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MÀSTER DE
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Abstract

The aim of this project is to provide mathematical results for the effect of selec-
tion and environmental changes on the distribution of mutations in DNA sequences.

This project is divided in two parts. The first part is devoted to the stationary
solutions of the Kolmogorov equations for the distribution of mutation frequencies in
a population. We generalize the well-known diffusion equations for a single mutation
to pairs of mutations, and we give an explicit stationary solution in the neutral case.

In the second part, the evolution of the frequencies of pairs of mutations is
studied in the case of a sudden environmental change. In particular, we assume
that the mutations are evolving neutrally (therefore their distribution follows the
expression found in the first part) until a change occurs and one of the mutations
becomes selected. We derive the final distribution of frequencies for this scenario.
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Goals and motivation

Evolution in living organisms proceeds through natural selection. Selection acts
on mutations in the genetic material of individuals, increasing the frequency of some
of these mutations in the population after each generation. Modern DNA sequencing
methods allow to obtain the DNA sequences of many individuals collected from a
population at a given time. Using these data, selection can be inferred by the
distribution of mutations in the population. However, detecting selection is not easy.
Even for neutral (i.e., non-selected) mutations, random changes in the frequencies
of the mutations result in non-trivial patterns in their distribution.

In recent years, it has become clear that natural selection is not constant, but
depends on the external environment, therefore selection changes in time follow-
ing environmental fluctuations. Environmental changes are widespread at different
scales and some of these changes are caused or amplified by the impact of human
activities. It is therefore of great interest to understand the pattern of time-varying
selection on mutation frequencies.

The goal of this project is to provide mathematical expressions for some quanti-
ties related to the distribution of mutations in a population, both without selection
and with selection changing in time. These results will be useful to detect episodes
of time-dependent selection from DNA sequence data.

The objectives of this project are twofold.
One of the simplest and most used statistics of mutation patterns is the frequency

spectrum, i.e. the count or the distribution of the frequency of different mutations
in a population [2, 1].

The first objective is to derive simple expressions for the frequency spectrum of
pairs of mutations, which corresponds to the stationary solution of a set of diffusion
equations. Existing approaches in terms of polynomial expansions [5, 4] led to
complicated expressions for the solution [6], while recent results from coalescent
theory [3] suggest that there is a simple solution, at least in the neutral case. We
write the diffusion equations for pairs of mutations and prove that the solution is a
stationary solution of these equations.

The second objective is to characterize the frequency spectrum after a recent
environmental change. The change triggers a selection pressure on a mutation in a
sequence that was evolving neutrally. In the limit of strong selection, we obtain an
exact formula for the frequency spectrum. For intermediate selection, we obtain the
frequency spectrum as an expansion in powers of the inverse selection coefficient.

vii





Chapter 1

Biological introduction

This is a project of applied mathematics that models a biological problem, then
an introduction to the biological background is needed. In this chapter I explain the
bases of the project.

1.1 Basic concepts

Definitions 1.1.1. Here I define some relevant topics:

• A chromosome is a sequence of DNA bases, which contains the genetic in-
formation of an individual.

• Haploid is the term used for individuals that only have one copy of each
chromosome. In that project we consider that our population are Ne haploid
individuals, despite that it is equivalent to work with diploid individuals (i.e.,
with two copies) and a population of Ne/2 individuals.

• A gene is a small part of a chromosome with usually an specific function.

• A locus is a concrete position in a chromosome, the place where a gene is
located.

• An allele is one of the several forms of a gene.

As an example, in the Figure 1.1 we can see genes (a, b, c, d) and a number
of individuals (five, in vertical) with different number of alleles, for example,
in the first generation the gene a has 3 alleles and the others have 2.

• A mutation is a modification in a gene of a single individual that occurs
randomly in the nature. If a mutation occurs, then it is created a new allele,
the derived allele. In some cases, when the model has more than one mutation,
we will denote as focus mutation or ancestral to the original one.

In this project, we will focus on biallelic mutations, i.e. only 2 alleles are
possible at each locus.

1



1.2. Wright-Fisher model and diffusion approximation 2

• The offspring of an individual is the set of the next generation individuals
that comes from it.

• The fitness advantage, si, of a particular allele i is a term that expresses
the potential advantage of an allele in the immediate future generation. It is
also called selection coefficient. A usual notation in biology for the absolute
fitness (which corresponds roughly to the average relative number of offspring)
is 1 + si ≥ 0, considering that si = 0 corresponds to neutral selection, si < 0
a negative selection and si > 0 positive selection. If an allele has fitness
advantage -1, then it does not have any possibility of being expressed in the
future generations.

• We are going to say that a mutation is been fixed if it is finally present in all
the population and lost if it does not appear in any individual.

In the Figure 1.1 if we consider that × are the mutated alleles and © the
ancestral ones, we will say that in the second generation the mutation of c is
lost and the one of d is fixed.

• Recombination is a process where the genetic information of two individuals
is mixed, i.e. some parts of the genetic information of the new individual will
come from one of the ancestor and other part from another, creating a new
possible combination of alleles in the new generation. Our models are without
recombination, so all the information pass from one individual directly to the
the new one.

• We say that a mutation is nested in another if it was born in a sequence
containing the first one. Equivalently we are going to say that a mutation A
is containing B if B is nested in A. If the two mutations have the same
frequency in the population, we call them co-occurring. Otherwise, we say
that is exclusive if it was born in a sequence with the original allele. If the
sum of the frequencies reaches 1, we call the mutations complementary.

As an example in the same Figure 1.1 we have all the relevant cases; in the first
generation and considering that × are the mutated alleles and © the ancestral
ones, the mutation of b is nested in the one of d, or d is containing b, and the
mutation of c is exclusive with respect to the mutation in b and both mutations
of a.

1.2 Wright-Fisher model and diffusion approxi-

mation

We are going to work with the following assumptions:

• Large haploid population Ne constant in time.
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Gene a b c d next

generation
// a b c d

× × © × × × © ×

× × © × ++

44

× × © ×

× © © × ++ × © © ×

© © × © � © © ×

� © © × ++

44

� © © ×

Figure 1.1: Evolution of some mutations. This diagram contents 2 different gener-
ations of a constant population of five individuals (columns) with 4 genes (a, b, c
and d). It is widely uses in the initial definitions in order to give several examples.

• K − 1 different mutations that create K different alleles combinations. We
will focus on the case K = 3, i.e. mutations at two loci.

• Generations does not overlap one to each other.

• They don’t have recombination, so each copy of the gene found in the new
generation is drawn independently at random from all copies of the gene in
the old generation.

• All alleles have the same fitness, i.e. evolution is neutral. (In the selected case
considered later, the new generation will be drawn with relative weight 1 + si
on the probability of choosing the ith copy of the gene as parent.)

The Wright-Fisher Model is based on these assumptions. It is the Markov model
that we are going to use to study the evolution of the frequencies and probabilities
of fixation of our alleles. We are actually going to consider a more sophisticated
problem, with non-neutral fitness in general (i.e. si 6= 0).

Notation 1.2.1. From now on, we denote ni as the number of individuals with the
ith combination of alleles, xi := ni/Ne their frequency and si their fitness. Notice
that

PK
i=0 ni = Ne, and consequently,

PK
i=0 xi = 1.

Under the conditions of evolution considered before, the distribution for N =
(n1, . . . , nK) conditioned on the previous frequencies xi(t) is clearly a multinomial
distribution with probabilities p = (p1 . . . pn):
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pi =
xi(t)(1 + si)

KX
j=1

xj(t)(1 + sj)

. (1.2.1)

We will use the following Lemma to prove the case K = 2 of the theorem 1.2.3.

Lemma 1.2.2. Let (x1(t + ∆t), x2(t + ∆t)) = (n1, n2)/Ne two random variables.
x1(t + ∆t) follows a binomial distribution divided by a constant Ne = n1 + n2 with
probability p1 as defined above in formula 1.2.1 with K = 2.

We define ∆x1 = x1(t+ ∆t)− x1(t). Then, if si and 1/Ne are sufficiently small
the following expressions are good approximations at first order in si and 1/Ne:

E[∆x1|Ft] = x1(s1 − s2)(1− x1),

E[(∆x1)2|Ft] =
x1(1− x1)

Ne

,

E[(∆x1)j|Ft] = o(1/Ne) for j ≥ 3;

where Ft = σ(x1(t′) : t′ ≤ t) is the sigma algebra generated by the previous values of
x1.

Proof. In order to simplify the notation, we do specify the dependence on t of the
variable x1.

Before starting notice that x1(t)+x2(t) = 1 and the moment-generating function
for a binomial distribution is (1− p+ pet)n.

E[∆x1|Ft] = E[x1(t+ ∆t)|Ft]− E[x1(t)|Ft] =
Ne

Ne

x1(1 + s1)

x1(1 + s1) + x2(1 + s2)
− x1

=
x1(1 + s1)

x1 + x2 + x1s1 + x2s2

− x1 =
x1(1 + s1)

1 + s2 + x1(s1 − s2)
− x1

=
x1(s1 − (s2 + x1(s1 − s2)))

1 + s2 + x1(s1 − s2)
=
x1(1− x1)(s1 − s2)

1 +O(s1) +O(s2)
.

