 Recently, it has been shown that the neurogenic processes
of both glutamatergic and GABAergic neurons are conserved
between mammals and zebrafish and that the above-mentioned
proneural genes are also specifically expressed in progenitor cells
of the hindbrain region in zebrafish.10 Here, we show that
abrogation of glut2 caused important alterations in the expression

Figure 3. Morphant phenotype caused by abrogation of glut2 can be rescued with full-length zebrafish glut2 and rat GLUT2 mRNA. Phenotype
of embryos injected with a control morpholino (Con MO) at 48 hpf (A), ATG morpholino (ATG MO) at 48 hpf (B) and splice morpholino (Splice
MO) at 48 hpf (C). Rescue of overall morphant phenotype at 48 hpf by co-injection of ATG MO with rat GLUT2 mRNA (rGLUT2; D) and of Splice
MO with zebrafish glut2 (zfGLUT2; E). (F–J) Shows higher magnification images of the cephalic region of Con MO (F), ATG MO (G), Splice MO
(H), rescued ATG morphants (I), and rescued splice morphants (J). The hindbrain region (outlined by black dotted line) is affected in the
morphants (G and H), while brain development in rescued embryos (I and J) is similar to that observed in control embryos (F).

GLUT2 requirement for embryonic brain development
R Marín-Juez et al

79

© 2015 ISCBFM Journal of Cerebral Blood Flow & Metabolism (2015), 74 – 85



pattern of proneural marker genes in the hindbrain region during
early development in zebrafish. First, glut2 morphant embryos
showed a significant delay in the expression pattern of ptf1a,
indicating that abrogation of glut2 may have affected the
development of ptf1a-expressing cells from the ventricular zone,
reported in mice to be the source of all GABAergic neurons in the
cerebellum.19 Second, glut2 morphant embryos showed altered
expression pattern of atoh1b as well as an alteration of the upper
rhombic lip region at 24 and 48 hpf. Altered expression of
ionotropic NMDA glutamate and glycine receptors (grin1b and
glra4a, respectively) in glut2 morphant embryos further suggest
that the connectivity of ptf1a- and atoh1b-expressing neurons
could also be affected. Interestingly, abrogation of glut2 induced

the expression of known marker genes of Purkinje (pvalb7 and
aldca), granule (atoh8, zic2a and tbr1b), and neural stem cells
(sox2), suggesting that a compensatory mechanism to the
alterations in hindbrain structure may have taken place at
72 hpf. Furthermore, the observed alteration of the hindbrain
structure in glut2 morphant embryos was related to a severe
alteration of the neural scaffold, as evidenced by acetylated
tubulin immunostaining, and to the downregulation of the
expression of genes that participate in the establishment of the
mid-hindbrain boundary and the patterning of the hindbrain
(eng2b, pax2b, fgf13a, and her8.2)16 at 24 hpf. Therefore, abroga-
tion of glut2 disrupted hindbrain development and, specifically,
the development of progenitors for GABAergic and glutamatergic
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Figure 4. Knockdown of glut2 results in inhibition of glucose uptake in vivo. (A) (a–i) Bright field (upper line, a–c), fluorescent (middle line, d–f),
and overlay (bottom line, g–i) pictures of control, ATG morphants, and rescued embryos at 24 hpf. (B) Measurement of fluorescent signal in
embryos injected with 2-NBDG. Control injected embryos (a, d, and g) displayed significant amounts of fluorescent glucose throughout the
embryo; in contrast, ATG morphants (b, e, and h) showed very minimal fluorescent glucose visible at 60 minutes after injection. Embryos
injected with ATG MO+rat GLUT2 mRNA (ATG MO Rescued) recovered glucose uptake to levels similar to Con MO (c, f, and i). * indicates
significant differences compared with the Con MO injected embryos (*Po0.05; **Po0.01; ***Po0.001). # indicates significant differences
compared with ATG MO injected embryos (##Po0.01; ###Po0.001).
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neurons in the zebrafish hindbrain. Overall, these results clearly
indicate that glut2 is an important factor for neurodevelopment in
the zebrafish embryo.
Here, we also show that abrogation of glut2 expression

in zebrafish embryos resulted in a significant reduction in

whole-body glucose uptake and in a decrease in cell viability
due to apoptotic cell death mainly in the brain region. It is known
that the entry and utilization of glucose in cells can act as
important mediators of cell survival, linking glucose availability
with cellular viability, as is well described in cancer cells.20

