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Abstract

The genome of the bladderwort Utricularia gibba provides an unparalleled opportunity to uncover the adaptive landscape of an

aquatic carnivorous plant with unique phenotypic features such as absence of roots, development of water-filled suction bladders,

and a highly ramified branching pattern. Despite its tiny size, the U. gibba genome accommodates approximately as many genes as

other plant genomes. To examine the relationship between the compactness of its genome and gene turnover, we compared the U.

gibba genome with that of four other eudicot species, defining a total of 17,324 gene families (orthogroups). These families were

further classified as either 1) lineage-specific expanded/contracted or 2) stable in size. The U. gibba-expanded families are generically

related to three main phenotypic features: 1) trap physiology, 2) key plant morphogenetic/developmental pathways, and 3) response

to environmental stimuli, including adaptations to life in aquatic environments. Further scans for signatures of protein functional

specialization permitted identification of seven candidate genes with amino acid changes putatively fixed by positive Darwinian

selection in the U. gibba lineage. The Arabidopsis orthologs of these genes (AXR, UMAMIT41, IGS, TAR2, SOL1, DEG9, and DEG10)

are involved in diverse plant biological functions potentially relevant for U. gibba phenotypic diversification, including 1) auxin

metabolism and signal transduction, 2) flowering induction and floral meristem transition, 3) root development, and 4) peptidases.

Taken together, our results suggest numerous candidate genes and gene families as interesting targets for further experimental

confirmation of their functional and adaptive roles in the U. gibba’s unique lifestyle and highly specialized body plan.

Key words: genome evolution, phenotypic diversification, carnivorous plants, gene family expansions and contractions,

positive selection.

Introduction

The carnivorous syndrome has evolved multiple times among

the flowering plants as a specialized solution for nutrient ac-

quisition in phosphorus- and nitrogen-limited environments

(Ellison and Gotelli 2009). Although the fascinating trapping

strategies and specialized body designs of carnivorous plants

have attracted scientific interest for centuries (Darwin 1875),

the underlying genetic basis of the carnivorous syndrome re-

mains largely unknown. The asterid family Lentibulariaceae is

the largest and most phenotypically diverse carnivorous plant

family, comprising three genera with distinct trapping

mechanisms: Pinguicula, Genlisea, and Utricularia (Juniper

et al. 1989; Taylor 1989). Utricularia, the bladderworts, are

the largest and most diverse of all carnivorous plants.

Utricularia species typically live in nutrient-poor aquatic, terres-

trial, or epiphytic environments (Chao 2003), where they sup-

plement normal photolithotrophic nutrition by trapping

various microscopic prey animals (Givnish 1989). The trapping

structures of Utricularia, the bladder-like suction traps, rank

among the most complex leaf structures known in the plant

kingdom (Juniper et al. 1989). These bladders can appear on

apparently dissimilar parts of the plant body in different
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species, and their morphologies are diverse. Other than con-

cerning the traps, a single Utricularia body plan is difficult to

define; the boundaries between classical organ identities are

blurred to the extent that leaf versus shoot becomes a difficult

diagnosis for many species, especially given their lack of true

roots (Adlassnig et al. 2005).

The recent publication of the nuclear genome of Utricularia

gibba, an obligate aquatic bladderwort with thread-like and

highly ramified vegetative organs, has revealed several inter-

esting genomic architectural features (Ibarra-Laclette et al.

2013). Interestingly, the tiny U. gibba genome (82 Mb) results

from the shrinkage of noncoding DNA, and not from an ap-

preciable reduction in overall gene number (Ibarra-Laclette

et al. 2013). Despite this comparable gene number,

U. gibba has undergone three whole-genome duplication

(WGD) events since its common ancestry with grape (Ibarra-

Laclette et al. 2013). As a result, vast genetic resources were

introduced to its genome, leading to multiple opportunities

for possible functional specialization of gene duplicates.

Therefore, it is expected that gene turnover has had an

impact on U. gibba’s unique lifestyle, especially when its pre-

sent tiny genome size suggests a strong constraint on its ge-

netic content.

The evolution and architecture of plant genomes is greatly

shaped by recurrent events of gene duplication and loss

events (Lynch and Conery 2000; Blanc and Wolfe 2004; Cui

et al. 2006; Fei et al. 2006; Jiao et al. 2011; Proost et al. 2011),

which are believed to play a key role in generating plant phe-

notypic diversity and speciation, including the explosive early

diversification of angiosperms (De Bodt et al. 2005; Soltis and

Burleigh 2009; Amborella Genome Project 2013). Gene du-

plication provides new substrate for mutation and selection to

act upon. In most cases, a new gene duplicate evolves neu-

trally, stochastically accumulating loss of function mutations

(pseudogenzation). However, a fraction of duplicates might

be retained when 1) gene duplication endows organisms with

mutational robustness as a result of functional redundancy

(Gu et al. 2003), 2) selection for increased gene dosage

occurs (Conant and Wolfe 2008), or 3) accompanying acqui-

sition of novel or specialized functions. From a population

genetic perspective, relaxed purifying selection and positive

Darwinian selection may contribute to functional specializa-

tion of gene duplicates (Moore and Purugganan 2003; Zhang

2003; Conant and Wolfe 2008). Positive selection (PS) pro-

motes the fixation of mutations with advantageous fitness

effects, while relaxed purifying selection can tolerate the fixa-

tion of specific mutations that may also contribute to the ac-

quisition of new or specialized functions.