E[(∆x1)2|Ft] =
Ne

N2
e

p1(1− p1)

=
1

Ne

x1(1 + s1)

x1(1 + s1) + x2(1 + s2)

�
1− x1(1 + s1)

x1(1 + s1) + x2(1 + s2)

�

=
1

Ne

x1(1 + s1)x2(1 + s2)

(x1(1 + s1) + x2(1 + s2))2
=

1

Ne

x1(1− x1) +O(s1) +O(s2)

1 +O(s1) +O(s2)
.

If we consider the values of selection, si, and 1/Ne sufficiently small:
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E[∆x1|Ft] = x1(s1 − s2)(1− x1),

E[(∆x1)2|Ft] =
x1(1− x1)

Ne

.

Finally, in the limit of small 1/Ne, the estimate E[(∆x1)j|Ft] = o(1/Ne) for j ≥ 3
is a known result from the theory of Central Limit Theorems.

The object that we want to study is the allele frequency spectrum, i.e. the mean
density of mutations of frequency f in the population, with 0 < f < 1. It is denoted
by ξ(f). This quantity is closely related to the Green function G(x, y, t) for the
evolution of the frequency of a mutation, i.e. the probability density of finding the
mutation in x after a time t given the initial frequency y. In fact, we have

ξ(f) =
θ

2

Z +∞

0
G(f, 1/Ne, t)dt,

where θ/2 is the rate of new mutations in the population per unit time.

Theorem 1.2.3. The evolution equations that model our problem defined above are
the forward and backward Kolmogorov equations, defined respectively as:

∂G((x1, . . . , xK), (y1, . . . , yK), t)

∂t
=

KX
i=1

KX
j=1

1

2

∂2

∂xi∂xj
[b(xi, xj, t)G]−

KX
i=1

∂

∂xi
[a(xi, t)G] ,

∂G((x1, . . . , xK), (y1, . . . , yK), t)

∂t
=

KX
i=1

KX
j=1

1

2
b(yi, yj, 0)

∂2G

∂yi∂yj
+

KX
i=1

a(yi, 0)
∂G

∂yi
;

where we assume that b(xi, xj, t) = Cov(∆xi,∆xj|F(t)) and a(xi, t) = E[∆xi|Ft]
and Ft = σ(x1(t′) : t′ ≤ t).

Proof. We are going to prove that Theorem for K = 2. The arguments for general
K are similar but involve more calculus.

Consider x the frequency of the derived allele and y = 1 − x the frequency
of the original allele. Define the function G(x(t1), x(t0), t1 − t0) as the probability
distribution for the derived allele to pass from frequency x(t0) to x(t1) in t1 − t0
time if t0 < t1. Then consider an intermediate time m, t0 < m < t1 and we have
the following equality:

G(x(t1), x(t0), t1 − t0) =
Z 1

0
G(x(m), x(t0), t− t0)G(x(t1), x(m), t1 − t)dx(m),

which is called the Chapman-Kolmogorov equation.

Forward Kolmogorov Equation
In other to find the Forward Equation, we consider m = t and t1 = t+ ∆t.
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In the second equality, we change x(t) for z − ε, x(t + ∆t) for z − ε + ε′ and
x(t + ∆t) for y. Notice that ε = ε′, but we differentiate it in order to clarify the
Taylor expansion where the variable z − ε is z.

G(x(t+ ∆t), x(t0), t+ ∆t− t0)

=
Z 1

0
G(x(t), x(t0), t− t0)G(x(t+ ∆t), x(t),∆t)dx(t)

=
Z 1

0
[G(z − ε, y, t− t0)G(z − ε+ ε′, z − ε,∆t)]ε′=ε d(z − ε)

=
Z z

z−1

X
j≥0

�
(z − ε− z)j

j!

�
∂j

∂zj
[G(z, y, t− t0)G(z + ε′, z,∆t)]

�
ε′=ε

�
dε

=
Z z

z−1

X
j≥0

(−1)j

j!

∂j

∂zj
[G(z, y, t− t0)G(z + ε, z,∆t)εj]dε

=G(z, y, t− t0)
Z −z

1−z
G(z + ε, z,∆t)dε

+
X
j≥1

(−1)j

j!

∂j

∂zj
[G(z, y, t− t0)

Z z

z−1
εjG(z + ε, z,∆t)dε].

Now, we subtract in both sides G(z, y, t−t0)
R z
z−1G(z+ε, z,∆t)dε and we divide it

by ∆t taking the limit when ∆t is going to 0. Hence, using that
R−z

1−z G(z+ε, z,∆t)dε
is one, so in the left hand side we have:

lim
∆t→0

G(z, y, t+ ∆t− t0)−G(z, y, t− t0)

∆t
=
∂G

∂t
.

For the right hand side:

E[(x(t+ ∆t)− x(t))j|Ft] = E[(∆x)j|Ft] = lim
∆t→0

1

∆t

Z z

z−1
εjG(z + ε, z,∆t)dε,

where Ft = σ(x(t′) : t′ ≤ t). Hence, using the Lemma 1.2.2 we know that we
can truncate the equation in the second two. Despite that it is noticeable that the
equation with all the orders is called Kramers-Moyal.

X
j≥0

(−1)j

j!

∂j

∂zj
[G(z, y, t−t0) E[(∆x)j|Ft] = − ∂j

∂xj
E[∆x|Ft]G+

1

2

∂j

∂xj
Var(∆x|F(t))G.

Hence,

∂G

∂t
= − ∂

∂x
E[∆x|Ft]G+

1

2

∂2

∂x2
Var(∆x|F(t))G. (1.2.2)

Considering the equation that we want to get and applying that change of vari-
ables x = x1, r = x1 + x2 to them, we found the immediate above equation 1.2.2.
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Recall that b(x, y) = Cov(∆x,∆y|F(t)).

∂G

∂t
=

KX
i=1

KX
j=1

1

2

∂2

∂xi∂xj
[b(xi, xj)G]−

KX
i=1

∂

∂xi
[E[∆xi|Ft]G]

=
1

2

∂2

∂x2
[b(x, x)G] +

1

2

∂2

∂x∂r
[2b(x, x)G] +

1

2

∂2

∂r2
[b(x, x)G] +

+ 2

�
1

2

∂2

∂x∂r
[b(x, 1− x)G] +

1

2

∂2

∂r2
[b(x, 1− x)G]

�

+
1

2

∂2

∂r2
[b(1− x, 1− x)G]− ∂

∂x
[E[∆x|Ft]G]− ∂

∂r
[E[∆x|Ft]G]

− ∂

∂r
[E[1−∆x|Ft]G]

=
1

2

∂2

∂x2
[Var(∆x|F(t))G]− ∂

∂x
[E[∆x|Ft]G] ,

using that

E[∆x|Ft] = −E[1−∆x|Ft],
Var(∆x|F(t)) = b(1− x, 1− x) = −b(x, 1− x).

Backward Kolmogorov equation
In that case, we define m = t0 + ∆t and t1 = t+ ∆t.
As in the Forward proof, in the second inequality we change x(t + ∆t) for z,

x(t0) for y and x(t0 + ∆t) for y + ε. Then, we perform a Taylor expansion in the
variable y + ε around y.

G(x(t+ ∆t), x(t0), t+ ∆t− t0)

=
Z 1

0
G(x(t0 + ∆t), x(t0),∆t)G(x(t+ ∆t), x(t0 + ∆t), t− t0)dx(t0 + ∆t)

=
Z 1

0
G(y + ε, y,∆t)G(z, y + ε, t− t0)d(y + ε)

=
Z 1−y

−y

X
j≥0

εj

j!
G(y + ε, y,∆t)

∂j

∂yj
[G(z, y, t− t0)]dε

=G(z, y, t− t0)
Z 1−y

−y
G(y + ε, y,∆t)dε

+
X
j≥1

1

j!

�Z 1−y

−y
G(y + ε, y,∆t)εjdε

�
∂j

∂yj
[G(z, y, t− t0)].

For the right hand side, using the same than in the forward equation and we
have:

X
j≥1

1

j!

∂jG

∂yj
E[(∆x)j|Ft] = E[∆x|Ft]

∂G

∂y
+ Var(∆x|F(t))

1

2

∂2G

∂y2
.
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Hence,

∂G

∂t
= E[∆x|Ft]

∂G

∂y
+ Var(∆x|F(t))

1

2

∂2G

∂y2
. (1.2.3)

Now, doing the change of variables x = x1, s = x1 +x2 as in the forward equation
we found the equation 1.2.3.

