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Chapter 0

Resum en catala

En aquesta tesi doctoral es tracten alguns problemes sobre fluctuacions en poblacions
amb una estructura complexa, en particular aquelles caracteritzades per I’existencia d’un
estat latent. El nostre objectiu és entendre millor algunes qiiestions que sorgeixen en la
dinamica de les poblacions de cel-lules amb estructura jerarquica, com ara les que es troben
en els organismes multicel-lulars caracteritzats per la diferenciacié cel-lular, i la dinamica
del VIH-1 en pacients infectats que es troben amb terapia antiretroviral. Els dos sistemes
estan caracteritzats per la presencia d’una poblacié en estat latent, és a dir, cel-lules mare
en el primer cas, i cel-lules infectades en estat latent en el segon.

0.1 Motivacio i rerefons biologic

Els problemes biologics han estat estudiat pels cientifics amb 4 models diferents: In vivo,
In wvitro, Data Driven i mechanistic models. Encara que aquests iltims sén els que donen
un millor enteniment sobre la dinamica del proces que s’estudia, han estat els que menys
exit han tingut en biologia.

Els mechanistic models s’han utilitzat tradicionalment per matematics i fisics per estu-
diar problemes biologics fent servir aproximacions continues i deterministes. No obstant,
en alguns casos, aquests models poden no ser molt correctes. Si les poblacions sén petites
no podem assumir que un model de camp mitja sigui una bona aproximacié de la realitat.
Aixo és important en molts problemes biologics, on sovint, un es troba poblacions petites.

S’ha provat que el soroll intrinsec, és a dir, fluctuacions en el sistema degut a un tamany
petit, pot tenir una forta influéncia en el comportament d’un sistema dinamic [14] 85, [42].
Presentem una introduccié als processos estocastics a ’Apendix [A] concretament tracta
sobre modelitzacié estocastica i I’algoritme de Gillespie de simulacié estocastica, que sera
la nostra principal eina.

0.1.1 Latencia en poblacions de cel-lules

Pels proposits d’aquesta tesi, la latencia es defineix com un estat de la cel-lula en que la
majoria de les seves funcions, prominent proliferacié, estan desactivades. Aquest mecan-
isme sovint sorgeix en entorns hostils per sobreviure. Un exemple d’aquest comportament
s’ha analitzat en [3], on s’ha provat que la laténcia pot actuar com un mecanisme que per-
met a una poblacié maligne eludir ’accié d’un medicament, fent que les cel-lules d’aquesta
poblacié tinguin la capacitat d’entrar en un estat de repos, en el qual sén immunes a
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I’efecte de la droga. Al entrar en aquest estat, una petita poblacié latent és capag de
sobreviure, i, finalment, tornar a créixer un cop que el medicament ha deixat d’aplicar-se.
Un cas particular en que aquest model és rellevant, és la resistencia a la quimioterapia o ra-
dioterapia en els tumors amb regions amb hipoxia (falta d’oxigen). Les cel-lules hipoxiques
es sotmeten a una gran reduccié de la seva taxa de proliferacié, que les fa menys sensibles
a aquests tractaments que les cel-lules de cicle rapid, proporcionant aixi un reservori de
cel-lules immunes, que, quan es para la terapia, fan que aquesta poblacié torni a créixer.
A més d’escapament a la terapia, els fenomens de laténcia han provat tenir un paper en
el cancer per eludir els controls homeostatics del teixit normal. Roesch et al. [I08] han
caracteritzat un cicle lent (latent) d’una subpoblacié dins de la poblacié del melanoma,
que te una proliferacié de cel-lules molt més rapida necessaria per al creixement tumoral.

Un altre exemple on la laténcia ha provat ser crucial, és per entendre certs aspectes
del VIH i la seva resposta a la terapia. El VIH es controla amb molta eficacia amb
terapia antiretroviral. No obstant, aquestes terapies no suprimeixen completament el
virus. Encara que eviten que els virus infectin cel-lules T, estudis a llarg termini de la
carrega viral en pacients tractats revela que un nivell baix del virus (per sota dels limits
de deteccié estandard) persisteix molt de temps [110, [123]. Aquests resultats suggereixen
que la infeccié persisteix en els pacients tractats en forma de compartiment insensible a la
droga. Moltes hipotesis han estat formulades sobre la naturalesa d’aquest compartiment,
pero la més consolidada és la que ho explica amb una poblacié de cel-lules infectades en
estat latent. Aquest compartiment cel-lular consisteix en unes cel-lules (probablement de
memoria) que proliferen lentament i guarden el virus pero no el repliquen. Com aquestes
cel-lules no repliquen el virus no sén afectades per la terapia antiretroviral. A mes, després
de l'estimulacié amb antigens especifics, passen a un estat actiu i reprenen la produccio de
virus. Aquest cicle manté aquest baix nivell de viremia. La preséncia d’aquesta infeccié
latent ha estat reconeguda com la principal barrera per a la completa eradicacié de la
infeccio, i la recerca de mitjans per combatre-la s’ha convertit en una molt activa linia de
recerca [1211 113, 65 [66].

El fenomen de la latéencia també és part de la regulacio fisiologica normal dels teixits.
En particular, les cel-lules mare, que soén els components essencials dels teixits dels organ-
ismes multicel-lulars, passen la major part del seu cicle de vida en un estat latent, és a dir,
sense proliferar. Només després de rebre els senyals apropiats, les cel-lules mare s’activen
i la proliferen. Aquestes senyals sén secretades en resposta a una disminucié en el nombre
de cel-lules madures (totalment diferenciades) que estan al final de la corresponent cadena
de diferenciacié: quan el nombre de cel-lules madures disminueix, la proliferacié cel-lular
s’activa per tal de reposar les cel-lules madures. Encara que aquest mecanisme és part de
la regulacié normal del teixit, pot ser subvertit per patologies com el cancer que segresten
les propietats de les ceél-lules mare.

L’objectiu general d’aquesta tesi és utilitzar models estocastics, juntament amb tecniques
asimptotiques i metodes numerics per a comprendre millor els mecanismes basics que in-
tervenen en la dinamica de les poblacions del cel-lules laténcia retroalimentada amb la
finalitat de proposar estrategies de control que ajudin a formular millor, els enfocaments
terapeutics per situacions patologiques que resulten de la des-regulacié de les cascades de
diferenciacié i del VIH-1 en estat latent.
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0.1.2 Dinamica estocastica de les cascades de diferenciacié regulades
retroactivament

En el Capitol 2| analitzem els factors que afecten a la robustesa de les poblacions de cel-lules
amb estructura jerarquica. Els teixits en organismes multicel-lulars com els mamifers, man-
tenen I’homeostasi per mitja de cascades de diferenciacié de cel-lules en serie [4]. Aquestes
cascades estan compostes per compartiments jerarquicament organitzats de diferents tipus
de cel-lules. La pedra angular d’aquest sistema sén les cel-lules mare (SCS) que sostenen
el teixit produint més cel-lules mare, una propietat coneguda com auto-renovacio, i les
cel-lules diferenciades d’un llinatge especific. La cascada de diferenciacié procedeix a
través d’una seérie d’etapes intermitges o compartiments de cel-lules amplificadores tran-
sitories (TAC) i acaba amb el compartiment de cel-lules madures o totalment diferenciades
(MCS).

Hi ha hagut molta discussié sobre la qiiestié de com les SC mantenen tota la cadena a
partir de ’auto-renovacié i la diferenciacié [91], [92] [71], 114, [72]. Una estrateégia mitjangant
la qual les SCS poden realitzat aquestes dues tasques és la divisié cel-lular asimetrica,
d’aquesta manera, en la divisi6 d’'una SC, una cel-lula conserva la identitat de la seva
mare mentre que la seva germana es diferencia [71] [72].

Encara que la divisié asimetrica és una solucié simple i elegant, hi ha hagut molta
controversia al voltant del que es percep com un defecte fonamental d’aquest model, és
a dir, la divisié6 asimetrica no permet que el compartiment de les cel-lules mare creixi
[91L ©2]. En situacions com lesions, on la taxa de renovacié cel-lular ha d’augmentar en
gran mesura, amb la finalitat de regenerar el teixit afectat, el compartiment de les SC ha
de créixer. Aix0 suggereix que la divisié asimetrica podria no ser la solucié completa.

Hi ha evidencies experimentals que les SC, en alguns teixits, com el sistema nervids
central [50] i I'epidermis [74], es poden dividir de forma simetrica. La divisié simetrica de
SC consisteix en que les dues filles s6n iguals, o bé SC o bé cel-lules diferenciades. D’aquesta
manera, el nombre de cel-lules esta regulat per les freqiiencies de divisions simeétriques que
produeixen SC o cel-lules diferenciades. Com aquest tipus de divisié permet 'expansié del
compartiment de les SC, apareixen models alternatius [91] on la majoria de les SCs pot
dividir-se d’ambdues formes, simetricament o asimetricament, ’equilibri entre aquests dos
tipus de proliferacié esta controlat per senyals ambientals per produir el nombre apropiat
de SC i cel-lules diferenciades. Pero s’ha reconegut que, si bé la divisié simetrica confereix
la capacitat de creixement millorat i una major capacitat de regeneracié, també augmenta
la probabilitat de cancer. Aquesta idea esta recolzada pels resultats d’acord amb els quals
la maquinaria cel-lular involucrada en la divisié asimetrica ha estat conservada, perque
te un paper en la supressiéo de tumors, els gens que promouen la divisié simetrica també
funcionen com oncogens [91].

El nostre objectiu és analitzar la dinamica estocastica de les cascades de la diferenciacié
cel-lular on trobem les dues formes de proliferacié de les SC. Estudiarem les estrategies
optimes entre divisié simetrica (que millora la capacitat d’adaptacid) i la divisié asimetrica
(que dota d’estabilitat).

0.1.3 Dinamica estocastica i extincié del VIH-1 en pacients sota terapia
anti-retroviral potent

El VIH es controla de manera efectiva amb 1’administracié de terapies antiretrovirals
(ART). Pero a pesar del gran exit de la terapia antiretroviral de gran activacié (HAART),
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aconseguir curar-la, en el sentit d’eliminar completament el virus, no s’ha aconseguit
[105]. Analisis quantitatius de ’evolucié temporal de la carrega viral en plasma després
del tractament HAART suggereix 'existéncia de diverses fases en el decaiment induit pel
tractament de la carrega viral [102][69] [ITT]. Primer s’observa una fase en la que la carrega
viral decau exponencialment, en aquesta fase la carrega viral es redueix d’un a dos ordres
de magnitud en unes dos setmanes. Aquesta etapa reflecteix que el temps mitja de vida de
virus en plasma i de les cél-lules infectades produint virus, els limfocits T CD4+, és molt
curt [57, 124, 83]. Després d’aquesta primera fase, una segona etapa més lenta reflecteix
la contribucié a la carrega viral de cel-lules infectades amb un major temps mitja de vida,
com els macrofags i les cel-lules T CD4+ infectades que presenten una menor taxa de
replicaci6 viral [99] 58|, 126]. Després d’aquesta segona fase, la carrega viral en plasma
normalment ha caigut per sota del llindar de deteccié dels assaigs clinics estandards (~ 50
copies d’ARN / ml). No obstant, després d’aquesta segona fase, la HAART no aconsegueix
eradicar completament la infeccié. Es produeix una tercera etapa (de l'ordre d’anys [69])
en que els nivells residuals (1-5 copies d’ARN / ml) persisteixen en plasma, aixi com en
altres llocs del cos com el semen.

La pregunta de quin és la font d’aquesta carrega viral residual ha generat molt debat i
s’han creat diverses hipotesis de treball. Una d’aquestes hipotesi es basa en la possibilitat
de que la terapia HAART no arriba a tot el cos i hi ha uns reservoris on la terapia no
afecta [102], els anomenats “drug sanctuaries”, on la infeccié persisteix [67].

Un model alternatiu, que esta molt recolzat pels estudis recents, suggereix que, tot i
que la terapia HAART és totalment supressora, hi ha un reservori cel-lular que permet
a la infeccié romandre en forma latent [102], i la carrega viral residual és el resultat de
Pactivacié de les cel-lules latents [102]. Aquestes cel-lules latents s’estableixen dins de la
poblacié de les ceél-lules T de memoria CD4+ infectades [25, 24] i, per tant, romanen en
Iestat de repos en la presencia de la HAART durant periodes prolongats de temps. Com
a conseqiiencia, les cel-lules infectades de forma latent son capaces d’escapar a l’efecte de
la droga i al sistema immune a causa del fet que presenten nivells molt baixos de ARN
de VIH-1 [III]. Perd ja que les cel-lules amb infeccié latent alliberen virus quan son
estimulades amb ’antigen apropiat, si es retira la HAART la carrega viral torna a créixer
i la infeccié VIH-1 reapareix, aix0 és consistent amb que la latencia serveix com a mode
d’escapament dels medicaments [3].

Un cop que la infeccié ha entrat en aquest estat latent, un pot observar episodis
transitoris en que la carrega viral puja per sobre dels limits estandards de deteccié (50
copies d’ARNm/ml) durant un breu periode de temps [33] [104], 54} 95]. Aquests episodis
es coneixem com blips. L’origen i la rellevancia medica d’aquests blips encara no esta clara
i nombroses hipotesis s’han formulat [I11].

Degut a la incapacitat de la HAART per acabar amb les cel-lules en estat latent,
s’han proposat terapies combinades que suprimeixen el reservori latent [I05]. Un cami
prometedor en aquesta direccié consisteix en la combinacié de HAART amb agents que
activen especificament les cel-lules latents, el que les fa susceptibles als atacs de la HAART.
El fonament d’aquesta terapia combinada és que si s’augmenta el ritme d’activacié de les
cel-lules amb infeccié latent, el nimero d’aquestes ha de decaura rapidament i, degut a
fluctuacions estocastiques, aquestes cel-lules poden ser completament eliminades i, amb
elles, tota la infeccié.
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0.2 Marc matematic

En termes generals, els problemes adrecats en aquesta tesi es refereixen a la dinamica
estocastica de poblacions amb diferents tipus de cel-lules. El marc més adequat per fer
front a aquests problemes és el de dinamica de poblacions. Degut a que el ntimero de
cel-lules en estat latent és molt baix, hem de modelar les nostres poblacions en termes de
processos estocastics, en particular, dels processos de Markov [44]. El procés de Markov
per la dinamica de poblacions en formulara en termes de la corresponent Equacié Mestre
(Master Equation). Aquestes equacions son molt dificils de resoldre exactament i en
qualsevol cas practic, s’ha de recérrer a metodes aproximats per tractar amb elles.

En alguns casos treballem amb poblacions molt petites, en altres situacions buscarem
rare events. Per aquesta rad farem servir ’aproximacié semi-classica, que és una aproxi-
macié del tipus WKB [73] per calcular les probabilitats dels rare events.

Hem inclos una explicacié detallada sobre ’aproximacié semi-classica en I’Apendix
Aquesta aproximacié transforma el nostre problema de treballar amb una equacié mestre
en un problema de mecanica classica amb un Hamiltonia amb diversos graus de llibertat,
tants com tipus diferents de cel-lules. Calcular les varietats invariants del sistema, que,
normalment és el primer pas en I'estudi d’un sistema dinamic, no és facil i una aproximacié
lineal no és suficient i requereix técniques com el metode de la parametritzacié [17, 18] per
obtenir expansions a ordres alts. Més dificultats associades a aquests sistemes apareixen
degut a la naturalesa slow-fast dels problemes. A més, I'estudi del moviment aprop de
punts hiperbolics pot ser necessari. Per integrat les equacions del moviment fem servir
metodes de Taylor [64] combinats amb tecniques de diferenciacié automatica [64], el que
ens permet prendre passos molt llargs i aconseguir més precisié del que que altres metodes
explicits, com el Runge-Kutta, ens poden donar. El metode de Taylor no és un integrador
simplectic, és a dir, no preserve I’estructura Hamiltoniana de les equacions, no obstant, aixo
és irrellevant, ja que un pot demanar un error local per sota del roundof de la maquina.
A Tapeéndix [C] expliquem els meétodes que hem fet servir per estudiar aquests sistemes
Hamiltonians.

Encara que hem fet alguns progressos en I'estudi asimptotic d’aquests problemes, de-
penem molt dels metodes de simulacié. La nostre principal eina per estudiar les equacions
mestre és I’Algoritme de Gillespie de Simulacié Estocastica (SSA), que és un metode de
Monte Carlo basat en una reinterpretacié de l'equacié mestre. A I’Apendix [A] aquesta
metodologia esta explicada en detall. el Gillespie SSA requereix un gran temps de com-
putacié, en particular quan (i) el sistema considerat és molt gran i (ii) quan la separacié
d’escales temporals apareix. En aquest ultim cas, podem fer servir la separacié d’escales
temporals per formular una variant més eficient del SSA proposat per Cao et al. [20],
aquest metode esta explicat en detall a I’ Apendix [D}

0.3 Objectius

L’objectiu principal d’aquesta tesi doctoral és I'estudi de 'efecte de les fluctuacions en
poblacions acoplades en sistemes biologics, on cel-lules en estat latent juguen un paper
important. Intentant trobar el significat biologic de la dinamica dels sistemes. Els punts
especifics que volem abordar i la organitzacio de la tesi estan explicats a continuacio.

En el Capitol[2] estudiem el comportament de les poblacions de cel-lules amb estructura
jerarquica des de el punt de vista de les propietats d’estabilitat, En particular
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1. Divisié simetrica contra asimetrica en el compartiment de les cel-lules mare. Es-
tudiem la robustesa de les poblacions amb estructura jerarquica, depenent de si les
cel-lules mare es divideixen simetricament, asimetricament o de les dues maneres.
Estudiem com la divisié simetrica afecta a l’estabilitat de la poblacié, ja que aixo te
una gran importancia en la progressié del cancer.

2. La competicié entre dues poblacions amb diferents tipus de divisié de les cel-lules
mare. Aix0 és crucial per trobar estrategies optimes que maximitzin la robustesa
(supervivencia a llarg termini, resisténcia a invasions i habilitat per invadir) de
poblacions amb estructura jerarquica.

3. La influéncia de parametres com son la duplicacié i el ritme de mort de les cel-lules
mare, el temps de vida mitja de les cel-lules completament diferenciades, la longitud
de les cadenes de diferenciacié i les fluctuacions al compartiment de les cel-lules mare
en la robustesa i arquitectura optima de les cascades de diferenciacio.

En el Capitol [3] presentem un model homogeni de combinacié de HAART amb terapies
d’activacio de les cel-lules latents del VIH-1 a la sang. Estem interessats en

1. L’Efecte del ritme d’activacio de les cel-lules latents en el temps mitja de vida de la
infeccié. En particular analitzem si les terapies basades en incrementar aquest ritme
sén capaces de suprimir la infeccié en un temps raonable.

2. La importancia de D'eficiencia de les terapies antiretrovirals, incloent els casos limit
en que l'eficacia és del 100%, en la quantitat de carrega viral.

3. La formulacié d’una teoria asimptotica basada en ’aproximacié semi-classica amb
aproximacions quasi estacionaries per descriure la dinamica del procés. La precisié
d’aquest metode asimptotic és comparat amb simulacions multi-scale proposades pel
Cao et al. [20].

En el Capitol 4] estenem el model proposat pel Rong i el Perelson [I110] a un model
no homogeni de la dinamica del VIH-1 en el corrent sanguini, considerant que les cel-lules
i els virus no estan distribuits de manera uniforme en la sang. Els punts especifics que
volem estudiar sén:

1. El mecanisme que fa que apareguin els episodis de virémia per sobre els limits de
deteccid, coneguts com viral blips. En particular volem investigar si son producte
de fluctuacions estocastiques degudes a la inhomogenietat o un altre mecanisme ha
de ser considerat.

2. Si l'aparicié dels viral blips esta afectada pels procediments duts a terme en el
laboratori, com el temps d’espera entre les extraccions i les observacions.

3. Si la probabilitat, 'amplitud i la freqiiencia dels viral blips es veu afectada pels
diferents possibles tipus de produccié viral, és a dir, continua vs burst.

En el capitol 5| presentem i discutim els resultats obtinguts, i comparem, quan és
possible, amb altres models o amb resultats experimentals, i discutim el treball que deixem
pel futur.
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Els detalls relatius a qiiestions metodologiques, aixi com una introduccié a la mod-
elitzacio estocastica fent servir equacions mestres es donen en els apendixs. Per a aquells
que no estan familiaritzats amb els models basats en equacions mestres, ’autor recomana,
llegir primer I'apéndix [A] que proporciona la base matematica per entendre el capitol
Els Apeéndixs [B] [C] i [D] juntament amb 1’Apeéndix [A] donen la base matematica necessaria
per seguir el capitol [3]1 el capitol 4]
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Chapter 1

Introduction

This PhD Thesis deals with some issues concerning the fluctuations in complex structured
populations in particular those characterised by the existence of a latent state. Our aim
is to better understand some questions arising in the dynamics of hierarchically organised
populations of cells, such as the ones encountered in long-lived multicellular organisms
characterised by ongoing cell differentiation, and the dynamics of HIV-1 in infected pa-
tients under anti-retroviral therapy. Both systems are characterised by the presence of a
latent population, namely, stem cells and latently infected cells, respectively. This chapter
is devoted to present the necessary biological background and motivation, summarising
previous work done on the subject. We also give an overview of the mathematical models
used in this PhD Thesis. Finally, we summarise our aims and objectives.

1.1 Motivation and biological background

Biological problems have been studied by scientists via four different type of models: In
viwo, In vitro, Data Driven and Mechanistic Models. Although, Mechanistic Models are the
ones which gives a better understanding of the dynamics of the process that are studying,
has also been the less successful in biology.

Mechanistic Models have been traditionally used by mathematicians and physicists to
study biological problems using continuous and deterministic approaches. However, in
some cases, this models can be not very accurate. If the population is small, we can not
can not assume that the mean-field model will be a good approximation of the reality.
This is relevant in many biological problems, where often one finds small populations.

It has been shown that intrinsic noise, i.e. fluctuations to the system due to its small
size, can have very strong influence on the behaviour of dynamical systems [14] 85, [42]. An
introduction to the stochastic processes that we use have been included in the Appendix
[A] about stochastic modelling and the Gillespie stochastic simulation algorithm, which will
be the main tool to deal with our problems.

1.1.1 Latency in cell population dynamics

For the purposes of this thesis, latency or quiescence is defined as a cell state such that
most cell functions, prominently proliferation, are slowed down. This down-regulation of
cellular functions often emerges as a trade-off in exchange for longevity and survival in
hostile environments. An example of this behaviour has been analysed in [3], where it

9
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has been shown that latency can act as a an escape mechanism that allows a malignant
population to elude the action of a drug, provided that cells of such population have the
ability to go into a quiescent state in which cells are immune to the drug. By going into
quiescence, a small latent population is able to survive, and eventually re-grow once the
drug has been cleared off. A particular instance in which this model is relevant is resistance
to chemo- or radio-therapy in tumours with hypoxic (ill-oxygenated) regions. Hypoxic cells
undergo radical reduction of their proliferation rate, making them less sensitive to these
therapies than fast-cycling cells, thus providing a reservoir of immune cells which, upon
stopping the therapy, provide a reservoir for which (partial) re-grow occurs. Besides escape
from therapy, quiescence-like phenomena have been shown to play a role in cancer to elude
not only therapy but the homeostatic controls of normal tissue. Roesch et al. [LI08] have
characterised a slow-cycling (latent) sub-population within the much faster proliferating
population of melanoma cell which is necessary for continuous tumour growth.

Another example of a pathology where latency has proved crucial to understand certain
aspects of HIV-1 infection and its response to therapy. HIV infection can be effectively
controlled by potent anti-retroviral therapies. However, such therapies do not accomplish
total eradication of the disease. Although they effectively eliminate virus-producing in-
fected T cells, early study of the long-term viral load in treated patients revealed that
low-level (below the detection limit of standard clinical analysis), residual viremia per-
sisted for very long time (months or even years) [110, 123]. These results suggested that
the infection persisted in the treated patients in the form of a compartment that was
insensitive to the drugs. Several hypothesis were formulated regarding the nature of this
compartment, but the one that appears to have consolidated itself as the most likely ex-
planation is that of a latently infected population of T cells. This cellular compartment
consists of slow-proliferating cells (probably memory cells) which store the virus but do
not replicate it. Since this cells do not replicate the virus they remain unaffected by the
anti-retroviral drugs. Furthermore, upon stimulation with specific antigens, they become
active and resume virus production and proliferation, which, in turn, replenishes the latent
compartment. This feed-back cycle sustains the persistent low-level viremia. The presence
of this latent infection has been recognised as major barrier for complete eradication of
HIV-1 infection and the search for ways to tackle it has become a very active of research
[1211, 113, [65] 66].

Quiescent behaviour is also part of normal physiological regulation of tissues. In par-
ticular, stem cells, which are the essential building blocks of tissues in multi-cellular or-
ganisms, spend most of their life span in a latent, non-proliferative state. Only upon
reception of the appropriate signalling cues, stem cells activate and proliferation ensues.
These signalling cues are secreted in response to a decrease in the number of mature
(terminally-differentiated) cells that are at the summit of the corresponding differentia-
tion cascade: when mature cell numbers decline stem cell proliferation activates in order
to replenish the partially depleted mature cell compartment. Although, this mechanism is
part of normal tissue regulation, it can be subverted by pathologies such as cancer which
highjack the properties of stem cells.