In this study, we classified genes from the U. gibba,

Mimulus guttatus (Mimulus), Solanum lycopersicum

(tomato), Arabidopsis thaliana (Arabidopsis), and Vitis vinifera

(grape) genomes by clustering orthologous and in-paralogous

genes from these five species into orthogroups, which we

take to be equivalent to gene families. Gene families were

classified as expanded/contracted in specific lineages or

stable in size by means of the maximum likelihood (ML) frame-

work provided by Badirate (Librado et al. 2012). We found

that the orthogroups significantly expanded in the U. gibba

lineage may have adaptive significance for the evolution of the

species’ unique phenotypic features. Moreover, to identify

signatures of adaptive functional specialization at the pro-

tein-coding sequence level, we performed a preliminary

genome-wide scan for PS on the data set of co-orthologous

groups that included representatives from the five species,

and examined in further detail seven of the genes showing

signatures of PS in the U. gibba lineage. Our results provide

key genes and gene families that may be interesting targets

for further experimental confirmation of their functional and

adaptive roles in U. gibba’s unique lifestyle and highly special-

ized body plan.

Materials and Methods

Functional Annotation of Five Plant Eudicot Genomes
and Statistical Analysis of Gene Ontology Term
Enrichment/Depletion

All gene models predicted in the fully sequenced genomes of

Arabidopsis, grape, U. gibba, Mimulus, and tomato were

downloaded from CoGe (http://genomevolution.org/CoGe/)

and functionally annotated by assigning their associated ge-

neric gene ontology (GO) terms and enzyme codes (EC)

through the BlAST2GO program (Conesa et al. 2005), and

integrating information about the occurrence of INTERPRO

functional domains identified by INTERPROSCAN (Zdobnov

and Apweiler 2001) and KEGG EC biochemical pathways

(Ogata et al. 1999). Annotations were further expanded

using ANNEX (Myhre et al. 2006). The following settings

were used: BLAST searches were conducted for each protein

(BLASTX, nr database, HSP cutoff length 33, report 20 hits,

maximum E-value 1 E-10), followed by mapping and annota-

tion (E-value hit filter 1 E-10, annotation cutoff 55, GO weight

5, HSP-hit coverage cutoff 20). As a gene might have more

than one function, it might be annotated with more than one

GO functional category or EC code. A substantial fraction of

genes per species was associated with at least one GO generic

term, ranging from 60.61% to 82.30% for U. gibba and

Arabidopsis genes, respectively, averaging 4.62–5.44 associ-

ated GO terms per functionally annotated gene (table 1). To

obtain a broader overview of functional annotation, the re-

sulting generic GO terms were mapped onto the correspond-

ing Plant GO slim terms. The GO and GOslim annotations of

the five genomes are available as supplementary files S1 and

S2, Supplementary Material online, respectively. We per-

formed significance analyses of GO term enrichment/deple-

tion of subsets of genes versus all genes in a genome by

means of Fisher’s exact tests. To control for multiple testing,
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the resulting P-values were corrected according to Benjamini

and Hochberg (1995).

Gene Family Definition Using OrthoMCL

The complete proteomes encoded by the genomes of

Arabidopsis, grape, U. gibba, Mimulus, and tomato were

globally compared. The complete data set represents

144,274 protein-coding sequences. An all-against-all compar-

ison was performed using BLASTP (1�10� 10) followed by

clustering with OrthoMCL v1.4 (Li et al. 2003) with default

parameters. To avoid possible enrichment of transposable el-

ement in our analyses of lineage-specific expansions, we fil-

tered out orthogroups containing sequences with significant

similarity to them (E-values<10�5, bit score �45 in BLASTX

searches against RepBase v16.03 database [Jurka et al. 2005]).

The final data set (supplementary file S3, Supplementary

Material online) contained 17,324 multigene orthogroups

and 93,865 proteins.

Lineage-Specific Gene Family Size Changes

To analyze the evolution of gene families, we applied gain and

death (GD) stochastic models as implemented in the BadiRate

program (Librado et al. 2012). BadiRate provides the appro-

priate statistical framework for testing biologically relevant hy-

pothesis on the input data, consisting of the species

phylogenetic tree and the sizes of gene families in each

extant species. To detect species-specific rates of gene GD,

we compared the fit of different branch models to the data

applying the same approach as in Denoeud et al. (2014).

Functional/Selective Constraints in Protein-Coding
Regions

Selection may differentially act on nonsynonymous (amino

acid-changing; dN) substitutions compared with the putatively

neutral synonymous (silent; dS) ones. Under the neutral model

of evolution, synonymous and nonsynonymous substitutions

accumulate at the same rate (o= dN=dS ~ 1; Ohno 1970; Li

et al. 1981; Nei 2005). Conversely, deviations from this pat-

tern indicate the action of purifying selection (which purges

deleterious mutations to conserve the protein structure and

function; o�1), or the action of PS promoting the fixation of

nonsynonymous mutations with advantageous fitness effects

(o>1). Estimation of o therefore yields insights on the mo-

lecular evolutionary mechanisms of protein diversification and

functional specialization.

We estimated o values by means of the codeml program in

the PAML v4.4 package (Yang 1997) on the basis of multiple

alignments of orthologous codon sequences and a tree topol-

ogy. To obtain final codon alignments, the coding sequences

were aligned with PRANK (Löytynoja and Goldman 2005) on

the GUIDANCE server (http://guidance.tau.ac.il/; Penn et al.

2010), and the default cutoff of 0.93 confident score was

applied for the removal of unreliably aligned positions.