Corollary 1.2.4. As we have seen in the proof of the Theorem1.2.3, for the case of
one mutation, K = 2, we can use the following two differential equations

∂G

∂t
= − ∂

∂x
[E[∆x|Ft]G] +

1

2

∂2

∂x2
[Var(∆x|F(t))G],

∂G

∂t
= E[∆x|Ft]

∂G

∂y
+ Var(∆x|F(t))

1

2

∂2G

∂y2

or the original ones from the Theorem because they are the equivalent.

Proposition 1.2.5. Let X = (x1, . . . , xn) = (n1 . . . , nK)/Ne random variables that
follow a multinomial distribution divided by a constant Ne =

PK
j=1 nj with proba-

bilities p = (p1 . . . pn), where pi is defined as in 1.2.1. Then, if si and 1/Ne are
sufficiently small:

E[∆xi|Ft] = xi
KX
j=1

(si − sj)xj,

Var(∆xi|F(t)) =
xi(1− xi)

Ne

,

Cov(∆xi,∆xj|F(t)) =
−xixj
Ne

, i 6= j.

Proof. In order to simplify the notation, we do specify the dependence on t of the
variable xi.

Before starting notice that
KX
j=1

xj(t) = 1.

E[∆xi|Ft] = E[xi(t+ ∆t)|Ft]− E[xi(t)|Ft] =
Nepi
Ne

− xi =
xi(1 + si)PK
j=1 xj(1 + sj)

− xi

=
xi(1 + si)PK

j=1 xj +
PK
j=1 sjxj

− xi =
xisi − xi(

PK
j=1 sjxj)

1 +
PK
j=1 sjxj

= xi

PK
j=1 xjsi −

PK
j=1 sjxj

1 +
PK
j=1 sjxj

= xi

PK
j=1(si − sj)xj

1 +
PK
j=1 sjxj

.



9 Chapter 1. Biological introduction

Var(∆xi|F(t)) =
Nepi(1− pi)

N2
e

=
1

Ne

xi(1 + si)PK
j=1 xj(1 + sj)

 
1− xi(1 + si)PK

j=1 xj(1 + sj)

!

=
1

Ne

xi(1 + si)

1 +
PK
j=1 sjxj

 
1 +

PK
j=1 sjxj − xi(1 + si)

1 +
PK
j=1 sjxj

!

=
1

Ne

xi(1 + si) + xi(1 + si)
PK
j=1 sjxj − (xi(1 + si))

2

(1 +
PK
j=1 sjxj)

2

=
1

Ne

xi − x2
i +

PK
j=1O(sj)

1 +
PK
j=1O(sj)

.

Cov(∆xi,∆xj|F(t)) =
Nepipj
N2
e

=
1

Ne

xi(1 + si)PK
j=1 xj(1 + sj)

 
1− xi(1 + si)PK

j=1 xj(1 + sj)

!

=
1

Ne

xi(1 + si)

1 +
PK
j=1 sjxj

 
1 +

PK
j=1 sjxj − xi(1 + si)

1 +
PK
j=1 sjxj

!

=
1

Ne

xi(1 + si) + xi(1 + si)
PK
j=1 sjxj − (xi(1 + si))

2

(1 +
PK
j=1 sjxj)

2

=
1

Ne

xi − x2
i +

PK
j=1O(sj)

1 +
PK
j=1 O(sj)

.

If we consider the values of selection, si, sufficiently small the statement follows.

1.3 Relation between Forward and Backward

Consider both differential operators of the Theorem 1.2.3:

L+(ξ) =
KX
i=1

KX
j=1

1

2

∂2 [Cov(∆xi,∆xj|F(t))ξ]

∂xi∂xj
−

KX
i=1

∂ [E[∆xi|Ft]ξ]
∂xi

,

L−(ξ) =
KX
i=1

KX
j=1

1

2
Cov(∆xi,∆xj|F(t))

∂2ξ

∂xi∂xj

KX
i=1

E[∆xi|Ft]
∂ξ

∂xi
.

Proposition 1.3.1. Consider f, g ∈ C∞ with compact support contained in (0, 1),
then L+, L− are adjoint operators, < f, L+g >=< L−f, g >.

Proof. The proof of the statement is only given for K = 2. Using the Corollary 1.2.4:

L+(ξ) = −s ∂
∂x

[x(1− x)ξ] +
1

2Ne

∂2

∂x2
[x(1− x)ξ]

L−(ξ) = sx(1− x)
∂ξ

∂x
+
x(1− x)

2Ne

∂2ξ

∂x2
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where s = s1 − s2.

< f, L+g > =
Z 1

0
f(x)

�
−s ∂

∂x
[x(1− x)g(x)] +

1

2Ne

∂2

∂x2
[x(1− x)g(x)]

�
dx

= −s
Z 1

0
f(x)

∂

∂x
[x(1− x)g(x)]dx+

1

2Ne

Z 1

0
f(x)

∂2

∂x2
[x(1− x)g(x)]dx

=3 −s
�

[f(x)x(1− x)g(x)]10 −
Z 1

0

∂f(x)

∂x
x(1− x)g(x)dx

�

+
1

2Ne

�
f(x)

∂

∂x
[x(1− x)g(x)]−

Z 1

0

∂f(x)

∂x

∂

∂x
[x(1− x)g(x)]dx

�

=4
Z 1

0
sx(1− x)

∂f(x)

∂x
g(x)dx+

h
f(x)

�
x(1− x)∂g(x)

∂x
+ g(x)(1− 2x)

�i1
0

2Ne

− 1

2Ne

 �
∂f(x)

∂x
x(1− x)g(x)

�1

0

−
Z 1

0
x(1− x)

∂2f(x)

∂x2
g(x)dx

!

=
Z 1

0
sx(1− x)

∂f(x)

∂x
g(x)dx+

1

2Ne

Z 1

0
x(1− x)

∂2f(x)

∂x2
g(x)dx

=
Z 1

0

�
sx(1− x)

∂f(x)

∂x
dx+

1

2Ne

x(1− x)
∂2f(x)

∂x2

�
g(x)dx

=< L−f, g > .

Doing the first two integrations by parts in equality 3 and the other in the 4:

u = f(x), dv =
∂

∂x
[x(1− x)g(x)]dx;

u = f(x), dv =
∂2

∂x2
[x(1− x)g(x)]dx;

u =
∂f(x)

∂x
, dv =

∂

∂x
[x(1− x)g(x)]dx.



Chapter 2

Stationary solution for two
mutations equation

In this chapter we are going to describe the evolution of certain mutations in
a specific ambient using the forward Kolmogorov equations. Principally, we want
study the stationary solutions in the case of 2 different alleles and the neutral sta-
tionary solutions in the case of 3 different alleles. In this case we are going to use the
definitions of nested, co-occurring, containing, complementary and exclusive that we
remind in the Figure 2.1.

2.1 One mutation

Thanks to the Corollary 1.2.4, we know that to study the dynamic when there
is only one mutation it is sufficient to use the following equation:

∂ξ

∂t
= −s ∂

∂f
[f(1− f)ξ] +

1

2Ne

∂2

∂f 2
[f(1− f)ξ], (2.1.1)

where s = (s1 − s2).

It is easily checked that the following function is the most general stationary
solution for the differential equation:

ξ =
ke2sNef + k′

f(1− f)
.

Despite that, our solution is generally divergent in 0 and 1, and modifying the
constants we only can impose convergence in one of the point, non in both. However,
this equation describes the evolution of a single mutation. In order to solve this
problem, we add a flow of new mutations born at uniform rate µNe at low frequency
f = 1/Ne = ε, which is biologically consistent because such mutations occur in
many loci along the chromosome, and the allele frequency spectrum counts their
number. Formally, we represent that adding a Dirac delta in the formula 2.1.1:

11
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∂ξ

∂t
= −s ∂

∂f
[f(1− f)ξ] +

1

2Ne

∂2

∂f 2
[f(1− f)ξ] + µNeδ(f − ε), (2.1.2)

where µ is a constant that can be interpreted as the average number of mutations
born in unit time in a single individual.

Therefore, we will have two solutions, ξ0 for the values of f ∈ [0, ε) convergent
at zero and ξ1 for the values of f ∈ (ε, 1] convergent at one. In addition, we want
our solution to be continuous, i.e. that both solutions coincide at ε and that the
only discontinuity in the derivative coincide with the one generated by the Dirac δ,
that we can find integrating the equation 2.1.2 around ε.

Lemma 2.1.1. The discontinuity of the first derivative of f(1− f)ξ is

�
∂[f(1− f)ξ]

∂f

�ε+
ε−

= −2µN2
e .

Proof. What we have to do is integrate the equation 2.1.2 and evaluate it between
ε+ and ε− using that f and ξ are continuous.

lim
ε′→0

Z ε+ε′

ε−ε′

�
−s ∂

∂f
[f(1− f)ξ] +

1

2Ne

∂2

∂f 2
[f(1− f)ξ] + µNeδ(f − ε)

�
df

=

�
−sf(1− f)ξ +

1

2Ne

∂

∂f
[f(1− f)ξ]

�ε+
ε−

+ µNe

=
1

2Ne

�
∂

∂f
[f(1− f)ξ]

�ε+
ε−

+ µNe.