The overarching aim of this thesis is to use stochastic modelling along with asymp-
totic and numerical techniques to better understand the basic mechanisms involved in
the dynamics of cell populations with feed-back regulated latency in order to propose
control strategies that help in formulating better, more rationally grounded therapeutic
approaches for pathological situations arising from disregulation of differentiation cascades
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and HIV-1 latent infection.

1.1.2 Stochastic dynamics of differentiation cascades with regulatory
feed-back

In Chapter 2] we analyse the factors that affect the robustness of cell populations with
hierarchical structure. Tissues in higher organisms such as mammals maintain homeosta-
sis by means of cascades of serial cell differentiation [4]. These cascades are composed
by hierarchically-organised compartments of different cell types. The cornerstone of this
system is stem cells (SCs) which sustain the tissue by producing both more stem cells,
a property known as self-renewal, and lineage-specific differentiated cells. The serial dif-
ferentiation cascade proceeds through a number of intermediate stages or compartments
of transient amplifying cells (TACs) until it terminates with the compartment of fully-
differentiated mature cells (MCs).

There has been much discussion around the issue of how SCs accomplish the feat of
undergoing both self-renewal and differentiation [91], 02] [7T], 114] [72]. One strategy by
which SCs can perform these two tasks is asymmetric cell division, whereby, upon SC
division, one daughter cell retains the cellular identity of its mother whereas its sister dif-
ferentiates. Asymmetric cell division seems to proceed through segregation of the material
that determines cell fate so that, when the SC divides, one of the daughters keep the stem
cell-fate determinants. Lineage-specific determinants are thus passed onto its sister cell
[T, [72).

Although asymmetric SC division is a simple and elegant solution to the stem cell
puzzle, there has been much controversy around what is perceived to be a fundamental
flaw of this model, namely, asymmetric division does not allow the stem cell compartment
to expand [91) 02]. The argument runs that in situations such as injury, where the rate
of cellular turnover must be largely increased in order to regenerate the affected tissue,
the size of the SC pool should undergo a marked expansion. This hints that asymmetric
division might not be the full solution.

Experimental evidence points out to the fact that SCs in some tissues, such as the
central neural system [50] and the epidermis [74], can divide symmetrically. Symmetric
SC division consists of both daughter cells sharing the same fate: SC or differentiated.
In this way, the number of cells is regulated by the frequencies of (symmetric) divisions
producing SCs or differentiated cells. Since this division modality allows for expansion of
the SC compartment, an alternative model arises [91] where most SCs can divide both
symmetrically and asymmetrically with the balance between these two proliferation modes
controlled by environmental signals to produce the appropriate number of SCs and differ-
entiated cells. However, it has been recognised that, whilst symmetric division confers the
capability of enhanced growth and increased regenerative capacity, it also increases the
likelihood of cancer. This view is supported by findings according to which the cellular
machinery involved in asymmetric division has been evolutionary conserved with a role in
tumour suppression, the gene products that promote symmetric SC division also function
as oncogenes [91].

Our aim is to analyse the stochastic dynamics of cell differentiation cascades where both
modes of SC proliferation occur. We will study optimality strategies where by a trade-
off between symmetric division (which enhances adaptability) and asymmetric division
(which endows stability).
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1.1.3 Stochastic dynamics and extinction of HIV-1 in patients under
potent anti-retroviral therapy

HIV infection has been proved to be effectively controlled by administration of anti-
retroviral therapy (ART). Despite the great success of of highly-active ART (HAART),
the goal of curing, in the sense of completely eradicating, HIV-1 infection is yet to be
achieved [105]. Quantitative analysis of the temporal evolution of plasma viral load upon
HAART treatment suggests the existence of several phases in the therapy-induced decay of
the viral load [102, [69, 111]. After an initial shoulder, reflecting delays associated to both
the pharmacokinetics and the production of virus by newly infected cells [101 55], a first
phase of fast exponential decline of the viral load is observed where viral load is reduced
by one to two orders of magnitude over a period of time of approximately two weeks. This
fast response stage, with half-lime time of the order of days, reflects short half-life time of
plasma virus and of productively infected CD4+ T lymphocytes [57, [124] 83]. Following
this initial phase of fast decline in plasma viral load, a second stage of slower decay starts
with a half-life time between one and four weeks. This phase reflects the contribution to
virus load of infected cells with longer half-life time, such as macrophages, and infected
CD4+ T cells that exhibit a lower rate of viral replication [99, 58, [126]. After this second
stage, plasma virus load has normally fallen below the detection threshold of standard
clinical assays (~ 50 copies RNA/ml). However, following this second phase, HAART
appears to fail to completely eradicate the infection. Rather, a third stage ensues with
much longer half-life time than the previous ones (of the order of years [69]) in which
residual levels of viral load (1-5 copies RNA /ml detectable only by supersensitive assays)
persist in plasma as well as in other bodily compartments, such as semen.

The question of what is the source of this residual viral load has triggered much debate
which has materialised in several working hypothesis. One of these hypothesis invokes
the possibility that HAART is not completely suppressive thus allowing the infection to
continue to replicate in anatomical HIV-1 reservoirs [102], in particular within the so-called
”drug sanctuaries“, i.e. sites of poor drug penetration where the infection is allowed to
persist [67].

An alternative model,which is abundantly supported by recent studies, suggests that,
although HAART is fully suppressive, a cellular reservoir exists which allows the infection
to linger in latent form [102] with residual viral load is the result of the activation of the
latently infected cells [102]. Such a latent reservoir is established within the population of
infected CD4+ T memory cells [25] 24] and, therefore, they remain in the resting state in
the presence of HAART for prolonged periods of time. As a consequence, latently infected
cells are able to escape the effect of the drug and immune surveillance due to the fact that
they undergo no duplication and, consequently, exhibit very low levels of HIV-1 messenger
RNA [I11]. However, since latently infected cells release virus when stimulated with the
proper antigen, viral rebound will eventually occur when HAART is withdrawn leading to
HIV-1 infection recurrence, consistent with a wider scenario of quiescence-induced escape

Once HAART has forced the infection to enter the latent stage, one can observe tran-
sient episodes of viremia where the viral load raises above the standard test detection
limit (50 copies mRNA /ml) for a brief period of time [33] 104} 54, 95]. These episodes are
referred to as blips. The origin and clinical relevance of these blips remains unclear and a
number hypothesis have been formulated [111].

Given the inability of HAART to hit latently infected cells, combined therapies sup-
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pressing the latent reservoir has been proposed [105]. A promising avenue in this direction
consists of combining HAART with agents that specifically activate latently effective cells,
thus rendering them susceptible to attack by HAART. The rationale for this combined
therapy is that increasing the activation rate of the latently infected cells the size of this
compartment should decay rapidly and, due stochastic fluctuations, these cells eventually
will be suppressed taking all the infected population with them.

1.2 Mathematical framework

Generally speaking, the problem we address in this thesis concerns the stochastic dynam-
ics of populations with different cell types. The framework most suited for dealing with
such problem is that of population dynamics. Since during the latent state numbers of
individuals are low, we need to model our populations in terms of stochastic processes, in
particular of Markov processes [44]. The Markov process for the population dynamics will
be formulated in terms of the corresponding Master Equation. These equations are noto-
riously difficult to solve exactly and in any practical case one must resort to approximate
methods to deal with it.

In some cases we are dealing with small populations, and in other situations we are
looking for rare events, for that reason we use the semi-classical approximation, which is
a WKB approximation [73] to compute the probabilities of rare events.

We include a detailed explanation of the semi-classical approach in Appendix [Bl This
approximation transforms our problem of dealing with a Master Equation to a problem
of classical mechanics with a Hamiltonian with several degrees of freedom, as many as
cell types. To compute the invariant manifolds of this system, which usually is the first
step in the study of these dynamical system, is not easy and require non-linear approach,
techniques such as parametrisation method [17, [I8] to obtain high-order expansion. More
difficulties associated to such systems appear due to their slow-fast nature. Furthermore,
the study of motion near hyperbolic points may be necessary. To integrate the equa-
tions of motion, Taylor integrator methods [64] combined with, automatic differentiation
techniques [64] allow us to use larger steps achieving higher accuracy than other explicit
methods, such as Runge-Kutta, can provide. The Taylor integrator method, is not a sym-
plectic integrator, i.e. it does not preserve the Hamiltonian structure of the equations,
however, this is irrelevant, since one can require a local error below the roundof machine
error. In Appendix [C] we explain the methods used to study these Hamiltonian systems.

Although we have made some progress in large-size asymptotic treatment of these
problems, we heavily relay in simulation and numerical methods. Our main tool to study
the Master Equation will be the Gillespie Stochastic Simulation Algorithm (SSA), which
is a numerical Monte Carlo technique based on a reinterpretation of the Master Equation.
In Appendix [A] this methodology is explained in detail. The Gillespie SSA requires large
computational times, in particular when (i) large systems are considered and (ii) when
separation of time scales appears. In the latter case, time-scale separation can be taken
advantage of formulate a more efficient variant of the SSA proposed by Cao et al. [20],
this method is explained in detail in Appendix [D]
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1.3 Aims and objectives

The main aim of this PhD Thesis is to study the effect of fluctuations in coupled popu-
lations of biological systems where cells in latent states play a major role. In doing so,
we try to put to forward some biologically meaningful aspects of the dynamics of these
systems. The specific points we aim to cover and the organisation of the thesis are as
follows.

In Chapter [2| we study the behaviour of cell populations with hierarchical structure
from the point of view of their stability properties. In particular,

1. Symmetric vs Asymmetric division in the stem cell compartment. We study the
robustness of hierarchically-organized populations, depending on whether stem cells
divide symmetrically, asymmetrically, or both. We assess how the symmetric division
affects the stability of the population, regarding the role of stem cells symmetric
division of SC in cancer progression.

2. The competition between population with different modes of stem cell division. This
is crucial in order to find optimal architectures to maximize the robustness (long-time
survival, resistance to invasion and ability to invade) of hierarchical populations.

3. The influence of parameters such as the duplication and death rate of the stem cells,
the average life-time of the fully differentiated cells, the length of the differentia-
tion cascade and the fluctuations of population of stem cells on the robustness and
optimality of differentiation cascades.

In Chapter [3] an homogeneous model of combined HAART and latently infected cell
activation therapies of the HIV-1 dynamics in the blood stream is presented. We are
interested in

1. The effect of the activation rate of the latently infected cells in the extinction time
of the infection. In particular we analyse if the therapies based on increase this rate
are able to suppress the infection in a reasonable time.

2. The importance of the efficiency of the anti-retroviral therapies, including the limit-
ing case of an efficiency of 100%, in the size of the persistence viral load.

3. The formulation of an asymptotic theory based on the semi-classical quasi-steady
state approximation to describe the dynamics of the process. The accuracy of this
asymptotic method is compared to the multi-scale SSA proposed by Cao et al.

In Chapter 4, we extend a model proposed by Rong and Perelson [110] to a non-
homogeneous model of the HIV-1 dynamics in the blood stream, we consider that cells
and virons are not uniform distributed in the blood stream. The specific points we aim to
address are:

1. The mechanism for the emergence of transient episodes of viremia, known as viral
blips. In particular, we investigate if they are the product of inhomogeneous density
fluctuations or another mechanism must be considered.

2. If the appearance of viral blips is affected by laboratory procedures, such as the time
elapsed between the blood sample extractions and the observations.
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3. Whether the likelihood, amplitude and frequency of the viral blips is affected by the
different of possible types of viral production, namely, continue vs burst.

In Chapter [5], we proceed to discuss our results, compare, when possible, with previous
models or experimental results, and we give directions for future work.

Details regarding methodological issues, as well as an introduction to the stochas-
tic modelling via the Master Equation, are give in the appendices. For those who are
not familiarised with models based on Master Equations, the author recommends read
first Appendix [A] which provides the mathematical background to understand Chapter [2
Appendices [B] [C] and [D] together with Appendix [A] provide the necessary mathematical
background to follow Chapter [3] and Chapter



16

Introduction




Chapter 2

Robustness of differentiation
cascades with symmetric stem cell
division

Stem cells perform the task of maintaining tissue homeostasis by both self-renewal and
differentiation. Whilst it has been argued that stem cells divide asymmetrically, there is
also evidence that stem cells undergo symmetric division. Symmetric stem cell division
has been speculated to be key for expanding cell numbers in development and regenera-
tion after injury. However, it might lead to uncontrolled growth and malignancies such
as cancer. In order to explore the role of symmetric stem cell division, we propose a
mathematical model of the effect of symmetric stem cell division on the robustness of a
population regulated by a serial differentiation cascade and we show this may lead to ex-
tinction of such population. We examine how the extinction likelihood depends on defining
characteristics of the population such as the number of intermediate cell compartments.
We show that longer differentiation cascades are more prone to extinction than systems
with less intermediate compartments. Furthermore, we have analysed the possibility of
mixed symmetric and asymmetric cell division against invasions by mutant invaders in
order to find optimal architecture. Our results show that more robust populations are
those with unfrequent symmetric behaviour.

2.1 Biological Background

There is large body of literature examining the properties of differentiation cascades, in
particular in the haematopoietic system [I, 29, 82] and in relation to several kinds of
leukaemias and haematological diseases [26], 27}, 87, [77]. Marciniak et al. [82] have studied
a deterministic model in which they explore the role of regulation in a system with asym-
metric SC division. They have found that for their model to exhibit efficient repopulation,
regulation by environmental signals must occur at the level of the fraction of self-renewal.
Mackey and co-workers [26], 27, [77] have done extensive modelling and analysis of a number
of haematological diseases in which circulating cellular blood components exhibit oscilla-
tory behaviour. By means of delay-differential-equation models and exhaustive parameter
sensitivity analysis, they have proposed which processes in the haematopoietic differen-
tiation cascade are more likely to be involved in the development of disease. They have

17
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also found that delays in the differentiation cascade are fundamentally linked to the on-
set of the oscillations, a mechanism akin to the extinction mechanism we explore here.
Dingli et al [32] have studied a model of the architecture and dynamics of hematopoiesis
to provide estimates of the number of compartments, the size of each compartment, and
the corresponding replication rates.

There has also been a number of stochastic models of serial differentiation cascades
that tackle evolutionary issues. The model proposed by Pepper et al. [98] deals with a
number questions arising when considering which evolutionary purpose can such a costly
system (from the energetic point of view) possibly serve. The conclusion of their study is
that differentiation cascades provides with intrinsic protection against somatic mutations
leading to malignancies such as cancer. Evolution towards malignant behaviour and cancer
has been studied, for example, by Sun & Komarova [I19] and Rodriguez-Brenes et al.
[106, 107], where the mechanisms of regulation of normal tissues are studied in detail to
ascertain how can they be subverted in order to produce cancer. Other related work is
the symmetric stem cell division models proposed by Dingli et al. [3I], were a Moran
process is proposed to study the competition between a population of normal stem cells
and a population of cancer stem cells. They observed that a larger duplication rate in the
invader (cancer) stem cells increases the probability of invasion.

Michor and co-workers [39] [75, 87, 88, 86] have modelled the dynamics of myleoid
leukemia using models consisting of hierarchical differentiation cascades. It has been
found that cancer initiation requires only a single mutation. Their models suggest that
imatinib is a potent inhibitor of the production of differentiated leukemic cells, but does
not deplete leukemic stem cells. Lenaerts et al [78] have shown that although imatinib,
does not eradicate chronic myleoid leukemic, due to the stochastic nature of hematopoiesis,
leukemic stem cells undergo extinction. This result shows the importance of stochastic
effects on the dynamics of hierarchical cell populations.

Zhao et al. [127] have proposed a linear model for colonic epithelial cells, that explicitly
takes into account the proliferation kinetics of a cell as a function cell position within the
crypt, They have observe that those cells with mitotic activities concentrated near the
stem cells delay the rate of mutation accumulation in colonic stem cells.

Mutations in hierarchically structured populations have been previously studied by
Werner et al. [125], they modelled a general hierarchically organized multi-compartment
tissue, allowing any number of mutations in a cell. They showed that these tissues strongly
suppress the cells that are carrying multiple mutations. Traulsen et al [120] have studied
the effect of different kinds of mutations and showed that although neutral mutations often
leads to clonal extinction, disease is still possible, and in this case, it may become difficult
to eliminate neutral mutations with therapy.

Also related to the context of this section, a mechanism for stochastic evolutionary
escape and its consequences for drug resistance based on the presence of a quiescent,
drug-resistant population has been recently described [3]. Since quiescent cancer stem
cells have been recently found in intestinal crypts [16], this escape mechanism can be
relevant to ascertaining the efficacy of therapies targeting cancer stem cells.

The aim of this chapter is to address some of the issues arising from the consideration
of symmetric SC division in serial differentiation cascades, in particular those regarding
the evolution of uncontrolled growth and the risk of cancer. To do so, we consider a
stochastic mathematical model of the serial differentiation cascade and use it to address
two problems (i) the long-term viability (stability) of a population of cells maintained by a
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differentiation cascade whose SCs undergo symmetric division only, and (ii) the likelihood
of invasion of a mutant population with increased symmetric SC division in competition
with a population with asymmetric SC division (robustness). Regarding the former, we
show that serial differentiation cascades with symmetric SC differentiation exhibit an
intrinsic instability mechanism which induce extinctions with high likelihood. Thus, these
cascades seem to have an in-built fail-safe mechanism against excessive symmetric SC
division. The competition model allows us to estimate optimality conditions in, in the
sense of maximum robustness, for the rate of symmetric division in terms of maximising
its chance to take over another population with less symmetric-division capability whilst
minimising its chances of undergoing extinction.

The organisation of the section is as follows. Section is devoted to presenting our
model of a differentiation cascade with symmetric SC division in detail and discussing its
underlying hypothesis. In Section we present simulation results for this model and
discuss the emergence of a mechanism of extinction induced by symmetric SC division. In
Section we analyse the robustness of the different division strategies by formulating a
model for the competition between populations using different such strategies and extract
conclusions regarding their optimality. Finally, in Section we summarise our results.

2.2 Stochastic modelling of a serial differentiation cascade
with symmetric SC division

In this section we proceed to present and discuss our stochastic model of a hierarchically-
organised cell population. Our aim is to formulate a regulated stochastic model which, by
incorporating symmetric SC division, can lead to changes in the size of SC compartment.
Regulation is achieved by means of a cytokine which is produced by the MC compartment
which controls the rate of apoptosis of the stem cells.

The stochastic approach is justified by the small number of stem cells, typically present
in their host organism. For example, according to [91], in the haematopoietic system only
a 0.003 % of the cells are SCs. Given these small numbers in the SC compartment, we
expect random effects to be important if not dominant.

2.2.1 Model description

We consider a compartmental model of the serial differentiation cascade with symmetric
SC division. As shown in Fig each compartment corresponds to a stage in the cascade:
from the SC compartment to the MC compartment with a number of intermediate TAC
compartments. We further introduce in our model the secretion of a cytokine by the MCs
which regulates the size of the SC compartment. We study the dynamics of the population
of cells in each compartment. In particular, we examine the behaviour of a differentiation
cascade of length n+ 1, with stem cells, n — 1 partially-differentiated, transient amplifying
cells, and mature cells: zg represents the number of SCs, z; with ¢ = 1,...,n — 1, the
number of TACs at differentiation stage ¢, and z,, the number of MCs. Furthermore,
ZTn+1 Tepresents the amount of a cytokine which regulates the size of the SC compartment
through a negative-feedback [81], 26], 27, 118]. Such cytokine is secreted at a rate wich
is proportional to the number of fully-mature cells. Therefore, this negative feedback
accounts for the mature-cell regulation of the size of the SC compartment which has been
incorporated, for example, in models of haematopoeitisis [82].
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Figure 2.1: Diagrammatic representation of the hierarchic differentiation cascade. xg
represents the population of the SC compartment, z; the population of TAC cells at ¢
stage, x, the population of the MC compartment and x,41 represents the amount of
cytokine. Plot (a) corresponds to the well-stirred scenario, whereas plot (b) corresponds
to the delayed scenario (see main text for details).
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Transition rate ‘ r; = (Ax), Azl ..., A:cilJrQ) ‘ Description

W1 = pxg (1,0,...,0) | SC self-renewal

Wy = doxo (—1,2,0,...,0) | SC differentiation

W3 = AxoTpr1 (-1,0,...,0,—1,0) | SC apoptosis

Wotae; = Njx; 0,...,—1,...,0) | TAC apoptosis

Wit = dix; 0,...,—1,2,0,...,0) | TAC differentiation

Waton = ApZn (0,0,...,—1,0,0) | MC apoptosis

W3ion = sty (0,0,...,0,1,0) | Cytokine secretion

Witon = Apt1Tna1 (0,0,...,0,—1,0) | Cytokine clearance (well-stirred scenario)
Wsion = SoTni1 (0,0,...,0,—1,41) | Cytokine transport

Weton = Ant2Tnio (0,0,...,0,—1) | Cytokine clearance (delayed scenario)
Witon = AoToZn+2 (-1,0,...,0,—1) | SC apoptosis

Table 2.1: Transition rates corresponding to the stochastic model of the serial differentia-
tion cascade with symmetric stem cell division. A description of the corresponding elemen-
tary population-dynamical processes is given in Section We choose dy = 1—p day~ !,
to have that stem cells divide, in average, once per day, \; = 0.01 day ! and d; = 1 — \;
day~!fori=1,...,n—1. sis fixed in the following way: from equation (2.5)), at the steady

An+1Tnt1+A0T0Tnt1
Tn .

state we have 0 = s, — A\n+1Znt1 — A0ZT0Znt1, this implies s =

Our stochastic model is formulated in terms of the corresponding master equation
(122, @4]:

OP(X,t)

o = 2 (WX =, OP(X =1y, 0) = WX OP(X1)  (2)

J

where X = (zg,...,Zn,Tnt1) and P(X,t) is the probability of the population vector to
have value X at time ¢. For full specification of our stochastic models, we need to prescribe
the transition rates, W;(X,t), corresponding to the probability per unit time of the process
j. These rates are modelled in terms of the law of mass action [47]. r; is the change in X
when elementary process j occurs, i.e. X(t + At) = X(t) 4+ r; with probability W;At.

We will consider two different scenarios schematically represented in Fig. The
first one, corresponding to Fig. (a) and which will be referred to as the well-stirred
scenario, the cytokine which controls the size of stem cell compartment is assumed to be
instantaneously transported to the it. By contrast, the second scenario, corresponding to
Fig. (b) and to be referred to as the delayed scenario, the cytokine requires a finite
amount of time to reach the stem cell compartment. We have modelled this by introducing
a compartment where, upon secretion, the cytokine is transported to at a certain rate.
The elementary processes involved in our model are:

e SCs divide symmetrically, so that they can undergo:

1. Self-renewal. Both daughter cells share the SC fate of the mother with transi-
tion rate W; (see Table

2. Differentiation. Both daughter cells differentiate to first-stage TAC with tran-
sition rate Wy (see Table
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3. Apoptosis with cytokine-regulated transition rate Wj if we are considering the
well-stirred scenario or Wy, 9, otherwise (see Table [2.1])

e Stage-i, i =1,...,n — 1, TACs can undergo:

1. Differentiation. Both daughter cells differentiate to either the next TAC stage
(if i <n—1) or to the MC compartment (if i = n — 1) with transition rate
Wo.y9; as given in Table

2. Apoptosis with transition rate W5, o; as given in Table
e MCs can undergo:

1. Release cytokine with transition rate W5y, as defined in Table
2. Apoptosis with transition rate Wo, o, as defined in Table

e Cytokines can undergo:

1. Clearance with transition rate Wyo, if we are considering the well-stirred sce-
nario, or Wg.a,, otherwise (see Table [2.1)

2. Transport to the intermediate compartment (2 in Fig. [2.1/(b)) with transi-
tion rate Ws,a, if we are considering the delayed scenario (see Table [2.1)).

We will analyse this system by means of numerical Monte-Carlo simulations using
the Gillespie stochastic simulation algorithm [47, 4§]. The mean-field limit of the model
also provides useful information. For the model described by Eq. and Table
corresponding to the well-stirred scenario , the mean-field model is given by the following
system of ODEs:

o = pro — doTo — NoTOTr+1,
:t’i e 2dl—1xl—1 — )\sz — dixi, ’L = 1, ceey T — ].,

Tp = 2dp_12p—1 — Anxn7

~~ ~~ —~~
[ SN V)
~— ~— ~— ~—

Tyl = STp — Apt1Tnt1 — AN0T0Tnt1,

which has two fixed points. The trivial (unstable) equilibrium (0,0, ...,0), which corre-
sponds to the extinction of the system, a positive equilibrium fixed point, Pg

P — <A1ZL‘1 + dyxy Aj1Tj41 + dj1xi41 Ann p— d0>

" 2.6
2d, ’ 2, T 2T N (2:6)

We will fix the number of x,, cells at the metastable state. We denote as x;, the number
of cells in the 7 compartment at the metastable state.