Figure 5. glut2 abrogation causes hindbrain disorganization and affects the expression of cerebellar proneural genes. To study the
consequences of glut2 knockdown in the hindbrain structure we performed immunostaining using an antibody against acetylated tubulin in
con MO, ATG MO, and ATG MO+rat GLUT2 mRNA rescued embryos at 24 hpf (i, ii, iii). At this stage, morphant embryos showed disorganized
axon tracts. Rescued embryos showed a hindbrain structure similar to control injected embryos. Lateral longitudinal fascicles (llf ); medial
longitudinal fascicles (mlf ). To further study the consequences of glut2 abrogation in the neural progenitor cells we performed ISH for the
proneural genes ptf1a (A–D), atoh1b (G–J), neurod (M–P) in control injected embryos at 24 hpf (A, G, and M), and 48 hpf (C, I, and O), and in
ATG morphants at 24 hpf (B, H, and N) and 48 hpf (D, J, and P). To better illustrate the effects caused by the abrogation of glut2,
immunostained medial longitudinal fascicles have been outlined (i’, ii’, iii’). The expression patterns observed by ISH of the proneural genes are
represented with diagrams overlapping the expression patterns in control and ATG morphants at 24 hpf and 48 hpf of ptf1a (E and F), atoh1b
(K and L), and neurod (Q and R). A, anterior; L, left; R, right.

GLUT2 requirement for embryonic brain development
R Marín-Juez et al

81

© 2015 ISCBFM Journal of Cerebral Blood Flow & Metabolism (2015), 74 – 85



In neurons, glucose deprivation induces apoptosis that can be
reverted by the enhancement of GLUT1 expression by IGF-1,21 an
important neural survival factor22 that blocks the activity of the
pro-apoptotic factor Bad through the PI3K/Akt pathway.23

Recently, a link between glucose homeostasis and apoptosis has
been established in glut1-deficient and akt2-deficient zebrafish
embryos, two in vivo models of altered glucose homeostasis that
showed increased apoptosis and an almost identical neurode-
generative phenotype that could be rescued by abrogation of
bad.24,25 In the present study, we provide evidence supporting the
hypothesis that the decrease in glucose availability caused by
glut2 abrogation, as evidenced by the reduction in glucose uptake
and the ensuing hypoglycemia, may have induced apoptosis in
zebrafish embryos, leading to neurodegeneration. On one hand,
expression of rat Glut2 in glut2 morphant embryos restored
glucose uptake and decreased the incidence of cell death,
rescuing the morphant phenotype. On the other hand, glut2

abrogation resulted in the upregulation of the expression of bad
and several other pro-apoptotic factors. Interestingly, a number of
components of the insulin/IGF-I signaling pathway were down-
regulated in glut2 morphant embryos, suggesting that this
important survival pathway was suppressed as a result of glucose
deprivation due to glut2 abrogation. Furthermore, the expression
of igfbp1a, a marker of decreased glucose availability26 that is
transcriptionally repressed by insulin and that causes defects in
brain development when overexpressed27, was upregulated in
glut2 morphant embryos, supporting the hypoglycemic pheno-
type. Therefore, we propose that the decrease in glucose uptake
and availability in glut2morphant zebrafish embryos may have led
to a reduction in the production of survival signals through the
insulin/IGF-1 signaling pathway and/or the production of glucose
metabolites and, consequently, to an increase in apoptotic cell
death. Our results support the notion that glucose is essential for
cell survival in the CNS in zebrafish and that glucose transporters

Figure 6. Abrogation of glut2 enhances cell death mainly in the head region. To assay for cell death, embryos injected with control
morpholino (Con MO; A), ATG morpholino (ATG MO; B and C), and ATG MO+rat GLUT2 mRNA (ATG MO Rescued; D) were stained with the vital
dye acridine orange. To assay for apoptosis, embryos injected with Con MO (E) and ATG MO (F) were analyzed by TUNEL assay. At 24 hpf, there
was an overall increase in cell death and apoptosis primarily localized in the hindbrain region (B, C, and F). Fluorescent signal analysis (G) and
counting of TUNEL-positive cells (H) confirmed a significant increase in cell death and apoptosis, respectively, in ATG morphants which
appears reverted in rescued embryos (G). * indicates significant differences compared with the Con MO injected embryos (**Po0.01;
***Po0.001). Hindbrain ventricle (hbv), midbrain/hindbrain boundary (mbh), telencephalon (t). In the images (A–F), the position of the
embryos is indicated by a representation of a zebrafish embryo.
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have a key role in this process. In addition to Glut2 and Glut1, that
is expressed astrocytes and in the blood–brain barrier allowing the
entry of glucose into the brain from the circulation, the
mammalian brain expresses primarily Glut3, a high affinity GLUT

that is expressed in neurons, but also Glut4, Glut5, and Glut8 at
lower levels.1,28 In view of the complexity of the GLUT system in
the brain, further studies will be required to elucidate the specific
role of the different GLUTs expressed in the brain.