Then, since we are considering that we are in a stationary solution, we finally
find the expected result.

Remark that we have calculated the first derivative of f(1 − f)ξ instead of the
first derivative of ξ because in the following theorem now it will be easier to compute
the values of k0, k

′
0, k1 and k′1.

Theorem 2.1.2. The equation that solves the differential equation 2.1.2 is ξ(f) =
ξ0(f)1[0,1/Ne](f) + ξ1(f)1(1/Ne,1](f), where

ξ1(f) =
µNe

s(1− e2sNe)

(1− e−2s)e2sNef − (e2sNe − e2s(Ne−1))

f(1− f)
,

ξ0(f) =
µNe

s(1− e2sNe)

(1− e2s(Ne−1))e2sNef − (1− e2s(Ne−1))

f(1− f)
.
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Proof. First of all we define ξ0 and ξ1 as:

ξ0 =
k0e

2sNef − k′0
f(1− f)

, ξ1 =
k1e

2sNef − k′1
f(1− f)

. (2.1.3)

Since we impose that ξ0 must converge at 0, we have the following equality
k0e

2sNe0−k′0 = 0⇒ k′0 = k0, and since ξ1 must converge at 1, we have k1e
2sNe1−k′1 =

0⇒ k′1 = e2sNek1. Applying these two equalities to the condition of continuity of ξ
in ε = 1/Ne:

k0e
2sNeε − k0

ε(1− ε)
=
k1e

2sNeε − e2sNek1

ε(1− ε)
⇒ k0(e2s − 1) = k1(e2s − e2sNe)

and by the lemma 2.1.1 we found the fourth equality:

−2µN2
e =

∂[f(1− f)ξ1]

∂f
(1/Ne)−

∂[f(1− f)ξ0]

∂f
(1/Ne)

=
�
(k1 − k0)2sNee

2sNef
�
f=1/Ne

= (k1 − k0)2sNee
2s,

then,
−µNe = e2s(k1 − k0)s.

Finally using the two last equations:

k1

�
1− e2s − e2sNe

e2s − 1

�
=
−µNee

−2s

s
⇒ k1

�
e2sNe − 1

e2s − 1

�
=
−µNee

−2s

s

⇒ k1 =
µNe(1− e−2s)

s(1− e2sNe)

⇒ k0 =
µNe(1− e−2s)

s(1− e2sNe)

e2s − e2sNe

e2s − 1
=
µNe(1− e2s(Ne−1))

s(1− e2sNe)
,

therefore, applying to the initial equalities:

k′1 = e2sNe
µNe(1− e−2s)

s(1− e2sNe)
=
µNe(e

2sNe − e2s(Ne−1))

s(1− e2sNe)
,

k′0 =
µNe(1− e2s(Ne−1))

s(1− e2sNe)

we found the result.

Finally, in the limit of large Ne, with Nes and θ = 2µNe fixed, we obtain the
classical result by Wright and Kimura for the frequency spectrum with selection:

ξ(f) =
θ(1− e−2sNe(1−f))

(1− e−2sNe)f(1− f)

that converges, in the limit s→ 0, to the neutral frequency spectrum

ξ(f) =
θ

f
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2.2 Two mutations

This case is similar to the case of one mutation. Also in this case we can reduce
the number of variables in the evolution equation.

Two mutations without recombination give rise to three possible variants, as we
will see later.

Proposition 2.2.1. The forward Kolmogorov equation for three alleles satisfies the
following equality:

∂ξ

∂t
=

1

2Ne

�
∂2

∂f 2
1

[f1(1− f1)ξ] +
∂2

∂f1f2

[−2f1f2ξ] +
∂2

∂f 2
2

[f2(1− f2)ξ]

�

− ∂

∂f1

[(s1f1(1− f1)− s2f1f2 − s3f1(1− f1 − f2))ξ] (2.2.1)

− ∂

∂f2

[(s2f2(1− f2)− s1f1f2 − s3f2(1− f1 − f2))ξ] ,

where fi is the frequency of the allele i.

Proof. Doing the following change of variables f1 = x1, f2 = x2, r = x1 + x2 + x3

we have that ∂
∂x1

= ∂
∂f1

+ ∂
∂r

, ∂
∂x2

= ∂
∂f2

+ ∂
∂r

, ∂
∂x3

= ∂
∂r

. Doing all the calculus and a
reordering of the terms:

∂ξ

∂t
=

3X
i=1

3X
j=1

1

2

∂2

∂xi∂xj

�
xi(1− xi)

Ne

ξ

�
−

3X
i=1

∂

∂xi

2
4xi KX

j=1

(si − sj)xjξ

3
5

=
1

2Ne

�
∂2

∂f1f2

[−2f1f2ξ] +
∂2

∂f1r
[2f1(−f2 − (r − f1 − f2) + 1− f1)ξ]

+
∂2

∂f2r
[2f2(−f1 − (r − f1 − f2) + 1− f2)ξ] +

∂2

∂f 2
1

[f1(1− f1)ξ]

+
∂2

∂f 2
2

[f2(1− f2)ξ] +
∂2

∂r2
[(−2f1f2 − 2f1(r − f1 − f2)− 2f2(r − f1 − f2)

+ f1(1− f1) + f2(1− f2) + (r − f1 − f2)(1− (r − f1 − f2)))ξ]

�

− ∂

∂f1

[f1((s1 − s2)f2 + (s1 − s3)(r − f1 − f2))ξ]

− ∂

∂f2

[f2((s2 − s1)f1 + (s2 − s3)(r − f1 − f2))ξ] .

Now, using the fact that r = 1 all the terms with ∂
∂r

disappear and the equation
is reduced to the final expression.

Notation 2.2.2. From now on, we denote f0 as the frequency of the focal mutation
and f the frequency of the second mutation. It is important to not confuse these
frequencies with f1, f2 and f3, the frequencies of the alleles.



15 Chapter 2. Stationary solution for two mutations equation

From the results in the article [3], the stationary solution, ξ(f |f0), for the fre-
quency spectrum of the second mutation can be broken into two different compo-
nents, one component ξS containing mutations that share some individuals with
the focal mutation, the other ξE that includes mutation that are mutually exclusive
with the focal one. The spectrum is given by ξ = ξS + ξE. These component could
be further broken into different subspectra such that ξS = ξ(n) + ξ(co) + ξ(c) and
ξE = ξ(cm) + ξ(e), where:

• ξ(n) : nested mutations, i.e. mutations occurring in a subset of the individuals
carrying the focal mutation;

• ξ(co) : co-occurring mutations, i.e. occurring on the same individuals as the
focal mutation;

• ξ(c) : containing mutations, i.e. the focal mutation occurs in a subset of this;

• ξ(cm) : complementary mutations, i.e. each individual has either this mutation
or the focal one;

• ξ(e) : exclusive mutations, i.e. involving a set of individuals that is non-
overlapping and not complementary with the focal one.

It can be seen that these are the only possible cases without recombination, since ei-
ther two mutations are born in different backgrounds (then they are complementary
or exclusive), or one is born inside the other (in this case they are nested/containing
or co-occurring).

Now it is sufficient to find the components of the spectrum. This has already
been done through polynomial expansions [6], but simpler solutions are possible,
at least in the neutral case. We are going to use an unpublished result obtained
by Luca Ferretti using methods from coalescent theory. The principal steps to find
these components in the neutral case are applying the limit n→∞ to the equations
(14-16) of the article [3] divided then by the full spectrum θ/l and multiplying by
the length L of the sequence. Up to a global multiplicative factor θL, the result is

ξ(n)(f |f0) =
f0

(1− f)2

�
1 +

1

f
+

2 ln(f)

1− f

�

ξ(co)(f |f0) =ξ(co)(f0) =
2f0

1− f0

�
− ln(f0)

1− f0

− 1

�

ξ(c)(f |f0) =
f0

(1− f0)2

�
1 +

1

f0

+
2 ln(f0)

1− f0

�

ξ(cm)(f |f0) =ξ(cm)(f0) =

"
1− f0

f0

log(1− f0) +

�
f0

1− f0

�2

log(f0) +
1

1− f0

#

ξ(e)(f |f0) =

�
1

f
− f0

(1− f)2

�
1 +

1

f
+

2 ln(f)

1− f

�
− f0

(1− f0)2

�
1 +

1

f0

+
2 ln(f0)

1− f0

��
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Figure 2.1: Sequence variants and classification of the possible types of mutation
with respect to the focal mutation (in red).

Since we have ξ(i)(f, f0) ∝ ξ(i)(f |f0)ξ(f0), all ξ(i)(f |f0)/f0 for i ∈ {n, co, c, cm, e}
are solutions of the differential equation. We are going to study the cases nested
and exclusive because the nested case is the symmetric of the containing case, while
co-occurring and complementary are border cases that are difficult to study.

Proposition 2.2.3. The equations ξ(n) and ξ(e) are stationary solutions in the case
of neutral selection of the equation 2.2.1.

