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Abstract 

Herein, we report the formation of organized mesoporous silica materials prepared from a 

novel nonionic gemini surfactant, myristoyl-end capped Jeffamine, synthesized from a 

polyoxyalkyleneamine (ED900). The behavior of the modified Jeffamine in water was first 

investigated. A direct micellar phase (L1) and a hexagonal (H1) liquid crystal were found. The 

structure of the micelles was investigated from the SAXS and the analysis by Generalized 

Indirect Fourier Transformation (GIFT), which show that the particles are globular of core-

shell type. The myristoyl chains, located at the ends of the amphiphile molecule are 

assembled to form the core of the micelles and, as a consequence, the molecules are folded 

over on themselves. 

Mesoporous materials were then synthesized from the self-assembly mechanism. The 

recovered materials were characterized by SAXS measurements, nitrogen adsorption-

desorption analysis, transmission and scanning electron microscopy. The results clearly 

evidence that by modifying the synthesis parameters, such as the surfactant/silica precursor 

molar ratio and the hydrothermal conditions, one can control the size and the nanostructuring 

of the resulting material. It was observed that, the lower the temperature of the hydrothermal 

treatment, the better the mesopore ordering. 
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1. Introduction 

Since their discovery in the early nineties, ordered mesoporous materials have attracted much 

research attention due to a number of remarkable properties such as the adjustable pore size, 

the high surface area, pore volume and the ease of surface modification1,2. These 

characteristics afford their use for several potential applications in many fields such as 

adsorbents, catalysts, host matrixes for electronic and photonic devices, drug delivery and 

sensors3-8. The synthesis of these compounds combines the sol-gel chemistry and the use of 

assemblies of amphiphilic molecules, mainly surfactants, as framework templates. Depending 

on the surfactant concentration, two mechanisms can lead to the formation of the ordered 

material. The first one is the self-assembly mechanism (CTM): in this case the building 

blocks are the micelles, so the CTM occurs at low surfactant concentrations9-13. The second 

approach to the preparation of ordered mesostructures utilizes a liquid crystal phase and it is 

labeled as the direct liquid crystal templating (LCT) pathway14-18. The inorganic precursors 

grow around the liquid crystal. After the polymerization and the condensation, the template 

can be removed, leaving a mesoporous material, whose structure, pore size and symmetry are 

determined by the liquid crystal scaffold. In addition, the high surfactant concentration 

templating method often leads to monolithic materials rather than powders, which are 

associated with mesostructured silica prepared from a micellar solution. Numerous surfactant-

based systems have been investigated as structure directing agents, in particular the nonionic 

ones9,19. As a matter of fact, a large number of nonionic surfactants widely used in industries 

and featured with low cost, low toxicity and bio-degradation can be utilized as templates for 

the design of mesoporous materials. For example, using polyoxyethylene alkyl ethers 

[Cm(EO)n], a series of compounds labeled SBA10,20 (Santa Barbara), MSU21,22 (Michigan 

State University) have been prepared. Several groups have also demonstrated the ability of 

fluorinated surfactants to be used for the mesostructured silica preparation18, 23-27. For 
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instance, we have synthesized mesoporous materials by using nonionic fluorinated surfactants 

[RF
m(EO)n]

18,23,24, which are the fluorinated analogues of the hydrogenated polyoxyethylene 

alkyl ethers [Cm(EO)n]. As regards the synthesis of mesoporous molecular sieves, the main 

advantage of fluorinated surfactants compared to the hydrogenated ones is their high thermal 

stability. Indeed, this property enables making the hydrothermal treatment at higher 

temperatures, leading to a better condensation of silica and resulting in a material with 

improved hydrothermal stability28. The examples reported above deal with low molecular 

weight surfactants and, except the block copolymers ones, the use of amphiphilic polymers of 

larger molecular weight is scarcer29-35. Among the block copolymer-templated materials, 

SBA-15 is the most widely studied one. SBA-15 has been discovered in 1998 by Stucky et al. 

and it is prepared under strong acidic conditions by using micelles of Pluronic P123 

[(EO)20(PO)70(EO)20]
29 as template. More recently silica mesostructues have been synthesized 

using diamine polypropylene amphiphiles that belong to the Jeffamine family. Indeed 

Pinnavaia et al. have reported the preparation of a new group of large pore mesoporous 

silicas, denoted MSU-J36,37. The materials are obtained through hydrogen-bonding pathways 

from sodium silicate or tetraethylorthosilicate as the silica source and amine-terminated 

Jeffamine as the structure-directing agent. Depending on the synthesis conditions, the pore 

size and the specific surface area varied respectively from 4.9 to 14.3 nm and from 108 to 

1127 m²/g. MSU-J represent the largest pore sizes observed to date for a fully three-

dimensional mesoporous framework assembled from a single micellar porogen. However, no 

mesopore ordering is noted for MSU-J, the materials exhibit a wormhole-like framework. 