Table 1. Selection of differentially expressed genes in glut2 morphant zebrafish embryos

Gene name Description FC P Gene name Description FC P

Neural function Apoptosis
aldoca Aldolase C, fructose-bisphosphate, a 2.12 0.044 aifm1 Apoptosis-inducing factor, mitochondrion-assoc. 1 − 1.63 0.008
atoh8 Atonal homolog 8 4.52 0.000 apitd1 Apoptosis-inducing, TAF9-like domain 1 − 1.60 0.028
cdh1 Cadherin 1, epithelial 2.01 0.002 bnip3lb BCL2/adenovirus E1B interacting protein 3-like b 1.56 0.040
eng2b Engrailed 2b − 1.58 0.048 badb BCL2-antagonist of cell death b 1.56 0.018
fgf13a Fibroblast growth factor 13a − 2.01 0.003 bag5 BCL2-associated athanogene 5 − 3.53 0.005
foxa3 Forkhead box A3 − 1.52 0.012 cideb Cell death-inducing DFFA-like effector b 2.98 0.004
foxb1b Forkhead box B1b − 1.79 0.000 cdip1 Cell death-inducing p53 target 1 − 1.54 0.015
grin1b Glutamate receptor,

ionotropic, NMDA 1b
− 2.55 0.017 dram1 DNA-damage regulated autophagy modulator 1 3.38 0.020

glra4a Glycine receptor, alpha 4a − 2.11 0.013 irf1b Interferon regulatory factor 1b 3.22 0.046
her8.2 Hairy-related 8.2 − 2.03 0.015 irf3 Interferon regulatory factor 3 − 2.68 0.005
her9 Hairy-related 9 1.51 0.010 perp PERP, TP53 apoptosis effector − 1.80 0.015
hoxa13a Homeo box A13a − 1.66 0.048 pdcd4b Programmed cell death 4b 3.44 0.016
hoxb1a Homeo box B1a − 1.72 0.025 tp63 Tumor protein p63 − 1.66 0.050
hoxb3a Homeo box B3a − 2.12 0.037 faim2a Fas apoptotic inhibitory molecule 2a − 1.61 0.014
hoxb5b Homeo box B5b − 1.51 0.002
hoxb6a Homeo box B6a − 1.56 0.046 Metabolism
hoxb6b Homeo box B6b − 1.96 0.026 pfkfb3 6-phosphofructo-2-kinase/fructose-

2,6-biphosphatase 3
1.78 0.032

hoxb9a Homeo box B9a − 1.58 0.028 fabp10a Fatty acid-binding protein 10a, liver basic 2.69 0.015
hoxc1a Homeo box C1a − 1.51 0.029 fabp6 Fatty acid-binding protein 6, ileal (gastrotropin) 5.73 0.041
hoxc8a Homeo box C8a − 1.50 0.044 gpd1l Glycerol-3-phosphate dehydrogenase 1-like − 1.67 0.043
hoxd11a Homeo box D11a − 1.63 0.004 lepr Leptin receptor 1.77 0.040
hoxd13a Homeo box D13a − 1.82 0.000 lpin1 Lipin 1 1.83 0.029
ngrn Neugrin, neurite outgrowth

associated
1.58 0.024 lpl Lipoprotein lipase 1.56 0.004

nrxn1a Neurexin 1a − 1.82 0.008 npy8ar Neuropeptide Y receptor Y8a 2.62 0.022
nrxn2b Neurexin 2b − 2.01 0.026 ppargc1b PPAR, gamma, coactivator 1, beta − 1.89 0.009
nos1 Nitric oxide synthase 1 (neuronal) − 3.77 0.016 pfkma Phosphofructokinase, muscle a 1.68 0.020
pax2b Paired box gene 2b − 1.94 0.012 pygmb Phosphorylase, glycogen (muscle) b − 1.66 0.006
pax3a Paired box gene 3a 1.54 0.019 slc2a2 Solute carrier family 2, member 2 − 2.52 0.048
pvalb7 Parvalbumin 7 2.26 0.004 soga1 Suppressor of glucose, autophagy associated 1 − 2.42 0.000
sox2 SRY-box containing gene 2 1.99 0.001 ucp1 Uncoupling protein 1 1.81 0.028
tbr1b T-box, brain, 1b 2.09 0.014 ucp3 Uncoupling protein 3 3.92 0.020