Proof. In nested case the appropriate change of variables is f = f1, f0 = f1 + f2.
Then dividing ξ(n)(f |f0) by f1 + f2 we found an stationary solution:

ξ(n)(f, f0) =
1

(1− f1)2

�
1 +

1

f1

+
2 ln(f1)

1− f1

�
.

We know that it is a stationary solution because using the second part of the
equation 2.2.1 we found that:

∂ξ(n)(f, f0)

∂t
= 0.

In the exclusive case the change of variables is f = f1, f0 = 1 − f1 − f2 and
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dividing ξ(e)(f |f0) between 1− f1 − f2 we found another stationary solution:

ξ(e)(f, f0) =
1

f1(1− f1 − f2)
− 1

(1− f1)2

�
1 +

1

f1

+
2 ln(f1)

1− f1

�

− 1

(f1 + f2)2

�
1 +

1

1− f1 − f2

+
2 ln(1− f1 − f2)

f1 + f2

�
.

And as in the previous case:

∂ξ(n)(f, f0)

∂t
= 0.

As in the case of two mutations, given a f0, we want to study the function
behaviour near the border, f = 0 and f = 1, that is where we can have problems
using our definition of the solution. For the values of f near 1 there is not any
problem because the limits exist in both cases:

lim
f→1−

ξ(n)(f |f0) = lim
f→1−

f0

(1− f)2

�
1 +

1

f
+

2 ln(f)

1− f

�
= f0 lim

f→1−

1− f 2 + 2f ln(f)

f − 3f 2 + 3f 3 − f 4

=f0 lim
f→1−

−2f + 2 ln(f) + 2ff−1

1− 6f + 9f 2 − 4f 3
= f0 lim

f→1−

−2 + 2f−1

−6 + 18f − 12f 2

=f0 lim
f→1−

−2f−2

18− 24f
=
f0

3
.

lim
f→1−

ξ(e)(f |f0) = lim
f→1−

1

f
− f0

(1− f)2

�
1 +

1

f
+

2 ln(f)

1− f

�
+ g(f0) = 1− f0

3
+ g(f0),

where g(f0) is a function that does not affect because do not have dependence on f .
Despite that, when f goes to zero the solution tends to infinity in both cases. In

order to solve it, we find another solution not divergent for that values of f ∈ (0, ε)
such that the values of the two solution coincide in f = ε. We formalize that adding
in our differential equation 2.2.1 a Dirac delta of f − ε multiplied by an adequate
coefficient as we can see in the equation 2.2.2. As in the case with one mutation
that is biologically consistent because it is like if our mutation was lost and another
appears and replaces it.

∂ξ

∂t
=

1

2Ne

�
∂2

∂f 2
1

[f1(1− f1)ξ] +
∂2

∂f1f2

[−2f1f2ξ] +
∂2

∂f 2
2

[f2(1− f2)ξ]

�

− ∂

∂f1

[(s1f1(1− f1)− s2f1f2 − s3f1(1− f1 − f2))ξ] (2.2.2)

− ∂

∂f2

[(s2f2(1− f2)− s1f1f2 − s3f2(1− f1 − f2))ξ]

+
θ

f0

µNeµ(f0)δ(f − ε).
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+ θ
f0
µNef0δ(f − 1/Ne) = θ2

2
δ(f − 1/Ne) where θ

f0
is the density of mutations with

frequency f0 and µNeµ(f0) is the number of mutations born inside µ(f0). For ex-
ample, in the nested case µ(f0) = f0 because the second mutation is nested in f0

and in the exclusive case µ(f0) = 1− f0 because of the opposite reason.
As in the case of one mutation, here we want a continuous solution with a

discontinuity in the first derivative of ξ differential f in the point f = ε.
Unfortunately, we only are able to find the value of the discontinuity in the

derivative.

Proposition 2.2.4. In the nested case, using that ε = 1/Ne, the discontinuity of
the first derivative of ξ is

�
∂ξ

∂f

� 1
Ne

+

1
Ne

−
' −2(1− f0)

�
∂ξ

∂f0

�ε+
ε−
− (θNe)

2.

Proof. First of all, we do the change of variables for the nested case change of variable
f = f1 and f0 = f1 + f2. Then, we integrate the equation 2.2.2 with ν(f0) = f0 and
θ = 2µNe. In the evaluation of the integral we using that the unique components
no-continuous in f = ε are the ∂ξ

∂f
and ∂ξ

∂f
.

lim
ε′→0

Z ε+ε′

ε−ε′

1

2

�
∂2

∂f 2
1

�
f1(1− f1)

Ne

ξ

�
+

∂2

∂f1f2

�−2f1f2

Ne

ξ

�
+

∂2

∂f 2
2

�
f2(1− f2)

Ne

ξ

��

− ∂

∂f1

[(s1f1(1− f1)− s2f1f2 − s3f1(1− f1 − f2))ξ]

− ∂

∂f2

[(s2f2(1− f2)− s1f1f2 − s3f2(1− f1 − f2))ξ] +
θ2

2
δ(f − ε)df

= lim
ε′→0

Z ε+ε′

ε−ε′

1

2

�
∂2

∂f 2

�
f(1− f)

Ne

ξ

�
+

∂2

∂ff0

�
2f(1− f0)

Ne

ξ

�

+
∂2

∂f 2
0

�
(f − f0)(−1 + f + f0)

Ne

ξ

��
− ∂

∂f
[(s1f(1− f)− s2f(f0 − f)

−s3f(1− f0))ξ]− ∂

∂f0

[(s1f(1− f0)− s2(f0 − f)(1− f0 + 2f)

−s3(2f − f0)(1− f0))ξ] +
θ2

2
δ(f − ε)df

=

�
1

2

�
∂

∂f

�
f(1− f)

Ne

ξ

�
+

∂

∂f0

�
2f(1− f0)

Ne

ξ

���ε+
ε−

+
θ2

2

=

�
1

2Ne

�
(−2f + 1)ξ + f(1− f)

∂ξ

∂f
− 2fξ + 2f(1− f0)

∂ξ

∂f0

��ε+
ε−

+
θ2

2

=

�
1

2Ne

�
f(1− f)

∂ξ

∂f
+ 2f(1− f0)

∂ξ

∂f0

��ε+
ε−

+
θ2

2
.

Then, since we are considering that we are in a stationary solution:
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�
f(1− f)

∂ξ

∂f
+ 2f(1− f0)

∂ξ

∂f0

�ε+
ε−

= −θ2Ne

ε(1− ε)
�
∂ξ

∂f

�ε+
ε−

+ 2ε(1− f0)

�
∂ξ

∂f0

�ε+
ε−

= −θ2Ne

�
∂ξ

∂f

�ε+
ε−

=
1

ε(1− ε)

�
−2ε(1− f0)

�
∂ξ

∂f0

�ε+
ε−
− θ2Ne

�
.

Using ε = 1/Ne we find the searched value.

Proposition 2.2.5. In the exclusive case, using that ε = 1/Ne, the discontinuity of
the first derivative of ξ is

�
∂ξ

∂f

�ε+
ε−

= 2f0

�
∂ξ

∂f0

�ε+
ε−
− θ2(1− f0)N2

e

f0

.

Proof. As in the nested case, first of all, we do adequate change of variable f = f1

and f0 = 1 − f1 − f2. Then, we integrate the equation 2.2.2 ν(f0) = 1 − f0 and
θ = 2µNe. Then, we use that unique components no-continuous in f = ε are the ∂ξ

∂f

and ∂ξ
∂f

.

lim
ε′→0

Z ε+ε′

ε−ε′

1

2

�
∂2

∂f 2
1

�
f1(1− f1)

Ne

ξ

�
+

∂2

∂f1f2

�−2f1f2

Ne

ξ

�
+

∂2

∂f 2
2

�
f2(1− f2)

Ne

ξ

��

− ∂

∂f1

[(s1f1(1− f1)− s2f1f2 − s3f1(1− f1 − f2))ξ]

− ∂

∂f2

[(s2f2(1− f2)− s1f1f2 − s3f2(1− f1 − f2))ξ] +
θ2(1− f0)

2f0

δ(f − ε)df

= lim
ε′→0

Z ε+ε′

ε−ε′

1

2

�
∂2

∂f 2

�
f(1− f)

Ne

ξ

�
+

∂2

∂ff0

�−2ff0

Ne

ξ

�
− ∂2

∂f 2
0

�
f0(1− f0)

Ne

ξ

��

− ∂

∂f
[(s1f(1− f)− s2f(1− f − f0)− s3f(1− f − (1− f − f0)))ξ]

+
∂

∂f0

[(s2f0(1− f − f0) + s1ff0 + s3f0(−2 + f + f0))ξ] +
θ2(1− f0)

2f0

δ(f − ε)df

=

�
1

2

�
∂

∂f

�
f(1− f)

Ne

ξ

�
+

∂

∂f0

�−2ff0

Ne

ξ

���ε+
ε−

+
θ2(1− f0)

2f0

=

�
1

2Ne

�
(−2f + 1)ξ + f(1− f)

∂ξ

∂f
− 2fξ − 2ff0

∂ξ

∂f0

��ε+
ε−

+
θ2(1− f0)

2f0

=

�
1

2Ne

�
f(1− f)

∂ξ

∂f
− 2ff0

∂ξ

∂f0

��ε+
ε−

+
θ2(1− f0)

2f0

.
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Then, since we are considering that we are in a stationary solution:

�
f(1− f)

∂ξ

∂f
− 2ff0

∂ξ

∂f0

�ε+
ε−

= −θ
2(1− f0)Ne

f0

ε(1− ε)
�
∂ξ

∂f

�ε+
ε−
− 2εf0

�
∂ξ

∂f0

�ε+
ε−

= −θ
2(1− f0)Ne

f0�
∂ξ

∂f

�ε+
ε−

=
1

ε(1− ε)

�
2εf0

�
∂ξ

∂f0

�ε+
ε−
− θ2(1− f0)Ne

f0

�
.