Mesoporous silicas with onion-like morphology were also synthesized with the same family 

of amphiphile by Sayari et al.38 Until now no hexagonal mesopore ordering has been obtained 

with the Jeffamine family. Our group has also tried to prepare mesoporous materials through 

the assembly of H2N-(PO)3(EO)12.5(PO)3NH2 (Jeffamine ED900) and tetramethoxysilane but 
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no templated materials could be recovered, we obtained only the precipitated silica. In this 

paper, we have modified ED900 to obtain gemini surfactants in order to decrease the high 

hydrophilicity of ED900. Then, we have investigated the ability of the modified Jeffamine to 

be used for the preparation of ordered mesoporous materials. As the properties of the 

molecular sieves depend on the phase behavior of the structure directing agent in the synthesis 

solvent, in a first part we have determined the phase diagram of the modified Jeffamine in 

water. 

 

2. Materials and methods 

H2N-(PO)3(EO)12.5(PO)3NH2 (trade name Jeffamine ED900 (XTJ-501)) was supplied by 

Huntsman Corporation. It is based on a polyether (PO)x-(EO)y-(PO)z backbone containing 

primary amino groups attached at both ends and it is presented as a transparent viscous liquid 

at ambient temperature. Myristic acid and tetramethoxysilane (TMOS), used as silica source, 

were purchased from Sigma-Aldrich. Deionized water was obtained using a Milli-Q water 

purification system. 

Modification of ED900: A mixture of Jeffamine ED900 (2 g, 2.1 mmol) and myristic acid 

(1.015 g, 4.4 mmol) was heated under microwaves (50 W) for 8 minutes. The reaction 

mixture was then cooled to room temperature and the product, named ED900Myr, was used 

without further purification. The reaction yield was 100 %. Surfactant concentrations 

presented here take into account the water content of the batch, 1.3 % (w/w), formed during 

the reaction. 1H-NMR (CD3OD): 0.89 (t, 6H, CH3-CH2, J=6.5 Hz); 1.11 (m, 18H, CH3-CH); 

1.25 (m, 40H, CH2-alkyl chain); 1.59 (m, 4H, CH2 in β of CO group); 2.17 (t, 4H, CH2 in α of 

CO group, J=7.7 Hz); 3.63 (m, 62H, CH2O); 13C-NMR (CD3OD): 14.64 (CH3-CH2); 17.83 

and 17.86 (CH3-CH); 23.86, 27.21, 27.57, 30.41, 30.6, 30.75, 30.78, 30.87 and 30.91 (CH2-

alkyl chain); 33.19 (CH2 in β of CO group); 37.29 and 37.33 (CH2 in α of CO group); 48.72 
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and 48.94 (CH3-CH); 71.68, 76.21, 76.47, 76.55 and 76.84 (CH2-O); 175.71 and 176.21 

(CONH). FTIR: 3292 cm-1 (νNH), 1644 cm-1 (νCO), 1538 (δNH). Elemental analysis: 

C74H148N2O20.5, th. %C: 63.79, %H: 10.63, %N: 2.01, exp. %C: 62.64, %H: 10.33, %N: 2.01. 

Infrared (IR) spectra were recorded on a Perkin–Elmer FTIR ‘‘spectrum one’’ in ATR mode. 

Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker AM 400 instrument. 

Chemical shifts are reported in ppm relative to TMS as internal standard. 