Two different classes of models were implemented in the

codeml program: “branch-specific” (which permit a different

o ratio in U. gibba; Yang 1998) and “branch-site” models

(which also accounting for uneven selective pressures along

sequences; Yang and Nielsen 2002). By comparing the fit to

the data of two nested models via a likelihood ratio test, we

tested for: 1) asymmetric sequence evolution (one-ratio model

0 versus the branch-specific model described above); 2) het-

erogeneous selective pressures across sites (o ratio constant

among branches but variable among sites versus the clade

model described in Bielawski and Yang (2004)); and 3) PS (o
fixed at 1 at the U. gibba branch versus a model featuring an

extra class of sites with o> 1; Yang et al. 2005).

In a first approach, we used the original, entire set of 8,676

shared orthogroups containing homologs from all five species.

Prior to the analyses, we discarded 1) sequences whose align-

ments spanned less than 150 nt or showed an identity score

<30% (Li et al. 2001) (1,659 orthogroups), as too divergent

and, 2) sequences containing potential errors leading to in-

frame codon stops (169 orthogroups). This resulted in a set of

6,848 shared orthogroups well conserved among all five spe-

cies. The entire process was automated using a PERL pipeline

adapted from Carretero-Paulet and Fares (2012).

We further confirmed a subset of seven selected U. gibba

genes detected as under PS in our previous analysis. For this

purpose, we performed additional analyses of PS by sampling

orthologs from a greater number of species (supplementary

table S7, Supplementary Material online) and their corre-

sponding tree topologies as returned from the NCBI taxonomy

tree tool (http://www.ncbi.nlm.nih.gov/Taxonomy/Common

Table 1

Numbers of Genes and GO Functional Annotations for Five Eudicot Plant Genomes

Utricularia gibba Arabidopsis Grape Mimulus Tomato

Total number of genes 28,494 27,204 26,346 27,501 34,727

Total number of annotated genes 17,270 22,390 19,090 21,435 22,651

Annotated genes (%) 60.61 82.30 72.46 77.94 65.23

Total number of generic GO terms 79,933 118,023 92,018 102,601 107,423

Average number of generic GO terms/gene 4.63 5.27 4.82 4.79 4.74

Total number of plant GO slim terms 83,160 121,977 95,293 106,069 111,193

Average number of plant GO slim terms/gene 4.82 5.45 4.99 4.95 4.91

Carretero-Paulet et al. GBE
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Tree/wwwcmt.cgi). The orthology relationships of the se-

quences sampled were first assessed using COGE/GEvo

(http://genomevolution.org/CoGe/GEvo.pl) to ascertain

strong evidence for synteny, which was considered confirma-

tion of (co-)orthology. In some cases, codon sequences were

repredicted from the corresponding genomic sequences

through comparisons with their orthologous proteins using

GENEWISE (Birney and Durbin 2000).

3D Protein Structure Modeling

Protein structure models were generated using the SWISS-

MODEL workspace (Arnold et al. 2006) on alignment mode

and specific structure template selection. The structures of the

U. gibba orthologs to AXR1, IGS, TAR2, SOL1, DEG9, and

DEG10 were modeled using the protein structures with PDB

identifiers 2nvuA (2.80 Å) (Huang et al. 2007), 3tsmA (2.15 Å),

3bwnB (2.25 Å) (Tao et al. 2008), 1h8lA (2.60 Å) (Aloy et al.

2001), and 4flnB (2.80 Å) (Sun et al. 2012), respectively, as

templates. Protein 3D-structural models were displayed and

edited using VMD 1.9.1 (Humphrey et al. 1996).

Results and Discussion

Analysis of Gene Family Turnover in U. gibba

Genes in the genomes of U. gibba, the asterids Mimulus and

tomato, and the rosids Arabidopsis and grape, which represent

highly diverse core eudicot lineages with different histories of

WGD (fig. 1 and table 1) were classified into groups of ortho-

logous genes (orthogroups) using OrthoMCL. We used the

resulting set of 17,324 orthogroups to examine the relation-

ship between the U. gibba genome’s compactness and its rates

of gene turnover, while accounting for their potential adaptive

value for the U. gibba evolution. We evaluated the fits of dif-

ferent branch models of gene turnover to each orthogroup

using the statistical framework provided by BadiRate (Librado

et al. 2012). According to the ML best-fit branch model of gene

turnover, each orthogroup was classified as 1) lineage-specific

expanded or contracted, or 2) stable in size across species

(supplementary table S1, Supplementary Material online). Six

hundred twenty-six orthogroups (comprising 1,754 U. gibba

genes) were considered significantly expanded in the U. gibba

lineage (supplementary tables S2 and S3, Supplementary

Material online), whereas 628 orthogroups (comprising only

eight U. gibba genes) were classified as contracted, having in

most cases lost all of their U. gibba orthologs (supplementary

tables S4 and S5, Supplementary Material online). Six thousand

one hundred seventy orthogroups (comprising 6,188 U. gibba

genes) corresponded to orthogroups showing constant sizes

across all five genomes.

Although some genes could be incorrectly annotated or

biologically not meaningful, GO annotations represent the

best approach developed so far to gain further insights into

the potential adaptive value of the U. gibba-specific

expansions. In particular, we performed a GO enrichment

analysis (GO terms in genes belonging to expanded

orthogroups versus all GO terms in the U. gibba genome),

partitioned by either generic GO terms or Plant GO slim

terms (table 1 and supplementary tables S2 and S3,

Supplementary Material online). Seven GO slim terms (out

of a total of 104, including two significant after correction

for multiple testing) and 94 generic GO terms (out of a total

of 4,330, including 21 significant after correction for multiple

testing) were found to be significantly and specifically en-

riched among U. gibba-expanded orthogroups (table 2).