Using ε = 1/Ne we find the searched value.



Chapter 3

Evolution of mutations after an
environmental change

3.1 Introduction to the problem

In this chapter we are going to describe the evolution of certain mutations in a
specific environment. Mainly, we want to study the result of a sudden change in the
fitness of a derived allele in a population with different mutations, evolving neutrally
up to this moment. The evolution of the selected allele changes the frequency of
the alleles at different positions in the sequence. We are going to differentiate be-
tween three cases: nested, containing and exclusive mutations, because each of them
presents a different evolution of the neutral mutation. The evolution in the other
two cases - co-occurring and complementary - is directly related to the evolution of
the selected mutation.

The assumptions for the model are the same as in the previous chapters of the
project, but we have to add/change some notation:

• fF will denote the frequency of the selected mutation whereas f will denote
the frequency of the other one.

• ξN(f |fF (0)) is the stationary neutral spectrum defined in Chapter 2.

First of all, we are going to consider the trajectories of the selected mutation.
We assume a deterministic dynamics in a rescaled time that makes equations easier.
This new time definition comes from t = st′ where t′ is the previous time and s is
the allele fitness.

Proposition 3.1.1. The deterministic dynamics of the selected mutation is:

fF (t) =
fF (0)

fF (0) + (1− fF (0))e−t
.

Proof. Using the rescaling of time and the Proposition 1.2.5 with K = 2, we found
that the equation for the selected mutation fF is the solution of:

dfF
dt

=
1

s
E [∆(fF )|Ft] = fF (1− fF ),

21
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Figure 3.1: Example of the trajectory of the focal allele in the problem. From now
on in pictures, in green the neutral evolution, in red the selective one.

with an arbitrary initial condition fF (0). The solution of the differential equation
is:

fF (t) =
et

et + k
=

1

1 + ke−t
=

fF (0)

fF (0) + (1− fF (0))e−t
.

In order to determine k, we apply that the initial condition is fF (0):

fF (0) =
1

1 + k
⇒ k =

1

fF (0)
− 1 =

1− fF (0)

fF (0)
.

Then, notice that if fF (0) 6= 0 and fF (0) 6= 1 we have the following relations
that we will use to solve equations in the future.

e−t =
fF (0)(1− fF (t))

fF (t)(1− fF (0))
et =

fF (t)(1− fF (0))

fF (0)(1− fF (t))
. (3.1.1)
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Since we have an explicit formula for fF , the differentials of fF do not appear in
the forward Kolmogorov equations as in the Chapter 2 problem. Now our rescaled
differential equation (forward) is given by the following expression:

∂ξ

∂t
=

1

2Ne

∂2

∂f 2
[Var (∆f |Ft) ξ]−

1

s

∂

∂f
[E [∆f |Ft] ξ] ⇒

∂ξ

∂t
=

1

2Nes

∂2

∂f 2
[f(1− f)ξ]− ∂

∂f
[E [∆f |Ft] ξ] . (3.1.2)

where the formula for variance is given by the Proposition 1.2.5 and the formula
for the expected value is different for the nested, exclusive and containing case.
Despite that, every case E [∆f |Ft] has a linear dependence of s, therefore s ap-
pears only in the first term at the right-hand side as the combination 1/2Nes.

f

fF

Figure 3.2: Explanation
of the nested case.

3.2 Nested Case

As the Figure 3.2 reflects, in that case the mutation with
f is nested inside the selected mutation, i.e. all individ-
uals with this mutation have also the selected mutation.

Proposition 3.2.1. In the nested case, the differential
equation that we have to solve is

∂ξ(f |fF (0), t)

∂t
=

1

2sNe

∂2

∂f 2
[f(1− f)ξ(f |fF (0), t)]− ∂

∂f
[f(1− fF )ξ(f |fF (0), t)] .

Proof. What we only have to do is transforming the expected value of the equa-
tion 3.1.2 into an explicit formula. So, we apply the Proposition 1.2.5 with K = 3,
x1 = f , x2 = fF − f and x3 = 1− fF . Since s1 = s2 = s and s3 = 0:

E [∆f |Ft] = E [∆x1|Ft] = x1sx3 = sf(1− fF ).

Since we cannot find an explicit solution for this differential equation, we expand
it in powers of 1/S = 1/2Nes and we are going to find the solution for each order
in a recursive way.

ξ(f |fF (0), t) =
∞X
n=0

�
1

2Nes

�n
ξn(f |fF (0), t).
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Hence, supposing that 1� s� 1/Ne > 0 we can solve it order by order starting
at 0. The lowest orders are presumably more relevant than the higher ones. So, we
are able to use the expression of ξi to solve ξi+1:

∂ξ0(f |fF (0), t)

∂t
= − ∂

∂f
[f(1− fF )ξ0(f |fF (0), t)] ,

∂ξi+1(f |fF (0), t)

∂t
=

∂2

∂f 2
[f(1− f)ξi(f |fF (0), t)]− ∂

∂f
[f(1− fF )ξi+1(f |fF (0), t)] .

(3.2.1)

The Green function of the system for s = 0 is going to solve both partial differ-
ential equations.

Theorem 3.2.2. In the nested case the Green function for s = 0 is

G(f, t|f̃ , t̃) = θ
�
t− t̃

�
δ

 
f̃ − f(t)fF (t̃)

fF (t)

!
fF (t̃)

fF (t)
.

Proof. Consider f̃ the initial frequency of f and t̃ the initial time, then the Green
function is the function G such that satisfies:

∂G(f, t|f̃ , t̃)
∂t

= δ(f − f̃)δ(t− t̃)− ∂

∂f

�
f(1− fF )G(f, t|f̃ , t̃)

�
⇒

∂G

∂t
+ f(1− fF )

∂G

∂f
= δ(f − f̃)δ(t− t̃)− (1− fF )G,

with initial conditions G = 0 at t→ −∞.
The solution is 0 for t < t̃, while the term δ(f − f̃)δ(t − t̃) generates an initial

condition δ(f − f̃) at t = t̃ for the equation (valid at times t > t̃):

∂G2

∂t
+ f(1− fF )

∂G2

∂f
= −(1− fF )G2.

Hence, applying the method of characteristics to the previous equation:

∂t

∂s
= 1⇒ t = s+ t̃,

∂f

∂s
= (1− fF )f ⇒

f(s) = f(0)e

Z s

0
(1− fF (x))dx

= f(0)ex− log(1 + (ex − 1)fF (0))]s0 ⇒

f(t) = f(t̃)
et

1 + (et − 1)fF (t̃)
= f(t̃)

1

fF (t̃) + (1− fF (t̃))e−t
= f(t̃)

fF (t)

fF (t̃)
,

∂G2

∂s
= −(1− fF )G2 ⇒ G2(f(t), t) = . . . = G2(f(t̃), t̃)

fF (t̃)

fF (t)
.
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In the previous equalities we have used several tricks in order not to carry too
many notation and doing too much calculus. We have considered directly that
the initial time is t̃ and s is equivalent to s + t̃, we have used the formulas from
Proposition 3.1.1 and Equation 3.1.1 and the computation of fF (x) for G2(f(t), t).

Now, we complete the proof with the Lemma 3.2.3 proved below, with

ϕ(t) =
fF (t)

fF (t̃)
, φ(t) = 0, ψ(t) =

fF (t̃)

fF (t)
.

and we find the Green function for the nested case.

Lemma 3.2.3. Let f(t) = f(t̃)ϕ(t)+φ(t) and G2(f(t), t) = G2(f(t̃), t̃)ψ(f(t), t) the
solution for the appropriate differential equation for t > t̃ where t̃ is the initial fixed
time and f̃ the initial frequency of f . Then, the Green function is

G(f, t|f̃ , t̃) = θ
�
t− t̃

�
δ

�
f̃ − f − φ(t)

ϕ(t)

�
ψ(f, t).

Proof.