Phase diagram determination: The phase diagrams have been established by preparing 

samples over the whole range of surfactant/water compositions. The required amounts of the 

components were weighed in small glass tubes. The homogenization of the samples was 

achieved by mixing with a vortex stirrer, combined with heat and ultrasounds, whenever 

necessary. The samples were placed in a thermostatic bath and, depending on the system, they 

were allowed to stand from a few hours to several days at the temperature of interest in order 

to reach equilibrium. The different phases were identified by visual inspection with a 

polarizing light microscope (Olympus BX 50). The boundary lines of the liquid crystal 

domains were evidenced by Small Angle X–ray Scattering (SAXS) experiments. Micellar 

solutions (0.5 to 5 wt %) were used to determine the size of particles by Dynamic light 

scattering (DLS) with a Malvern 300HSA Zetasizer instrument. The measurements were 

repeated three times. Surface tension measurements were performed following the Wilhelmy 

plate method with a Krüss K100 tensiometer. 

Mesoporous material preparation: Surfactant micellar solutions were prepared (from 3 to 

20 wt %). The solution pH was kept to 7. Tetramethoxysilane (TMOS), used as the silica 

source, was added dropwise to the surfactant solution at room temperature under stirring. The 

surfactant/silica molar ratio (R) was varied from 0.05 to 1. Then, the mixture was transferred 

into sealed Teflon autoclaves for the hydrothermal treatment, which was essayed at different 

temperatures (from room temperature to 100 °C) and durations (from 24 to 140 hours). After 
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the hydrothermal treatment, the material was transferred into cellulose extraction cartridges 

and left for 48 hours under Soxhlet ethanol extraction to remove the template. Finally, the 

material was left to air-dry. 

Characterization of mesoporous materials: SAXS measurements were carried out using 

SAXSess mc2 (Anton Paar) apparatus. It is attached to a ID 3003 laboratory X-Ray generator 

(General Electric), equipped with a sealed X-ray tube (PANalytical, λCu (Kα) = 0.1542 nm) 

operating at 40 kV and 50 mA. A multilayer mirror and a block collimator provide a 

monochromatic primary beam. A translucent beam stop allows the measurement of an 

attenuated primary beam at q = 0. Mesoporous materials are introduced into a powder cell 

whereas liquid crystals and micellar solutions are placed, respectively, in a paste cell and in a 

capillary having a diameter of 1 mm. Samples are placed inside an evacuated chamber. 

Acquisition times are typically in the range of 1 to 5 minutes. Scattering of X-ray beam is 

recorded by a CCD detector (Princeton Instruments, 2084 x 2084 pixels array with 24 x 

24 µm² pixel size) in the q range 0.09 to 5 nm-1. The detector is placed at 309 mm from the 

sample holder. Scattering data, obtained with a slit collimation, contain instrumental 

smearing. Therefore, the beam profile has been determined and used for the desmearing of the 

scattering data. All data were corrected for the background scattering from the empty cells. 

For the micellar solutions, the data were corrected from the water filled capillary scattering. 

Samples for transmission electron microscopy (TEM) analysis were prepared by dispersing 

some material in ethanol. Afterwards a drop of this dispersion was placed on a holey carbon 

coated copper grid. A Philips CM20 microscope, operated at an accelerating voltage of 200 

kV, was used to record the images. Scanning electron microscopy (SEM) was carried out with 

a HITACHI S-2500 at 15 keV. N2 adsorption and desorption isotherms were determined on a 

Micromeritics TRISTAR 3000 sorptometer at –196 °C. The pore diameter and the pore size 
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distribution were determined by the BJH (Barret, Joyner, Halenda)39 method applied to the 

adsorption branch of the isotherm. 

 

3. Results and discussion 

Firstly, the behavior of the ED900 in water was examined. The aqueous solutions of 

Jeffamine ED900 appeared transparent and isotropic from 0 to 100 wt %. Tensiometry 

measurements showed that ED900 decreased gradually the surface tension, achieving minimal 

values around 35 mN.m-1. No inflection point was observed, indicating the complete 

solubilization of this substance and no formation of aggregates. Thus, no micelle is formed 

and, as a consequence, no templated material can be obtained after the addition of the silica 

precursor. Moreover, no anisotropy was observed by polarizing light microscopy at any 

concentration. Dynamic light scattering experiments proved that the Jeffamine ED900 does 

not form micelles in water. This Jeffamine has complete water solubility, basically due to the 

long ethylene oxide backbone, entrapped between two short propylene oxide moieties. 