Our model assumes that the signal is produced by the mature cells, we do this as-
sumption instead of consider that the signal is produced by, for example, the transient
amplifying cells in position k. In this case the signal producing rate s, should be of the
form:

)\n+1$n+1 + )\0360$n+1

(2.7)
T
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Figure 2.2: Gillespie simulation of a system with some parameter values that kill in a
short time the population. The black line corresponds to the xy population and red and
to x, and x,,+1 respectively. p = 0.6 dayfl, A, = 0.03 dayfl, Ayl =1 dayfl, Ao = ﬁ
day~!, the Length of the differentiation cascade is 4.

The signal producing rate necessary to the cells in each compartment to keep the amount
of signal necessary to control the population. We see that the only efficient possibility is
that the signal is generated by the mature cells. However, this possibility of TAC cells
producing signal is not out of our study. If the signal is produced by the xj cells, the new
system is equivalent to a system described above with length k taking as a new A} (the
death rate of the new mature cells) the value of A\ 4 di, since the xpi1,...x, cells has no
effect on the system.

In the scenario (b), that is, the cytokine is not transported immediately to the stem cells
compartment, we consider another compartment, z,42, and the reactions x,1 L Tp42

An . . .
and x,49 2. changing zg + x,11 — 0 by xg + 12 — 0. In the Section [2.3| we will
see the effect of this change in function of the transport rate ss.

2.3 Extinction induced by symmetric SC division

We now proceed to analyse the stochastic model described in Section and describe an
extinction mechanism intrinsic to the structure of a serial differentiation cascade with sym-
metric cell division. We interpret this mechanism as an anti-cancer mechanism inherent
to the hierarchical structure of serial differentiation cascades.
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2.3.1 Delay-induced extinction in serial differentiation cascades with
symmetric SC division

In order to proceed with our analysis, we perform numerical simulations of our model by
means of the Gillespie stochastic simulation algorithm [47, [48]. This algorithm is based
on an exact reformulation of the stochastic process described by the master equation Eq.
(B.1) which allows us to generate exact sample paths or realisations of the underlying
process. An example of such a realisation which illustrates the extinction mechanism in
our model with symmetric SC division is illustrated in Fig.

Fig. shows simulation results where the population has been initially set to be
equal to the (stable) positive equilibrium of the mean-field limit Eqs —. This par-
ticular example is illustrative of the mechanism through which extinction occurs. Initially
a fluctuation in the system induces an increase in the number of SCs. This increase in
SC population propagates through the differentiation cascade and it eventually reaches
the MC compartment which starts expanding. Such expansion in MC numbers induces
an increase in cytokine concentration, which, in turn, leads to decay in the size of SC
compartment. As a consequence, oscillatory behaviour ensues. However, since the sys-
tem, specially the SC compartment, is subject to fluctuations and these are amplified
by the length of the differentiation cascade (an increase of one cell in the size of the SC
compartment induces an increase O(2") in the MC compartment), the amplitude of the
oscillations grow until the SC compartment size hits the absorbing barrier at which point
the population undergoes extinction.

Since delays appear to be instrumental for this extinction pathway, we are interested
in the effects of altering the balance between the x,1/x, cells life-time and the replenish
rate via xg on the average extinction time. To carry on this analysis, we compute the
extinction time as a function of the SC proliferation rate, p, and the death rate of the
MCs, Ay,. Our results are shown in Figure [2.3

Fig. shows that there is a region in the A,-p-plane where the average extinction
time, T, is such that T > 10* days. For all other values of these two parameters, the
waiting time for extinction to occur becomes much shorter. It is relatively straightforward
to see that the effect of these two parameters within the region of the parameter space
where T > 10% is to cancel the effect of the delay between the SC and MC compartments
due to the length of the differentiation cascade. Large values of the MCs death rate, A,
stabilises the system via a dissipative-like effect, namely, it impairs the ability of the MC
compartment to expand in response to fluctuations in the SC compartment size. It also
weakens the effect of the feed-back between the MC and SC compartments, as it effectively
reduces the concentration of cytokine.

The effect of varying the value of the self-renewal rate, p, is slightly different. When
C% 2 1, the SC compartment cannot grow, on the contrary, under the effect of SC apoptosis
and random fluctuations, it will dwindle and the population will become extinct. As p
grows, its effect is strongly coupled to A\,. If A, is small, i.e. the MC life expectancy is
increased, the effects of fluctuations and delay are reinforced and the population undergoes
rapid extinction. If, on the contrary, A, is large, we observe two regimes: A regime of
intermediate values of p where the effects of fluctuations and delay are cancelled by the
rapid death of the MCs (see above), and a regime of high values of p where MC death is not
fast enough to compensate for the increased effects of fluctuations in the SC compartment
which take over and produce short survival times.

Another model parameter that has an obvious effect on the delay is the length of the
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Figure 2.3: This plot represents the extinction time of the system depending on the
parameters A, and p. The length of the differentiation cascade is n = 5, the z-axis is the
death rate of the mature cells, the y-axis is the duplication probability of the stem cells,
the z-axis is the days needed to get an extinction, the white color means that more than
10000 days (~ 30 years) are needed to get an extinction. A,;1 = 1 day~!, The number of
mature cells at the metastable state is T,, = 5000, \g = ﬁ day~1
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Figure 2.4: Sample paths of the dynamics of our serial differentiation cascade model ob-
tained by means of the stochastic simulation algorithm. Plot (a) corresponds two different
cascades with length n = 4 and length n = 6 with the same number of MCs. Plot (b),
idem fixing the number of SCs, instead. We observe that, in both cases, shorter cascades
(n = 4) are more stable that longer ones (n = 6). A\yy1 = 1 day™ !, Ao = ﬁ day~!,
Ap, = 0.25 day~!, p = 0.6.
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Figure 2.5: Simulation results corresponding to the dependence on the length of the dif-
ferentiation cascade, n, of the probability of extinction within a time window (0,7%),
Pg(Tg), with Ty = 1000 days. p = 0.53 day~— %, A\, = 0.25, A1 = 1, T, = 26000 ,
Ao = m day_l

differentiation cascade, n. Longer chains promote the effect of the delay and therefore
favours extinctions. This is illustrated in Fig. where we show sample paths of our
model for different values of n. We see that indeed longer differentiation cascades de-
stabilise the system and favour extinction. This is further explored in Fig. where
we show the extinction probability within the time window of time of duration (0,7%),
Pg(TEg), as a function of n. Fig. shows a sharp increase in this quantity as n increases.

2.3.2 Delayed cytokine scenario

In this section we consider the delayed cytokine scenario where:

. . N S .
e The secreted cytokine, x,1, is transported to , 2, that is, T, 11 — Tp,2, with
transition rate transition rate Wsyon = Soxpt1

. . . . A’rL . . . . .
e The cytokine in x, 9 is degraded, that is, z,2 fiaxy (), with transition rate transition
rate Weion = Apjo®ni1

e The size of the SC compartment is controlled by x, 2, that is g + zp1o — (), with
transition rate transition rate Wrion, = AoZoTni2

We start by analysing the mean-field behaviour of the system:

o = pxro — doTo — NoToTn+1, (2.8)
T =2d;_ @i — Ny —dixg, 1=1,....n—1, (2.9)
Ty = 2dp_1Tn-1 — AnZn, (2.10)
Tpi1 = 8Tp — Apt1%na1 — S2Tnad, (2.11)
Tpao = S9Tpt1 — Ana2Tnil — A0LOTn2, (2.12)
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Figure 2.6: Extinction time in function of the transport rate so. p = 0.6 day—*, A, = 0.03,
A1 =1, Apg2 = 1, Ty = 10000 , Ao = 15555 day™!, n = 5.

which implies that the secretion rate, s, is now determined by

_ (52 + Ag1) (Ant2Tnt2 + AoZToZni2)
TpS82

, (2.13)

and the positive equilibrium is of the form:

Py = <>\1$1 tdizy AT+ daZie Aaln o AnsaZna2 + AoToTarz P d0> .
2dg T 2d; T 2d, Y 59 X
(2.14)
Note that if A\, 12 = An41, we recover the previous model when so — oc.

We are interested in how the dependence of the behaviour of population on the cytokine
delay, which is controlled by ss. Fig[2.6] shows the extinction time as a function of sy. In
Fig we have plotted s as a function of s9, as given by Eq Taken together, these
two results show that a decrease in so contributes to destabilise the population, since this
contributes to increase the delay between cytokine secretion and SC response. Moreover,
more cytokine needs to be produced to maintain the SC compartment size.

2.4 Robustness of populations with asymmetric SC division

So far, we have focused on the study of differentiation cascades with symmetric stem cell
division. We have uncovered that symmetric stem cell division may induce extinction of
the population, specially in long differentiation cascades where the delays in the regulation
of stem cells by mature cells are more important. This result points out that utilisation
of symmetric stem cell alone may not be an optimal strategy.

In normal situations, stem cell division is commonly believed to be mostly asymmetric
with symmetric division being a rare event [71]. However, it has also been put forward
that symmetric SC division could also play an important role, specially in situations, such
as wound repair, where the SC compartment must be allowed to expand in order to com-
pensate for an increased demand in cellular turnover [74]. In view of our results regarding
the induction of instabilities by symmetric SC division, one could ask the question of how
frequent symmetric SC division can be before anomalies in the population start to appear.
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Figure 2.7: Value of s according to Eq. in function of so. p = 0.6 day™!, A\, = 0.03,

A1 =1, Apgo = 1, Ty = 10000 , Ao = 15555 day .

The aim of this section is to address these two issues, namely, whether symmetric SC
division is an optimal strategy and the frequency of symmetric SC division, as well as as-
certaining which are the generic features of an optim, i.e. maximally robust, differentiation
cascade.

2.4.1 Stochastic modelling of a differentiation cascade with asymmetric
stem cell division

Our first step is to present our stochastic model for a differentiation cascade with asym-
metric stem cell division. We formulate our model in terms of the transition rates that go
into the corresponding master equation Eq. , which are shown in Table Model
formulation is very similar to the one for the differentiation cascade with symmetric SC
division: we consider the same n + 2 different cell and chemical species, i.e. SC, n — 1
TACs, MCs, and the MC-secreted cytokine.

The dynamics of this system is essentially the same as in the symmetric SC division
case (see Table except for the SC cell dynamics. Following Knoblich [71], we assume
that SCs divide asymmetrically with occasional symmetric cell division is a rare event. We
thus consider that SCs divide asymmetrically with probability 1 — e. We further consider
than the rate of asymmetric division is regulated (inhibited) by a cytokine produced by
the mature cells [82]. These two factors are summarised in the transition rate Wy, Table
With probability e, SCs behave as a symmetrically-dividing cell, whose behaviour is
characterised by transition rates Wy, Wy, and W3, Table i.e. a SC which behave as a
symmetrically-dividing cell can (i) self-renew, (ii) differentiate, or (iii) undergo apoptosis,
with probability rates W7, W5, and W3, respectively. In our study, the parameters a and
b will be chosen to have the same division rate as in the symmetric division model at the

metastable state, that is, b(i;:ial +ep+edy = p+ dp.

The mean-field behaviour of the model is described by the following system of law-of-
mass action ODEs:
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Reacting rate ‘ ri = (Ayd, Ayy, ..., Ayl ) ‘ Description

Wy = bq_;:)ﬁ Y0 (0,1,...,0) | asymmetric division—differentiation
Wo = epyo (1,0,...,0) | symmetric self-renewal

W3 = edoyo (-1,2,0,...,0) | symmetric differentiation

W4 = eAoyoYn+1 (-1,0,...,0,—1) | SC apoptosis

Wste; = ANy 0,...,—1,...,0) | TAC apoptosis

Ware; = diy; 0,...,—1,2,0,...,0) | TAC differentiation

W3ion = Anin (0,0,...,—1,0) | MC apoptosis

Wiion = Syn (0,0,...,0,1) | Cytokine secretion

Wsion = Ant1Yntl (0,0,...,0,—1) | Cytokine clearance

Table 2.2: Reaction rates corresponding to the stochastic dynamics of a differentiation
cascade with both symmetric and asymmetric division. Symmetric division is considered
to be a rare event which occurs with probability e [72]. We choose dg = 1 — p day ™!,
A\i=00lday tandd; =1— \; day ! fori=1,....n — 1. s is fixed in the following way:

from equation (2.19), at the steady state we have 0 = sy, — A\p+1Unt1 — €A0Y0Unt1, this

implies s = AnﬂWyi@)\om'
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Figure 2.8: Relative size of the stationary average size SC compartment at the metastable
state in function of e, yo(e)/yo(e = 0), as determined by Eq. We have normalised
with yp(e = 0). Parameter values: a = 1000, b = 700, A\g = ﬁ day~t, 7, = 10000,
p = 0.55 day~*, A\, = 0.05 day~!, A\,r1 = 1 day~!, the Length of the differentiation
cascade is 4.
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Yo = epyo — edoyo — eAoYoYn+1 (2.15)
. 1—e)a

U1 = 1§+yni1y0 + 2edoyo — My — diyr (2.16)
g'/i = 2di_1yi_1 — )\iyi — diyi 7= 2, ey U — 1 (2 17)
y.n = 2dn71yn71 - yn)\n (2 18)
Unt1l = SYn — M 1¥nt1 — €A0YOYn+1 (2.19)

Where y; is the number of cells in the compartment i. The variables and parameters
are described in the Table Eqgs. (2.15)-(2.19) have a positive equilibrium given by:

My1 + di Aj+1Y41 + djr1yj1 An¥Yn p —do

A AR ’y )
T 2,y

Py =

(2.20)

Fig shows the average stationary size of the stem cell compartment as predicted by
Egs. - We observe that, whilst an increase in the size of the SC compartment
is obtalned as e is let to grow, the magnitude of such increase, for the chosen set of
parameter values, of the order of a 10 %.

Regarding the behaviour of the stochastic model, the main difference with respect to
the symmetric cell division model (Table involves the lack of delay-induced extinction
behaviour exhibited by differentiation cascade model with pure symmetric SC division.
This behaviour is illustrated in Fig. where two typical sample paths are shown for
different values of the probability of symmetric division, e. If the probability of symmetric
division, e, is small, the variation in size of the SC compartment is bounded, which renders
the system resilient to the effect of the delay-induced oscillations that, in the pure symmet-
ric SC division system, eventually lead to extinction of SC compartment followed by the
extinction of the whole population. Fig. we have plotted the extinction probability
of a differentiation with asymmetric SC division as a function of e and show that, indeed,
differentiation cascades with small probability of symmetric division are impervious to the
delay-induced extinction mechanism.

2.4.2 Competition between populations

We now move on to study of the robustness of the asymmetric population, that is, whether
it can withstand attempts of invasion by other populations using different strategies. In
what follows, such strategies will refer to variations of two parameters: The probability of
symmetric division, e and the rate of symmetric self-renewal p. Our aim is to ascertain cri-
teria of evolutionary optimality based on our results regarding the outcome of competition
between populations characterised by different values of these parameters.

Asymmetric vs symmetric population

We start by studying the competition between a resident population generated by differen-
tiation cascade with asymmetric SC division, hereafter referred to as A, and a symmetric-
SC-division invader, referred to as S, whose population dynamics is given by the model
described in Section 2.2l
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Figure 2.9: Sample paths showing the time evolution of the number of SCs for different
values of e. Panel (a) corresponds to e = 0.05 whereas panel (b) shows a realisation with
e = 1. Parameter values: a = 1000, b = a — Tp11, Ao = ﬁ day~!, p = 0.55 day !,
Ap = 0.03 day™!, \,p1 = 1day~' n =4, T, = 5000 . We can see that the population with
symmetric stem cells division becomes extinct much faster than the asymmetric.
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Figure 2.10: Simulation results corresponding to the dependence on the non asymmetric
division probability of stem cells e, of the probability of extinction within a time window
(0,7), Pe(r), with 7 = 1000 days. p = 0.55 day~!, A, = 0.03, \,s1 = 1, T, = 6000,
Ao = go5g day ! @ =1000, b= a — Zp17.
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Mean-field behaviour. In order to proceed further, we start by giving some results
regarding the behaviour of the mean-field limit using qualitative theory of ODEs. For
simplicity, we will assume that both populations of mature cells are producing the same
cytokine.

Let yo (zo) be the size of SC compartment of the asymmetric (symmetric) division
population. The mean-field behaviour of the model of competition between the populations
A and S is described by the following system of law-of-mass action ODEs:

Yo = epyo — edoyo — eAoYoTn+1 (2.21)
) (1—-e)a
Y1 = %o + 2edoyo — M\y1 — d1i1 2.22
b+ Ynt1 ( )
yi = Qdiflyi,l — Alyz — dzyz 1= 2, ey — 1 (2.23)
Un = 2dn71yn71 - Anyn (224)
to = €'p'zg — €'dyro — € NyroTni1 (2.25)
. (1 — el)a, ! / !
= 2ed, - A —d 2.26
T1 — xo + 2edyxo 1T 121 ( )
iy = 2d,_qxi1 — Ma; — dx i=2,.,n—1 (2.27)
ip = 2d),_1Tn—1 — Ny (2.28)
Fpt1 = SYn + 8 Tn — App1Znt1 — €X0Tnt1Y0 — € A)Tnt170 (2.29)

Let the quantities r and r’ be defined as:

p—dp
)
o= p/ - d6
Ao

r =

(2.30)

i.e. 7 and r’ are the ratios between the net SC growth rate and the SC differentiation
rate for each of the competing populations, which coincide with steady-state value of the
mean-field cytokine concentration for each of the populations.

From Eq. we see that go > 0, i.e. yo grows in time, if 2,41 € (0, ). On the
contrary yo decreases as time progresses if x,41 € (r,00). Similarly, Eq. implies
that xq is increasing with time when 2,11 € (0,7) and decreasing when z,,11 € (1, 00).
Moreover, according to Egs. (2.21) and (2.25), when ¢ — oo, the stationary level of
cytokine is given by x,4+1 — max(r,7’). We thus consider three possible scenarios for the
mean-field limit:

e r > 7', The S population becomes extinct: as t — 0o Tp11 — r which implies that,
ast — 00, g = 0 and £y < 0 with the equality in the latter holding for x¢g = 0 only.

e r = r’. Both populations coexist: as t — 00, 41 — r = r’ which implies that, as
t — 00, both g = 0 and &g = 0 hold.

e r < 1r’. By the same reasoning as in the first case, the A population becomes extinct.

Regarding the behaviour of the stochastic system, there are some important differences
with respect to its mean-field counterpart. In Figure[2.11] we show that the probability of



Robustness of differentation cascades 33

invasion as a function of the self-renewal rate, p’, and death rate X, of the invader stem
cells. Instead of the 3 scenarios that characterise the mean-field limit, we have:

e r > 7', In this case, extinction of S is the most likely scenario: the population S is
forced to evolve under higher on-average cytokine levels which induces upregulation
of apoptosis of the S-stem cells. As v’ — r, this competitive advantage of A over
S weakens. However, at that point, the delay-induced extinction mechanism for S
takes over. Since we are considering e to be small, delays have little effect on the
population A, which leads to eventual extinction of S. This behaviour is illustrated
in Fig. which shows that the probability of S to invade A vanishes in this

regime.

0.6 | i
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Ag'=1/6000 ——  Ag'=1/3000 -

Figure 2.11: Probability invasion of the competition of two populations, one with asym-

metric division with e = 0.1, and the other with pure symmetric division, ¢/ = 1, and we

plot the probability of invasion in function of the duplication rate of the invader population

and for 2 different values of invader stem cells death. a = 1000, b = a — Yn+1, Ao = ﬁ

d/ay L = 6000, p = 0.55 day~*, _Aln = 0.03 day 1,_)\1n+1/ =1 day i.Wheni: 5660

r" =r for p' =0.55, \j, =0.03 day =%, A}, ,; = 1 day ~*, a’ = 1000, b’ = a — T, 11 when
!/

= ﬁ, ' =1 for p = 0.6. 29(0) =1, 2;(0) =0 Vi # 0.

e r < r’. Under these conditions, the population A is the one which evolves under
excess of cytokine conditions, as the average steady-state concentration of cytokine
is higher than the one the A population would have in the absence of the population
S. As a consequence, the probability of S invading A is now positive, as shown in
Fig. We also observe that the probability of invasion as a function of 7’ reaches
a maximum value and then starts decreasing. This behaviour is again due to delay-
induced extinctions: as the relative net growth rate of the S-stem cells increases the
probability of delay-induced extinction of the S population also increases (as shown

in Fig. .
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In order to further explore the behaviour of the stochastic competition model in the
r < r’ regime, we have done simulations to compute the probability of invasion and the
probability of extinction of both populations as a function of e, i.e. the probability of
asymmetric behaviour of A-stem cells, and the rate of (symmetric) self-renewal of S-stem
cells. The results are shown in Fig. We observer (Fig. [2.12fa)) that there is a
threshold value of e below which the resident A-type population cannot be invaded by
a S-type invader, regardless of the value of p’. If the A-type resident has an e above
this threshold, then two outcomes are possible: invasion, for moderately high values of
p/, or extinction of the symmetric invader (see also Fig. , for even higher values of
p/. Furthermore, as e grows, Fig. [2.12{b) shows that the more likely outcome is both
populations be extinct. This is due to the fact that for larger values of e the symmetric
component becomes dominant in population A as well as S, and consequently the A-
population starts to becoming affected by the effects of the corresponding delays. The
probability of long term coexistence is negligible, according to our simulations.

Optimal differentiation cascades

Finally, we tackle the issue of examining the optimality properties of differentiation cas-
cades. In this context, we define optimality of a differentiation cascade in terms of its
resilience to invasion, namely, optimal differentiation cascades are those which are maxi-
mally resilient to invasion.

In order to address this issue, we again consider the competition between two popula-
tions generated by differentiation cascades characterised by different values of the proba-
bility of symmetric behaviour, e, and the self-renewal rate, p. We study the ability of the
resident population to withstand invasion as a function of the values of these parameters
for both populations. We have chosen these two particular quantities as the focus of our
analysis, as the are directly related to the ability for adaptive behaviour of differentiation
cascades, which has been argued to be at the root of symmetric cell division [91].

We start by analysing the optimal strategy regarding the probability of symmetric
behaviour, e. To this end, we have ran simulations of the competition between a resident
with probability of symmetric behaviour, e, and an invader with probability of symmetric
behaviour, €’. All the other parameters are taken to be equal for both populations. Results
are shown in Fig. [2.13]

In the light of our results regarding delay-induced extinction for higher values of e, i.e.
when the symmetric part of the dynamics dominates, we expect that there exists a trade-
off between resilience to invasion and long-term survival and elevated frequency of SC
symmetric behaviour (which favours adaptive responses). This expectation is confirmed
by the simulations results shown in Figs. m(a), which show the probability of invasion.
We can observe that resident populations with e < 1 are very stable and resilient to
invasion. As e increases, so that a faster and more efficient adaptive response be possible,
an invader with e’ < e is likely to wipe out the resident population (see Fig. [2.13(a)).

We have also investigated the effect of the rate of self-renewal on the resilience against
invasion of an A-type population. Our results are reported in Fig. where we have plot-
ted the probability of invasion (Fig. [2.14|(a)), the probability of extinction (Fig. [2.14{b)),
and the probability of coexistence after a time Tp has elapsed (2.14|c)). These simulations
have been done for e = 0.1 and ¢ = 0.05, which correspond to the region of parameter
values where, according to Fig. [2.13] the probability of invasion is positive. The results
shown in Fig. indicate that if p > p/, i.e. if the rate self-renewal of the resident is
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Figure 2.12: Simulation results for the competition between a resident with mixed asym-
metric division, i.e. 0 < e < 1, and an invader with pure symmetric division, i.e. ¢/ = 1.
Plot (a) and plot (b) show, respectively, the probability of invasion and the probability
of extinction of both populations as a function of the duplication rate of the symmetric
division and the probability of symmetric-like division of the asymmetric population, e.
a = 1000, b = a — Yni1, Ao = 3555 day ', T, = 6000, p = 0.55 day~!, A, = 0.03 day ™!,
A1 = 1 day™!. We run simulations until a final time= 6000 days. ¢’ = 1, A = ﬁ
day™!, 7, = 6000, p’ = 0.55 day™', A\, = 0.03 day™!, X\, = 1 day~'. 20(0) = 1,
x;(0) =0 Vi=#0.
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Figure 2.13: Simulation results for the competition between two A-type populations. Plot
(a) and (b) show the probability of invasion and extinction of both populations, respec-
tively. We have plotted these three quantities as a function of the probability of symmetric
behaviour of the resident, e, and the invader €¢/. a = 1000, b = a — Y11, Ao = Wloo day 1,
Tn = 6000, p = 0.55 day~!, A\, = 0.05 day !, A\, 1 = 1 day™!, @/ = 1000, b’ = o' — Tpi1,
Ay = ﬁ day™!, T, = 6000, p’ = 0.55 day ™!, A, = 0.05 day ™', \,,; = 1 day~!, We run
simulations until a final time= 6000 days. z¢(0) = 1, 2;(0) =0 Vi # 0.
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Figure 2.14: Simulation results for the competition between two A-type populations. Plot
(a), (b), and (c) show the probability of invasion, extinction of both populations, and prob-
ability of coexistence, respectively. We have plotted these three quantities as a function
of the probability of the stem cells duplication resident, p, and the invader p’. a = 1000,
b=a—TYni1, Ao = 5055 day !, Un = 6000, e = 0.1 day™!, A, = 0.05 day™!, A\py1 =1
day~!, ' = 1000, ¥ = @’ — Tpi1, Ay = ﬁ day~!, @, = 6000, ¢/ = 0.05 day !, N, = 0.05
day~1, N =1 day~!, We run simulations until a final time T = 6000 days. z(0) = 1,
z;(0) =0 Vi#0.
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larger than that of the invader, the resident population is resilient to invasion.