Insulin action and signaling Nodal pathway
eif4ebp3 Eukaryotic translation

initiation factor 4E BP3
1.72 0.006 lft2 Lefty2 1.61 0.001

insra Insulin receptor a − 1.54 0.005 pdcb Phosducin b 2.17 0.022
irs1 Insulin receptor substrate 1 − 1.77 0.003 bmp4 Bone morphogenetic protein 4 − 1.52 0.030
igf1rb Insulin-like growth factor 1b receptor − 1.63 0.006
igf2bp1 Insulin-like growth factor 2 mRNA

binding protein 1
− 1.60 0.044 Wnt pathway

igfbp1a Insulin-like growth factor
binding protein 1a

1.58 0.009 dvl1a Dishevelled, dsh homolog 1a (Drosophila) − 1.66 0.049

mtor Mechanistic target of rapamycin − 1.98 0.007 dvl2 Dishevelled, dsh homolog 2 (Drosophila) − 1.65 0.025
map3k7 Mitogen activated protein

kinase kinase kinase 7
− 1.70 0.034 dvl3a Dishevelled, dsh homolog 3a (Drosophila) − 1.63 0.033

mapk1 Mitogen-activated protein kinase 1 − 1.52 0.026 wnt16 Wingless-type MMTV integration site family, 16 1.62 0.020
mapk14b Mitogen-activated protein kinase 14b − 1.73 0.023 wif1 Wnt inhibitory factor 1 − 3.52 0.000
mapk8b Mitogen-activated protein kinase 8b − 1.92 0.011
map2k4b Mitogen-activated protein

kinase kinase 4b
− 1.69 0.019 Others

map2k5 Mitogen-activated protein
kinase kinase 5

− 1.63 0.039 fsta Follistatin a 1.50 0.019

map2k6 Mitogen-activated protein
kinase kinase 6

− 1.76 0.024 fstb Follistatin b 1.58 0.016

pdx1 Pancreatic and duodenal homeobox 1 − 1.64 0.008 gata5 GATA-binding protein 5 − 2.13 0.028
pik3r4 Phosphoinositide-3-kinase,

regulatory subunit 4
1.50 0.002 sox19b SRY-box containing gene 19b 1.68 0.017

pik3r2 Phosphoinositide-3-kinase,
regulatory subunit 2

− 1.77 0.007 sox2 SRY-box containing gene 2 1.99 0.001

prkcbb Protein kinase C, beta b − 1.64 0.011 sox6 SRY-box containing gene 6 5.69 0.048
prkcq Protein kinase C, theta 11.3 0.031 sox9b SRY-box containing gene 9b − 2.04 0.036
socs1a Suppressor of cytokine signaling 1a 3.10 0.000 thrb Thyroid hormone receptor beta − 2.23 0.009
tfr1b Transferrin receptor 1b − 1.60 0.002 tgfb1a Transforming growth factor, beta 1a − 2.75 0.016
tfa Transferrin-a − 1.74 0.003

Control and morphant embryos were used for gene expression analysis using a zebrafish oligonucleotide microarray (GPL13390). Data are shown as fold
change (FC). P: P value.
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Given that abrogation of glut2 resulted in increased apoptosis
primarily in the brain region, we hypothesize that glucose
deprivation-induced apoptosis in the hindbrain of glut2
morphants may have been responsible for the observed disrup-
tion of hindbrain organization and, specifically, for the alterations
in the development of progenitors for GABAergic and glutama-
tergic neurons in the embryonic zebrafish hindbrain. At the
present time, we cannot ascertain if glut2 abrogation may have
induced apoptosis specifically in GABAergic and glutamatergic
precursors nor if these effects may have been direct or indirect
through other glut2-expressing cells. This leads to the important
question of where specifically glut2 is expressed in the zebrafish
brain, a question that has not been completely resolved even in
mammals. In the mammalian brain, GLUT2 is expressed in glucose
sensitive neurons in the hypothalamus and in the brainstem29 but
the exact nature of GLUT2-expressing neurons (i.e., GABAergic or
glutamatergic) in the central glucose sensing system has been
poorly described to date, although there is evidence indicating
that GABA release in neurons is regulated by glucose.30,31