Therefore, the structural modification of the molecule was performed in order to obtain the 

micelle formation in water and, consequently, enable the synthesis of mesoporous materials 

through the CTM mechanism. 

 

3.1 Modification of the Jeffamine ED900 

The synthesis of the gemini surfactant described in the present study is simple and rapid, and 

the starting materials, myristic acid and Jeffamine ED900, are cost-effective. The grafting of 

the myristic acid onto the polyetheramine ED900 was performed quantitatively under solvent-

free conditions using microwave (MW) irradiation. As the starting Jeffamine, the gemini 

surfactant is polydispersed with respect to both the ethylene oxide and the propylene oxide 

moieties. ESI-MS was used to verify molar mass information of the sample, provided by 
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Hunstman (SI 1). The average values of x + z = 6 and y = 12.5 were calculated from the 

relative abundances of the individual molecular ions. From these values, the number-average 

molar mass of ED900 was calculated to be 972 and of ED900Myr to be 1392. The 

polydispersity index (mass-average molar mass divided by the number-average molar mass) 

was determined to be 1.03. 

 

3.2 The myristoyl-end capped Jeffamine/water system 

The phase diagram of the system ED900Myr/water was studied between 10 and 70 °C along 

all the surfactant concentration range and it is presented in Figure 1. The diagram presents an 

expanded micellar domain, for temperatures below the cloud point curve. The cloud point 

temperature for this system is found at 50 °C for 2 wt % of amphiphile. Above this point, two 

micellar phases coexist. The size of micelles was also measured by DLS experiments. The 

results indicate that micelles have a diameter of about 7.0 nm. Moreover, as measured by 

tensiometry, the addition of modified ED900 decreases the surface tension of water up to 

31 mN.m-1 at a very low concentration (1 µmol·L-1). The structure of the micelles was 

investigated by SAXS. The experiments were performed at 20 °C on micellar solutions with 

different surfactant concentrations. The experimental curves are displayed in Figure 2a. The 

scattering intensities are normalized to the same incident primary beamline and with respect 

to the surfactant concentration. All the curves exhibit a maximum at 1 nm-1 and are 

overlapped from this value. At low q values (q < 0.3 nm-1) the intensities increase with 

increasing concentration due to the interparticle effect40. Therefore, only the curve scattering 

obtained at 5 wt % was evaluated with the Generalized Indirect Fourier Transform (GIFT) 

analysis[41,42] (Figure 2b). The corresponding pair-distance distribution function (PDDF) P(r) 

is given in Figure 2c. The curve exhibits pronounced maximum and minimum on the left side, 

which is regarded as the typical feature of a core-shell type particle41-43, and which provides 
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quantitative information about the internal structure of the micelles. The inflection point 

between the maximum and the minimum gives the radius of the hydrophobic core. Moreover, 

the PDDF function which represents a histogram of the distances inside particle provides the 

maximum dimension of the particle as well as its shape. A symmetric maximum on the right 

side indicates the presence of spherical aggregates, whereas a long tail at high r values 

features for elongated cylindrical particle. Taking into account these considerations, one can 

conclude that ED900Myr micelles are slightly elongated, with a maximum size of 7 nm, 

which is in perfect agreement with the hydrodynamic particle diameter measured by DLS. 

The radius of the hydrophobic core is about 2 nm and matched well with the one obtained 

from the deconvolution of the P(r) function into the radial electron density ∆ρ(r) (Figure 2d). 

More precisely, the radius of the core formed by the myristoyl chains is about 1 nm, which 

corresponds to the lowest value of ∆ρ(r), in agreement with the theoretical electronic density 

value estimated (ρAlk ≈ 276 e/Å3). The thickness of the propylenoxide (PO) shell is also about 

1 nm and ∆ρ(r) progressively increases to the water value. The values of the calculated 

theoretical electronic densities show the same profile as the modelized one since ρPO ≈ 

332 e/Å3, ρEO ≈ 371 e/Å3 and ρwater ≈ 334 e/Å3 (Figure 2e). If one considers both extended 

myristoyl chains of about 2 nm and 3 PO units (≈ 1 nm), this suggests that the alkyl chains are 

disordered, whereas the PO units are rather extended.  