Given the compact genome size of U. gibba, the expansion

of specific gene families may reflect the emergence of key U.

gibba adaptations, such as physiological and morphological

phenotypic plasticity (assuming that our GO annotations are

essentially correct, and some degree of uncertainty in specific

GO terms with a low number of genes). After careful exam-

ination of the GO terms found as enriched in expanded

orthogroups, we operationally grouped them into three

main biological functions that are explored in more detail

below. These biological functions are: 1) trap physiology, 2)

key plant morphogenetic/developmental pathways, and 3) re-

sponse to environmental stimuli, including adaptations to life

in aquatic environments.

The Putative Role of Gene Family Expansion in the
Evolution of Trap Physiology in U. gibba

To understand the molecular evolutionary basis of the

U. gibba carnivorous syndrome, we explored functional

FIG. 1.—Phylogenetic tree depicting the taxonomic relationships

among the five plant species with fully sequenced genomes examined in

this study. Branch lengths reflect evolutionary time (in millions of years). For

the timing of these events, we used estimates from TimeTree (Hedges

et al. 2006), which are shown next to the scale bar. The history of

WGDs is mapped onto the tree, with circles and stars representing

WGDs and triplications, respectively. The positions of these events are

not meant to reflect their timing of occurrence.

Adaptive Molecular Evolution in U. gibba GBE
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Table 2

Generic and Plant GO Slim Terms Enriched among Gene Families Expanded in Utricularia gibba

GO GO Description SC GC P-Value

Generic GO term

B Cuticle development 11 22 1.30E-08

B Very long-chain fatty acid metabolic process 11 22 1.30E-08

B Abaxial cell fate specification 8 13 3.93E-07

B Vegetative phase change 8 16 1.29E-06

B Response to chitin 15 78 1.30E-06

B Regulation of transcription, DNA-templated 31 298 1.71E-06

M Chlorophyll binding 10 36 4.76E-06

B Photosynthesis, light harvesting 9 28 5.28E-06

B Cell wall biogenesis 8 23 1.10E-05

M Fatty acid elongase activity 5 6 2.39E-05

B Response to oxidative stress 18 145 2.97E-05

B Rhamnogalacturonan II biosynthetic process 5 7 3.97E-05

C Fatty acid elongase complex 5 8 6.25E-05

B Response to light stimulus 13 87 6.86E-05

M UDP-xylosyltransferase activity 5 9 9.44E-05

B Unidimensional cell growth 11 71 0.000182731

B Sphingoid biosynthetic process 4 6 0.000301803

M Sphingosine hydroxylase activity 4 6 0.000301803

B Protein-chromophore linkage 7 30 0.000321316

C Membrane 65 1067 0.000407321

B Transport 18 190 0.000636728

C Extrachromosomal circular DNA 3 3 0.000871807

B Regionalization 3 3 0.000871807

B Plant-type cell wall biogenesis 5 17 0.000974114

B Pollen tube development 5 18 0.001207735

M Cyclin-dependent protein kinase inhibitor activity 4 10 0.001280476

C Ubiquitin ligase complex 8 52 0.00140315

C Photosystem II antenna complex 3 4 0.001484478

M Cellulase activity 4 12 0.002196988

C Cytochrome b6f complex 3 5 0.00231117

C PSII associated light-harvesting complex II 3 5 0.00231117

M Pectate lyase activity 5 23 0.003035289

M Sialyltransferase activity 3 6 0.003373532

B Organ development 4 15 0.004290413

B Nonphotochemical quenching 3 7 0.004689987

C Chloroplast stromal thylakoid 3 7 0.004689987

M Glycine C-acetyltransferase activity 2 2 0.007475192

M oxidoreductase activity, acting on CH-OH group of donors 2 2 0.007475192

B Regulation of gibberellin biosynthetic process 2 2 0.007475192

B Ammonium transmembrane transport 3 10 0.010305104

C Calcineurin complex 2 3 0.012159973

B Purine nucleoside transmembrane transport 2 3 0.012159973

M Purine nucleoside transmembrane transporter activity 2 3 0.012159973

B Cytokinin transport 2 3 0.012159973

B Stomatal lineage progression 2 3 0.012159973

B Regulation of glycolysis 2 3 0.012159973

B Chloroplast accumulation movement 2 3 0.012159973

B Chloroplast avoidance movement 2 3 0.012159973

B Ammonium transport 3 11 0.012766367

B Positive regulation of cell proliferation 3 11 0.012766367

B Cell differentiation 4 23 0.015445481

B Maintenance of floral meristem identity 2 4 0.017804056

B Floral whorl development 2 4 0.017804056

(continued)
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Table 2 Continued