GABAergic neurons in the ventromedial hypothalamus are
inactivated when glucose levels decrease under hypoglycemic
conditions, enhancing the counterregulatory response to hypo-
glycemia.32 These observations suggest the possibility that GLUT2-
expressing neurons in structures belonging to the central glucose
sensing system could be, at least in part, GABAergic neurons.
Supporting these observations, Glut2 has recently been shown to
be expressed in a homogenous glucose-sensing subpopulation of
GABAergic neurons in the nucleus of the tractus solitarius in
mice.33 Unfortunately, our attempts at localizing glut2 in ptf1a-
and atoh1b-expressing cells were unsuccessful due to the low
levels of expression of glut2 in the zebrafish brain, as in
mammals.34 Approaches involving genetic labeling of glut2-
expressing cells will be required to identify the nature of cells
that express glut2 in the zebrafish brain in future studies.
It is worth noting that the functional consequences of

abrogating glut124 or glut2 (this study) in zebrafish are both
severe and very similar, particularly when considering that the
effects of glut2 abrogation occur in the absence of changes in the
expression of glut1 (data not shown). A possible explanation for
the apparently similar function of glut1 and glut2 in early zebrafish
development may lie in possible differences in their pattern of
expression that would allow for transporter-specific glucose
availability in different key brain areas during early development.
Recently, it was reported that morpholinos could cause non-
specific apoptosis and changes in the expression of proneural
marker genes by activation of p53.35 However, our data on the
ability of rat Glut2 mRNA to rescue the apoptotic morphant
phenotype (Figure 6), on the similar phenotype generated by the
two different morpholinos used (Figures 2 and 3) and on the lack
of changes in the mRNA expression levels of p53 and its
downstream targets mdm2 and p21 in glut2 morphant embryos
(data not shown), strongly argue against the possibility of off-
target effects of the morpholinos in our study.
Interestingly, glut2 morphant embryos showed altered expres-

sion of receptors for leptin (lepr) and NPY (npy8ar) as well as of
uncoupling proteins 1 and 3 (ucp1, ucp3), suggesting that some of
the factors known to participate in the GLUT2-mediated control of
feeding and thermoregulation in mammals29 are also dependent
on the presence of a functional glut2 gene in zebrafish. Although
ucp1 is obviously not involved in thermoregulation in zebrafish
but may instead reduce ATP production, these observations add
to those on the localization of glut2 in the zebrafish hindbrain in
support of the hypothesis that a central glucose sensing
mechanism involving glut2 may be present in the zebrafish brain,
providing a novel and useful experimental model for investigating
the role of GLUT2 in glucose sensing in the brain. Furthermore,
consistent with the expression of GLUT2 in liver and endocrine
pancreas, glut2 abrogation decreased the expression of tfa and

pdx1, two well-known marker genes for these important tissues in
glucose metabolism. In particular, pdx1 is necessary for the proper
regulation of the glucose-dependent insulin secretion by β-cells36

and for pancreas development in zebrafish since pdx1-null
zebrafish lack this organ.37 Hence, the downregulation of pdx1
expression suggests that the glucose-responsive regulation of
insulin synthesis in endocrine pancreas could be affected as a
consequence of the abrogation of glut2 in zebrafish. Interestingly,
genetic inactivation of Glut2 specifically in the nervous system was
recently shown to reduce pancreatic β-cell mass and proliferation
and suppress first-phase insulin secretion due to decreased
parasympathetic activity in mice, supporting the notion of a
central function for GLUT2 in glucose homeostasis.34 At this time,
it is not known if the decrease in the expression of pdx1 in
zebrafish glut2 morphant embryos could be the result of the
abrogation of the expression of glut2 in the pancreas, or in the
brain, or in both.
To summarize, in the present study we provide evidence for the

physiological role of glut2 in glucose homeostasis. Importantly, we
demonstrate that glut2 is essential for the development of neural
progenitors for GABAergic and glutamatergic neurons, suggesting
the existence of a glucose-sensing region in the zebrafish brain.
We propose that the lack of glut2 in specific brain areas in the
zebrafish embryo results in glucose deprivation causing increased
apoptotic cell death that we believe is the underlying cause for
the observed alterations in brain development. Importantly, the
observed phenotype in glut2 morphant embryos shows certain
similarities with FBS patients. Like glut2 morphants, FBS patients
that are diagnosed during their infancy exhibit growth delay and
impaired glucose homeostasis that is characterized by fasting
hypoglycemia and hypergalactosemia.2 In some cases, hepato-
megaly is also observed as a consequence of glycogen accumu-
lation, a process that becomes exacerbated during infancy.2