When the weight percent of ED900Myr is increased from 47 to 70 wt %, a characteristic 

optically anisotropic hexagonal phase is detected. The hexagonal symmetry is confirmed by 

SAXS measurements. From geometrical considerations, the distance d associated to the first 

peak is related to the hydrophobic radius RH (alkyl chains + PO units) by the relation (1)44:  

    
2
100

2
H

WS

B

2d

R3π

αVV

V
=

+
  (1) 
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where α  stands for the number of water molecules per surfactant molecule, VB is the 

hydrophobic molar volume (935 cm3·mol-1). VB is calculated from the molar volumes of the 

two myristoyl chains and of the six PO units. VS is the surfactant molar volume (1392 

cm3·mol-1) and Vw is the water molar volume (18 cm3·mol-1). The cross-sectional area S can 

then be deduced from the following relation (2)44: 

    
AH

B

NR

2V
S =    (2) 

An increase in the d-spacing from 5 to 6 nm and thus, in the cell parameter is noted with 

increasing water content from 35 to 50 wt.% (SI 2). This is due to the hydration of the head 

group and to a possible water film surrounding the surfactant. The hydrophobic radius is 

constant with α, and equal to 1.94 nm ± 0.02 nm. The surface occupied by the surfactant 

molecule in the interface is found to be 1.45 nm2 ± 0.02 nm2 along the entire hexagonal phase. 

From these values, one can see that, as observed in the case of micelles, in H1 the two alkyl 

chains are assembled into the core of the cylinders and that the PO units form a corona around 

the core forcing the amphiphilic molecules to fold in half, over on themselves (Figure 2e). 

The value of the hydrophobic radius corresponds exactly to the one found for the micelles. 

If the surfactant concentration is increased beyond 75 wt %, a gel phase (Lβ) appears. Its 

structure is well described in literature and corresponds to a stacking of bilayers, whose alkyl 

chains are solid. In fact, in the low q-range of the diffraction patterns, up to five reflections 

are observed, with a relation between them of 1:2:3:4:5 (Figure 3A). One can note that the 

first reflection is less intense than the second one. This is probably due to the weak intensity 

of the form factor at the q value corresponding to the second reflection. Taking into account 

geometrical considerations, one can calculate the area per molecule S with the following 

relation (3)44:

 

    
01

wS
dN

V V
S

⋅

α+
=   (3)
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where d01 is the first order repetition distance of the Lβ. Considering that the layer spacing 

comprises one extended amphiphilic molecule including corresponding water content, the 

value of the area per molecule for the sample containing 85 wt % of ED900Myr is S= 

0.246 nm2.  

In the WAXS region, two diffraction lines at 0.38 nm and 0.41 nm are observed and feature 

for an orthorhombic perpendicular packing (O┴) of the hydrocarbon chains45 (Figure 3B). 

According to previously indexing results46, these peaks correspond to the in-plane d110 and 

d020 and give the following lattice parameters: a = 0.51 nm, b = 0.74 nm and c = 0.255 nm. 

Moreover, another doublet appears in the middle q-range, at 0.78 nm and 0.74 nm, which 

could correspond to an in-plane super structure of the orthorhombic cell. From the wide-angle 

diffraction lines in the Lβ phase, an area per chain of 0.185 nm2 can also be calculated with the 

equation below (4)46,47: 

    
2

020110

020110
c

)/2dd(1

dd
A

−

⋅
=   (4)

 

These two values S and Ac are in good agreement with an extended molecule, contrarily to the 

hexagonal phase, where the molecules are self-folded; such a scenario would give a molecular 

area of 0.49 nm2 in the gel phase. 

This phase melts at 25 ºC, leading directly to an inverse micellar phase (L2). 

 

3.3 .Silica mesoporous materials 

Micellar solutions of ED900Myr were then used as template to prepare the silica materials 

through the self-assembly mechanism. Syntheses have been carried out under neutral 

conditions. The TMOS has been added at 20 °C. First, the hydrothermal treatment was 

performed during 24 hours at 100 °C. Indeed, it is reported that under these conditions, a 

hexagonal pore ordering can be obtained from the self-assembly mechanism by using 
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different kinds of surfactants13,32,48,49. We have investigated the effect of the variation of both 

the amphiphile concentration and the ED900Myr/TMOS molar ratio (R) on the mesopore 

ordering. As regards the samples synthesized with a 5 wt % of modified Jeffamine, the SAXS 

patterns of the materials prepared with a molar ratio higher than 0.2 exhibit only a single 

broad reflection (SI3Bb-e), which indicates the formation of a disordered structure. If a higher 

quantity of the inorganic precursor (R lower than 0.2) is introduced, no line is observed on the 