GO GO Description SC GC P-Value

B Adaxial/abaxial axis specification 2 4 0.017804056

C Piccolo NuA4 histone acetyltransferase complex 2 4 0.017804056

M C-4 methylsterol oxidase activity 2 4 0.017804056

M Profilin binding 2 4 0.017804056

B Hypotonic salinity response 2 4 0.017804056

B Xenobiotic catabolic process 2 4 0.017804056

M Translation repressor activity, nucleic acid binding 2 4 0.017804056

C Cell–cell junction 2 4 0.017804056

M Threonine synthase activity 2 4 0.017804056

B Respiratory burst involved in defense response 2 4 0.017804056

B Response to temperature stimulus 3 13 0.018611667

B Gravitropism 3 13 0.018611667

M Chaperone binding 4 25 0.01974656

B Microtubule-based process 3 14 0.022001797

B Regulation of protein kinase activity 3 14 0.022001797

C Peripheral to membrane of membrane fraction 2 5 0.024331887

B Retinol metabolic process 2 5 0.024331887

B Protein autoubiquitination 2 5 0.024331887

B Triglyceride biosynthetic process 2 5 0.024331887

M Retinal dehydrogenase activity 2 5 0.024331887

B Protein import into mitochondrial matrix 2 5 0.024331887

B negative regulation of transcription, DNA-dependent 6 56 0.024501293

B Lateral root development 3 15 0.025704894

M Transcription cofactor activity 3 16 0.02972011

M Double-stranded RNA binding 3 16 0.02972011

C Integral to plasma membrane 3 16 0.02972011

B mRNA export from nucleus 2 6 0.031672126

B Negative regulation of cell proliferation 2 6 0.031672126

M Adenyl-nucleotide exchange factor activity 2 6 0.031672126

B Response to blue light 4 30 0.033469207

M Drug transmembrane transporter activity 5 46 0.036730817

C NuA4 histone acetyltransferase complex 2 7 0.039757439

M tRNA dihydrouridine synthase activity 2 7 0.039757439

M UDP-glucosyltransferase activity 2 7 0.039757439

B Positive regulation of development, heterochronic 2 7 0.039757439

B Meristem maintenance 2 7 0.039757439

B Threonine biosynthetic process 2 7 0.039757439

M 3-deoxy-7-phosphoheptulonate synthase activity 2 7 0.039757439

B Regulation of translation 2 8 0.048524302

M Transferase activity, transferring nitrogenous groups 2 8 0.048524302

B Carpel development 2 8 0.048524302

GO slim term

C Intracellular 75 1264 0.000289058

B Photosynthesis 16 187 0.003647361

B Multicellular organismal development 41 737 0.019965362

M Translation regulator activity 2 6 0.031489331

B Response to abiotic stimulus 46 877 0.032774883

B Cell differentiation 17 269 0.053689563

C Intracellular 75 1264 0.000289058

NOTE.—B, M and C indicate biological process, molecular function and cellular component GO classes, respectively. Sample counts and genome counts indicate the total
numbers of genes annotated with particular GO terms among expanded families (of which there are 1,754 genes total) versus the entire U. gibba genome (which contains a
total of 28,494 genes). P-values resulting from Fisher exact tests are shown (in italic, those significant after Benjamini–Hochberg correction). Selected GO terms generically
related to 1) trap physiology, 2) plant morphogenetic/developmental pathways, and 3) response to environmental stimuli and adaptations to life in aquatic environments are
colored orange, green, and blue, respectively.
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enrichments among expanded orthogroups that may be re-

lated to trap physiology. Since U. gibba can acquire nutrients

from prey captured by its bladder traps, the digestion of these

organisms is a critical function. Various enzymes, such as hy-

drolases, peptidases, phosphatases, and chitinases have been

proposed to be relevant to prey digestion among different

carnivorous plant lineages (Sirová et al. 2003; Muller et al.

2004, 2006; Plachno et al. 2006; Hatano and Hamada

2008; Rottloff et al. 2011; Renner and Specht 2013), which

independently evolved across angiosperm phylogeny (Ellison

and Gotelli 2009).

We found that the generic GO term “response to chitin”

was significantly enriched after correction among gene fam-

ilies expanded in the U. gibba lineage (table 2 and supplemen-

tary table S2, Supplementary Material online). Chitin is the

main component of the cell walls of fungi and also the exo-

skeleton of arthropods and nematodes, and is a well-known

elicitor of plant defense responses (Shibuya and Minami 2001;

Kaku et al. 2006). Subclass I chitinases have been proposed to

play a major role in pathogenic response in plants (Salzer et al.

2000), and have also been suggested to serve plant carnivory

in the order Caryophyllales (Renner and Specht 2012).

Although no GO term specifically related to “chitinase” was

enriched among the U. gibba gene family expansions, the

enrichment of the response to chitin GO term may reflect

adaptation to chitin detection and activation of relevant bio-

chemical pathways involved in prey digestion, nutrient absorp-

tion, and/or in defense against pathogenic fungi.

The production of enzymes for prey digestion and nutrient

acquisition, together with the lower photosynthetic capacity

of trap biomass compared with leaf-like structures in

Utricularia, implies a high energetic cost (Adamec 2006).

Indeed, a delicate balance between energetic costs and ben-

efits of prey digestion and nutrient acquisition has been pro-

posed for bladderworts (Ellison and Gotelli 2001; Laakkonen

et al. 2006). Previous research has suggested that respiratory

rates are high in Utricularia traps, and that this could result

from adaptive protein changes in cytochrome c oxidase

(COX), a primary enzyme of the electron transport chain

(Laakkonen et al. 2006). It is well known that high charge

differences between the mitochondrial lumen and intermem-

brane space can lead to leakage of electrons and the produc-

tion of reactive oxygen species (ROS; Turrens 2003; Albert

et al. 2010). Interestingly, the generic GO term “response to

oxidative stress” was found to be specifically enriched (signif-

icant after correction) among the U. gibba-expanded gene

families (table 2 and supplementary table S2, Supplementary

Material online). The potential adaptive value of this expansion

is consistent with previous transcriptomic studies in U. gibba

that support the hypothesis that COX-derived ROS may ac-

count for both increased nucleotide substitution rates and

genome-size dynamism following DNA double-strand break

repair (Ibarra-Laclette et al. 2011).