Unfortunately, we were not able to assess whether abrogation of
glut2 in zebrafish also affected liver glycogen levels because we
failed to detect glycogen in the liver in zebrafish embryos up to
72 hpf (data not shown). It is possible that the developmental
stage of the studied embryos may have been too early to be able
to appreciate glycogen accumulation in the liver, resembling the
human situation. However, the mRNA expression levels of
glycogen phosphorylase (pygmb), an enzyme involved in glycogen
breakdown, were decreased in glut2 morphant embryos, suggest-
ing that glycogen metabolism may have been altered in zebrafish
embryos as a result of glut2 abrogation. This is supported by
reports indicating that deficiency of this enzyme in the liver is
responsible for glycogen storage disease type VI, characterized by
hepatomegaly and growth retardation.38 On the other hand, cases
diagnosed with FBS include patients with delayed psychomotor
development.39 Interestingly, psychomotor delay has been
associated with alterations in the cerebellar development in
humans at early ages.40 Our findings that glut2 is expressed in the
zebrafish cerebellum and that the development of the cerebellum
is altered in glut2 morphant embryos indicates that our glut2-
deficiency model recapitulates yet another phenotype of FBS
patients. In conclusion, our study demonstrates the physiological
importance of glut2 in glucose uptake and availability during brain
development and provides a novel model system for the study of
diseases derived from GLUT2-deficient states, representing an
attractive tool for the development of new drug or genetic
therapies for the treatment of FBS.

DISCLOSURE/CONFLICT OF INTEREST
The authors declare no conflict of interest.

GLUT2 requirement for embryonic brain development
R Marín-Juez et al

84

Journal of Cerebral Blood Flow & Metabolism (2015), 74 – 85 © 2015 ISCBFM



ACKNOWLEDGMENTS
The authors thank Dr Cristina Pujades and Dr Javier Terriente (Universitat Pompeu
Fabra, Barcelona, Spain) for their generous assistance with in situ hybridization and
for critically reading the manuscript (C. Pujades). The authors also thank Purificación
Márquez for assistance with glucose uptake assays.

REFERENCES
1 Mueckler M, Thorens B. The SLC2 (GLUT) family of membrane transporters. Mol

Aspects Med 2013; 34: 121–138.
2 Santer R, Steinmann B, Schaub J. Fanconi-Bickel syndrome--a congenital defect of

facilitative glucose transport. Curr Mol Med 2002; 2: 213–227.
3 Marty N, Dallaporta M, Thorens B. Brain glucose sensing, counterregulation, and

energy homeostasis. Physiology (Bethesda) 2007; 22: 241–251.
4 Marty N, Dallaporta M, Foretz M, Emery M, Tarussio D, Bady I et al. Regulation of

glucagon secretion by glucose transporter type 2 (glut2) and astrocyte-
dependent glucose sensors. J Clin Invest 2005; 115: 3545–3553.

5 Eny KM, Wolever TM, Fontaine-Bisson B, El-Sohemy A. Genetic variant in the
glucose transporter type 2 is associated with higher intakes of sugars in two
distinct populations. Physiol Genomics 2008; 33: 355–360.

6 Wan HZ, Hulsey MG, Martin RJ. Intracerebroventricular administration of antisense
oligodeoxynucleotide against GLUT2 glucose transporter mRNA reduces food
intake, body weight change and glucoprivic feeding response in rats. J Nutr 1998;
128: 287–291.

7 Bady I, Marty N, Dallaporta M, Emery M, Gyger J, Tarussio D et al. Evidence from
glut2-null mice that glucose is a critical physiological regulator of feeding.
Diabetes 2006; 55: 988–995.

8 Stolarczyk E, Guissard C, Michau A, Even PC, Grosfeld A, Serradas P et al. Detection
of extracellular glucose by GLUT2 contributes to hypothalamic control of
food intake. Am J Physiol Endocrinol Metab 2010; 298: E1078–E1087.

9 Castillo J, Crespo D, Capilla E, Díaz M, Chauvigné F, Cerdà J et al. Evolutionary
structural and functional conservation of an ortholog of the GLUT2 glucose
transporter gene (SLC2A2) in zebrafish. Am J Physiol Regul Integr Comp Physiol
2009; 297: R1570–R1581.

10 Kani S, Bae YK, Shimizu T, Tanabe K, Satou C, Parsons MJ et al. Proneural gene-
linked neurogenesis in zebrafish cerebellum. Dev Biol 2010; 343: 1–17.

11 Arluison M, Quignon M, Nguyen P, Thorens B, Leloup C, Penicaud L. Distribution
and anatomical localization of the glucose transporter 2 (GLUT2) in the adult rat
brain--an immunohistochemical study. J Chem Neuroanat 2004; 28: 117–136.

12 Roncero I, Alvarez E, Chowen JA, Sanz C, Rabano A, Vazquez P et al. Expression
of glucose transporter isoform GLUT-2 and glucokinase genes in human brain.
J Neurochem 2004; 88: 1203–1210.