SAXS pattern (SI3Ba), indicating that the recovered compounds exhibit a complete randomly 

oriented pore structure. The N2 adsorption-desorption isotherms and the pore size 

distributions for the materials are represented in Figure 4. All materials exhibit a type IV 

isotherm, characteristic of mesoporous materials according to the IUPAC classification50. A 

H2 type hysteresis loop, in which the desorption branch is steep, but adsorption branch is 

more or less sloping, is observed. The H2 type hysteresis loop is often encountered for 

disordered materials with a wormhole structure. The pore size distributions are quite large and 

centered at 14 nm at R ≥ 0.2; they are narrower for the higher ratios. A similar behavior is 

noted for the silica prepared with 3 wt % (SI3A) or  10 wt % (SI3C) of ED900Myr. By 

contrast, when a 20 wt % of ED900Myr is employed to prepare the silica materials, the 

situation is quite different. Indeed, whatever the value of R, no reflection line is detected on 

the SAXS pattern (SI3D). Depending on the synthesis conditions, the specific surface area 

varies from 286 to 686 m²/g (SI 4). 

The SAXS results show that the best patterns were obtained at lower ED900Myr 

concentrations (3, 5 and then 10 wt %) for 1 ≥ R ≥ 0.2. However, these patterns only show 

one single reflection centered at d = 5.1 nm without any higher other Bragg reflections 

resolved, indicating a wormlike structure of the pores. The channel array can be also affected 

by the conditions of the hydrothermal treatment, therefore fixing the ED900Myr 

concentration and the ED900My/TMOS molar ratio to 5 wt % and 0.6, respectively, we have 
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varied both the temperature and the duration of the hydrothermal treatment. The temperatures 

chosen were: room temperature, 50, 60, 70, 80, 90 and 100 °C. For the lowest temperatures, 

the hydrothermal treatment time was extended to 44 hours for 50 and 60°C and 140 hours in 

the case of room temperature, since usually lower temperatures used in the hydrothermal 

treatment require longer time to structure the material. The SAXS patterns (Figure 5A) clearly 

show an improvement of the hexagonal structure when the temperature is lowered. In fact, the 

best results are obtained when performing the hydrothermal treatment at 50 °C for 44 hours 

(Figure 5Ab) and at room temperature for 140 hours (Figure 5Aa). As a matter of fact, under 

these conditions three reflection lines located at 5.2, 3.0 and 2.5 nm can be detected on the 

SAXS pattern. Their relative positions are 1, 3  and 2, which can be attributed to the (100), 

(110) and (200) reflections of the hexagonal structure. According to Bragg’s law, the unit cell 

dimension (a0) can be calculated and found equal to 6.0 nm. The mesopore ordering is further 

confirmed by the transmission electron microscopy (TEM) images (Figure 5B). Indeed, either 

the honeycomb-like arrangement (Figure 5Ba) or the hexagonal stacking (Figure 5Bb) of the 

channels is evidenced by the TEM analysis. From nitrogen adsorption-desorption 

measurements, we can observe that these recovered samples exhibit a type IV isotherm 

(Figure 6A). The specific surface area and pore volume values are respectively 1300 m²/g and 

0.95 cm3/g. The pore diameter distribution determined by using the BJH method is quite 

narrow and centered at ca. 3.2 nm (SI5). The wall thickness, deduced by subtracting the pore 

size from the dimension of the unit cell, is equal to 2.8 nm. The SEM images of the sample 

prepared at room temperature (RT) show that the material is formed by cylindrical particles, 

of uniform size around 300 nm length and 100 nm section (Figure 7). If the hydrothermal 

treatment is performed at a higher temperature, the formation of well-ordered mesoporous 

molecular sieves is not favored. Indeed, only one peak is observed on the SAXS pattern 