G2 (f(t), t) = G2(f(t̃), t̃)ψ(f(t), t)⇒

G2 (f(t), t) = G2

�
f(t)− φ(t)

ϕ(t)
, t̃

�
ψ(f(t), t).

using the fact that f(t̃) = f(t)−φ(t)
ϕ(t)

. Then, since G2 is the solution for t > t̃ and if

the initial condition for f̃ is δ(f(t̃)− f̃) we have the following Green function:

G(f, t|f̃ , t̃) =

8><>:
0 if t < t̃,

0 if f̃ 6= f−φ(t)
ϕ(t)

,

ψ(f, t) otherwise.

Therefore:

G(f, t|f̃ , t̃) = θ
�
t− t̃

�
δ

�
f̃ − f − φ(t)

ϕ(t)

�
ψ(f, t).

Theorem 3.2.4. Let γ(f, t), H(f, t) and χ(f, t) be well-behaved functions such that:

∂γ(f, t)

∂t
= H(f, t) +

∂

∂f
[χ(f, t)γ(f, t)] .

Then, if G(f, t|f̃ , t̃) is the Green function corresponding to H(f, t) = 0:

γ(f, t) =
Z

Ω
H(t̃, f̃)G(f, t|f̃ , t̃)df̃dt̃.
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Proof. The Green function is the function G such that satisfies:

∂G(f, t|f̃ , t̃)
∂t

= δ(f − f̃)δ(t− t̃) +
∂

∂f

�
χ(f, fF )G(f, t|f̃ , t̃)

�
.

Therefore, multiplying in both sides for H(t̃, f̃) and integrating by t̃ and f̃ :

Z
Ω
H(t̃, f̃)

∂G(f, t|f̃ , t̃)
∂t

df̃dt̃ =
∂

∂t

�Z
Ω
H(t̃, f̃)G(f, t|f̃ , t̃)df̃dt̃

�
,Z

Ω
H(t̃, f̃)δ(f − f̃)δ(t− t̃)df̃dt̃ = H(t, f),Z

Ω
H(t̃, f̃)

∂

∂f

�
χ(f, fF )G(f, t|f̃ , t̃)

�
df̃dt̃ =

∂

∂f

�
χ(f, fF )

Z
Ω
H(t̃, f̃)G(f, t|f̃ , t̃)df̃dt̃

�
.

we found that:
γ(f, t) =

Z
Ω
H(t̃, f̃)G(f, t|f̃ , t̃)df̃dt̃.

Corollary 3.2.5. Via the Green function, the 0th order is the following:

ξ0(f |fF (0), t) = ξN

 
ffF (0)

fF (t)

����� fF (0)

!
fF (0)

fF (t)
.

The higher orders can be solved recursively as follows:

ξi+1(f |fF (0), t) =
Z t

0

�
∂2

∂x2
[x(1− x)ξi(x|fF (0), t)]

�
x=

ffF (u)

fF (t)

fF (u)

fF (t)
du.

Proof. For the higher order therms i+ 1 ≥ 1, we use the Theorem 3.2.2 and Equa-
tion 3.2.1 for applying the Theorem 3.2.4:

G(f, t|f̃ , t̃) = θ
�
t− t̃

�
δ

 
f̃ − ffF (t̃)

fF (t)

!
fF (t̃)

fF (t)
,

H(f, t) =
∂2

∂f 2
[f(1− f)ξi(f |fF (0), t)] .

Therefore, changing f for x inside the derivative and t̃ for u in the second equality
to clarify the notation:

ξi+1(f |fF (0), t) =
Z

Ω

∂2

∂f 2
[f(1− f)ξi(f |fF (0), t)] θ

�
t− t̃

�
δ

 
f̃ − ffF (t̃)

fF (t)

!
fF (t̃)

fF (t)
df̃dt̃

=
Z t

0

�
∂2

∂x2
[x(1− x)ξi(x|fF (0), t)]

�
x=

ffF (u)

fF (t)

fF (u)

fF (t)
du.

The 0th order is the stationary solution when the initial frequency of f̃ is ffF (0)
fF (t)

because in that case H(f, t) = 0. Hence,

ξ0(f |fF (0), t) = ξN

 
ffF (0)

fF (t)

����� fF (0)

!
fF (0)

fF (t)
.
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f

fF

Figure 3.3: Explanation
of the exclusive case.

3.3 Exclusive Case

As the Figure 3.3 reflects, in this case there are no se-
quences with the two mutations.

Proposition 3.3.1. In the case of exclusive muta-
tions, the differential equation that we have to solve is

∂ξ(f |fF (0), t)

∂t
=

1

2sNe

∂2

∂f 2
[f(1− f)ξ(f |fF (0), t)]+

∂

∂f
[ffF ξ(f |fF (0), t)] .

Proof. As in the previous case, what we only have to do is transforming the ex-
pected value of the equation 3.1.2 into an explicit formula. So, we apply the Propo-
sition 1.2.5 with K = 3, x1 = fF , x2 = 1 − f − fF and x3 = f . Since s1 = s and
s2 = s3 = 0:

E [f(∆t)|Ft] = E [x3(∆t)|Ft] = x3(−s)x1 = −sffF .

As above, we expand the solution in powers of 1/S = 1/2Nes:

ξ(f |fF (0), t) =
∞X
n=0

�
1

2Nes

�n
ξn(f |fF (0), t).

Assuming that 1� s� 1/Ne > 0 we finally find the following equations:

∂ξ0(f |fF (0), t)

∂t
=

∂

∂f
[ffF ξ0(f |fF (0), t)] ,

∂ξi+1(f |fF (0), t)

∂t
=

∂2

∂f 2
[f(1− f)ξi(f |fF (0), t)] +

∂

∂f
[ffF ξi+1(f |fF (0), t)] . (3.3.1)

The Green function of the system will be used to solve both partial differential
equations.

Theorem 3.3.2. In the exclusive case the Green function for s = 0 is

G(f, t|f̃ , t̃) = θ
�
t− t̃

�
δ

 
f̃ − f(1− fF (t̃))

1− fF (t)

!
1− fF (t̃)

1− fF (t)
.
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Proof. Consider f̃ the initial frequency of f and t̃ the initial time, then the Green
function is the function G such that satisfies:

∂G(f, t|f̃ , t̃)
∂t

= δ(f − f̃)δ(t− t̃) +
∂

∂f

�
ffFG(f, t|f̃ , t̃)

�
⇒

∂G

∂t
− ffF

∂G

∂f
= δ(f − f̃)δ(t− t̃) + fFG.

with initial conditions G = 0 at t→∞.
As in the nested case, the solution is 0 for t < t̃, while the term δ(f − f̃)δ(t− t̃)

generates the initial condition δ(f − f̃) for the equation when t > t̃:

∂G2

∂t
− ffF

∂G2

∂f
= fFG2.

Hence, we apply the Characteristics method to the previous equation:

∂t

∂s
= 1⇒ t = s+ t̃,

∂f

∂s
= −fFf ⇒

f(s) = f(0)e

Z s

0
−fF (x)dx

= f(0)e− log(1 + (ex − 1)fF (0))]s0 ⇒

f(t) = f(t̃)
1

1 + (et − 1)fF (t̃)
= f(t̃)

e−t

fF (t̃) + (1− fF (t̃))e−t

= f(t̃)
fF (t)

fF (t̃)

fF (t̃)(1− fF (t))

fF (t)(1− fF (t̃))
= f(t̃)

1− fF (t)

1− fF (t̃)
,

∂G2

∂s
= fFG2 ⇒ G2(f(t), t) = . . . = G2(f(t̃), t̃)

1− fF (t̃)

1− fF (t)
.

In the previous equalities we have used the same tricks than in the proof of the
Theorem 3.2.2.

Now, using the Lemma 3.2.3 with

ϕ(t) =
1− fF (t)

1− fF (t̃)
, φ(t) = 0, ψ(t) =

1− fF (t̃)

1− fF (t)
.

we found the Green function for the exclusive case.

Corollary 3.3.3. Via the Green function, the 0th order is the following:

ξ0(f |fF (0), t) = ξN

 
f(1− fF (0))

1− fF (t)

����� fF (0)

!
1− fF (0)

1− fF (t)
.

The higher orders can be solved recursively as follows:

ξi+1(f |fF (0), t) =
Z t

0

�
∂2

∂x2
[x(1− x)ξi(x|fF (0), t)]

�
x=

f(1−fF (u))

1−fF (t)

1− fF (u)

1− fF (t)
du.

Proof. The proof of that Corollary is the same than the one for Corollary 3.2.5
despite the fact that in that case we use the Theorem 3.3.2 and Equation 3.3.1.



29 Chapter 3. Evolution of mutations after an environmental change

fF

f

Figure 3.4: Explanation
of the containing case.

3.4 Containing Case

As the Figure 3.4 reflects, now the mutation with fre-
quency f is present in all sequences containing the se-
lected mutation.