13 Kang L, Routh VH, Kuzhikandathil EV, Gaspers LD, Levin BE. Physiological and
molecular characteristics of rat hypothalamic ventromedial nucleus glucosensing
neurons. Diabetes 2004; 53: 549–559.

14 Leloup C, Arluison M, Lepetit N, Cartier N, Marfaing-Jallat P, Ferre P et al. Glucose
transporter 2 (GLUT 2): expression in specific brain nuclei. Brain Res 1994; 638: 221–226.

15 Nualart F, Godoy A, Reinicke K. Expression of the hexose transporters GLUT1 and
GLUT2 during the early development of the human brain. Brain Res 1999; 824:
97–104.

16 Hibi M, Shimizu T. Development of the cerebellum and cerebellar neural circuits.
Dev Neurobiol 2012; 72: 282–301.

17 Alder J, Cho NK, Hatten ME. Embryonic precursor cells from the rhombic lip are
specified to a cerebellar granule neuron identity. Neuron 1996; 17: 389–399.

18 Miyata T, Maeda T, Lee JE. NeuroD is required for differentiation of the granule
cells in the cerebellum and hippocampus. Genes Dev 1999; 13: 1647–1652.

19 Hoshino M, Nakamura S, Mori K, Kawauchi T, Terao M, Nishimura YV et al. Ptf1a, a
bHLH transcriptional gene, defines GABAergic neuronal fates in cerebellum.
Neuron 2005; 47: 201–213.

20 Mjiyad El N, Caro-Maldonado A, Ramirez-Peinado S, Munoz-Pinedo C. Sugar-free
approaches to cancer cell killing. Oncogene 2011; 30: 253–264.

21 Russo VC, Kobayashi K, Najdovska S, Baker NL, Werther GA. Neuronal protection
from glucose deprivation via modulation of glucose transport and inhibition of

apoptosis: a role for the insulin-like growth factor system. Brain Res 2004; 1009:
40–53.

22 Torres-Aleman I, Pons S, Arevalo MA. The insulin-like growth factor I system in the
rat cerebellum: developmental regulation and role in neuronal survival and dif-
ferentiation. J Neurosci Res 1994; 39: 117–126.

23 Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y et al. Akt phosphorylation of
BAD couples survival signals to the cell-intrinsic death machinery. Cell 1997; 91:
231–241.

24 Jensen PJ, Gitlin JD, Carayannopoulos MO. GLUT1 deficiency links nutrient
availability and apoptosis during embryonic development. J Biol Chem 2006; 281:
13382–13387.

25 Jensen PJ, Gunter LB, Carayannopoulos MO. Akt2 modulates glucose availability
and downstream apoptotic pathways during development. J Biol Chem 2010; 285:
17673–17680.

26 Cotterill AM, Holly JM, Amiel S, Wass JA. Suppression of endogenous insulin
secretion regulates the rapid rise of insulin-like growth factor binding protein
(IGFBP)-1 levels following acute hypoglycaemia. Clin Endocrinol (Oxf) 1993; 38:
633–639.

27 Murphy LJ, Rajkumar K, Molnar P. Phenotypic manifestations of insulin-like
growth factor binding protein-1 (IGFBP-1) and IGFBP-3 overexpression in
transgenic mice. Prog Growth Factor Res 1995; 6: 425–432.

28 Vannucci SJ, Maher F, Simpson IA. Glucose transporter proteins in brain: delivery
of glucose to neurons and glia. Glia 1997; 21: 2–21.

29 Mounien L, Marty N, Tarussio D, Metref S, Genoux D, Preitner F et al.
Glut2-dependent glucose-sensing controls thermoregulation by enhancing
the leptin sensitivity of NPY and POMC neurons. FASEB J 2010; 24:
1747–1758.

30 Levin BE. Glucose-regulated dopamine release from substantia nigra neurons.
Brain Res 2000; 874: 158–164.

31 During MJ, Leone P, Davis KE, Kerr D, Sherwin RS. Glucose modulates rat sub-
stantia nigra GABA release in vivo via ATP-sensitive potassium channels. J Clin
Invest 1995; 95: 2403–2408.

32 Zhu W, Czyzyk D, Paranjape SA, Zhou L, Horblitt A, Szabo G et al. Glucose prevents
the fall in ventromedial hypothalamic GABA that is required for full activation of
glucose counterregulatory responses during hypoglycemia. Am J Physiol Endo-
crinol Metab 2010; 298: E971–E977.