Taken together, the results shown in Figs. and show that the optimal trade-
off between resilience to invasion and capability for adaptive behaviour is realised by
populations with small probability of symmetric behaviour, e, and large value of the self-
renewal rate.

2.5 Conclusions

In this chapter, we have presented an analysed stochastic models of differentation cas-
cades to study the effect of symmetric and asymmetric stem cell division. Our model is
a compartmental model in which each compartment corresponds to a different differenti-
ation stage, we have considered stem cells, transient amplifying cells, fully differentiated
cells and a cytokine, produce by the FD cells which regulates the size of the stem cell
compartment. In particular, we have deduced from our model some protection mecha-
nism of the hierarchically structured cell populations. We have proposed a new extinction
mechanism in which, the delay between the changes due noise fluctuations in the stem
cell compartment, and the cytokine compartments, unstablises the whole population and
eventually leads the system to extinction. Moreover, we have investigated a more realistic
situation in which both, symmetric and asymmetric stem cell division are present, and we
have looked for optimal strategies to be robust against invasion.



Chapter 3

Antigen-stimulation induced
eradication of the HIV-1 infection
in patients under highly active

anti-retroviral therapy

HIV-1 patients under potent anti-retroviral develop a small reservoir of latent cells which
persists and that anti-retroviral therapies are unable to eliminate, which hinders the total
eradication of the infection. Recent research activity has been focused on formulating
strategies aimed at removing the latent infection [121] 113 [65] [71]. One such proposal
consists of elevating the rate of activation of the latently infected cells. We present a
stochastic model of dynamics of the HIV-1 infection and study the effect of the rate of
latently infected cell activation on the expected extinction time of the infection. We analyse
our model by means of an asymptotic approximation using the semi-classical quasi steady
state approximation (QSS). We also present a lower bound of the extinction reducing
our stochastic problem to an easier 1-dimensional system which, in some cases, is a good
approximation of the original one. We test the accuracy of our asymptotic results by
means of a hybrid multi-scale stochastic simulation algorithm.

3.1 Introduction

HIV-1 infected patients are effectively treated with highly active anti-retroviral therapy
(HAART). Whilst HAART is successful in keeping the disease at bay with average levels
of viral load well below the detection threshold of standard clinical assays, it fails to
completely eradicate the infection [63]: the infection persist in form of a latent a reservoir
with a half-life time of years. This implies that life-long administration of HAART is, at
the moment, necessary for HIV-1-infected patients, which is prone to drug resistance and
cumulative side effects as well as imposing a considerable financial burden on developing
countries, those more afflicted by HIV, and public health systems [121].

The latent reservoir consists of a population of latently infected T cells (probably,
memory cells) which host, but do not produce the virus. Since virion production is not
occurring within latently infected cells, they are immune to effects of HAART [110]. During
their life-cycle, latently infected cells can undergo activation thus becoming active infected

39
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cells with the ability to produce virus. The latently infected cell population is replenished
by both active infected cell proliferation and also by slow, density-dependent homeostatic
proliferation of the memory CD4+ T memory cells (and, therefore, of the latently infected
cell compartment), which, according to [23], drives persistence and determines the size of
the latent reservoir. This cycle is able to maintain positive, albeit small levels of viral load
for very long time.

The presence of this latent infection has been recognised as major barrier for complete
eradication of HIV-1 infection and the search for combination therapies, i.e. HAART plus
specific agents that tackle the latent reservoir, has become a very active field of research
[121, 113} [65], 66]. One of such potential approaches consist using agents that activate la-
tently infected cells: by activating the cells in the latent reservoir, they would be rendered
sensitive to HAART. This would, at least theoretically, clear the latent reservoir and,
eventually, the infection. Early studies regarding reactivation of the latent reservoir used
interleukins (IL-2, IL-3, and IL-7) in combination with specific antibodies (CD3). These
attempts failed because it increased the absolute count of T cells [121) 1T3]. More recent
studies have focused on the use of small molecules that reactivate latent virus produc-
tion without inducing global T cell activation, in particular several histone deacetylases
(HDAC) and other chromatin modifiers [121]. Here, we focus on modelling the efficiency
of the latter type of therapy in combination of HAART. In particular, our aim is to analyse
how the average extinction time of the infected cell population (both active and latent)
changes as the activation rate of latently infected cells is increased.

We perform a WKB asymptotic analysis of the partial differential equation for the prob-
ability generating function associated to the Master Equation which describes stochastic
population dynamics. This method relays on the solution of a variational problem for the
optimisation of an action functional, which effectively reduces the problem to the analy-
sis of the associated Hamilton equations [73], [35]. In order to make further progress, we
take advantage of the multiplicity of time scales in the system, to perform a quasi-steady
state approximation (QSSA) on the Hamilton equations, thus reducing the dimensional-
ity of the problem [2]. We further used advanced numerical techniques to analyse the
multi-dimensional Hamiltonian system: computation of invariant manifolds [53] and Tay-
lor integration method [64] together with automatic differentiation techniques [64], which
are used to obtain high accuracy and larger time steps. Our asymptotic results are tested
by means of multi-scale stochastic simulations [20].

The organisation of the chapter is as follows. Section is devoted to presenting our
model of the HIV-1 dynamics under HAART in detail and discussing its underlying hy-
pothesis. In Section we present an asymptotic analysis of our stochastic process, which
transforms it into a classical mechanics problem via the semi-classical approximation. We
perform a time-scale analysis of the resulting Hamilton-Jacobi equations to use a Quasi
steady state approximation to reduce the dimension of the problem. Moreover, we present
a simplification of the model which allows us to reduce the system to an easy handle 1-
dimensional system which gives us a lower bound of the extinction time. In Section
we present the results obtained via the different methods presented and a comparison of
them. Finally, in Section we summarise our results.
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Transition rate ‘ rj = (AT,AL,AT*,AV) ‘ Description

Wi = AQ (1,0,0,0) | Recruitment of T" cells

Wy = drT (=1,0,0,0) | Death of T

W3 =n(l —ekVTQ ! (—1,1,0,—1) | Infection T+ V = L cell
Wy=0-n)(1-ekVTQ ! (—=1,0,1,—1) | Infection T+ V = T cell
W5 =rL (0,1,0,0) | Proliferation L — 2L

W = U1 (0,-2,0,0) | L+ L = 0

Wz =doL (0,—1,0,0) | Death of L;

Ws =arL (0,—1,1,0) | Activation L — T*

Wy = 6T* (0,0,—1,0) | Death of T*

Wig =cV (0,0,0,—1) | Clearance of virus

Wit = p,T* (0,0,0,1) | Production of virus by T*
Wio = ekVTOQ™! (0,0,0,—1) | Infection failed

Table 3.1: Transition rate corresponding to the stochastic model of HIV dynamics. A
description of the corresponding elementary population-dynamical processes is given in

Section

3.2 Stochastic Model

Our model is a stochastic generalisation of the model proposed by Rong and Perelson
[T10]. It takes into account 4 different variables: T represents the number of CD4" T-
cells that are susceptible to HIV-1 infection, L, which stands for the number of latently
infected cells that cannot produce virus. L cells can be activated by stimulation with their
recall antigens. Finally, 7" and V represent productively infected cells, i.e. those that can
produce virus particles, and the total viral load, respectively.

Our stochastic model is formulated in terms of the corresponding master equation
[122, [44]:

aP(X, 1)

o = 2 Wi(X =1, )P(X =15, ) = Wj(X, ) P(X, 1)) (3.1)

J
where X = (21,29, x3,24) = (T, L, T*,V) and P(X,t) is the probability of the population
vector to have X particles at time ¢. For full specification of our stochastic model, we
need to prescribe the transition rates, W;(X,t), corresponding to the probability per unit
time of the elementary processes j to occur. These rates are modelled in terms of the
law of mass action [47]. r; is the change in X when elementary process j occurs, i.e.
X (t+ At) = X(t) + r; with probability W;At: P(X(t + At) = X(t) + ;| X (t)) = W;At.
The elementary processes involved in our model are:

e Recruitment of new CD4+T cells with transition rate W (see Table [3.1)).

e CD4+T cells can undergo:
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Parameter ‘ Description Value
Ty CD4+T cells 599999 cells ml~*
at the metastable state
Ly Latently infected cells 0.934778 cells ml~!
at the metastable state
Ty Productively infected cells 0.115067 cells ml1~*
at the metastable state
Vo Viral load 10 copies ml~!
at the metastable state
T CD4+T cells 600000 cells ml ™!
at the extinction
Ly Latently infected cells 0 cells ml—*
at the extinction
17 Productively infected cells 0 cells ml~*
at the extinction
\%1 Viral load 0 copies ml~!
at the extinction
A Recruitment rate of T' cells 10000 mI~' day~!
dp Death rate of T cells 0.0166 day—!
k infection rate 2.4-107% ml day~!
€ Drug efficacy 0.85
n Fraction resulting in latency 0.001
dr, Death rate of latently infected cells 0.001 day—!
aj, Standard rate of transition from latently to productively | 0.1 day~!
ar, rate of transition from latently to productively varied
o death rate of productively infected cells 1 day—!
c clearance rate of free virus in blood stream 23 day !
Do Viral production rate 2000 day !
r proliferation rate of activated cells 0.2 day~*
Linaz Carrying capacity density of latent cells 1.888 cells ml~*
Q System size 5000 ml

Table 3.2: Parameter values of the different rates
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1. Apoptosis with transition rate Wy (see Table .

e Latently infected cells L; can undergo:

1. Homeostatically balanced proliferation. Following [110], we account for ho-
moeostatic control of proliferation by means of a combination of branching
(L; — 2L;) with binary annihilation (L; + L; — @). It has been shown (see e.g.
[35]) that this combination is an stochastic counterpart of the standard logistic
growth. The corresponding transition rates are W3 for branching and Wy for
binary annihilation (see Table [3.1)).

2. Death. We assume a simple linear decay with transition rate W5 as shown in

Table [3.11

3. Activation. By means of this process a latently infected cell becomes an active
infected cell L; — T;*. The corresponding transition rate is Ws, see Table

o Active infected cells, T7*, cell are subjected to:

1. Apoptosis with transition rate W7 (see Table .

2. Virion production. Contrary to latently infected cells, active infected cells
synthesise and release new virions. In general, viral production can occur in
a continuous fashion over the life span of an infected cell or in a burst which
kills the cell. For the HIV infection both modes have been proposed [97].
Transition rate Wy (Table corresponds to continuous production. Later in
the chapter, we consider an additional scenario, in which both continuous and
burst production occur.

e Finally, virus, V;, can:

1. Infect a healthy T cell producing a latently infected cell. In patients under
HAART, the infection process is hindered by the presence of an anti-retroviral
drug. The efficiency of such drug is measured by a parameter, ¢, which takes
values between 0 and 1, the latter (former) corresponding to a maximally
(in)efficient drug. (1 — €) is interpreted as the proportion of virions capable
of infection under HAART treatment. We also assume that, upon infection,
the cell can become latently infected with probability n or active with proba-
bility (1 — n). Therefore the corresponding transition rate Wy is proportional
to (1 — €) as shown in Table

2. Infect a healthy T cell producing an active infected cell. In this case, the
corresponding transition rate W is proportional to (1 —n)(1 — €) (see Table
31).

3. Undergo clearance. Virions are removed from the blood, and we model this
process as a simple linear decay with transition rate Wg as per Table

4. Fail to infect and being eliminated by the drug with transition rate Wig (see

Table B.1).

The parameter values used in our analysis are based on current estimates available in
the literature. They are summarised in Table
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As a first approach to the dynamics, one can study the mean-field behaviour of this
system, which is given by the set of ordinary differential equations (3.2)), (3.3), (3.4) and

B3)-

%T(t) = A—diT—(1—kVT (3.2)
%L(t) = (1= RVT +rL(l — 7—) —doL —arL (3:3)
%T*(t) — (1—p)(1 - OkVT — 6T +arL (3.4)
%V(t) —  NOT* +p,T* — &V — VT (3.5)

The mean-field system has two fixed points. The point with coordinates (77, 0,0,0),
i.e. the disease-free equilibrium associated to extinction of the infection, is a repeller fixed
point. The other fixed point, of the form (T, Lo, T§j, Vo) with Lo, T, Vo # 0, is a global
attractor. When noise is considered, the latter equilibrium becomes a metastable state,
whereas the former becomes an absorbing state [35]. From Egs. (3.2)-(3.F), we obtain
that this metastable state exists as long as aj, < a}, where:

. r— d(]
aL = 1 ( n(l—ﬁ)le ) (36)
S(c+kTy)pv—T1—(1—n)(1—€)kT1)

3.3 Asymptotic analysis and numerical methods

In this section we study the stochastic dynamics described by Eq. . We follow the
methodology presented in [2] and we use the semi-classical approximation, but performing
a time-scale analysis on the resulting Hamilton equations to simplify to reduce the dimen-
sion of the resulting problem. A multi-scale stochastic simulation method, which takes
advantage of the separation of time scales to produce fast simulations, is used to test our
results.

3.3.1 Semi-classical approximation

In Appendix [B] we have included all details of the semi-classical approximation, in this
section we apply that methodology to our specific problem.

Consider the generating function associated to the probability distribution Eq. (3.1]).

G(p1, 12,3, D1, 1) prlp?p?m P(z1, 39, 73,74, 1). (3.7)

The evolution of the generating function is determined by a partial differential equation
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(PDE), which is derived from the Master Equation (3.1)):

oG oG 0G 0G
TZ A —1) —dr(1 = p)Z — (1= )1 — )k(ps — prpa) T
Y (p1 —1) —dr(1 —p1) o (1 =) = €)k(ps — p1pa) 901 Ops
0G 0G oG r 0*q
—n(1 — e)k(py — TT T (g — o)l — 1-p2) 2
n(1 — €)k(p2 — pips) 91 s r(pz — p2) O 2 Lmax( p3) o2
oG oG oG oG
(1 —po) S )L pu(papa — p3) o — §(1 — pg) o
(1 —p2) op (ps — p2) op 7 (p3pa — p3) s (1—ps) s
oG oG 0G
—c(1 = pa) o — ek(p1 — p1pa) o o 3.8
e( p4)ap4 ek(p1 P1p4)6p1 o (3.8)
Which can be interpreted as a Schrodinger equation,
9 X
—G=-HG 3.9
g , (39
where the Hamiltonian operator, H, in the p (momentum) representation is
H(p1, P2, P3: Par 1, G2, G3,4s) = A(Pr— 1) +dr(L—p1)di + (1 —n)(1 — )k(ps — p1a)d1da
o NoANA A R AN A r O
+n(1 = €)k(p2 — proa)dnds + (05 — Pa)do + 57— (1 = 93)3

+dr(1 = p2)da + ar(Ps — p2)d2 + pu(Dspa — P3)gs + (1 — P3)ds
+c(1 — pa)ga + €k(p1 — P1Pa)G1Ga (3.10)
where ¢; = _8%" The operators p; and §; satisfy the commutation relation [p;, §;| = d; ;.
From Eq. (3.9), we formulate an Ansatz where G = exp(—S). When the system
size, (1, is big, one may employ the WKB approximation and consider a S with S of the
form S = —Q.S expanding up to order O(2~1) (neglecting O(272) terms), one obtains the
classical Hamilton-Jacobi equations
oS oS
2 H(p 22, 3.11
ot <p ap> (8:11)
Instead of directly tackling with the Hamilton-Jacobi equation, which, in general, we

do not know how to solve, we exploit the analogy of the Shrodinger equation and use a
Feynman path-integral representation we obtain a solution of (3.8)), that is

Gp,t) = /0 (exp (—S(p, 0)) Da(s) Dp(s)) ds + ™, (3.12)

with . .
S(p,q,t) = / (—H(p, q) + Zqi(s)g')i(s)> ds. (3.13)

0 i=1

The semi-classical approximation consists of approximating the path integral (B.13|)
by

G(p,t) = exp (=S(p, 1)), (3.14)
where p; are the solution of the Hamilton equations of the (classical) Hamiltonian
H(p,q) = Ap1—1)+dr(1—pi)g+ (1 —n)(1—e)k(ps — p1pa)q1gs
r
+n(1 = k(2 = prpa)qigs +7(p3 — p2)az + 57— (1 = p3)3

+dr(1 — p2)g2 + ar(p3s — p2)q2 + Pu(P3pa — p3)gs + 6(1 — p3)gs3
+c(1 — pa)qa + €k(p1 — P1P4)q1q4- (3.15)
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This implies, in particular corresponds to the classical Lagrangian action related to
(3.15). The equations of motion are given by dg;/dt = 0H/0p;, dp;/dt = —0H /dq; [0,
that is

% = dp(p1 — 1)+ (1 = n)(1 — €)k(pipa — p3)qa + n(1 — €)k(p1pa — p2)qa + ek(p1pa — p1)aa,
% = r(p2 —p%) + o (p% —1)go 4+ dr(p2 — 1) + ar(p2 — p3),

% = pu(ps — psps) +6(p3 — 1),

% = (1 =n)( = )kP1ps = p3)ar +n(1 = )k(p1pa — p2)a1 + c(pa = 1) + ek(p1ps — p1)an,
% = A—drq1 — (1 — €)kpsq1qs + €k(1 — p4)q14u,

% = (1 —€)kqigs +7(2p2 — 1)g2 — Lr:wpgqg —drgs — argo,

% = (1=n1—-ekqqs+args + pu(ps — 1)g3 — dgs,

% = —kp1q1qs + pup3qs — cqa. (3.16)

These equations are formally solved with boundary conditions

¢i(0) = zi(0),
pit) = pi (3.17)

3.3.2 (Quasi-steady state approximation

In this section, we proceed to formulate a quasi-steady approximation, that allows us to
simplify the system Eq. . We proceed by re-scaling our variables in such a way to
make explicit the separation of time scales and simplify the model according to the quasi-
steady state approximation. For clarity, we perform this analysis in two steps. We start
by defining the following set of re-scaled (dimensionless) quantities:

In this section, we proceed to re-scale variables so that we can analyse the intrinsic
time scales of each of the variables involved and simplify the model according to the quasi-
steady state approximation. For clarity, we perform this analysis in two steps. We start
by defining the following set of re-scaled (dimensionless) quantities:

o
q17T07
@
q2_L07
iy = 2

TO*’
o _w
q47V07

s = kVpt. (3.18)
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Parameter \ Order of magnitude

k1= iy | 0(10°)
K2 = 1ir 0(10%)
K3 = ,zlf’nggb O(10)
ka = i | 0(1072)
ks = Het | 0(10°)
ke = bt | 0(10%)
k7= g | O(10°)
ks = g | 0(10%)

Table 3.3: Re-scaled parameters following the re-scaling of variables shown in Eq. |3.18

In this re-scaled variables, the Hamiltonian can be written as
H(p,z) = kToVoHy(p, x), (3.19)

where Hy(p, q) is given by

Hy(p,q) = rki(pr—1)+ ka1 —p1)gi + (1 —n)(1 —€)(p3 — p1pa)qiqa
Lo
4+n(1 — €)(p2 — p1pa)q1qa + K3(p3 — P2)g + K3 (1—p3)g3
2Lmax

+r4(1 — p2)g2 + K5 (p3 — p2)g2 + Ke(pspa — p3)gs + k7(1 — p3)gs

+r8(1 — pa)aa + €(p1 — pipa) s, (3.20)

and where, for simplicity of the notation, we have dropped the hats of the re-scaled
variables ¢;. The parameters ; are given in Table
The Hamiltonian equations for the re-scaled variables read as follows

dq OH, dp1 kVoTo OH
kEVoTo— = kW1 kKVo— = —
02075 008})17 0" ds Ty Oq’
d OH, d kVoTy OH,.
ALoSE = kVpTyar, — = 8T
ds Ops ds Ly 0O¢o (3.21)
dqs OH, dps kVoTo OH ’
EVoTr— = EkVuT kVop— = —
070 g5 008}03’ 0" ds Ty O0g3’
dqq OHy dp4 kVo'To OH,,
EVZ—/— = kWT KVop— = —
O ds 0509, 0" ds Vo Oqi’
and, therefore,
da — _ OH, dpy  __OH,
ds - op] ds oq’
Lydy _ OH.  Lodm _ 0M,
T() ds N apg ’ T() ds aQQ ’
Todgs _ OH. — Todps _ OHx
Ty ds N ops’ To ds dq3’
Vods _ OH.  Vodps _ _OH,
TO ds - ap4 ’ T(] ds 6(]4 '
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In order to proceed further with our time-scale analysis, we note that the dynamical
equations for q; and g4 are dominated by the terms in x; and ko, which, according to
Table are O(10°), and kg and kg, which are O(10%), respectively. On the contrary,
the dominant terms in the equations for ¢o and g3 are O(1). In view of this, we re-scale
the dimensionless time s as

T = R1s. (3.23)

In terms of the re-scaled time 7', our Hamilton equations are given by

dgp _ L1OH, — dpi 1 0H,

dI' k1 Op1’ dI" k1 Oq1’

dQZ aHH dp2 aHm

€l—F = ) €1~V = )

drT apg dr 8q2 (324)
ot _ OHx s o OHx '
dT ~ Ops’ AT O3

el _ L OH, o dpi 1 OH,

SdT N Kg 8;04’ 3dT N Ke 8Q4’

where €; = /4;1%) =0(1071), o = m% = 0(1072), and €3 = %%’ = 0(1073), and all the
right hand sides of the Hamilton equations are now O(1). In view of this separation of
time scales, we can assume that ¢; is a slow variable which will remain roughly constant
in relation to g2, and ¢3 (and similarly ¢4) is a fast variable which can be considered to
be at equilibrium with the rest of the system. Therefore, the quasi-steady state Hamilton
(QSSH) equations read

dpy ~ O0Hg dpr OHy
ar — op’ dar -~ dq’
(de o OH. (A Oy
dr 8p2 ’ dTl 8(]2 ’ (3‘25)
das _ OH, i _0H,
drl 8p3 ’ dTl 8(]3 '
Jdoo _ 10H, o dp _10H,
dr Kg ap4 ’ dT Ke 8(]4

In following sections we consider two different approximations. In both approximations
we assume that the healthy cells are constant, that is p; = 1 and ¢; = 1, this hypothesis
holds since if we project on the plane (p1, q1), the stochastic extinction and the metastable
state are very close, the distance is O(107%), and that the equations for p; and ¢ are
essentially linear in p; and ¢ plus a small perturbation in the other variables. The first
approximation consists in considering es = 0 and e3 = 0, we refer this as Strong QSS. The
other option consists in considering only €3 = 0, this approximation is refereed as Weak
QSS. In this particular problem, the Strong QSS and the Weak QSS lead us to a very
similar solutions, see Figure [3.4 However, in other cases their results could be different,
for this reason we give tools to study the Weak QSS and to compare them.
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Strong QSS

The so-called strong QSSA consists of applying QSS conditions to the equations for
q3,p3,94 and py:

That is,

dpa
dT

daz
dTl

where

b1
q1

b3

qs3

yZs

44

with

dgg dp1 _

a = 0 g5 = 0

dgp  _ OH dpp _ _0H

dT —  Op2?’ dT - 0

0 — aiﬁ 0 - Py (3.26)
I M T}

0 = 0 = &

il (—feg(p% o) ra (1= ) — a1 — o) — (s —p2>) ,

€1 Linax

Lo

1
— <7I(1 —€)q1q4 + K3q2(2p3 — 1) — K3 P2as — Kago — H5Q2> ,

€1 Lmax

(3.27)

L,
L,

ke — k7 — Ckg — Brgpo = \/(/{6 — k7 — Crkg — Bm6p2)2 — 4Kk A
2%614 ’

ks
(1 =n)(1 —€)q1Dp3 + k6(Ap3z + Bpa + C) — Kk7q3
—(1=n)(1 —€)qips — (1l — €)paqi — Ks — ep1q1
—(1—=n)(1—e)qp1 —n(l —€)p1g1 — kg — ep1q1

q2,

K6
mps%y
L (- )1 I
—(1=n)1 —=€e)prgr —n(1 — €)p1q1 — kg — ep1q1
. “n(1 - Opoay
—(1=n)1 —=€e)prg1 —n(1 — €)p1q1 — kg — ep1q1
C = —Rg8 — €P141
—(1=n)(1 —e)p1gr —n(l — €)p1q1 — ks — ep1q1
D = "
P1q1 + K8

We can discard the positive branch of ps for continuity. A phase portrait of the Strong
QSSA is shown in Figure 3.1



50 Antigen-stimulation

(a) (b)
x x
Y
Y A
- —r >@e— ©
1 1

Figure 3.1: Phase diagram of the equations of motions with the Strong QSS assumption
in the supercritical case (left) and the subcritical case (right).