We also found the generic GO term “respiratory burst in-

volved in defense response” specifically enriched among

U. gibba-expanded gene families. This GO term exclusively

annotates to ORTHOMCL15238, an orthogroup entirely com-

posed of three U. gibba PUB23-like E3 ubiquitin-protein li-

gases. PUB23, similarly to other PUB family genes in

Arabidopsis, likely regulates drought and plant pathogen im-

munity signaling pathways (Cho et al. 2008). Interestingly, the

enhanced respiratory burst in PUB mutants might be triggered

by chitin (Trujillo et al. 2008). Respiratory burst in response to

pathogens can rapidly release ROS such as superoxide and

hydrogen peroxide, which play roles in both direct killing of

pathogens and induction of defense gene expression (Bolwell

1999). Because plant carnivory may have evolved from de-

fense mechanisms against herbivores and pathogens

(Mithofer 2011; Renner and Specht 2013), the possible path-

ogen defensive role of these PUB23-like genes may have been

recruited to U. gibba’s carnivorous syndrome, perhaps in re-

sponse to prey capture. The expansion of the PUB23-like gene

family in U. gibba is also consistent with increased ROS levels

in traps versus vegetative structures.

The Putative Role of Gene Family Expansion in the
Evolution of U. gibba’s Specialized Body Plan

Utricularia gibba shows a unique and highly specialized body

plan, including absence of roots and presence of fibrous

floating networks of photosynthetic structures and trapping

bladders. Interestingly, the generic GO term “lateral root

development” was enriched among the U. gibba-

expanded families (table 1 and supplementary table S2,

Supplementary Material online). In total, three U. gibba

genes belong to this functional category; two of them con-

stitute ORTHOMCL18706 and another belongs to

ORTHOMCL18829.

The U. gibba genes in ORTHOMCL18706 are likely homol-

ogous to the five highly conserved Arabidopsis genes BREVIS

RADIX (BRX) and BREVIS RADIX-like 1-4 (Mouchel et al. 2004;

Briggs et al. 2006); BRX regulates root meristematic growth,

possibly by controlling auxin response factor activity.

ORTHOMCL18829 is composed of two U. gibba members

encoding WRKY transcription factors, with only one of them

annotated with the term lateral root development.

Interestingly, when we used the corresponding sequences as

queries to perform BLAST searches on the Arabidopsis

genome, the best retrieved hit was AtWRKY75

(AT5G13080), which plays a regulatory role in root hair pat-

terning (Rishmawi et al. 2014). These two examples of enrich-

ment for lateral root function may reflect gene functional

specialization by co-option of orthologous genes during U.

gibba evolution. The fact that U. gibba has no roots could

suggest a heterotopic transfer of function of these genes to

other organs, possibly ones bearing trichomes, which are de-

velopmentally related to root hairs. Indeed, bladder trichomes
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are the sites of nutrient absorption in U. gibba, so it is tempt-

ing to speculate that some ancestral “root-specific” functions

may have been transferred to traps. Indeed, both genes in

ORTHOMCL18829 are preferentially expressed in bladders

(Ibarra-Laclette et al. 2011). A potentially similar instance of

evolutionary co-option may come from research on moss

orthologs of the Arabidopsis bHLH transcription factors

RHD6 and AtRSL1, reported to control root hair development.

The corresponding orthologs in moss, PpRSL1 and PpRSL2,

control the development of rhizoids, which are nonhomolo-

gous organs with a rooting function (Menand et al. 2007).

Furthermore, two genes annotated with the term “meri-

stem maintenance,” likely homologous to Arabidopsis

HOMEOBOX GENE1 (ATH1, AT4G32980), were also found

as enriched in expanded families. ATH1 encodes a homeobox

transcription factor involved in different photomorphogenic

processes (Quaedvlieg et al. 1995), including modulation of

growth at the interface between the stem, meristem, and

organ primordia (Gómez-Mena and Sablowski 2008), and

consequently, inflorescence architecture (Li et al. 2012).

The Putative Role of Gene Family Expansion in the
Adaptation to Life in Aquatic Environments

Utricularia gibba lives in various habitats, including as a sus-

pended aquatic or as a creeping plant in marshlands. It has

been reported that the morphology of Utricularia species is

plastic, and highly affected by environmental factors such as

temperature, light, and water level (Taylor 1989; Reut and

Fineran 2000). Accordingly, many GO term enrichments

among U. gibba-expanded orthogroups are associated with

response to environmental stimuli, including “response to abi-

otic stimulus,” several related to light (“response to light stim-

ulus”—significant after correction, “response to blue light,”

and “nonphotochemical quenching”), temperature (“re-

sponse to temperature stimulus”), or salinity (“hypotonic sa-

linity response”). The enrichments of these functional

categories are consistent with key roles for various environ-

mental stimuli on U. gibba development and physiology: U.

gibba can live in very dynamic habitats that frequently transi-

tion among different environmental conditions. The rapid and

efficient control of various metabolic and developmental re-

sponses to changing environmental constraints may therefore

be critical to U. gibba survival.

For example, under typical environmental conditions,

U. gibba produces normal, open bilateral flowers. However,

under low light conditions, the lips are closed and the corollas

do not open. Likewise, in deeper water or a submerged envi-

ronment, the flowers lose corollas altogether and bear only

closed calyces (Chao 2003). Both types of cleistogamous flow-

ers are fertile and undergo self-fertilization. It is tempting

to speculate that the GO term enrichment related to response

to environmental stimuli may reflect the importance of fine-

tuned sensing of environmental factors participating in proper

switching among flower-type developmental pathways.

In keeping with these unique flowering features, we dis-

covered several enriched GO terms related to floral (meristem)

development, such as “maintenance of floral meristem iden-

tity,” “meristem maintenance,” “floral whorl development,”

“organ development,” “pollen tube development,” “adaxial/

abaxial axis specification,” and “carpel development” (table 2

and supplementary table S2, Supplementary Material online).