Proposition 3.4.1. In containing case, the differential
equation that we have to solve is

∂ξ(f |fF (0), t)

∂t
=

1

2sNe

∂2

∂f 2
[f(1− f)ξ]− ∂

∂f
[fF (1− f)ξ(f |fF (0), t)] .

Proof. As in the previous cases, what we only have to do is transforming the ex-
pected value of the equation 3.1.2 into an explicit formula. So, we apply the Propo-
sition 1.2.5 with K = 3, x1 = fF , x2 = f − fF and x3 = 1 − f . Since s1 = s and
s2 = s3 = 0:

[f(∆t)|Ft] = E [x1(∆t)|Ft] + E [x2(∆t)|Ft] = x1(sx2 + x3)−
− sx1x2 = sx1(x2 + x3 − x2) = sfF (1− f).

As above, we expand the solution in powers of 1/S = 1/2Nes:

ξ(f |fF (0), t) =
∞X
n=0

�
1

2Nes

�n
ξn(f |fF (0), t).

Supposing that 1� s� 1/Ne > 0 we finally found the following equations:

∂ξ0(f |fF (0), t)

∂t
=

∂

∂f
[(1− f)fF ξ0(f |fF (0), t)] ,

∂ξi+1(f |fF (0), t)

∂t
=

∂2

∂f 2
[f(1− f)ξi(f |fF (0), t)]− ∂

∂f
[(1− f)fF ξi+1(f |fF (0), t)] .

(3.4.1)

Green function of the system is going to solve both partial differential equations.
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Theorem 3.4.2. In the containing case the Green function for s = 0 is

G(f, t|f̃ , t̃) = θ
�
t− t̃

�
δ

 
f̃ − f(1− fF (t̃))− fF (t) + fF (t̃)

1− fF (t)

!
1− fF (t̃)

1− fF (t)
.

Proof. Consider f̃ the initial frequency of f and t̃ the initial time, then the Green
function is the function G such that satisfies:

∂G(f, t|f̃ , t̃)
∂t

= δ(f − f̃)δ(t− t̃)− ∂

∂f

�
(1− f)fFG(f, t|f̃ , t̃)

�
⇒

∂G

∂t
+ (1− f)fF

∂G

∂f
= δ(f − f̃)δ(t− t̃) + fFG.

As in the previous case, the solution is 0 for t < t̃, while the term δ(f− f̃)δ(t− t̃)
generates the initial condition δ(f − f̃) for the equation when t > t̃:

∂G2

∂t
+ f(1− fF )

∂G2

∂f
= fFG2.

Hence, we apply the Characteristics method to the previous equation:

∂t

∂s
= 1⇒ t = s+ t̃,

∂f

∂s
= (1− f)fF = (1− f)

et

et + 1−fF (t̃)

fF (t̃)

⇒

f(t) =
f(t̃) + (et − 1)fF (t̃)

1 + (et − 1)fF (t̃)
=

f(t̃) +

 
fF (t)(1− fF (t̃))

fF (t̃)(1− fF (t))
− 1

!
fF (t̃)

1 +

 
fF (t)(1− fF (t̃))

fF (t̃)(1− fF (t))
− 1

!
fF (t̃)

=
f(t̃)(1− fF (t)) + fF (t)(1− fF (t̃))− (1− fF (t))fF (t̃)

(1− fF (t)) + fF (t)(1− fF (t̃))− fF (t̃)(1− fF (t))

=
f(t̃)(1− fF (t)) + fF (t)− fF (t̃)

1− fF (t̃)
,

∂G2

∂s
= fFG2 ⇒ G2(f(t), t) = . . . = G2(f(t̃), t̃)

1− fF (t̃)

1− fF (t)
.

In the previous equalities we have used the same tricks than in the proof of the
Theorem 3.2.2. In addition for this case, we recommend to use a derivative software
in order to check the correctness of the formula for f(x) because there are lots of
calculus.

Now, using the Lemma 3.2.3 with:

ϕ(t) =
1− fF (t)

1− fF (t̃)
, φ(t) =

fF (t)− fF (t̃)

1− fF (t̃)
, ψ(t) =

1− fF (t̃)

1− fF (t)
.
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we found the Green function for the containing case:

G(f, t|f̃ , t̃) = θ
�
t− t̃

�
δ

 
f̃ − f(1− fF (t̃))− fF (t) + fF (t̃)

1− fF (t)

!
1− fF (t̃)

1− fF (t)
.

Corollary 3.4.3. Via the Green function, the 0th order is the following:

ξ0(f |fF (0), t) = ξN

 
f(1− fF (0))− fF (t) + fF (0)

1− fF (t)

����� fF (0)

!
1− fF (0)

1− fF (t)
.

The higher orders can be solved recursively as follows:

ξi+1(f |fF (0), t) =

=
Z t

0

�
∂2

∂x2
[x(1− x)ξi(x|fF (0), t)]

�
x=

f(1−fF (u))−fF (t)+fF (u)

1−fF (t)

1− fF (u)

1− fF (t)
du.

Proof. The proof of that Corollary is the same than the one for Corollary 3.2.5
despite the fact that in that case we use the Theorem 3.2.2 and Equation 3.4.1.





Conclusions

In this work we have studied the stationary solutions of a modified Wright-Fisher
model.

In the case of two mutations, we proved that pairs of nested and exclusive neutral
mutations have the following frequency spectrum, i.e. stationary distribution of
frequencies:

ξ(n)(f |f0) =
f0

(1− f)2

�
1 +

1

f
+

2 ln(f)

1− f

�

ξ(e)(f |f0) =

�
1

f
− f0

(1− f)2

�
1 +

1

f
+

2 ln(f)

1− f

�
− f0

(1− f0)2

�
1 +

1

f0

+
2 ln(f0)

1− f0

��

for the nested and exclusive case respectively, and we characterized the equations
for a general solution with arbitrary selection.

These result are the first steps towards a full description of the effects of the evo-
lution of a mutation on a nearby mutation. They can be used to elucidate the struc-
ture of linkage disequilibrium (non-independence between close mutations), to model
important biological phenomena like background selection (selection on nearby dele-
terious mutations) and pervasive hitchhiking and genetic draft (selection on nearby
beneficial mutations) and improve statistical inference from DNA sequence data.
An important but difficult extension of this work would be the inclusion of recom-
bination, i.e. the exchange of genetic material between different sequences during
sexual reproduction.

We also characterized the distribution of frequencies following an environmental
change and the related change in selective pressure. Assuming that after this change,
the mutation under selection would evolve according to the deterministic equation

fF (t) =
fF (0)

fF (0) + (1− fF (0))e−t
,

the evolution of the second mutation follows the power series

ξ(f |fF (0), t) =
∞X
i=0

�
1

2Nes

�i
ξi(f |fF (0), t),

We found the solution of the Kolmogorov equation for the coefficients of this expan-
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sion:

ξ
(n)
0 (f |fF (0), t) = ξN

 
ffF (0)

fF (t)

����� fF (0)

!
fF (0)

fF (t)
,

ξ
(n)
i+1(f |fF (0), t) =

Z t

0

�
∂2

∂x2
[x(1− x)ξi(x|fF (0), t)]

�
x=

ffF (u)

fF (t)

fF (u)

fF (t)
du;

ξ
(e)
0 (f |fF (0), t) = ξN

 
f(1− fF (0))

1− fF (t)

����� fF (0)

!
1− fF (0)

1− fF (t)
,

ξ
(e)
i+1(f |fF (0), t) =

Z t

0

�
∂2

∂x2
[x(1− x)ξi(x|fF (0), t)]

�
x=

f(1−fF (u))

1−fF (t)

1− fF (u)

1− fF (t)
du;

ξ
(c)
0 (f |fF (0), t) = ξN

 
f(1− fF (0))− fF (t) + fF (0)

1− fF (t)

����� fF (0)

!
1− fF (0)

1− fF (t)
,

ξ
(c)
i+1(f |fF (0), t) =

=
Z t

0

�
∂2

∂x2
[x(1− x)ξi(x|fF (0), t)]

�
x=

f(1−fF (u))−fF (t)+fF (u)

1−fF (t)

1− fF (u)

1− fF (t)
du

respectively for the nested, exclusive and containing case. This is the first charac-
terization of the frequency spectrum after an environmental change, and is specially
interesting because it represent an observable DNA footprint of recent adaptation to
changing environments. These results can be used to detect regions of the genome
under recent selection based on DNA sequence data. They can also be used to de-
tect the initial and final frequencies of the mutation under selection and therefore
distinguish between different evolutionary scenarios (hard selective sweeps, incom-
plete selective sweeps, soft selective sweeps from standing variation) that differ in
the initial and final frequency of the selected mutation in the population. It would
be interesting to extend these results to the case with recombination, but similarly
to the neutral case, there are difficult problems to be faced.

A general, interesting extension of this work would be the analysis of three or
more mutations. This would be useful to characterize the noise of the frequency
spectrum and other statistics.

In addition, another option to extend the project is to bound the error of the
series expansion of chapter two or compare the results with numeric simulations.
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