Weak QSS

The Weak QSS equations in which quasi-steady state conditions are applied only to the
equations for py, g4 reads

dp2 1 2 Lo 2
=2 =~ (- —py) — 1- — a1 — o) — -
dT ) ( K3(p3 — p2) — K3 me( P3)q2 — K p2) — k5(p3 —p2) |
dqQ 1 L()
—= = —(n(1 —e)q1qu + K3q2(2p3 — 1) — K3 P2gs — Kaq2 — K5q2 |
ar €1 Lmaz
dp3 1
== = (= —pa) — k(1 —
dT . ( Hﬁ(p3p4 p3) H?( p3)) )
dCI3 1
T - o (T —=n)(1 —€)qiqa + K52 + Ke(pa — 1)g3 — K7q3) (3.28)
€
where
P11 = 11
q = 1a
by = —(1=n)(1 —€)qip3s — n(1 — €)p2q1 — Ks — eP1q1
—(I—=n)1—e)qipr —n(l —€)pig1 — kg — ep1qu
_ K6
o= p1q1 + /‘fspg%'

3.3.3 Heteroclinic orbits and extinction time

As we have seen in Section this system has two different regimes: a; > aj, in which
only the trivial fixed point exists, and aj < aj, where in addition to the trivial fixed
point, a positive fixed point (associated to a persistent infection exists. If this metastable
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state exists, the mean field behaviour, which is exactly the dynamics along p; = 1, has
two different fixed points: an attractor (which corresponds to the metastable state) and a
repeller (which corresponds to the extinction).

As time goes to infinity, the trajectories approach the 0 level energy. The action is
S=0onp =1and on xo = x3 = x4 = 0. However, it is positive on the heteroclinic
connection between the metastable state and the stochastic extinction, which is of the
formxo =23 =24=0,0<p; <1.

Since the trivial fixed point corresponds to the only absorbing state of the stochastic
dynamics, and the population can not explode, extinction takes place with probability 1.
If the metastable state is of the form x; > 0, that is the system size €2 > 0, the extinction
probability Py(t) = G(0,t) can be approximated by:

t
G(0,t) ~ 1 —exp(——), (3.29)
T
We look for 7 of the form

T = AQPexp(Q0), (3.30)

where C is the integral of the re-scaled action, S, along the heteroclinic connection between
the metastable state and the stochastic extinction. The semi-classic approximation is
valid when 2 > 0. We will perform a numerical fit of A and B using the exact solution
(computed with Gillespie simulations) of the system for large values of Q. A full derivation
of this approximation is included in Appendix [B]

Numerical fit of A and B

It is clear that as €2 — oo the solution of the semi-classical approximation tends to the
exact solution of Eq. , and we can use this fact in our advantage to determine A and
B. We also have to notice that we can determine analytically C, as it is the integral of
the action along the heteroclinic connection. A direct fit of a function of the form

() = AQB exp (CQ)

can be very unstable. We rather analyse

1 a N R
g(x) = alogf(ﬂ) = Ax + Bxlog (z) + C,
: 1 Lo : . .
with = —, which is more favourable, since first we are interested in C', therefore we want
to have C alone with small terms suppressed by 2. Our procedure is as follows,

1 Given a ay, we select an initial 2 and we compute 7 using stochastic simulations (the
multi-scale stochastic simulation employed to perform this simulations is explained

later).
1 1 .
2 Save eq = Q and dg = €log [ — |. Increase 2 and go to 1 until we have some values
T
of (eq,dq).

3 using an implementation of the non-linear least-squares (NLLS) Levenberg-Marquardt
algorithm [96] fit g(x) = Az + Bzlog(z) + Cs via A, B,Cs where x = log(dq) and
the right-hand term is edn with some of the higher values of 2 we have.
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4 If |Cg — C| > tol, where C' is the one obtained analytically, increase Q2 and go to 1.
5 If |Cs — C| < tol we choose C's = C' and we fit again via A and B.

6 As we can expect B of the form B = +£% with n € N, we choose B as the closest
number of this form to B.

7 finally we fit again just via A.

8 As we are interested in 2 = 5000ml, the mean extinction time, obtained with the
semi-classical approximation is, 7, = — (g (5000) 5000)

Note that we expect B to take this form, since this system exhibits the so-called Stokes
phenomenon [6]. Therefore it is natural to expect that there is a singularity in the complex
space which is a pole. Moreover, for the binary-Annihilation-decay process, it has been
proven that B = % [8, O 10]. Numerically B approaches % (independently of ar). To
obtain analytic expressions for A and B requires a careful analysis of the related Stokes
phenomenon [I0]. This is postponed for future work.

3.3.4 Lower Bound

We now present another approximation which provides a lower bound to the extinction
time. The variable xo, associated to latently infected cells, is the most important variable
since the drug is unable to clear it. It is also the slowest variable and it is affected by
the other variables only via the reaction Wj, which is the slowest reaction in the system.
Numerical simulations suggest the ratio Ws3/W5 is negligible (see Fig. . If we consider
W3 = 0, only the reactions W5, Wgs, W7 and Wy affect z9. In this case, we can reduce our
4-dimensional stochastic system to a much simpler one dimensional system. The extinction
time, 77,5, of the xo-cells in this reduced system is a lower bound to the extinction time
of the xo-cells in the 4-dimensional system, and provided 7 is small or € is large enough
it is a good approximation. Therefore, we can use it to get a first approximation of the
average extinction time.

Note that, to study the extinction probability of the latently infected cells, this lower
bound is equivalent to consider either a perfect efficacy of the drug (e = 1) or n = 0, since
in these cases W3 = 0.

Under this assumption, our system is described by the following master equation

L) — WalL — 15, (L — 13, 1)) ~ Wo(L.)P(L, 1) +
+ (W6<L =7t P(L T],t)) WG(La )P(Lvt)) + (3.31)
+(W7(L_Tjﬂ ( _rjvt)) W7(L, )P(Lat))"‘

+ (Ws(L — 75, t) P(L — 15, t)) = Wa(L, 1) P(L, 1)),
whose mean field behaviour is described by the equation

Z2

i’Q = ’I"$2(1 — ) — d(]:UQ — arxr9. (3.32)

Lmax

We can proceed as in Section [3.3.3[to obtain an asymptotic approximation of the
extinction time for the reduced system Eq. (3.31]). For simplicity  and p will denote x»
and po respectively.
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Figure 3.2: Average of the ratio W3/W5 computed with 1000 Gillespie simulations, for
different values of ay,.

Hyp(p,z) =r(p* — p)x + (1—p»a? + (ap +dp)(1 — p)x (3.33)

r
2Lma;r

The associated Hamilton equations are:

dx OHrp r 2

g o r(2p—1)x Lmamp:v (ap +dp)x

@ — —r(p?—p) - 1—p?)z — 1- 34
7 o r(p® —p) me( pi)r—(arL +dr)(1—-p)  (3.34)

3.3.5 Multi-scale stochastic simulations

In order to test the accuracy of our asymptotic analysis, we need to carry out numerical
simulations of the stochastic model. The direct simulation method proposed by Gillespie
becomes very inefficient for systems with separation of time scales. To address this issue,
we use the methodology proposed by Cao et al. [20] to perform faster simulations. A
detailed explanation of this method is presented in Appendix

Before proceeding with the multi-scale stochastic simulations, we notice that, in this
particular case, the number of healthy cells, x1, is big enough so that their dynamics are
essentially determined by the mean-field dynamics (i.e. we can assume there is no noise).

The main idea of the multi-scale simulation method is to produce stochastic simulations
for the slow variables and assume that the fast variables are in “stochastic equilibrium”,
that is, in an state in which birth and death rates are balanced.

How to decide which are the fast and the slow reactions, in general, is an open question,
and usually the best way to determine them is to run few simulations of the Gillespie
algorithm and decide. However, in this case we can use the results of Section In this
section we consider that zs is the slow variable, x3, x4 are fast variables and, as before, x1
follows the ordinary differential equation . The algorithm is summarised as follows.
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1. Set initial conditions at t = tg, x1 = x3 (to),xg = :L‘Q(t()),ajg = xg(t()),x4 = 1’4(750).

2. Choose the next step size, At, and reaction channel, r;, according to the Multi-scale
simulation algorithm for xo, x3, x4.

3. Update x1, which is evolving according to Equation (3.2)), with 3, 3, x4 constants
from t to t + At.

4. Update t =t + At and x2, 23, 24 according to r;.

5. If t <ty go to 2.

Note that xo,x3 and x4 are considered constant in step 3 because the next reaction
channel does not occur until ¢ + At.

3.4 Results

In this section we show how the probability of extinction and the average extinction time
of the infection changes as the activation rate of the latently infected cells varies. We
analyse the system behaviour in two different regimes (subcritical and supercritical), via
the different methods explained in the previous section. Finally, we study a possible side
effect of the therapy.

3.4.1 Subcritical case

In this section we show the results for the subcritical case, that is, when a metastable
state exists, that is a;, < a}, using the different methods explained in Section

Stochastic Simulation Methods

Performing simulations of this system by means of the regular stochastic simulation algo-
rithm [47] requires a huge amount of computational time. In order to reduce the compu-
tation time, we propose two different numerical methods. One method consists of using a
multi-scale stochastic simulation method. An alternative method is to perform Gillespie
simulations in a reduced 1-dimensional system, in which we have neglected the effect of the
virus infection in the latently infected cells. This second method provides a lower bound of
the average extinction time (see Section . In Fig|3.3[ we compare the average extinc-
tion time obtained from these two methods. Good agreement between both methods is
observed, which provides evidence of the suitability of the multi-scale simulation method
to perform simulations in this problem. We use this method, as it allows us to reach a
wider range of values of ay. The extinction times obtained from the lower bound appears
to underestimate slightly the results from the other methods. This difference increases as
ar, is close to a7, since the metastable state for the reduced systems disappears earlier.

Weak vs Strong QSSA

The probability of extinction at a given time is given by G(0,t), in previous section we
have derived an expression for the semi-classical approximation of G, using it we can
approximate G(0,t) by

G(0,t) =1—exp(—t/T) (3.35)
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Figure 3.3: Average over 1000 simulations of the extinction time of the system described
by Eq. (3.1) computed with the Gillespie SSA, the multi-scale SSA and Gillespie SSA for
the Lower Bound system (Eq. (3.31])) for different values of ar.

with
T = AVQeC. (3.36)

where QC is the integral of the re-scaled Lagrangian action, S, along the heteroclinic
connection between the stochastic extinction and the metastable state. Computing this
heteroclinic connection is, in general, very hard. To reduce the dimensionality of the
problem, we have performed a QSSA on the Hamilton equations. In Figure[3.4]we compare
QC for different values of aj computed with the Weak and the Strong QSSA, as ay,
increases the difference between both tends to 0, then for large values of ay, we can use the
Strong QSSA. In Figure we show the heteroclinic connection, projected on the (p2, ¢2)
plane, computed with the Strong QSSA and the Weak QSSA.

Lower Bound

Using the reduced system described by Eq (3.31)), the computation of the heteroclinic is
trivial. In this case the metastable state has the form

—ap—d
TaLL) 7 (3.37)

(p7 iL') = (LLmam ,

and the stochastic extinction is

(p, ) = (‘M,o) . (3.38)

r
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(Lower Bound) system. Average is done over 1000 realisations of the multi-scale stochastic
simulation algorithm

From Eq. (3.33)), using the fact that the energy is preserved (H = 0), we obtain an
analytic expression for the heteroclinic connection

r(p* —p) + (ap + dr)(1 — p)

- 2Lmaw 5 .
z(p) D) (3.39)
therefore
ap+dp, ap+dp 9
T T — dr)(1 —
QCrp = / :U(p)dp:/ SRt B G 2] Gk 8
1 1 r(p? — 1)
z | )|t
0L, PP Z(TMLJF L) (3.40)
1

In Figure|3.6| we show a comparison between the mean extinction time, and the proba-
bility of extinction at a given time computed via stochastic simulations, the semi-classical
approximation with the Strong QSSA and the semi-classical approximation for the re-
duced (lower bound) system. We observe good agreement between the semi-classical and
the exact solution, except in a neighbourhood of a} where the number of latently infected
cells is given in a small number and, in this case, the system size is not large enough,
therefore the semi-classical approximation is not accurate.
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3.4.2 Supercritical case

We are interested in the probability of extinction in a certain time, ¢, which is given by
G(0,t). Of particular interest is the case that the initial condition is the metastable state
with ay, = aj.

For ar, > a7 the phase diagram is sketched in Figure left. The main feature is that
there is no metastable state. We approximate G(p,t) ~ exp(—S(p,t)). A full derivation
of this approximation is given in Appendix

Given a time T, the action is given by

Ty
S(pan) = HTf_/[) (q17q23q3aQ4)(plap27p3ap4)dt (341)

—(11(0), n2(0),13(0), n4(0)) (log (p1(0)), log (p2(0)), log (p3(0)), 1og (p4(0))),

where n;(0) = p;(0)g;(0) is the initial condition. To obtain the probability of extinction,
Py(t) = G(0,t), we proceed as follows:

e Choose initial conditions (p(0), ¢(0)) satisfying p;(0)g;(0) = n;(0),

e Integrate the equations (3.26)) up to pa(7") = 0, from this we will obtain a time T
and a trajectory .

e Compute S, the action S along that trajectory +.
e Then, approximate Py(Ty) = G(0,T}) ~ exp(—54(0,T})).

A different way to approximate G(0,t) should be to study only the extinction time
of the latently infected cells, and assume that the dynamics of the other variables are
described by the mean-field behaviour. This assumption is equivalent to consider p; =
ps = ps = 1 and look for G(1,0,1,1,1).

The same procedure is applicable for the 1-dimensional system described by Eq. .

Figure [3.7 shows the probability of extinction as a function of time, for different values
of ay, computed according to these methods. For comparison purposes, we also represent
the results obtained by multi-scale stochastic simulations. In this case, the semi-classical
approximation provides values of the extinction probability slightly below the numerical
values.

3.4.3 Side effects: viral blips

Any increment of ay, reduces the viral load of the metastable state, however this does not
give us information on the short time. In this subsection we study the short time effect
of the antigen stimulation on the viral load and we will show that this stimulation could
produce viral blips [110].

We observe that for a short time after the antigen stimulation, the viral load increases
(Fig. . This is because the more xo cells are activated, the more x3 cells appear in the
system, therefore the amount of virus, x4, increases as well.

Starting at the metastable state for a;, = a7 = 0.1 day™ ", we perform different simu-
lations for different values of a;, > aj. We observe, see results in Fig (left), that for
any ay, there is a peak of the viral load peak and then decays. The mean field behaviour
also shows the same evolution pattern, as can be seen in Fig. [3.8| (right), and it gives us
a good approximation of the solution of . In all our tests cases the peak in viral load
stays within a few times the detection limit of standard assays (50 RNA copies/ml).

1
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Figure 3.8: Gillespie simulations of the viral dynamics for different values of ay. As initial
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variables at the metastable state before the antigen stimulation, that is a;, = a7, and we
choose ay, = 100. (right)



60 Antigen-stimulation

3.5 Conclusions

In this chapter we have presented and analysed a stochastic model of HIV-1 dynamics in
the blood stream under anti-retroviral therapy to study of the survival probability in a
certain time of the viral load. We have investigated how the extinction probability depend
on the activation rate of the latently infected cells using stochastic simulations and analytic
approximations. Furthermore we have presented some reductions of the system which has
given a lot of tractability to the problem without losing accuracy in the solution. From
a medical point of view, according to this model, this therapy can reduce the average
extinction of the infection to a few years.



Chapter 4

Stochastic modelling of viral blips
in HIV-1-infected patients: Effects
of inhomogeneous density
fluctuations

An stochastic model of HIV-1 infection dynamics under HAART is proposed in order to
analyse the origin and dynamics of the so-called viral blips, i.e. episodes of transient
viremia that occur in the phase of where the disease remains in a latent state during
which the viral load raises above the detection limit of standard clinical assays. Based on
prior work in this subject, we consider an infection model in which latently infected cell
compartment sustains a residual (latent) infection over long periods of time and, unlike
previous models, we include the effects of inhomogeneities in cell and virus concentration in
the blood stream. We further consider the effect of burst virion production. By comparing
with the experimental results obtained during an study in which intensive sampling was
carried out on HIV-1-infected patients undergoing HAART over a long period of time,
we conclude that our model supports the hypothesis that viral blips are consistent with
random fluctuations around the average viral load. We further conclude that agreement
between our simulation results and the blip statistics obtained in the aforementioned study
improves when burst virion production is considered. We also study the effect of sample
manipulation artifacts on the results produced by our model, in particular, that of the
post-extraction handling time, i.e. the time elapsed between sample extraction and actual
test. Our results support the notion that the statistics of viral blips can be critically
affected by such artifacts.

4.1 Introduction

An early hypothesis regarding the origins of viral blips, whose emergence was, at the
time, suspected of heralding imminent virological failure, was that they are due to the
appearance of new, drug-resistant viral variants [80]. However, a number of studies have
compiled evidence against viral blips being correlated with virological failure [54] [89] 95],
thus weakening the case of viral blips being early warnings related to viral evolution leading
to drug resistant strains of the virus. Further to the hypothesis of blips being originated by

61
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viral evolution, other mechanisms have been proposed which include antigen-driven CD4-+
T cell activation due to vaccination or secondary infections [37, 52, [41, 40} 43}, 611 [62]. It has
also been shown that activation of latently infected cells may play a role in the emergence
of viral blips. For example, Jones & Perelson have proposed a model in which increased
activation of latently infected cells can lead to a burst in viral load [63]. The possibility
that asymmetric division of activated latently infected cells may help to explain the decay
kinetics of the latent compartment and intermittent viral blips has been in explored in
[109]. Recently, Rong & Perelson [I11] have formulated a model in which stochastic
activation of latently infected cells can maintain viral blips without completely depleting
the latent reservoir, thus maintaining long-term, low-level viremia. They also developed
a model which incorporated density-dependent homeostatic proliferation of the memory
CD4+ T memory cells (and, therefore, of the latently infected cell compartment), which,
according to [23], drives persistence and determines the size of the latent reservoir.

Alongside all these models which postulate that viral blips have a physiological origin,
there is an alternative school of thought which claims that most viral blips are random
occurrences of probabilistic origin related to the small number of virus mRNA in the latent
phase as well as being partly produced by laboratory artefacts during the processing of the
samples [76][94]. According to this view, viral blips are mostly uncorrelated with virological
failure, virus evolution, vaccination, or non-adherence to treatment regimen [95] [76], 94]
and, therefore, only a small fraction of such occurrences are of clinical significance. Conway
& Coombs [28] have proposed a model to analyse the stochastic viral dynamics in treated
patients. This model treats viral blips as random events occurring every time the viral load
reaches the standard detection limit (i.e. 50 mRNA /ml). Although this model reproduces
many of the features of HIV-1 viral dynamics and provides a detailed description of its
stochastic dynamics, there are several properties of the statistics of viral blips in which
[28] appears to depart from experimental observation. One such departure refers to the
frequency of blips. According to the model formulated in [28], blip frequency decreases
exponentially in time which disagrees with the results by DiMascio et al. [30] where a
constant blip rate is reported. Conway & Coombs [2§] claim that this difference is due
to the fact that, whilst theirmodel accounts only for blips of small amplitude caused
by fluctuations, [30] inlcude in their statistics blips of both small and large amplitude.
Therefore, Conway & Coombs implicitly assume that large blips must have a biological
origin. Similarly, the data collected by Nettles et al. [95], where intensive sampling was
carried out on HIV-1-infected patients with samples collected every 2-3 days over a period
of 3 to 4 months, reported that blips were observed in 9 out of 10 patients with an average
of two blips per patient. The blip statistics produced by the model formulated in [28]
appears to predict that blips be too rare to be comparable to the experimental data, even
in conditions of elevated virus rate production and latent cell activation. It can be argued
that the rationale for this discrepancy is the same as before: Nettles et al. [95] measure
the full range of blips (both small and large amplitudes) whilst Conway & Coombs [28§]
account only for small-amplitude blips. Therefore, according to this model [28], small
amplitude blips are consistent with an stochastic model whereas large amplitude blips
must be produced by causes other than random fluctuations.

One common feature shared by all of the models discussed in the Introduction, both
stochastic and deterministic, is that they all assume that the system is well-mixed, i.e.
all the cellular and molecular species are evenly distributed over the volume of blood
so that only the number of each species determines the state of the system. For this
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modelling assumption to hold, the numbers of each species must be large enough so that
their densities remain approximately uniform. The system we are dealing with in this
chapter has at least two species, virus and latently infected cells, which are present in
very small numbers. As a consequence, their densities can show large fluctuations which
would lead to large inhomogeneities in the local numbers of such species. The effect of
this inhomogeneity can be rather sizeable, specially since measurements of viral load are
performed by extracting small samples of blood which are then analysed.

The aim of this chapter is to ascertain whether density fluctuations affect the stochastic
dynamics of the viral load in HAART-treated patients beyond the predictions of reference
[28] and investigate if an stochastic model which includes density fluctuations is capable of
a more faithfull reproduction of the experimental results reported in [30} [95]. To this end
we formulate an stochastic compartmental model [I3] where volume of blood is divided in
small compartments (whose volume is assumed of the order of the volume of one blood
sample taken for analysis). Within each of this compartment, the system is assumed
to be well-mixed but we consider that differences may arise between compartments thus
accounting for density fluctuations [46, 34, 35, B6) [79, 117]. Furthermore, in order to
address the issue of whether laboratory artefacts alter the statistics of viral blips we have
designed an in silico blood extraction procedure that allows us to study, at least partially,
this aspect of the problem.

This chapter is organised as follows. Section[4.2]is devoted to a detailed explanation of
the model assumptions and formulation. In Section we conduct extensive simulations
of our model and present our results. Finally, in Section we proceed to discuss our
results.

4.2 Model formulation

We now proceed to present our compartmental model of stochastic viral dynamics. Our
model is based on the modelling approach whereby spatially inhomogeneous systems are
dealt with by compartmentalising the domain where the system lives into small compart-
ments [13]. Within each of these compartments all of the species participating in the
dynamics of the system are assumed to be well-mixed, so that our resolution to measure
spatial variations is of the order of the compartment size. The local, well-mixed, within-
compartment stochastic dynamics is supplemented by stochastic transitions that allow for
transport of species between compartments. This approach has been widely applied to
many situations in which spatial heterogeneity is essential, in particular, reaction-diffusion
systems [46], [34] 35, 36}, [79 [117]. This setting will allow us to ascertain the effect of density
fluctuations on stochastic viral dynamics.

Further to our compartmental model, we also formulate an in silico blood analysis
model, which intends to follow as closely as possible the intensive sampling procedure
designed by Nettles et al. [95] to analyse the dynamics and statistics of viral blips in
HIV-1-infected patients under HAART.

4.2.1 Compartmental Model

In order to account for density fluctuations, we consider a compartmental model, schemat-
ically shown in Fig. We will assume that, in an attempt to roughly imitate the
structure of the blood stream, compartments are arranged on a one dimensional, closed
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Figure 4.1: This figure depicts an schematic diagram of our compartmental model. Our
model represents the circulatory system in a very simplistic way as a one dimensional closed
circuit of adjacent compartments. Within each compartment we model the (local) cellular
dynamics of an HIV-1-infected T-cell population with latency [110} 28]: We consider the
dynamics of the HIV-1 virus load (V'), active infected T-cells (7T7), and latently infected
cells (L). Virus capsides, V, are released by active infected cells and infect uninfected
T-cells. We consider that the number of uninfected T-cells is so much larger than that
of infected cells that we consider them as a reservoir. Latently infected cells can become
active upon estimulation with proper antigens. In addition to this within-compartment
cellular dynamics, we consider random movement of both latently and active infected cells
and virus capsides between compartments.
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Transition rate Tit(i—1)r, = (ALi, AT}, AV;) Description

Witi—1)r, =11 —e)kViL;Q™! (1,0,—1) Latent infection T; + V; — L; cell
Wor—1yr, = (1 —n)(1 - OkVT;Q! (0,1,—1) Active infection T; + V; — T} cell
W3y (i-1)r, = 7L (1,0,0) Latent cell proliferation L; — 2L;
Wari-)r, = 1. %Q_l (—2,0,0) Latent cell binary annihilation L; + L; — ()
Wy (i-1)r, = doLs (—=1,0,0) Latent cell clearance L;
Wer(i-1)r, = arLi (—1,1,0) Activation L; — T
Waii—nr, = 01} (0,—1,0) Active cell death

Wsi(i-1)r, = ¢Vi (0,0,—1) Virion clearance

Woi(i—1)r, = poT} (0,0,1) Continuous virion production
Wiot(i—1)r,, = ekViT; Q71 (0,0,—1) Failed infection

Table 4.1: Transition rates corresponding to the stochastic model of viral blip generation.
See text (Section for details. Ry = 10. T;, the number of uninfected cells is taken to
be constant [28]. € is the compartment size.