Among the genes annotated with the term maintenance of

floral meristem identity, two clustered within orthogroup

ORTHOMCL11149, an orthogroup comprising five U. gibba

members likely homologous to Arabidopsis SHORT

VEGETATIVE PHASE (SVP, AT2G22540). SVP encodes a

MADS-box transcription factor that acts as a central regulator

of flowering time (Hartmann et al. 2000). Although available

expression data show only low to null expression in flowers

(Ibarra-Laclette et al. 2011), the U. gibba-specific expansion of

this family may be related to the critical function of SVP-like

genes in the species’ flowering phenology.

Another highly significant enriched functional category

(after correction) that may relate to the aquatic habit was

“cuticle development.” Eleven of the 22 genes annotated

with this term belong to the U. gibba-expanded orthogroup

ORTHOMCL309, composed of 11 U. gibba members and 0–4

representatives from the other species. All of these genes are

annotated as coding for 3-ketoacyl-CoA synthase enzymatic

activity, involved in the biosynthesis of very long-chain fatty

acids. The two Arabidopsis orthologs belonging to this

orthogroup, AT1G25450 (CER6) and AT1G68530 (CUT1), cat-

alyze the first step of the biosynthetic pathway for the layer of

wax secreted onto the aerial surfaces of all land plants. This

layer of wax protects plants from desiccation and other stres-

ses, and allows survival in terrestrial environments (Millar et al.

1999; Fiebig et al. 2000). This hydrophobic cuticle layer

evolved in land plants during the transition from an aquatic

to a terrestrial environment (Go et al. 2014). The preferential

retention and potential further functional diversification of

duplicated genes from this family may reflect the metabolic

flexibility required for waxy cuticle production in order to prop-

erly deal with the changing environments characteristic of

U. gibba’s lifestyle. Accordingly, genes belonging to

ORTHOMCL309 show broad and diverse expression patterns

(Ibarra-Laclette et al. 2011).

Putative Roles of Adaptive Functional Specialization in
U. gibba Phenotypic Diversification: A Case Study of
Seven Candidate Genes

To further grasp the molecular evolutionary signatures under-

lying the evolution of U. gibba’s specialized body plan and

unique lifestyle, we performed a preliminary genome-wide

analysis of selection on the protein-coding regions of the

6,848 orthogroups containing homologs from all five species,
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and that exceeded the quality criteria filters (see Materials and

Methods; supplementary table S6, Supplementary Material

online). Different codon-substitution evolutionary models as-

sessing for asymmetric evolution, divergent selective pressures

or PS specifically occurring in the U. gibba ortholog were im-

plemented in PAML (Yang 1997, 2007). From these prelimi-

nary results, we selected seven candidate genes that showed

the molecular hallmarks of PS in the U. gibba lineage. These

seven cases were subjected to manual curation and further

examination for PS using a greater sampling of orthologous

sequences (table 3).

First, we focused on four genes involved in several critical

steps of auxin metabolism, signaling of primary root abortion,

and vegetative meristem growth, as these may have played a

major role in the evolution of U. gibba’s specialized body plan.

For example, Scf00011.g1809.t1 is orthologous to

Arabidopsis AXR1 (At1G05180; supplementary fig. S1,

Supplementary Material online), a gene regulating the protein

degradation activity of Skp1-Cullin-Fbox complexes, which

primarily affect auxin responses (Leyser et al. 1993; del Pozo

et al. 2002). Similarly, Scf00146.g10482.t1 is orthologous to

Arabidopsis UMAMIT41 (At3G28050; supplementary fig. S2,

Supplementary Material online), which is a nodulin MtN21-

like transporter family protein that may respond to IAA in

adventitious root formation (Busov et al. 2004). Beside these

two auxin/IAA signaling related genes, we also selected

Scf00260.g14017.t1, an ortholog of indole-3-glycerol phos-

phate synthase (IGS) (AT2G04400; supplementary fig. S3,

Supplementary Material online), partly responsible for the

synthesis of indole-3-glyceralphosphate, which is the interme-

diate serving as a branch point to the Trp-independent

pathway for auxin synthesis (Tzin and Galili 2010).

Furthermore, another gene identified as subjected to PS in

U. gibba was Scf00083.g7570.t1, an ortholog of tryptophan

aminotransferase related 2 (TAR2; supplementary fig. S4,

Supplementary Material online), involved in the indole-3-py-

ruvic acid (IPyA) pathway, one of the Trp-dependent pathways

for IAA biosynthesis. By generating auxin gradients among

different parts of plant tissue, TAR2 and TAA1 affect root

meristem maintenance and differential growth in apical

hooks (Stepanova et al. 2008). Therefore, our analysis sug-

gests an evolutionary fine-tuning of genes involved in inhibit-

ing primary root elongation, which can stimulate the initiation

of lateral and adventitious roots (Vanneste and Friml 2009).

Another gene found to be evolving under PS in U. gibba

was Scf00505.g18737.t1, an ortholog of Arabidopsis SOL1

(AT1G71696; supplementary fig. S5, Supplementary

Material online). SOL1 was isolated as a suppressor of root-

specific overexpression of CLE19, a CLAVATA3-like gene

(Casamitjana-Martınez et al. 2003). Because the sol1

mutant partially suppresses the loss of root meristem mainte-

nance and short root phenotype caused by CLE19 overexpres-

sion, the signature of PS found in the SOL1 ortholog might

reflect a similar function related to arrested root

differentiation.