(Figure 5Ae-i), meaning that the materials adopt a wormhole-like structure. In addition, from 
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Figure 6A, the relative pressure for which capillary condensation takes place is shifted toward 

higher values when the temperature increases (from 0.4 at RT up to 0.8 at 100 ºC). Since the 

p/p0 position of the inflection point is related to the pore diameter according to Kelvin’s 

equation, it can be inferred that an enlargement of the mean pore diameter occurs. This is 

confirmed by the pore size distribution, whose maximum is shifted toward higher values 

when the hydrothermal temperature increased from room temperature to 100 °C (SI5 and 

Figure 6B). At 50 °C, the pore size distribution is centered at 3.8 nm, whereas at 100 °C it is 

centered at 14.4 nm. This expansion of the pore size can be interpreted as the result of a 

variation of the aggregation number of micelles (L1 phase). Indeed, it is well established that, 

for nonionic surfactants, an increase in temperature will involve an increase in the aggregation 

number 51,52. Thus, bigger micelles will be formed with increasing heating temperature and, 

consequently, materials with higher pore diameters will be recovered. The pore volume 

remains approximately constant around 1 cm3/g at all the temperatures considered, whereas 

the specific surface progressively decreases from 1300 to 400 m²/g when the temperature 

increases (SI6). From all the gathered results, it can be deduced that the optimal temperatures 

to prepare the mesoporous materials are from RT to below 70 °C. The lower the temperature, 

the better the mesopore ordering. We can assume that the disorganization of the mesopore 

network with the increase of the temperature is due to a too thin silica wall to preserve the 

organization after the surfactant removal by the formation of bridges between two adjacent 

pores as it has been shown for SBA-15 materials32.. This phenomenon has also been noted in 

our previous work dealing with the influence of the different synthesis parameters on the 

properties of mesostructured silica prepared from a nonionic fluorinated surfactant based-

system49 Moreover, according to Holmberg et al. 53 at lower temperature, as the condensation 

rate is slower, a well-ordered structure is favored. At high temperature, the loss of the 

hexagonal structure can be due to an accelerated condensation of silanol groups that form an 
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excess cross-linked framework. After observing that a well-ordered hexagonal mesoporous 

material was obtained when performing the hydrothermal treatment at a lower temperature, 

the molar ratio between the TMOS and ED900Myr (R) was varied for a hydrothermal 

treatment performed at 50 °C during 44 hours, in order to study the influence of this 

parameter on the mesopore ordering. In the range from 0.4 to 1, three reflection lines located 

at 5.1, 2.9 and 2.6 nm can be detected on the SAXS pattern (SI7Ab-d). The repetition distance 

corresponding to the (100) reflection is constant (5.1 nm) and thus, the cell parameter a0 (5.9 

nm) does not depend on the quantity of TMOS used for the synthesis. The SAXS patterns of 

the material prepared with a molar ratio of 0.1 exhibits only a single broad reflection (SI7Aa), 

which indicates the formation of a disordered structure. In that case, we can assume that only 

a part of the silica interacts with the surfactant to form the channel arrangement and that 

another part precipitates to form an amorphous silica phase. Thus, the ordered pore network is 

diluted in a non-structured silica phase and the SAXS patterns exhibit weaker and larger 

diffraction peaks. For instance, Ekloff et al.54  attributed the poor hexagonal long range order 

of their particles obtained at surfactant/silica ratio higher than 0.66 to the polymerization of 

the silica source into solid amorphous silica due to the excess of surfactant. In the present 

study, similar arguments can be taken into account to explain the transition from a well 

ordered mesopore ordering to a randomly oriented pore structure when the value of R is 

diminished. The pore size varies between 3.5 and 3.9 nm, depending on the operating 

conditions (SI7Bb). However, no significant differences are observed in the pore size 

distributions when varying the surfactant to TMOS ratio (from 0.1 to 1). The major difference 

is encountered when working at the lowest R (0.1), since the pore size distribution is wider 

and the adsorption-desorption isotherm is different. In this case the isotherm profile increases 

gradually with increasing relative pressures (SI7Ba), although the mean pore size remains 

unchanged (SI7Bb). The others isotherms follow the same profile, type IV, with a capillary 
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condensation around p/p0 = 0.5 (SI7Ba), from which the isotherm becomes flat. The specific 

surface area is higher than 800 m²/g (SI8). 