(i.e. with periodic boundary conditions) lattice (see Fig. . In each compartment, we
consider three types of interacting species, namely, active infected cells, latently infected
cells, and virus. The number of each of these species in compartment 4 is referred to as 77",
L;, and V;, respectively, where i = 1,..., N, with N, is the number of compartments. We
further introduce the vector X (t) = (17 (t), L1(t), Va(t), ..., Tx (t), Ln,(t), VN.(t)) whose
components correspond to the number of cells of of each species at site 1 = 1,..., N, and
time t. We will find convenient to define x;(t) = (T7(t), L;i(t), Vi(t)), so that the vector
X (t) can be written as X (t) = (z1(t),...,znN,).

The stochastic dynamics of our system is described by the corresponding Master Equa-
tion [122, [79, [44]:

Ne Ry,

0

aP(X t) E E (i— 1)RL X - rj+(i—1)RL)P(X - Tj-l—(i—l)RL) - Wj-i—(i—l)RL(X)P(X))
=1 j=1

N. Rr

SN (Wi (X = pis—1yre ) P(X = pis(—1)Ry) — Wit (i—1) R (X)P(X))
i=1 j=1

where we have splitted the Master Equation in a purely local part, corresponding to the
population dynamics within each compartment, and a transport part, which accounts for
transport of species between adjacent compartments. Ry, and Ry are the number of local
and transport events, respectively, that can affect the state, x;, of each compartment. The
transition rates are defined in Tables [£.1] and [4.2

In order to facilitate later formulation of our in silico blood extraction protocol and its
comparison with [95], we will consider compartments of volume V. = 8.5 ml each, which is
the volume of blood sampled extracted for analysis in the study reported in [95]. We will
consider that an average individual has 5 litres of blood so we need to consider N, = 588
compartments.

The within-compartment stochastic viral dynamics model is based on previous works
by Rong & Perelson [I10] and Conway & Coombs [2§] and it is schematically shown in
Fig. Following the latter, we assume that, due to the large numbers in which CD4+
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Transition rate Pj+(i—1)Ry Description

Wi+(i—1)Ry = wr+L; 0,.. —1,0,0,1,0, ) Li+Liyy - L;—14+L;j11+1
Woy(i—1)Rp = wr—L; (0, ... 0, 1,0 0,-1,0,...)) L;+Li1—L;—1+L;1+1
Wity = b TP (0,...,0,-1,0,0, 1,0 ) TEATE, =T -1+ T, + 1
War(i-)Rry = k=T (0, 0 1,0,0,-1,0,..) T7+T¢ ) — Ti* — 1+ T+

W54 (i—1)Ry = HV+Vi (0, -1,0,0,1,0,...) Vi+Vig1 = Vi—1+4+ Vi1 + 1
Wet(i—1)Ry = HV-Vi (0, ... 0 1,0,0,-1,0,...) Vi+Viqi=Vi—=14+Vi_1+1

Table 4.2: Transition rate corresponding to the stochastic model of viral blip generation.
A detailed is given in the main text (Section . Rt =6.

T uninfected cells are present, they are unaffected by fluctuations and their number is
taken as constant. We assume that two types of infected cells exist, latenly infected cells,
L;, which carry the virus but do not synthesize new virions, and active infected cells, T},
which produce and release new virions. As a consequence, active infected cells are targeted
by HAART whereas latently infected cells are immune to its effects. Both types of infected
cells are produced by infection of uninfected T cells. Furthermore, latently infected cells
can become active, for example, by estimulation with appropriate antigens. Both latently
and active infected cells are assumed to die at a certain rate and blood-borne virions are
assumed to be cleared off at a constant rate. We also account for experimental results
showing that the latently infected cells are maintained by homeostatic proliferation [23],
by means of a phenomenological model which includes branching and binary annihilation
of latently infected cells [110, [35].

The elementary events involved in our spatial model of stochastic viral dynamics are
as follows.

e Latenly infected cells L; can undergo:

1. Homeostatically balanced proliferation. Following [110], we account for ho-
moeostatic control of proliferation by means of a combination of branching
(L; — 2L;) with binary annihilation (L; + L; — @). It has been shown (see e.g.
[35]) that this combination is an stochastic counterpart of the standard logistic
growth. The corresponding transition rates are W3, (;_1)g, for branching and
Wit (i—1)r,, for binary annihilation (see Table .

2. Death. We assume a simple linear decay with transition rate W5, ;_1)r, as
shown in Table [4.1]

3. Activation. By means of this process a latently infected cell becomes an active
infected cell L; — T;. The corresponding transition rate is W (;_1)r, , Table

41l

4. In addition to the processes described above, which have to do with the (within-
compartment) population dynamics, we assume that latently infected cells can
move between neighbouring compartments. We will assume a coupling between
compartments where transitions occur at constant per cell rate, vr. In periodic,
one dimensional setting, cells in compartment ¢ can move to compartment ¢+ 1
at rate wyy(;_1)r, Or to compartment ¢ — 1 at rate woy(;_1)g, as defined in

Table [4.2]

e Active infected cells, T7*, cell are subjected to:
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1. Apoptosis with transition rate Wy ;_1)g, (see Table .

2. Virion production. Contrary to latently infected cells, active infected cells
synthesise and release new virions. In general, viral production can occur in a
continuous fashion over the life span of an infected cell or in a burst which kills
the cell. For the HIV infection both modes have been proposed [97]. Transition
rate Wy, i—1)g, (Table corresponds to continuous production. Later in
the chapter, we consider an additional scenario, in which both continuous and
burst production occur.

3. Transport between neighbouring compartments. Just as latently infected cells
do, active infected cells can move between compartments at rates wsi (;_1)r,

and Wy (;_1)r, as per Table

e Finally, virus, V;, can:

1. Infect a healthy T cell producing a latently infected cell. In patients under
HAART, the infection process is hindered by the presence of an antiretrovi-
ral drug. The efficiency of such drug is measured by a parameter, €, which
takes values between 0 and 1, the latter (former) corresponding to a maximally
(in)efficient drug. (1 — €) is interpreted as the proportion of virions capable of
infection under HAART treatment. We also assume that, upon infection, the
cell can become latently infected with probability n or active with probability
(1—n). Therefore the corresponding transition rate Wi (;_1yg, is proportional
to n(1 — €) as shown in Table

2. Infect a healthy T cell producing an active infected cell. In this case, the
corresponding transition rate W (;_1)g, is proportional to (1 —n)(1 —€) (see
Table 4.1)).

3. Undergo clearance. Virions are removed from the blood, which we model as a
simple linear decay with transition rate Wy (;_1)g, as per Table

L

4. Fail to infect and being eliminated by the drug with transition rate Wigy_1)r,
(see Table [4.1)).

5. Transport between neighbouring compartments. Virions can move between
compartments at rates wsy(;—1)r, and Wey(;i—1)r, as per Table (4.2).

Numerical methodology We will perform numerical simulations of the Master Equa-
tion using the methodology proposed by Bernstein [I3], which is a straight forward
generalisation of the original stochastic simulation algorithm proposed by Gillespie [47].

Parameter values The (default) parameter values used in our simulations are given
in Table [£.3] The parameter values corresponding to the model of cellular dynamics of
an HIV-1-infected T-cell population with latency are based on estimates available in the
literature on the subject.

Random motility between compartments has been modelled as simple diffusion. The
transition probability between compartments is therefore given by pjy = %, where J =
V, L, T*, Dy is the diffusion coefficient of species J, and h = +/V., where V, is the
compartment volume. The magnitude of the diffusion coefficient for several types of viral
capsides has been estimated between 1.6 and 30 um?s~! [93]. We consider a typical
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’ Parameter | Rate ‘ Description ‘ Reference ‘
A 10000 mi~! day~! | Recruitment rate of T cells [19]
dr 0.0166 day ! Death rate of T cells [90]
k 2.4-107% ml day~! | infection rate [100]
€ 0.85 Drug efficacy [110]*
n 0.001 Fraction resulting in latency [63]
do 0.001 day ! Death rate of latently infected cells [19]
ar, 0.1 day~! Rate of transition from latently to productively | [110]

1 day! death rate of productively infected cells [83]
c 23 day ! clearance rate of free virus in blood stream [104]
Do 2000 day ! Viral production rate [59]
r 0.2 day—! proliferation rate of activated cells [110]
Linaz See caption Carrying capacity density of latent cells [110]
Ve 8.5 ml Compartment volume [95]

Table 4.3: Parameter values used in our numerical simulations. The value of Ly, is let
to vary depending on the average viral load we impose on our simulations. For the values
of the average viral load considered in Section i.e. 10, 12.5, 20, 30, and 40 copies/ml,
the corresponding values of Ly,., = 1.89,2.36,3.78,5.66, and 7.55 cells/ml, respectively.

value Dy = 5 ym?s~! [56, 12]. Similarly, we take a generic estimate for the diffusion
coefficient of a cell Dj, = Dy« = 0.05 ym?s~! [I5]. Furthermore, in order to account for
the directionality of blood flow, we assume that pj_ = 3us+.

4.2.2 In silico blood sample analysis model

Further to the compartmental model of Section which allows us to account for density
fluctuations in stochastic viral dynamics, we have formulated an In silico blood sample
analysis model. This additional model has the aim of trying to reproduce the experi-
mental procedure described in [95] as closely as possible. Nettles et al. [95] designed an
experimental protocol in which ten HIV-1 infected patients under HAART were inten-
sively sampled (every 2 or 3 days) for a period of 3 to 4 months. Each time blood was
extracted, two samples per patient were taken and sent to two different laboratories for
analysis. They concluded that blips had short duration (less than 3 days on average) and
low amplitude (79 copies/ml on average) with an average of 1.8 blips per patient.

Our procedure is as follows. After running the compartmental dynamics until time
t., which is chosen to be long enough so that the average properties of the system reach
an steady state, we choose two compartments at random 7 and j among the N. com-
partments that compose our system. We then record the corresponding state x;(t.) =
(T7 (te), Li(te), Vi(te)) and xj(te) = (T} (te), Lj(te), Vj(te)). Recall that we are assuming
that the number of uninfected T cells is assumed to be constant and uniform [28]. In or-
der to account for possible delays between the time of extraction and the actual analysis,
we assume that the extracted samples continue to evolve subject to the local (within-
compartment) dynamics determined by the rates in Table with the transition rates
corresponding to between-compartment transitions w;(X) = 0. This post-extraction dy-
namics is ran for a duration t,,.
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Figure 4.2: Probability of observing at least one blip in our in silico blood sample analysis
model as a function of the average virus load for different values of the burst size. Nettles
et al. [95] in their intensive sampling study showed that 9 out 10 patients underwent at
least one viral blip. We observe that, as the average viral load increases the probability of
observing at least one blip tends to one. We also observe that as the burst size increases
the observation of at least one blip becomes more likely. Note that the rate of continuous
virion production has been chosen for each value of the burst size so that the average
number of virions produced per active infected cell during its life-time is kept constant.
We have fixed an average viral load of 12.5 copies/ml [95]. Parameter values as per Table
pl, is taken such that p/ + N = p,, where N is the burst size and p, is given in Table

B3
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Figure 4.3: Comparison between blips statistics obtained in the study by Nettles et al.
[95] and those obtained from our simulations for different burst sizes. This plot shows
the probability of observing a blip of a given duration (measured in days). The rate of
continuous virion production has been chosen for each value of the burst size so that the
average number of virions produced per active infected cell during its life-time is kept
constant. We have fixed an average viral load of 12.5 copies/ml [95]. Parameter values as
per Table pl, is taken such that p/ + N = p,, where N is the burst size and pv is

given in Table
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Figure 4.4: This plot shows the average number of blips and median amplitude as a
function of the burst size obtained with our model. According to Nettles et al. [95] ,the
average number of blips per patient is 1.7 and the median of the amplitude is 79 copies/ml.
The rate of continuous virion production has been chosen for each value of the burst size
so that the average number of virions produced per active infected cell during its life-time
is kept constant. We have fixed an average viral load of 12.5 copies/ml [95]. Parameter
values as per Table pl, is taken such that p), + N = p,, where N is the burst size and
py is given in Table
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4.2.3 Effects of continuous versus burst production of virions

The issue of whether virions are secreted by active infected cells in a continuous way during
their lifespan or, on the contrary, they are released in a single burst which, actually, kills the
cell remains controversial. Standard models based on mean-field, deterministic systems
of ordinary differential cannot distinguish between both production modes, since they
predict exactly the same dynamics as long as the total number of virions produced over
their lifespan is the same [97]. A recent analysis by Pearson and co-workers has concluded
that stochastic models of early infection lead to significantly different results depending
on whether virion production is considered as continuous or bursty [97].

Here, we consider this issue regarding its possible influence on the statistics of viral
blips. To this end, we consider two models, namely, one in which only continuous virion
production is taken into account (given in Table |4.1)) and another one in which both
modes of virion production, continuous and bursty, are considered. The latter requires an
alteration of the process described by Table The reaction corresponding to active cell
death now reads:

Woii—nyr, = 61; and r7y;_ngr, = (0,—1,N) (4.1)

which implies that upon active cell death, one active cell death is lost and N virions are
realeased. N is the so-called burst size. A further modification needs to be done, this time
affecting the rate of continuous virion production:

W9+(i—1)RL = p;z* and r9+(i—1)RL = (0, 0, 1) (42)

where pl, i.e. the rate of continuous virion production, is now a function of the burst
size, N. Given a value of N, we fix p/ so that the average number of virion produced
during the lifespan of am active infected cell is the same as for the purely continuous
virion production model (i.e. N =0 as per Table .

The remaining reactions are left unmodified with respect to those shown in Table

4.3 Results

In this section we will use the models presented in section [.2]to explore the phenomenology
associated to our model and obtain statistics of viral blips which can then be compared
to the experimental data reported by Nettles et al. [95].

4.3.1 Effect of density fluctuations on blips statistics

We have carried out extensive numerical simulations of our model using the methodology
explained in Section We start by focusing in our inhomogeneous infection model
with continuous virion production as defined by the transition rates given in Tables [A.1]
accounting for the local infection dynamics, and accounting for diffusion of cells/virions
between compartments. Results are included in Figs. and

Nettles et al. [95] reported that 9 out 10 patients who underwent their intensive sam-
pling protocol were observed to exhibit at least one blip. In other words, the probability
of detecting at least one blip during the course of their experiments can be estimated to
be 90%. By means of numerical simulations of our in silico blood sample model, we have
computed the probability of detecting at least one blip as a function of the average viral
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load (see Fig. burst size N = 0). Our results show that, as the average viral load
grows, so does the probability of detecting at least one blip. According to our results
for viral loads bigger that 20 copies/ml, this probability approaches 1, in good agreement
with figure reported in [95].

Nettles et al. [95] reported further statistical information, in particular, regarding
blip duration (reproduced in Fig. by recording the frequency with which blips of a
certain duration are observed. They observed the blips with duration of 3 days or shorter
accounted for over 80% of the observations. Blips of duration between 3 and 5 days, 5
and 7 days and of 7 days or longer were observed in less than 10% of the cases each.
Our simulation results are in good agreement with these observations (see Fig. . Our
model, however, appears to overestimate the frequencies of the shorter blips (duration of
3 days or shorter and between 3 and 5 days) at the expense of the longer ones.

Further information that can be extracted from the data reported in [95] concerns the
average number of blips and their average amplitude. According to their experiments, the
average number of blips is 1.8 and their average amplitude 79 copies/ml. Regarding these
two metrics, our simulation results reported in Fig. [£.4] for burst size equal to zero show
that our inhomogeneous infection model with continuous virion production underestimates
these quantities by a significant amount.

4.3.2 Effect of burst production of virions

In order to improve the quantitative agreement between the data reported in [95] and
our model predictions, we have explored the effect of including both continuous and burst
virion production (see Section . In particular, we have analysed the behaviour of
our system as a function of the burst size, keeping constant the average number of virions
produced by active infected cells during their lifespan.

We have studied the effect of burst production on the statistics concerning viral blips
shown in Figs. and [£.4] Regarding the probability of detecting at least one blip,
although its behaviour for positive burst size is qualitatively similar to the burst size N =0
case, our model predicts an increase in the probability of observing at least one blip for
lower values of the average viral load (see Fig. . This increase is proportional to the
burst size: The bigger the burst size, the larger the increase in the probability of observing
at least one blip.

The discrepancies between experimental data and simulation results concerning the
frequency of blip duration tend to be corrected when a positive burst size is considered
(see Fig. . As we have discussed previously, the inhomogeneous infection model with
continuous virion production overestimates the frequency of shorter blips at the expense
of longer ones. This trend is compensated when we consider burst production of virions:
As the burst size is let to increase, shorter blips become less frequent at the expense of
longer ones, whose frequency is observed to increase as shown in Fig. 4.3

Further discrepancies between the data reported in [95] and simulation results of our
inhomogeneous infection model with continuous virion production regarding the average
number of blips and their average amplitude. Our model with no burst virion production
underestimates these quantities. Fig. shows that, as burst size increases, the value
predicted by our model for these two quantities approaches those reported in [95].

To summarise, although our inhomogeneous infection model with continuous virion
production appears to qualitatively capture the blip statistics obtained by Nettles et al.
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Figure 4.5: Probability of observing n blips within a sample, P(n), as a function of the
post-extraction handling time, t,,, and the virus clearance rate, c. We have also considered
different value of the average viral load: The first, second, third, and fourth correspond
to 10, 20, 30, and 40 copies/ml, respectively. We have considered the continuous virion
production only.
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[95], better quantitative agreement is obtained when burst production of virions is consid-
ered.

4.3.3 Effect of post-extraction handling time

A controversial aspect regarding the origin and clinical significance of viral blips is the
claim that their statistics are affected by artifacts related to the sample manipulation
process [76, 94]. In order to partially address this issue within the context of our model,
we have devised a set of simulations in which we consider the effect of the post-extraction
handling time in our in silico blood test model, t,, (see Section 4.2.2). This time is
assumed to correspond to the time elapsed between extraction of the blood sample and
actual analysis at the laboratory. We have considered that t,, is of the order several hours.
During this time lapse, the infection dynamics stays running but since the sample is now
extracted and therefore isolated there is no between-compartments cell/virion motility
(i.e. the dynamics is described by a purely local infection model determined by the rates
given in Table . Extraction of a compartment (sample) and its consequent isolation
from the blood stream has the likely effect of reducing the rate at which virus particles
are cleared, since it has been isolated from usual removal mechanisms. We have therefore
considered the effect of reducing the virus clearance rate with respect to current estimates
in the literature (see Table [4.3)). Note that all the simulation results presented in Sections

and correspond to t,, = 0.

In order to assess the effects of both the handling time, t,,, and the virus clearance
rate, ¢, we have done numerical simulations to compute the Probability of observing n
blips within a sample, P(n), for different values of the average viral load. Our results
are reported in Fig. 4.5 For lower values of the average viral load (see Fig. 10 and
20 copies/ml), we observe that there is a strong dependence on the average number of
blips with t,: Due to accumulation of virus capsides as time progresses (recall that we
are assuming that active infected cells continue to release virions after extraction until
such time as the actual count is carried out), the average number of blips increases, as
indicated by the fact that the peak of P(n) shifts to larger values of n as t,, increases.
Likewise, the position of this peak shifts to larger values of n as the virus clearance rate, c,
decreases. For larger values of the average viral load ((see Fig. 30 and 40 copies/ml),
our simulation results show that the peak of P(n) shifts to smaller values of n as t,
increases. This result is actually an artifact of how blips are defined and counted: A blip
is the event whereby the viral load, initially below 50 copies/ml, transiently grows above
the detection threshold. When the average viral load is 30 or 40 copies/ml, the duration
of these events becomes very long, which has the by-product of reducing the blips count.
To illustrate this phenomenon, we show in Fig. the number of observations which are
above 50 RNA copies/ml. When the viral load is 10 copies/ml, the difference between the
number of observations above the detection limit and the number of viral blips is small.
However, in the case of 40 copies/ml we see strong discrepancies between both pictures.
Although the viral load is most of time above 50 copies/ml, we are considering most of
that observations as the same viral blip and, in this case, the number of viral blips is given
by the number of observations below the detection limit.
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Figure 4.6: Probability of having n observations above the detection limit within a sample,
P(n), as a function of the post-extraction handling time, t,,, and the virus clearance rate,
c. We have also considered different value of the average viral load: The first, and second
correspond to 10 and 40 copies/ml, respectively. We have considered the continuous virion

production only.
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4.4 Conclusions

In this chapter we have studied if the inhomogeneous density fluctuations, together with
experimental artifacts could be the origin of the viral blips, or if an extra assumptions has
to be included in the model of chapter To study this we have presented a stochastic
model of HIV-1 dynamics in the blood stream, very similar to the model presented in
chapter [3] but supplemented with a spatial dependence. To do this we have considered
a compartmental model, in each compartment the same dynamics of the model of the
previous chapter are considered, supplemented with a random diffusion between compart-
ments. To determine how the experimental protocols can affect the appearance of viral
blips we have presented an in silico blood test model, to reproduce in a realistic way the
experimental protocols and to study if the experimental artifacts can affect the results.
Moreover we have shown that the dynamics of the infection in the blood samples, during
the time between the extraction and the observation, can play a major role in the appear-
ance of the viral blips. And we have studied how the different virion production (continue
vs burst) affect the appearance, the duration and the magnitude of the viral blips.
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Chapter 5

Conclusions

The this PhD Thesis we have studied the effect of fluctuations in complex structured
populations characterised by the existence of a latent state. In particular we have put light
on some questions regarding the dynamics of hierarchically organissed cell populations,
and we have investigated the dynamics of HIV-1 in infected patients under anti-retroviral
therapy. In this chapter we expose the conclusions of our study.

5.1 Stochastic dynamics of differentiation cascades with reg-
ulatory feed-back

The aim of Chapter [2]is to study the robustness of the cell populations with hierarchical
structure. To study this we have presented and analysed stochastic models of hierarchical
populations governed by differentiation cascades to study the effect of symmetric stem-cell
self-renewal on their long-time stability properties as well as their resilience to invasion.
The behaviour of these models has given us some insight on intrinsic protection mecha-
nisms, in particular against invasions by malignant, potentially tumorigenic, populations.

Our model of a hierarchically-organised tissue consists of a stochastic compartmental
model, where each compartment corresponds to a differentiation stage, with negative-
feedback regulating the size of the stem cell compartment. This feedback is assumed to be
mediated by a cytokine whose secretion rate is, in turn, modulated by the number of fully-
mature cells. The general framework we have used in our model formulation, i.e. in terms
of cellular compartments with feedback between the SC and the MC compartments, has
been used in a wide variety of studies, ranging from general models of robustness against
mutations leading to cancer [98, 106, 107, 119] to more specific models of particular tissues
such as the haematopoeitic system [II, 26, 27, 29, 2], epidermis [112] or neurogenesis [7].
Our model formulation is therefore rather generic and the resulting model should be
applicable to a wide variety of tissues where hierarchical structure is present.

However, the issue of the cytokine-mediated feedback has more supporting evidence in
the haematopoeitic system, where several of these cytokines have been identified which,
upon variation in the size of the differentiated cell compartment, regulate the size of the SC
compartment by means of negative feedback loop. For example, in the production of white
blood cells, the granulocyte colony-stimulating factor (G-CSF) has been demonstrated to
mediate a negative feedback [26]. Another example is thrombopoietin, which is involved
in negative-feedback regulation in the production of platelets [26]. Erythropoiesis, i.e. the
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production of red blood cells, is yet another example in which a negative feed-back is
mediated by a cytokine, namely, erithropoietin [81], [11§].

In order to investigate the effects of symmetric self-renewal on the robustness of hier-
archical populations, we have first formulated a model in which stem cells undergo only
symmetric self-renewal. Regarding this model, we have identified a new extinction mech-
anism in which the coupling between fluctuations that increase the pool stem cells and
the delay in stem cell regulation leads to the extinction of the stem cell population and,
therefore, to the eventual extinction of the whole: fluctuations in the size of the stem
cell compartment propagate along and are amplified by the differentiation cascade in an
amount which typically scales as 2", where n is the length of the cascade. Since the reg-
ulation of stem cell proliferation by the fully differentiated cells has a delay proportional
to n, the negative feed-back between both populations may lead to extinction of the stem
cells and therefore of the whole population.

The extinction time, T, in such symmetric population has been shown to be sensitive
to variations of the death rate of the mature cells, A\, and the rate of self-renewal, p. We
have shown that increasing )\, leads longer extinction times, whereas populations with
larger values of the self-renewal rate p exhibit shorter extinction times. Biologically, these
results imply that symmetric stem-cell self-renewal is more likely to be observed in those
with shorter delays between the stem cell and mature cells and those where the life-time of
the mature cells is shorter and therefore larger cellular turn over is necessary to maintain
tissue homeostasis.