33 Lamy CM, Sanno H, Labouèbe G, Picard A, Magnan C, Chatton J-Y et al.
Hypoglycemia-activated GLUT2 neurons of the nucleus tractus solitarius stimulate
vagal activity and glucagon secretion. Cell Metab 2014; 19: 527–538.

34 Tarussio D, Metref S, Seyer P, Mounien L, Vallois D, Magnan C et al. Nervous
glucose sensing regulates postnatal β cell proliferation and glucose homeostasis.
J Clin Invest 2014; 124: 413–424.

35 Gerety SS, Wilkinson DG. Morpholino artifacts provide pitfalls and reveal a novel
role for pro-apoptotic genes in hindbrain boundary development. Dev Biol 2011;
350: 279–289.

36 MacFarlane WM, Read ML, Gilligan M, Bujalska I, Docherty K. Glucose modulates
the binding activity of the beta-cell transcription factor IUF1 in a phosphorylation-
dependent manner. Biochem J 1994; 303(Pt 2):625–631.

37 Yee NS, Yusuff S, Pack M. Zebrafish pdx1 morphant displays defects in pancreas
development and digestive organ chirality, and potentially identifies a multi-
potent pancreas progenitor cell. Genesis 2001; 30: 137–140.

38 Wolfsdorf JI, Weinstein DA. Glycogen storage diseases. Rev Endocr Metab Disord
2003; 4: 95–102.

39 Aperia A, Bergqvist G, Linne T, Zetterstrom R. Familial Fanconi syndrome with
malabsorption and galactose intolerance, normal kinase and transferase activity.
A report on two siblings. Acta Paediatr Scand 1981; 70: 527–533.

40 Ventura P, Presicci A, Perniola T, Campa MG, Margari L. Mental retardation and
epilepsy in patients with isolated cerebellar hypoplasia. J Child Neurol 2006; 21:
776–781.

This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of

this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

Supplementary Information accompanies the paper on the Journal of Cerebral Blood Flow & Metabolism website (http://www.nature.
com/jcbfm)

GLUT2 requirement for embryonic brain development
R Marín-Juez et al

85

© 2015 ISCBFM Journal of Cerebral Blood Flow & Metabolism (2015), 74 – 85


	GLUT2-mediated glucose uptake and availability are required for embryonic brain development in zebrafish
	Introduction
	Materials and methods
	Zebrafish Maintenance
	Imaging
	In Situ Hybridization and Immunohistochemistry
	Morpholino Design and Injections
	In Vivo Glucose Uptake Assay
	Detection of Cell Death
	Microarray Analysis
	Quantitative Real-Time Polymerase Chain Reaction
	Maintenance of MIN6 Cells
	Generation of a Zebrafish glut2 Expression Construct and Transient Transfection of MIN6 Cells
	In Vitro Glucose Uptake Assays
	Glucose Measurements
	Statistical Analysis

	Results
	Zebrafish glut2 is Expressed in the Developing Brain, Liver, Pronephric Tubules, and Endocrine Pancreas
	Knockdown of Zebrafish glut2 Disrupts Brain Development
	Defective Glucose Uptake in glut2-Deficient Embryos
	Knockdown of glut2 Influences Brain Development in Zebrafish by Affecting Cerebellar Progenitor Cells

	Figure 1 Localization of the expression of glut2 in zebrafish.
	Loss of glut2 Leads to an Increase in Apoptotic Cell Death
	Transcriptome Profiling of glut2 Morphants Evidences Changes in the Expression of Genes Involved in Neural Processes and Apoptosis

	Figure 2 glut2 abrogation disrupts brain development.
	Discussion
	Figure 3 Morphant phenotype caused by abrogation of glut2 can be rescued with full-length zebrafish glut2 and rat GLUT2 mRNA.
	Figure 4 Knockdown of glut2 results in inhibition of glucose uptake in�vivo.
	Figure 5 glut2 abrogation causes hindbrain disorganization and affects the expression of cerebellar proneural genes.
	Figure 6 Abrogation of glut2 enhances cell death mainly in the head region.
	Table 1 Selection of differentially expressed genes in glut2 morphant zebrafish embryos
	The authors thank Dr Cristina Pujades and Dr Javier Terriente (Universitat Pompeu Fabra, Barcelona, Spain) for their generous assistance with in�situ hybridization and for critically reading the manuscript (C. Pujades). The authors also thank Purificaci&#
	The authors thank Dr Cristina Pujades and Dr Javier Terriente (Universitat Pompeu Fabra, Barcelona, Spain) for their generous assistance with in�situ hybridization and for critically reading the manuscript (C. Pujades). The authors also thank Purificaci&#
	ACKNOWLEDGEMENTS
	REFERENCES