 

4. Conclusion 

Jeffamine surfactants were already used as structure-directing porogen, but to date, only 

wormhole structures were obtained. Herein, we reported the first example of organized 

mesoporous silica from myristic-end capped Jeffamine (ED900). For a complete 

characterization of the newly reported surfactant (ED900Myr), the binary phase diagram was 

determined. The characterization of the micelles and the liquid crystals phases by SAXS show 

that the molecules are folded in half in order to locate the two myristoyl chains inside the 

core. In the hexagonal liquid crystal phase, the value of the hydrophobic radius is the same 

than the hydrophobic core of the micelles. No variation of the cross sectional area with the 

number of water molecules per surfactant molecule is noted. 

Micellar solutions of ED900Myr were used as template to prepare the mesoporous materials 

through the self-assembly mechanism. The influence of the synthesis conditions on the 

properties of the mesopore ordering has been investigated. Well ordered mesoporous 

materials are recovered when the ED900My concentration is low (< 10 wt %). SAXS analysis 

also evidences that the hexagonal pore ordering is favored when the hydrothermal treatment is 

performed at low temperature. In addition, an increase in the pore diameter is noted with the 

raise in the hydrothermal treatment temperature.  

 

Supporting information available: ESI-MS spectra of ED900 and ED900Myr (SI1). 

Structural parameters of the hexagonal phase (SI2). SAXS patterns of the materials (SI3) and 

textural properties (SI4) as a function of the wt % of ED900Myr and of the 

ED900Myr/TMOS molar ratio. Variation of the mesopore size distribution (SI5) and textural 
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properties (SI6) as a function of the hydrothermal treatment conditions. SAXS pattern, 

nitrogen adsorption-desorption isotherms, pore size distribution (SI7) and textural properties 

(S8) of the mesoporous materials synthesized with 5 wt % ED900Myr during 44 hours at 50 

°C as a function of the ED900Myr/TMOS molar ratio (SI8). 
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Figure captions 

Figure 1: Phase diagram of the system ED900Myr/water. Notation: L1: direct micellar 

phase, H1: hexagonal phase, Lβ: gel-phase, L2: reverse micellar phase. 

Figure 2:  (a) Experimental SAXS spectra (normalized with regard to the concentration) 

of ED900Myr micelles at 5, 10 and 20 wt % in log-log representation. All 

measurements were performed at 20 °C; (b) experimental and calculated 

(GIFT) SAXS spectra of ED900Myr at a concentration of 5 wt % in semi-

logarithmic representation; (c) corresponding pair-distance distribution 

function of 5 wt % ED900Myr obtained with GIFT analysis; (d) excess 

electron density ∆ρ(r) as a function of the radial distance (r) of 5 wt % 

ED900Myr obtained with DECON program; (e) schematic representation of 

the theoretically estimated electronic density in the core-shell micelle. 

Figure 3: Diffraction patterns of a Lβ phase at 85 wt %  of ED900Myr and 10 °C (A) and 

in-plane lateral organization of hydrophobic chains (B). 

Figure 4: Adsorption isotherms (A) and pore size distribution (B) of mesoporous 

materials formed from a 5 wt % ED900Myr solution with a ED900Myr/TMOS 

molar ratio (R) equal to �: 0.1; ○: 0.2; �: 0.4; �: 0.6 and �: 1. Materials are 

prepared at 100 °C during 24 hours. 

Figure 5: A:  SAXS patterns of the mesoporous materials formed from a 5 wt % 

ED900Myr solution with R = 0.6 at different hydrothermal treatment 

conditions a: 140 hours at room temperature; b: 44 hours at 50 °C; c: 24 hours 

at 50 °C; d: 44 hours at 60 °C; 24 hours at e: 60, f: 70, g:80, h: 90 and i: 100 

°C. 

  B: Representative TEM micrographs of samples prepared at room temperature 

during 140 hours (a) and at 50 °C during 44 hours (b). 
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Figure 6:  Variation of the nitrogen adsorption desorption isotherms (A) and the pore 

diameter (B) as a function of the hydrothermal treatment conditions. 

Mesoporous materials are synthesized from a 5 wt % ED900Myr solution with 

R = 0.6 at room temperature for 140 hours (�), 50 °C for 24 hours (�), 80 °C 

for 24 hours (�) and 100 °C for 24 hours (�). 

Figure 7: Representative SEM images of the mesoporous materials prepared at room 

temperature during 140 hours. 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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