We have also explored the possibility that the cytokine is secreted in response to
variations in the size of some of TACs compartments. We observe that the behaviour is
similar to that of shorter differentiation cascades: If the cytokine is produced at a rate
proportional to the number of cells in compartment 4, the behaviour of the stem cells is,
for all intents and purposes, independent of compartments ¢ + 1,...m which therefore do
not affect the system. We have also seen that if the secretion rate of the cytokine were
proportional to the number of some of the TACs, the corresponding secretion rate would
have to be much larger to maintain the same population of stem cells, as the number of
TACs is smaller than the number of MCs (results not shown). These two results suggest
that is more likely that the cytokine is produced in response to variations in the size of
the mature cells compartment.

In order to proceed further, we have turned our attention to a model which corresponds
to a more biologically-realistic situation: a stochastic model of a differentiation cascades
where stem cells can proliferate both symmetrically or asymmetrically. In our model, the
choice between these two division modes is a random event. Here, we have focused on
the robustness of the population generated by a mixed (i.e. with both symmetric and
asymmetric stem cell division) differentiation cascade in terms of its resilience against
invasion (for example, invasion by a potential tumorigenic differentiation cascade). In
particular, we have focused on optimal strategies for a differentiation cascade to be robust
against invasions as defined by the values of two parameters: the probability of symmetric
behaviour, e, and the rate of symmetric self-renewal, p. Our result show that there
exist a trade-off between robustness and the capability of the differentiation cascade for
adaptive behaviour in response to some sort of stressful situation (e.g. healing response
to injury): Whereas the smallest the value of e, the more robust the population, we have
also found that upregulation of symmetric self-renewal, i.e. increased value of p, increases
the likelihood of the population to withstand invasion attempts. However, we found that
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populations with big values of p are not robust, in the sense that lead the population to
extinction due fluctuations and the mechanisms studied in this section.

The issue of the optimal (i.e. mazimally anti-tumour) architecture of has been recently
addressed Rodriguez-Brenes et al. [107]. Comparisons between our results and theirs is
difficult as the models are based on slightly different premises. For example, the model
considered in [I07] does not take regulation into account. In turn, our models do not
account for self-renewal of the transient-amplifying cells. In spite of these differences,
some of the results of Rodriguez-Brenes et al. [I07] are compatible with ours. For example,
Rodriguez-Brenes et al. [I07] conclude that anti-tumour mechanisms should favour the
evolution of shorter (few intermediate transient amplifying stages) differentiation cascades
over longer ones. The delay-induced extinction mechanism described in this section also
favours the evolutionary prevalence of shorter cascades. The effect of self-renewal in the
intermediate differentiation stages has not been explored in this section and it is left as
the subject for future investigation.

Related models has been proposed by Traulsen et al. [31] [78 120} [125], where they use
a Moran process to study the competition between two populations as a function of the
duplication probability to find that the probability of invasion is an increasing function of
the duplication probability of the invader population. We observe similar results, only for
small values of the duplication rate p. For larger values of p the probability of invasion
decreases, as the invader population gets extinct due the extinction mechanisms that
we have characterised in this section. This difference is due to the fact that we are
considering a model with regulated-SC compartment size. Similarly, the models presented
in [70, 87, 39, [75, 88|, 8O, [127] also lack feed-back, and, therefore do no exhibit any of
phenomenology described in this work.

We also observe significant differences between deterministic and stochastic models.
Whereas the mean-field behaviour model presents a critical point, characterised in terms
of the net growth rate of the stem cell compartment, beyond which the resident population
stops being robust, the stochastic model exhibits non-monotonic behaviour in which prob-
ability: The invasion probability is virtually zero below the deterministic critical point,
however beyond the critical point it reaches a maximum and starts decreasing (due to the
extinction mechanism studied in the symmetric division model).

5.2 Stochastic dynamics and extinction of HIV-1 in patients
under potent anti-retroviral therapy

We have presented and analysed a stochastic model of HIV-1 dynamics in the blood stream
under anti-retroviral therapy. The analysis of the behaviour of this model has provided
us with valuable insight on the ability of a therapy based on stimulating the activation of
latently infected cells through an study of the extinction of the infection.

In order to investigate the effect of the activation rate of the latently infected cells, ay,,
on the average extinction time of the latent reservoir we have used several methods. We
have studied the mean-field behaviour of our system to determine the range of parameter
values in which a positive equilibrium (i.e. a steady-state associated to a persistent in-
fection) exists. We have further performed Gillespie simulations of our stochastic model
to study the extinction average time of the system. This simulation results allow us to
determine if increasing the activation rate induces a reduction of the average extinction
time. We have showed that, in the range of values of a; that we have analysed, the
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extinction time is dramatically reduced from decades to 2-3 years. This result supports
the viability of increasing the rate of activation of latently infected cells by a possible
therapeutic approach for total eradication of HIV-1 infection.

This problem presents a very particular multi-scale nature, each variable has a different
time scale. This property has been used to reduce the dimensionality of the problem. We
have performed a time-scale analysis of the Hamilton Equations to produce two different
QSS approximations. We further assume that the generalised coordinate corresponding
to the healthy cells, ¢1, and its momentum, p; are constant.

Separation of time-scales have also been used to justify the uses of a multi-scale stochas-
tic algorithm [20], which is excellent for our problem. We have used the semi-classical ap-
proximation [I0} [73], B5] together with QSS approximations in the Hamilton equations [2]
to approximate the generating function G(p,t) and we have observed excellent agreement
between the results of the semi-classical approximation and the ones obtained via Gillespie
simulations, except in a small region near a}, the value of a;, where the metastable state
ceases to exist. In that region Gillespie simulations must be performed to compute the
extinction probability. A better understanding of the Stokes phenomenon and analytic
expressions for all the terms in the semi-classical approximation are left for future work.

5.3 Effects of density fluctuations on the statistics of viral
blips

The aim of Chapter [4]is to contribute to the discussion of whether viral blips in HIV-1 in-
fected patients treated with HAART are symptomatic of ensuing drug failure or if, on the
contrary, they are random occurrences uncorrelated to drug-efficiency status and therefore
lacking clinical significance. To this end, we have presented an inhomogeneous stochas-
tic HIV-1 infection dynamics model, based on previous mean-field and stochastic models
[110} 28], which accounts for local density fluctuations and burst virion production. Previ-
ous models [110, 28] assume that the system is well-stirred and, therefore, homogeneous.
Given the small number of individuals involved in our model, in particular, regarding the
number of virus copies during the latent infection phase, we have hypothesised that spatial
inhomogeneities may play a role.

We have proposed an stochastic infection model which extends the model proposed
in [28] by accounting for density inhomogeneities and bursty virion production. We have
avoided the consideration of factors such as random activation of latently infected cells
or upregulated virion production rate which have been introduced in previous models
[110} 28]. We have further designed an in silico blood sample model, in order to reproduce
as faithfully as possible the experimental protocol of Nettles et al. [95]. By doing so, we
have been able to show that our model closely reproduces the blip statistics obtained in
[95], in particular when burst virion production is considered (see Figs. and ,
thus supporting the hypothesis that viral blips in HAART-treated patients are random
events unrelated to drug failure [76], 94].

Previous modelling approaches have made different claims regarding the origin of blips.
Rong & Perelson [110] have postulated that random activation of latently infected cells
by exposure to the corresponding antigens account for the presence of blips in HAART-
treated patients. Conway & Coombs [28] have formulated a model in which a heightened
rate of virion production is necessary for their model to reproduce realistic values of blip
frequency, which could be interpreted as blips being the consequence of an evolutionary
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process where new variants of the virus have emerged with an increased virion production
rate. Whilst our model does not disprove any of these mechanisms as well as others
proposed in the literature [37, 52), 411 [40] 43 [61), 62 [B0], our model points out that viral
blips may be purely random occurrences uncorrelated with factors of clinical significance.

Furthermore, our approach allows us to (partially) address the issue of whether lab-
oratory and sample manipulation artifacts affect the observation of blips [76, 94]. We
have investigated the effect that the post-extraction handling time, i.e. the time elapsed
between sample extraction and the actual analysis, has on the statistics of the number
of blips. According to our model, this factor contaminates the statistics of the number
and duration of blips (see Fig. , which supports the position regarding the effects
laboratory artifacts on viral blip observation [76].

5.4 Future work

The models and results presented in this thesis open a number of interesting avenues for
future research.

In Chapter [2| we have shown how the tissues are protected against mutations that
lead to symmetric division. However, according to our model, the optimal strategy is
asymmetric division, since the number of stem cells remains constant and, therefore, the
extinction probability is equal to zero, but this does not reflect the reality. The next step
is to formulate a new model including more reactions such as mutations in the stem cell
compartment (e.g. SC 2 8C,,, with SC,, a mutant stem cell with another properties).
This improvement would lead us to a more realistic situation in which the asymmetric
division is not the best strategy.

In Chapter[3] using the semi-classical approximation we have obtained the mean extinc-
tion time 7 = AQPeC?. Although in simple problems such as the branching-annihilation
[35] or branching-annihilation-decay [68] A and B can be determined. In more general
situations the determination of A and B requires a careful analysis of the associated Stokes
phenomenon [10]. Such analysis, together with the development of asymptotic methods
to address this problem in more general settings is postponed for future work.

In Chapter 3] we have analysed the combination therapy of increasing the activation rate
of the latently infected cells while continuously administering HAART, just by changing
the value of ar. A more realistic way to study this, is to formulate an accurate model of
how the levels of histone deacetylases (HDAC) and other chromatin modifiers change the
activation of the latently infected cells [121].

In this thesis we have used the semi-classic approximation in the Chapter [3|to compute
the average extinction time of a population. But this methodology can be applied to
compute the average extinction time in Chapter [2| or to count the number of blips in
Chapter [4

In Chapter [d] we have modelled the dynamics of the HIV-1 infection in the blood
samples, assuming that there is no replenishment of new 7' cells and the clearance rate is
reduced. However, post-extraction dynamics require a more careful study. It is not well
known which changes in the dynamics are produced, if the samples are refrigerated, this
can slow the viral replication. We left for future work a complete study of the dynamics
in the blood samples.
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Appendix A

Stochastic modelling and the
Gillespie algorithm

This appendix is devoted to give a brief introduction to stochastic processes, stochastic
modelling and a computational tool, called the Gillespie Stochastic Simulation Algorithm.

A.1 Basic definitions

Definition A.1. Let  be a set, let A be a collection of subsets of ). Then A is called a
o-algebra and the ordered pair (£2, A) is called a measurable space if A satisfies:

1. Qe A
2. If Be A, then, B®:={b:beQ,b¢ B} € A.
3. If {A,,n € N} C A, the union U2, 4, € A.

Definition A.2. Let (2, A) be a measurable space. Let P be a real valued set function
defined on the o-algebra A. The function P : A — [0, 1] is called a probability measure if
it satisfies:

1. P(Q) =1.
2. (o-additivity) If {A,,n > 1} C A and A; N A; =0 for i # j, then

P(UR Ay) = 3020 P(Ay).

The ordered triple (2, A, P) define a probability space.

Definition A.3. Let (2, A, P) a probability space. Let A;, A2 € A. The conditional
probability of A; given A, is

P(A1|Ag) = %-

Theorem A.1l.

P(ANB P(B|A)P(A
P(AIB) = 557 = S50
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Definition A.4. Let (2, A, P) be a probability space. Two Aj, A2 € A are said to be
independent if

P(A1 N Ag) = P(Al)P(A2)

The o-algebra generated by the open sets of R is denoted as B and it is called Borel’s
o-algebra.

Definition A.5. A Random variable is an application X : £ — R such that
VB eB, X 1(B) € A.

Definition A.6. Let X be a random variable taking values in R. The probability that
X € (z,z + dx) is given by p(x)dx where p(z) is the Probability Distribution Function
(PDF) of X.

Some properties of the PDF are:

o [ p(x)dz=1

o Plx1 < X <umg) = ;12 p(x)dx

Definition A.7. Let (2, A, P) be a probability space. A stochastic process is a collection
of random variables {X;(s) : t € T, s € Q} where T is some index.

Such systems are described in in terms of an infinite set of joint probability densities:
P(xp, ty,...x1,t1) or, equivalently, by a set of joint conditional probability densities:
P(zp,ty, ...®p41, tet1|2k, ti, -..21, t1). Obviously, such a system is not possible to deal with
in practice, therefore additional conditions must be imposed in order to make the system
tractable.

The Markov property is an additional condition whereby we assume that the system
loses memory of all its past history except for the most recent event.

Definition A.8. An stochastic process is Markovian, or has the Markov Property, if it is
satisfied the following property:

P(l’n, tn]xn_l, tn—l; .. L1, tl) = P(xn, tn\xn_l, tn—l)-

Remark:This statement is equivalent to claiming that the waiting time between two
successive events is exponentially distributed [47].

This property allows us to write any joint PDF in the infinite hierarchy in terms of
just one: the one-step PDF P(zy,, ty|xn_1tn—1):

P(zptn, Tn—1,tn—1, .2, ta|z1,t1) = [ [}y P(xs, ti|wi—1, tim1)
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A.1.1 The Chapman-Kolmogorov Equation

The Chapman-Kolmogorov equation (CKE) is a direct consequence of the Markov prop-
erty and provides a first step towards writing an equation for the time evolution of the
probability density. Consider the identity

P(x3,t3]1,1) :/P(ws,t3,$27t2|$1,t1)d332 (A.1)

Now

P(x3,t3,x2,t2,21,11)

P(x3,t3, 29, ta|x1,t1) =

P(Slil, tl)
_ P(.Cvg, t3, 9, tQ, x1, tl) P(IL’Q, tQ, x1, tl)
P(x2,t2]21,11) P(xy,t1)

= P(x3,ts|xe, ta, x1,t1)P(22, ta|x1, t1).
Applying the Markov property we get
P(x3,ts, xo, ta|z1,t1) = P(x3, t3]x2, t2) P(22, ta2| 21, t1).
This lead us to the Chapman-Kolmogorov Equation (CKE)

P(zsts|xity) = /P(xg,t3|x2,tg)P(:CQ,tz\asl,tl)d:cg (A.2)

A.1.2 The Master equation

The Master equation is a reformulation of the CKE that is easier to handle and more
directly related to physical models. Consider P(z3,t3|zat2) and let dt = t3 — t2. Then

P(x3, t3’x2, ta) = (1 — ao(atg)dt)(xg, —x2) + W(Z'E]’I'Q)dt. (A.3)
W (z3|z2) is the probability per unit time (transition rate) of the transition xo — x3, and
1 — apdt is the probability of no transition occurring. Therefore

ao(xg) = /W(.T3|$2)d1}3. (A4)
According to the Chapman Kolmogorov Equation

P(x3,to + dt|z1ty) — P(xo,to|z1, t1
dt

= /W(xg\xg)P(acg, tg‘l’l, tl)dxg—ao((ﬁg,)P(xgtg‘(L'l, tl)

(A.5)
Using the definition of ag(z3) and taking the limit dt — 0, we obtain

dP(x3,t|x1,t1)
dt

If only a discrete set of transitions W;(X), is possible, and, upon occurrence of reaction
1, X — X + r;, then, the corresponding Master equation reads:

= /(W(azglscg)P(mg,t|x1,t1)da:2 — W(xa|xs)P(zst|z1,t1))dxa.  (A.6)

dP(X,1)

P Z(Wi(X — 1)) P(X —r;) = Wi(X)P(X,t)). (A7)

)
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A.2 classic examples

A.2.1 The Moran process

The Moran process, named after the australian statistician Pat Moran, is a widely-used
variant of the Wright-Fisher model and is commonly used in population genetics.

e N individuals of two types. N is keep fixed.
e n: number of normal individuals. m: number of mutant individuals. N=m-n.

e At each time step:

— n—n+1and m — m — 1 with probability rate Wy (n) =
— n—n—1and m — m+ 1 with probability rate W_(n) =

Note that W(n +1) = W(n — 1), i.e. E[An] = E[n(t + At) — n(t)] = 0. This implies
that with m = En]:

dm
o A.
o =V (A.8)
The system has two absorbing states: Wi(n =0) = W_(n = 0) = 0 and Wy (n =
N)=W_(n= N) =0. This means that
lim P(n(t)=0 U n(t)=N)=1 (A.9)

t—o00
However, this behaviour is not at all captured by the deterministic equation, which
predicts that the population will stay constant, as can be seen in Fig.

A.2.2 The stochastic Logistic Equation

As a second example we choose the logistic equation [A.10]

CZ—T :m<1—%>, (A.10)

has two steady states: m = 0 unstable and m = K stable, i.e. regardless of the
value of K and for any initial condition such that m(t = 0) > 0, m(t) will asymptotically

approach K.
Consider now a continuous-time Markov process n; whose dynamics are given by the

following transition rate:



Stochastic modelling 89

50

45t E

401 4

¥ ﬁ

0 10 20 30 40 50 60 70 80 90 100
Time

Figure A.1: Moran realizations

e n — n + 1 with probability rate n.

n(n—1) 1
2 K-

e n — n — 2 with probability rate

This stochastic process has a unique absorbing state: n = 0. This, together with the
population can not grow to infinity (a linear term increasing population against quadratic
term decreasing the population) leads to

tll)IgOP(n =0,t) =1 (A.11)

We see in Fig that the stochastic dynamics show strong discrepancies with Equa-

tion [A.10] when randomness is dominant. We observe that for small K fluctuations domi-

nate the behaviour of the system. Extinctions are common for small K , in contradiction

to the behaviour predicted by the logistic equation Eq and become rarer as K is
allowed to increase.

A.2.3 Equilibrium and absorbing States

There are several definitions of equilibrium states in stochastic systems, we will explain
our with an easy example. Consider again the stochastic logistic growth, i.e. a process n;
such that:

e n — n + 1 with probability rate Wy(n) =n

n(n—1) 1
2 K

e n — n — 2 with probability rate W_(n) =
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Figure A.2: Red line K = 10, green K = 50, blue K = 100, black K = 1000

Consider a state of system, ng, is, roughly speaking, a state of the process such that
Wi(ns) = W_(ns). W4(ns) is the number of births within a population of ns individuals,
likewise, W_(ns) = the number of deaths within a population ng individuals. So an steady
state of our population dynamics is reached when n; = ng, since death rate is balanced by
birth rate and therefore the population stays roughly constant. It is easy to derive that
ns = K, which coincides with the deterministic stable fixed point. The idea is to note
that Wy(n) — W_(n) >0 if n < ns and Wy (n) — W_(n) <0 if n > n,.

Another important concept is the absorbing state. An absorbing state, ng, is char-
acterised by Wj(ng) = 0 i.e. once the system has reached the absorbing state, it cannot
leave anymore.

Consider again, the stochastic logistic growth rate, we have:

e Steady states are in general not absorbing states.
o Wi(ns) # 0 and W4 (ns) # 0.

e If n =0 then W, (0) = W_(0) = 0 therefore n = 0 is an absorbing state.

ns belongs to the set of accessible states of n = 0, that means there is at least one
consecutive set of transition that connects ng and ng. For Example:

K—-K-1-K-2—=..-—1-=0.

However, if K > 1 the probability of such a chain of events is vanishingly small.

ns is an steady state in the sense that births and deaths are balanced. Moreover,
Wi(n) —W_(n) > 0if n < ng and Wy(n) — W_(n) < 0 if n > ns. This is essentially
equivalent to what happens in the deterministic logistic growth model. However, ng is
not an absorbing state of the stochastic dynamics. The only absorbing state is n =
0. Stochastic extinctions are relatively rare provided K is big, if this is the case, then,
the deterministic system provides a reasonable approximation to the behaviour of the
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model. If, on the contrary, K is small stochastic extinctions are relatively common and
the deterministic description is not an accurate one. In general, we should expect non-
trivial random effects for small populations or dynamics with absorbing states.

A.3 DMonte Carlo Methods

There is no consensus on how Monte Carlo method should be defined, we use the following
definition:

Definition A.9. a Monte Carlo Method is an algorithm which uses for any reason a
pseudorandom number.

Example A.1. Approximate the value of 7

Consider a random point P in the unit square, which is the probability that P is in
the unit circle?

Clearly, the probability has to be the quotient of the areas, that is g Using this we

will use the following algorithm to compute the value of :

1. Set A =0.
2. Generate two random numbers z,y € [—1,1] if 22 + y? < 1, then A = A + 1.

3. Repeat (2) N times. When N — oo, then % — 7, this lead us to 7 ~ 4%.

A.4 Gillespie Stochastic Simulation Algorithm

Consider a Chemical reacting system, that is, molecules of N chemical species S, ..., Sy,
inside some volume (2, at some temperature T'. Interacting through M elemental reaction
channels W1, ..., Wy, where W; is assumed to describe a single instantaneous physical
event which changes the population of at least one species.

Each reaction channel W; can then be characterized by two entities [47]:

e Its propensity function a;(x): If the system is currently in state x,
a;j(z) - dt := probability that one W; event will occur in the next dt.
e Its state change vector v; = (vij,...,vn;):
v; ; = the change in X; caused by one W} event.

W; induces the state change z — x + v;.
Example A.2. Combustion of methane
Consider 4 different chemical species: Methane (CHy), oxygen (O2), carbon dioxide
(CO2) and water (H20). And the reaction

CHy + 209 — CO9 +2H50
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The state change vector of this reaction is v; = (=1, —2,+1,+2), and its propensity
function ay(CHy, Oy, COy, HyO) = r1CH, 22 %=1,
The Master equation describing this process has the form:

(n2 +2)(ng — 1)
2

P(n1,n2,n3,n4,t) = r1(ng+1) P(ny —1,n0+2,n3 —1,n4 — 2)

no(no — 1
—ring (2)13(”1, N2, N3, M4)

Note that, both, v; do not determine the reaction, as con be seen in the following
example

Example A.3. S; — S2: v; = (—1,1,0,...,0); a;(z)dt = (¢;dt)x1 = aj(x) = cjz
S1+ Sz = 255 same vj; aj(x)dt = (c;dt)r120 = aj(x) = cjr122

The main idea of the Gillespie Stochastic Simulation Algorithm is to produce sample
paths or realizations of X (¢). To do this, the method generates properly distributed
random numbers for the time 7 to the next reaction, and the index j of that reaction.

Let p(7,j|z,t) - dr = be the probability that, given X (¢) = x, the next reaction will
occur in [t + 7,t 4+ 7+ dr), and will be Wj.

Let
M
aop(z) = Z@k(iﬂ)
k=1
Then
n
p(r, jlx, t)dr = (1 - ao(:n)z) a;(x)dr — e=0@7q,(x)dr
n
Therefore,
p(r, i tydr = 0@, () dr = ag(x)eoor . )
ao(x)
Note that 7 is the exponential r.v. with mean ﬁ(w), 7 is the integer r.v. with probability
mass 2% and j and 7 are statistically independent.
ao(z)

The following scheme is a Method of implementing the SSA:

M=

1. In state = at time ¢, evaluate aj(x),...,ap(x) and ag(z) = ) ag(x).

k=1

2. generate r; and 7o random numbers in [0, 1], and compute 7 and j according to

1 1
T = In ,
ao(z) (1 —T1>

j
j = the smallest integer satisfying Z ag(z) > roap(z).
k=1

J.t=t+7and x =z +v;

4. Record (z,t). Go to 1 or end the simulation.
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Semi-Classical Approach

This appendix is devoted to explain the semi-classical approximation used in Chapter
to approximate the solution of a Master equation.
The basic idea of the semi-classical approximation, is to transform a stochastic process
described by a Master Equation.
Consider a stochastic process described by the following Master equation
OP(n,t)

T = Y (Wi = OP(n = 1,0)) = Wy(n ) P(X, 1)) (B.1)

J

Let us define the generating function as Equation
oo
G(p,t) =Y _p"P(n,t) (B.2)
n=0

Clearly, if G is known, the probability distribution function P,, can be recovered [60]
1 "G

P(n,t) = — . B.3
(Tln ) TL' apn =0 ( )
G satisfies linear partial differential equation
oG 0
—(p,t)=H — |G B.4
) =1 (.5 ) (B.4)

satisfying G(1,t) = 1. This equality means the sum of the probabilities is equal to 1. The
order of this partial linear differential equation is n if and only if, at most, reactions with n
species reacting in the left hand side of the reaction appears, that is A;+...+A,, — anything
[35]. If the order is bigger than one, in general we can not solve this PDE. However, we
can consider this as a Schrodinger Equation,

0 N
G = —HG. (B.5)

Equation tell us that there exists an S such that G = exp (—S). When the system
size, €, is big, one may employ the WKB approximation [73] and consider the re-scaled
action S with S = Q.S, expanding up to order O(Q~!) (neglecting O(2~2) terms), one
obtains the classical Hamilton-Jacobi equations [6]

a8 oS
—=H — . B.
5=t (n5) (B.6)
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Example B.1. Consider a stochastic process the binary annihilation reaction A+ A LN 0.
This process is described by the Master equation

(n+2)(n+1) 1)

gP(n t) =

kP +2,1) — W=D b g, (B.7)
ot 2
consider the generating function
n>0
then, Eq (B.7)) can be written as
0G L(n+2)(n+1)
0 o OEOED ki .0y - M kb, )
n>0 n>0
_ n—gn(n—1) 2 n—2n(n
= Zp Tk‘P n,t) Z kP(n,t)
n>2 n>0
_ n—zn(n—1) P2 n—2"
= > p TkP n,t) > p kP(n t)
n>0 n>0
k 0*G
= —(1- B.9
501 (5.9)
We consider this equation as a Schrodinger equation,
0
~—G=—-HG B.10
- , (5.10)
with
N k R
H(p,q) = 55" = 1)¢*, (B.11)
where § = —8(1.