Finally, two additional U. gibba genes examined were

Scf00003.g611.t1 and Scf00324.g15492.t1, orthologs of

Arabidopsis DEG9 (AT5G40200) and DEG10 (AT5G36950),

respectively (supplementary figs. S6 and S7, Supplementary

Material online). According to the MEROPS database classifi-

cation (http://merops.sanger.ac.uk/), DEG9 and DEG10

belong to the peptidase family S1 (chymotrypsin family),

Table 3

Summary of Genes Identified as under PS in U. gibba

Gene Arabidopsis Ortholog Function in Arabidopsis

Scf00011.g1809.t1 AXR1 A subunit of the RUB1-activating enzyme that regulates the protein degradation ac-

tivity of Skp1-Cullin-Fbox complexes, which primarily, but not exclusively, affect

auxin responses

Scf00146.g10482.t1 UMAMIT41 A nodulin MtN21-like transporter family protein that has a possible role in response

to auxin in adventitious root formation

Scf00260.g14017.t1 IGS Catalyzes the fourth step of the tryptophan biosynthesis pathway, and is as such re-

sponsible for the synthesis of indole-3-glyceralphosphate, the intermediate serving

as a branchpoint to the Trp-independent pathway for auxin biosynthesis

Scf00083.g7570.t1 TAR2 Involved in the indole-3-pyruvic acid (IPyA) pathway, one of the Trp-dependent

pathways for auxin biosynthesis. Together with TAA1, affects root meristem main-

tenance and differential growth in apical hooks

Scf00505.g18737.t1 SOL1 A suppressor of root-specific overexpression of CLE19. The sol1 mutant partially sup-

presses the loss of root meristem maintenance and short root phenotype caused

by CLE19 overexpression

Scf00003.g611.t1 DEG9 The only Deg protease member located in the nucleus. Hypothesized to have func-

tions involving ribosome-related transcription and modification.

Scf00324.g15492.t1 DEG10 Highly induced after treatment with inhibitors of the mitochondrial electron trans-

port chain, which suggests a role of DEG10 in protein quality control via degrada-

tion of damaged mitochondrial proteins
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which is widely distributed throughout all kingdoms of life. In

animals, these peptidases play many different roles, including

intestinal digestion and IgA-mediated immune responses

(Lister et al. 2004). The functions of these peptidases in

plants are not well known. Arabidopsis DEG9 was found as

the only Deg protease member to be located in the nucleus,

and was hypothesized to have functions involving ribosome-

related transcription and modification. DEG10 was reported

to be highly induced after treatment of Arabidopsis plants

with inhibitors of the mitochondrial electron transport chain,

FIG. 2.—Protein 3D-structure models and architecture of functional domains of seven Utricularia gibba genes. (A and C–G) Cartoon backbones high-

lighting secondary structures (left side of the panel) and molecular surface representations (right side of the panel) for U. gibba AXR1, IGS, TAR2, SOL1, DEG9,

and DEG10, respectively. The 3D-structural models were obtained using SWISS MODEL. (B) Architecture of protein functional domains of U. gibba UMAMIT41

as retrieved from INTERPROSCAN. Putative PS residues are shown in red. Functionally relevant residues or protein domains are shown in different colors.
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which suggested a role of DEG10 in protein quality control via

degradation of damaged mitochondrial proteins (Lister et al.

2004). Apart from the tempting hypothesis that they may also

play a role in prey digestion, these Deg proteases may provide

essential protection against damage to cellular proteins, for

example, as incurred by ROS.

Many of the PS amino acid sites found in U. gibba ortho-

logous proteins occurred in positions well conserved in the

remaining sequences included in alignments, and some in-

volved radical changes in the physicochemical properties of

the amino acids (fig. 2 and supplementary figs. S1–S7,

Supplementary Material online). To gain further insights into

the putative functional roles of the amino acid changes fixed

by PS, we mapped them onto 3D-structural models when

available, or the protein functional domains as predicted by

INTERPROSCAN (Zdobnov and Apweiler 2001). In each case,

functionally significant residues were identified from the liter-

ature or predicted by Evolutionary Trace (Lichtarge et al. 1996;

fig. 2). Interestingly, some of the PS amino acid site changes

were located within functional domains or residues, sugges-

tive of their possible biological significance. For example, two

of the residues (174 V and 187 C) inferred to be subjected to

PS in the U. gibba TAR2 ortholog were within the protein’s

surface patch (Tao et al. 2008; fig. 2D). In addition, in the U.

gibba DEG9 ortholog, one PS residue (212 Q) was located in

the PDZ2 domain, whereas another (345 S) occurred in the

protease domain (fig. 2F). In U. gibba DEG10 orthologs, five

PS residues (322 E, 373 L, 379 Y, 380 K, and 410 C) were in

the PDZ2 domain, whereas two additional PS residues (202 S

and 223 M) lay in the protease region (fig. 2G). Since the PDZ2

domain mediates hexamer formation and locks the protease

into the resting state (Sun et al. 2012), its PS amino acid

changes may modify their possible coordination in specific

protein functions.

Conclusions

We found examples of both lineage-specific gene family ex-

pansions and putative adaptive functional specialization of U.

gibba orthologs that could have contributed to U. gibba evo-

lution. Our genome-wide analyses of gene family expansions

and protein-coding gene evolution provide useful information

to explore possible mechanisms underlying both morpholog-

ical and physiological specializations of U. gibba. Our results

further suggest interesting target genes and gene families for

future experimental confirmation to validate their possible

adaptive functional roles in U. gibba’s highly specialized

body plan and unique carnivorous lifestyle.
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