Using the Ansatz G(p,t) = exp (—QS(p,t)), Eq. - ) reads

08 k 0?

—Q7-exp (-QS(p.t) = —§(p2—1)872€xp(—95(p,t))

2
— _g(pZ_ )( Qaagsexp( QS(p, 1)) + O @i) exp(—QS(p,t»),

expanding up to order Q~!, we obtain the Hamilton-Jacobi equation

S s\ k, , 8S\>
= (v ) =50 - (5) (12

with k = Q1.
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Instead of dealing directly with the Hamilton-Jacobi equations, which, in general, we
do not know how to solve, we exploit the analogy with the Schrodinger equation to use a
Feynman path-integral representation further to obtain the solution of Eq. (B.5))

G = | ' (exp (=5(p, )) Da(s) Dp(s)) ds + p™, (B.13)

with

S(p,q,t) :/0 (H(pvQ)JFZQi(S)?i(S)) ds. (B.14)
i=1

Too see this note that, in the Fourier representation [22],
S .
o(p—po) = / dme " PP g (B.15)
—00

The probability of pass from a p” to a p’ can be seen as
/ / —1 a /!
(p'| exp | —QAtH (2, 873,,t) ") =

_ / dk exp (—(QAH () ick, ) +ik(p — p")

—0o0
/ /!

= / dm Q) exp <—(QAt)H(p’, im,t) — inl P

At

—00

for a short time At. Defining exp. as an ordered exponential, the solution of Eq. (B.5)
can be written as

t .0
G(pnstulpo, to) = exp._ [—Q/ dsH <p,ﬂ 18p’8>] 5(p — po)

n

. . 0
= hmo H exp <—QAtH(p, Q 1%,1%)) d(pj — pj—1)dp;j—1.(B.17)

Writing Eq. (B.17) in the representation of Eq. (B.16)) we obtain

G(p,tlpo,to) = nlijolo/“'/dpldm”-pndﬂnﬂn
= €exp QZAt [H(pj,iﬂj,tj)—iﬂpj_AZZj_l} . (B.18)

j=1

In the limit At — 0 we recover Eq. . Note that, in fact, the integral of the Equation
represents all possible trajectories, we just have composed the solution at each
infinitesimal time step.

The semiclassic approximation consists on taking just the most probable path, that is,

to approximate the path integral (B.13]) by
G(pvt) ~ exp (_S(pvt))v (B19>

where p; are the solution of the Hamilton equations of the (classic) Hamiltonian H, since
these equations are the ones that maximizes exp (—S(p,q)).

(B.16)
+ O(At?))

) + O(AF?).
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The approximation of this integral [B.13]is performed via a Laplace method or a steepest
descent method, which is valid if 2 is large enough. The Laplace method consists in the
following, if we have an integral of the form

b
/ exp (2 (2))da,

with €2 big enough and f(z) has a unique maximum at xy € [a, b, then we can approximate

b b
/exp(Qf(:U))d:L‘%le(xO)/ e U (@)l (z=20)” (B.20)

For the values of x far from zg this decays exponentially fast.
And in Equation (B.13) the maximum is reached when S is the solution of the Hamilton-

Jacobi equations. The path that maximizes the action integral, Ig:

Is = /S(p7Q75)d87 (B21)
is determined by the Euler Equation
dosS 08
e e B.22
ds Oqg  Op ’ ( )
or by the canonical equations of motion
. OH
p(s) = ———,
0 = -5
. OH
q\s =
© = 5

with boundary conditions
7(0) = zi(0),
pit) = pi

Remark: We have used the Generating function formulation for convenience, all this
derivation can be done using directly the master equation, see for instance [73]

B.1 Metastablility

Equation can, in general, be solved, only in few cases (e.g. if H is of order 1. In that
case, one can use the characteristic method to solve that partial differential equation). In
general we cannot solve the Hamilton-Jacobi PDE. However, taking advantage of the fact
that H is linear to expand G in their eigenvalues \; and eigenmodes ¢, we obtain

G(p,t) = Ga(p) = > d(p)e ™! (B.23)

k>1

where G4 (p) is the stationary solution (corresponding to A\ = 0), Ay are the eigenvalues
of —H, ¢i(p) the eigenmodes.
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Assume the system has a metastable state, which is an attractor of the mean-field
dynamics. In the semi-classical approach we can think it as a positive fixed point on
p; = 1, or as an hyperbolic point of the Hamiltonian with stable manifold p; = 1. We
can expect the dynamics evolve according the mean-field behaviour until they reach the
metastable state. However, we have to note that, although the metastable state is an
stable fixed point of the mean-field behaviour, it is not thermodynamically stable. If it
were, we would have reactions, that require energy, at infinite time, in an isolated system,
and this contradicts the second-law of thermodynamics [38]. Thus, after a long time
near the metastable the system will escape to the stochastic extinction or to a different
metastable state in the case of multi-stable systems. If the system size is large enough, we
can expect that the dynamics will follow a trajectory close to the heteroclinic connection
as this trajectory is the optimal one. The probability of observing a different trajectory
is exponentially small [35].

In this case, as we are interested in large values of ¢, we can to approximate the
extinction probability by truncating Eq. at k = 1, since the exponential terms with
negative eigenvalues (—Ap < —A\; < 0) decay very fast and we obtain

G(0,t) = 1 —exp (—A1t). (B.24)
with )
. B.2
r=s (8.25)

as the mean extinction time.

In Chapter [3[ this mean extinction time is of the form 7 = AQP exp(CQ), where C is
the integral of the re-scale action, S, along the heteroclinic connection. In the particular
case of the Lower bound this can be solved analytically [10, [68], and this example is
very illustrative.

Example B.2. Consider the stochastic process described by that is:

AL A+ A
A aL+dL @
A4 A Imez, .
The Master equation reads
dP(n,t)
— = r(n —1)P(n—1,t) —rnP(n,t) + (ar, + dr)(n + 1)P(n+ 1,t) — (ar, + dr)nP(n,t)
r (n+2)(n+1) r o (n)(n—1)
—|—meQ 5 P(n+2,t) — I 0 5 P(n,t), (B.26)

and can be rewritten as

oG oG r el

oG

2 2

— = —p)—=— d —1)—4——(p" - 1)—. B.27

As we have explained, we consider this as Schrodinger equation,

oG ~
— =—-HG B.28
at Y ( )

where .

H(p,§) = r(p> —p)q+ (ar +dr)(1 = P)j + 57— (1 — p*)*. (B.29)

2Lma:}cQ
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Making an eigenmode expansion of G one gets

G(p,t) = Gulp) — > d(p)e ™ (B-30)

k>1
and, for large values of ¢, G(p,t) can be approximated by
Gp,t) ~ 1— pp)e ™. (B.31)

Note that if G(p,t) = 1 — ¢(p)e 1%, then

oG _
ap = _Cb/(p)e Alt,
e .
apQ _¢Il(p)e Alt?
oG _

5 = o(p)e Aty

This allows us to reduce our PDE to into an Sturm-Liouville problem of the form
—Hp+ X op=0 (B.32)

To solve this problem we proceed as in [10] and we look for a solution in the momentum
space. However, it was previously solved via a WKB approximation by Kessler and Shnerb

[65]. Eq. (B3 is
T

s gl = P+ (= D(rp = (az +dr)d + Mo =0, (B.33)

We proceed as follows, we divide the problem in three regions: the first region is
A={p | p=0},B:={p | p~0}and C:=10,1]—A— B. We look for a solution near
p ~ 0, where from Eq. we have ¢(p) ~ 1, then a solution p ~ 1, where, from Eq.
(B.31)) we have ¢(p) =~ 0, and finally we match both solutions in the three regions.

We use a WKB Ansatz ¢(p) = a(p)exp(—Qs(p)), then

$(p) = a(p)e W
$p) = a(p)e 5P +ac” P (—qg)
¢"(p) = d"(p)e” PP 424/ (p)e” P 4 a(p)e” P (—5)%.

so, our Sturm-Liouvulle problem reads,

r

2LmaacQ
(p—1)(rp — (az +dr) <a'(p)e_QS(p) + ae—QS@)(—Qs')) — 0. (B.34)

()= + 20/ ()5 1 a(p)e~ 50 (~2)?)

The terms in 2, gives us a differential equation for S(p)

rp — (ar, +dr)

r(p—1)
note that, the right-hand term is exactly the heteroclinic connection between the metastable
state and the stochastic extinction.

Sl(p> = 2Lmaz (B35)
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The terms without  gives as a differential equation for a(p)

(p—1)[rp — (ar +dg)]
(1 —p?)S(p))

To study the non-quasi-stationary region we add the term A\ ¢ to the equation pertur-
batively, ¢(p) = 1 + d¢(p) with d¢p(p) < 1, and we get

(I/(p) = Lmax (B.36)

r

(1= 206" + (0= 1)(rp — (s +dr)é’ =, (B.37
which gives us a differential equation for ¢'(p)

123 2Lma$
#"(p) = (=%

in this case, the solution has been derived in [10] and is of the form

I RZIATE p exp (29 (s — 1—|—% log(1+ s)
¢/(p):_29)\1629(1” (12152 Y tog (1-4p)) /_1 ( ( ( — ) ))

Q—X\1—(p—1)(rp—(ag +dp)¢, (B.38)

ds

(B.39)
Eq. (B.39)) can be evaluated by the saddle point approximation with a saddle point at
ar, + dr,

/
220V L (3 )
¢/(p) ~ — - ai"‘ L e—QQLmazl(p)7 (B40)
ar+dr, +1 (aL+dL o 1)
with
ar, +d ar, +d ar +d ar, +d
I(p) = “LT°L (1+ L L> log <1+LL) - (p— (1+LL> log(1—|—p)> .
r r r r
(B.41)
T 1
The quasi-stationary solution is valid as long as — 1> —, and the pertur-
q y 1 gasp Td; NG P
bative solution holds when 1 — p > ﬁ [9, 8], so both solutions are valid when
! < 1 1
va = Pava ‘
Finally, we find the eigenvalue A1 matching both solutions.
Lz r (a id - 1)2 QS
A= +1) e /e, (B.42)
47 ar, +dj, (aL;dL)5/2
with
+d +d
S =1L T‘ILTL—log <%TL+1> (r+aL+dL) - T—log(2)(7‘+aL—|—dL)
max r max .

(B.43)
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Appendix C

Computation of Heteroclinic
Connections for Hamiltonian
System

This chapter is devoted to give a brief introduction to the methods used in Chapter [3] for
the computation of the invariant manifolds

C.1 The Taylor Method

Consider the initial value problem

x(ﬂ = f(x,t),
w(to) = (0) (©1)

One step of the taylor method of order m, to compute the solution x(t) of the differ-
ential equation (C.1)) from time ¢ to t + h, of order m with step size h is

2P (ty—1)
m)

Ny =aN_1+ 2 (tn_1)h+ -+ h™,
starting with z¢ = z(0).

This high order method allow us to obtain high accuracy and large step-sizes h along
the integration (in the implementation m is choosen large and h is choosen to keep the
local error of the method beyond the precision required, for example m = 24 is a common
value if double precision is required). Although this method is very simple, computing
m derivatives of a vectorial field can be very hard. This problem is solve by using the
so-called Automatic Differentiation Formulas.

C.2 Automatic Differentiation Formulas

Automatic Differentiation is a recursive algorithm to evaluate the derivatives of a closed
expression on a given point [64 [51].

Definition C.1. Let f be a smooth function. The normalized j—th derivative of f at t is

101
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. 1 .
f[a](t) = ﬁf(])(t)'
Some of the differentiation formulas are as follows:

1. If f(t) = g(t) = h(t), then fI () = gl () £ BI"(2).
(t)

2. If f(t) = g(t)h(t), then fIM(t) =37 gr=i(£)Rll(2).
3 18 £(0) = S8 then 119(0) = 27 (a0) = S K £ ).

There are automatic differentiation formulas for exponentials, logarithms, trigonomet-
ric functions, and so on.

Example C.1. In Chapter [3] the Weak QSS approximation produces a reduced system
of 4 ordinary differential equations

dpg 1 LO
= = —( —k3(p3 —pa2) — K3 (1 —p3)g2 — ka1 — p2) — K5(p3 — p2) |,
dt €1 Lmax
dgs 1 Lo
— = —(n(l=€)qqs+ H3Q2(2P% —1) — K3 Pqu — K4q2 — K592 | ,
dt €1 Lmaa:
dps 1
wPs - _ _ 1 —
7 - (—ke(p3ps — p3) — k(1 —p3)),
dgs 1
i (T —=n)(1 — €)qiqa + K52 + ke(pa — 1)g3 — K7q3) , (C.2)
where
P11 = 17
¢ = 1,
- —( =) = €e)qps —n(l — €)paqi — ks — ep1a
—(1=n)(1 —e)gip1 —n(l — €)p1q1 — Ks — ep1q1
K6
q4 = —————P34gs,
* P1q1 + Ks 598

for simplicity ps = Aps + Bpa + C and g4 = Dpsqs.
In this problem, computation of the derivatives lead to very complicated expressions.
For that reason, we define the following auxiliar variables

€1 = DP3Q37

€2 = Ap3 + BPZ + 07

€3 = P2p2,

€4 = €3 — P2,

€5 = 1-— €3,

€6 = €542,

er =1—pa,

€8 = P3 — P2,
1 0

€9 = — | —K3€4 — K3 €5 — k4€7 — K568 |,
€1 mazx

el = (e3 — 1),
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€11 = €1043,

€19 = o (1 =n)(1 = €)qier + ksq2 + Kee11 — K7q3),
€13 = p3€2,

€14 = €13 — P3,

e15 =1 — pa3,

el = — (—Kee14 — Kre1s),
2

€17 — €92 — 1,

e18 = 1743,

o (1 =n)(1 —€)qie1 + ksea + Kee1s — K7q3).

€19

[n]

Using the Automatic Differentiation formulas, for e;", we obtain
1) _ L i)

2 T p41 97

) _ 1

2 T hr 12

1] _ L i)

3 T n41 10

) _ L )

3 T 11

In this particular case we only need the formulas for the sum and the product of two
variables.

C.3 Heteroclinic connections

In Chapter |3 in Fig. we compared two different approximations of the exponential
growth of the mean relaxation time for the semi-classical approximation. The esti-
mates of 2C are obtained after performing either a one-step (weak) or a two-step (strong)
quasi-stationary approximation of the classical equations of motion and computing the
integral of the classical (Lagrangian) action S along the only non-trivial path connecting
the metastable state and the stochastic extinction of the system. Looking at the phase
space of the mean field system, one realizes that this non-trivial path is given by the
heteroclinic trajectory «y(¢) from the hyperbolic fixed point py1 (with p; = 1 and x; > 0)
and the fixed point xg located on z; = 0 with 0 < p; < 1 (here ¢ = 2 for the strong QSS
approximation and i = 1,2 for the weak QSS case).

It is a simple exercise to obtain an expression of the heteroclinic connection in the
Strong QSS approximation, since, under this approximation, the system is reduced to one
degree of freedom, and, therefore, the heteroclinic trajectory is simply determined by con-
servation of energy. However, the computation of v(t) requires numerical techniques for
the Weak QSSA case since one has to deal with a 2 degrees of freedom (2-dof) Hamilto-
nian system. Moreover, the Weak QSSA reduction exhibits an slow-fast structure, hence
one has to deal with two quite different time-scalings when performing the numerics. We
should note that all the computations have been performed using multiprecision arith-
metics (around 100 digits where enough for most of the ay values considered) and the
codes have been implemented in PARI/GP [11].

Let us consider, from now on, the 2-dof Hamiltonian case whose related equations of
motion, given by , are expressed in the coordinates s, x3,p2,p3. The hyperbolic-
hyperbolic fixed point p1 has a 2-dimensional stable and a 2-dimensional unstable invariant



104 Computation of heteroclinic connections

manifolds, to be denoted W*(p1) and W*(py) respectively. Similarly, W*/%(xq) will
denote the 2-dimensional stable/unstable manifold associated to the fixed hyperbolic-
hyperbolic point xg. The heteroclinic connection (t) corresponds to the intersection
W*(p1) N W*(xo).

To compute W*(p1) (and also W*(xq)) we use the so-called parametrization method
[17, [I8]. Basically the idea is the following. We represent the local invariant manifold
around p; as a vector series G(s1,s2), being G : R? — R*. That is, a point X =
(72,23, p2, p3) € R* will be considered to be on W¥(py) if X = G(s1,52) = Zi,jZO amsisg.
The coefficients a; ; € R can be order by order computed by imposing the so-called invari-
ance condition. This condition requires that the dynamics within the invariant manifold,
expressed in the si, sy coordinates, must be conjugated to the linear dynamics around
the hyperbolic-hyperbolic point. Denote by Aj,Aa > 0 (resp. < 0) the real eigenval-
ues associated to p1 (resp. to xg, below we denote by GP! and G*° the corresponding
parametrizations). Then, the linear dynamics is s1 = A;1s1, S2 = Aasg. If X = f(X) refers
to the equations then the invariance condition requires

g£(81752)Ay8y:f(G(Sl,SQ)), v=1,...,2.

Sy

By imposing this equality order by order, being k = ¢ + 7 > 1 the total order, one gets
a sequence of linear systems for the coefficients a; ;, £ > 1 (for k¥ = 0 one gets the fixed
point condition, and for £ = 1 the eigenvectors system). See [I15] for further details on
this procedure.

In practice, we truncate the series representation to suitable order N and we require
that the invariance condition holds up to a tolerance tol. Then, the invariance condition
will hold for X in a domain of radius rp, around the fixed point p; (similarly, for xo
we obtain 7x,). Typical values used in the computations are N = 150 and tol = 10740,
The local domain size depends on the parameter ay in the system. As an example, for
ar, = 0.15 one obtains rp, = 265 and ry, = 1470.

Once the local representations GP* and G*, of W*(p1) and W*(x¢) respectively, are
obtained we extend the W*(p1) up to £ = {p2 = G5°(r4,,0)}, where G5° denotes the 3rd
component of G* (the one corresponding to the po-variable). This is done by integrating
the equations using a Taylor method, which turns out to be an appropiate time-
stepper for the high precision computations required. Assume that GP!(z1,20) € R* is a
point such that the transported one épl(zl, z9) € 3 is close to a zero of F(si1,s2,21,22) =
G™(s1,55) — GP'(21,2), F : R* — R* Then we refine this initial condition, using a
Newton method and we obtain a point of the heteroclinic orbit as a zero of F'. Note that
this requires to integrate the first variational equations. See [115] for further details.

Similar computations for a 2-dof system as well as for a 4D map were carried out in
[45], where further technical details on the parametrization method and the computation of
homo /heteroclinic trajectories can be found. For a recent overview of the parametrization
method for computation of invariant manifolds in different contexts see [53].
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Multi-scale Stochastic Simulations

The Gillespie Stochastic Simulation Algorithm (SSA) is exact. Its procedurally simple,
even when the CME is intractable. There exist several implementations of the SSA, such
as, the direct method [47], the first reaction method [47], the next reaction method [46],the
first-family method [49], the modified direct method [21], the sorting direct method [84],
the modified next reaction method [5], the composition-rejection SSA method [116] and the
partial propensity direct method [103] among others. However, the stochastic simulation
algorithm remains too slow for most practical problems: simulating every reaction event
one at a time usually takes too much time if any reactants are present in very large
numbers. For example, in the problem presented in Chapter [4| and Chapter (3] the healthy
cells are given in a extremely big number, O(10?) cells, if we consider them in our stochastic
model, the Gillespie algorithm takes very small time steps. In this appendix we describe
a different method to avoid this problem.

D.1 Cao-Gillespie-Petzold Method

Cao et al. [20] presented a multi-scale stochastic simulation algorithm, based on a stochas-
tic partial equilibrium assumption, which is much more efficient than the Gillespie stochas-
tic simulation algorithm, particularly in the presence of very small populations or fast
reactions.

D.1.1 Definitions

Assume we have N different species S, ..., Sy, X;(t) denotes the number of S; particles at
time ¢. Assume there are M different reactions Wh, ..., Was. Each reaction channel, W;,
changes state vector of the system by r;. The process is described by the following master
equation:

dP(X,t)

n > (WilX — 1) P(X — ;) — Wi(X)P(X,1)). (D.1)

7

Let ij = (le, - W;nf) be the set of fast reactions and W7 = (le, e VV;”S), the set
of slow reactions.
Similarly, we define X® = (x1,..., 7, ) as the set of the slow species and X =

(x{ , ...,a:flf), the set of the fast species. A species is considered to be fast if it is altered
by, at least, one of the fast reactions of the system. Otherwise it is a slow species.
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We define two different propensity functions: The slow propensity functions

af(m):af(xf’x8)7 Z: 1"”7ms

and the fast propensity functions,

a{(:c) = azf(;rf,xs) i=1,..my.

We also define the fast and slow vector change as,

o = (60l 0),

i .oy ”f’

s __ fs fs ..ss ss
v = (Ul AN ,...,vns)),

where the superindex ff denotes the fast reaction affecting a fast species, fs the slow
reaction affecting a fast species, and ss the slow reactions affecting a slow species.

In Appendix [A] we have defined an equilibrium state in stochastic systems, as a state
in which, roughly speaking, the births and deaths are balanced. Consider now just the
reduced stochastic system described by the fast species with the fast variables. If the
reduced stochastic system has an equilibrium state, X/, we say that the full stochastic
process has a partial equilibrium, which is (X*, X7).

We can assume the existence of partial stochastic equilibria if two conditions are sat-
isfied: the existence of an equilibrium state for the fast systems, and the relaxation time
of the fast system being small in comparison with the time scale of the slow reactions.

Moreover we define the following new propensity density functions, in which the fast
variables are in the equilibrium.

a(X) = E(a3(X))). (D.2)

D.1.2 Computation of Partial equilibrium

How to decide which are the fast and the slow reactions, in general, is an open question,
and usually the best way to determine them is to run few simulations of the SSA simu-
lation algorithm and decide. Another option is to try to obtain some information of the
propensity functions a; and the different time scales of the system.

Compute a;(X*®) is the most difficult part. There are 5 different cases [20]:

1. If a3(X) is independent of X/, then a;(X?) = aj(X).

s _ xS =S sy — 5% /S
2. If a5(X) = ¢; X/, then aj(X*) = ci(X; ).

)

3. If a3(X) = X/ 2y, then a3(X®) = S XFE(X]).

S

i cs _
4. If a3(X) = ;X (X] — 1), then a3(X*) = ng(Xf(X.f 1)) ~ Z(EX]))2

5. If a3(X) = ;X X, then a3(X) = E(X{ X]) ~ E(X])E(X]).
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The computation of the partial equilibrium requires write and solve equations for the
balance of the propensity functions. Consider that the fast system has the form,

A+ A4y Ay,

C2

Ay = Ag+ As.
In this case a1(X) = ¢1 X1 X9 and a2(X) = c2 X2, and the conservation law is
CleXQ = CQXQ. (D3)

Remark: In general we do not obtain a linear system, however, if the partial equilib-
rium exists, we can solve the equations of the partial equilibrium via the Newton method
[96].

However, there problematic cases. Consider the system described by

A1+ Ay SN As
Ay 2 Ay + Aq.

In this case The equilibrium law given by the deterministic equations is
%X% = X (D.4)

however, the MSSA requires
c
—21 X1(X1 —1) = 2 Xo. (D.5)

For a large X7 this is not problematic, however, when X7 is small this is no longer
valid.

Example D.1. To illustrate this methodology, we use as example the stochastic process
described in Chapter That is, the stochastic process described by the Eq. 3.1} As in
Chapter 3| we assume that the variable T (the number of healthy cells) follows an ordinary
differential equation.

From our time-scale analysis we already know that the variable V, corresponding to
the number of virions, is the fast variable. But we can obtain the same running the SSA
and counting the time that each variable occurs. From a few realizations, we observe that
either the reaction corresponding to the virion clearance or the reaction corresponding
to the virus production are chosen around 99.9% of times. Therefore we choose as fast
reactions:

T o ey y
| AN 0

The fast variables are the variables altered by the fast reactions, in this case the only
variable which is altered by these two reactions is V', which account the number of the
virus. The equation for the partial equilibrium come from the balance of this two ratios:

p T = cE[V]. (D.6)

Thus, partial equilibrium is V' =
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D.1.3 Algorithm

The main idea of the algorithm is to produce an stochastic simulation for the slow species
X%, assuming that the fast species, X/, evolves faster and have reached the partial stochas-
tic equilibrium.

The Multi-scale Stochastic Simulation Algorithm steps are

1. Compute the equilibrium state for the fast system and update X7 according to the
current state.

2. Compute aj, aj = Zfl;.

3. generate r; and ro random numbers in [0, 1], and compute 7 and j according to

@ (=)
o T =— In ,
ag(x) 1—7

J
e j = the smallest integer satisfying Z ai(z) > roag(z).
k=1

4. t=t+ 1 andXS:Xs—i—vj

5. go to 1 or stop.
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