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Chapter 1

Introduction

1.1 Protein Dynamics

Proteins are flexible entities, and thus move. Its function is closely related to flexi-

bility. To carry out any function is necessary a conformational change. As protein

motions imply an exchange of conformations, protein dynamics is also known as

Protein Conformational Dynamics. The fluctuations between the different proteic

configurations can be classified according to the length-scale, the time-scale and

the amplitude and directionality of them [1]. In agreement with the length-scale the

movement could be a local movement, involving only the rearrangement of a few

amino-acid side chains or even backbone, or it may be a large, global movement,

modulating the allostery or the conformational transitions, and even involve fold-

ing of the entire protein [2,3]. In line with the time-scale these motions are divided

into slow and fast dynamics, and regarding their amplitude and directionality,

could be distinguish between large and small amplitude protein motions. Gener-

ally local motions are also fast and small amplitude movements whereas global

motions are associated with slow and large amplitude movements [1]. This classifi-

cation can lead to misunderstandings because the frequency of the local motions

may be low (rare events) such as chemical reactions. Thus can be argued that

they are slow motions because need some time to occur, but they are nonetheless

fast.

1
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Figure 1.1: One dimensional cross section of the multidimensional energy landscape of
a protein showing the hierarchy of protein dynamics and the energy barriers. Light
and dark blue lines represents two different hypothetical energy landscapes of a system.
Local slow motions (Tier-0) and dark blue Global Fast motions (Tier-1 and 2). Lower
tiers describe faster fluctuations between a large number of closely related substates
within each tier-0 state. Adapted from Henzler-Widman & Kern [1].

All these motions encompassed into protein dynamics are governed by the

features of the underlying energy landscape. To fully describe a protein, a multi-

dimensional and rugged energy landscape defining the relative probabilities of the

conformational states (thermodynamics) and the energy barriers between them

(kinetics) is required. To understand proteins in action, the fourth dimension,

time, must be added [1,4].

1.1.1 Global Motions

The protein dynamics at this level define fluctuations between kinetically distincts

states separated by energy barriers of several kBT (kB being the Boltzmann con-

stant and T the temperature). Their time-scale corresponds to microseconds (µ)

and slower at physiological conditions. This is the reason why they are called

slow motions. Typically these are large amplitude collective movements between

a relatively small number of states, involving for instance domain motions. Within

each state transitions between closely related conformations constitute the local

fast motions (1.1.2) [1,3,5].

Dynamics on this time-scale is very relevant and receives a lot of attention

because many biological processes involving conformational transitions such as
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substrate binding, allosteric events, enzymatic dynamics and even disorder to

order transitions take place at this time-scale.

1.1.2 Local Motions

The protein dynamics at this level define fluctuations within the picosecond to

nanosecond and even femtosecond time-scale, defined as fast motions. In contrast

to slow movements they represent a large ensemble of structurally similar states,

fluctuating as small amplitude motions separated by an energy barrier of less than

1kBT at physiological temperature. However the chemical reaction are an excep-

tion. They present barriers of several kBT although they are fast and local, and

thus the frequency is low. This is the reason why the aforementioned controversy

regarding the local motions exist. They can be fast (in relation with the time that

need to take place) and also slow (related to the frequency with they occurred).

We can distinguish between different processes depending on the time-scale,

such as loop motions at the nanosecond time-scale, or local atomic fluctuations

on the picosecond (ps) time-scale. Chemical reactions (bond cleavage) as well as

bond vibrations take place at the femtosecond (fs) time-scale [1,3,5].

1.1.3 Experimental and Computational techniques to study

Protein Dynamics

1.1.3.1 Experimental techniques

The flexibility of proteins has been widely studied both experimentally and com-

putationally. There exist a wide range of experimental techniques suitable to

explore different time scales and resolutions (Fig. 1.2) (For a book review see

Livesey [6]).

X-ray crystallography, Nuclear Magnetic Resonance (NMR) spectroscopy, cryo-

electron microscopy and Small X-ray Angle Scattering (SAXS) are able to produce

atomic resolution or near atomic-resolution snapshots of global motions. Further-

more X-ray diffraction, NMR relaxation dispersion or low-resolution spectroscopic

methods, can provide a picture of the local motions. Thus, the combination of

different techniques allow the multi-scale exploration of protein dynamics.

NMR spectroscopy is a powerful technique that allows proteic structural and

kinetic determination. In NMR the relaxation of the nuclei after excitations with

the magnetic field allows to span the atomic resolution detection of conformational

transitions from picoseconds to seconds [1]. Within the microsecond to millisecond
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and second time-scale this technique is able to capture the conformational transi-

tions of the biochemical process that take place at these time ranges by measuring

the backbone chemical shift assignments and fully determine the distribution of

conformations using the residual dipolar couplings(RDCs) [7,8]. Based on the infor-

mation given by N-H couplings, the most informative ones, the secondary structure

population could be determined [9–11]. Furthermore have been shown that RDCs

are able to capture the structural fluctuation at the nanosecond to microsecond

time-scale [12].

Figure 1.2: Time scales of dynamical events in proteins and techniques sensitive to
different time scales, ranging from femtoseconds (fs) to seconds (s). Adapted from
Henzler-Widman & Kern [1].

The family of X-ray methods that encloses some techniques as X-ray crystallog-

raphy or SAXS, constitutes a helpful set of techniques to study protein dynamics.

For high resolution X-ray crystallography a homogeneous crystal is required, being

the substates trapped into it by biochemical techniques as site-specific mutagen-

esis or substrate analogs. Alternatively the reaction could be synchronized across

the entire crystal usign ‘cryo-trapping’ techniques [13]. This strategies are nicely

exemplified by the the cytochrome P450 enzymatic cycle intermediates character-

ization [14]. This homogeneous crystal requirement could be alleviated employing

cryo-electron microscopy or SAXS techniques where the structural ensemble de-

termination could be made but loosing resolution. Furthermore these methods

can not characterize the kinetic information, as for example NMR spectroscopy

can do [1].

However there are some X-ray crystallography variants aimed to account ki-

netics effects such as the so-called temperature-dependent X-ray macromolecular



1.1. Protein Dynamics 5

crystallography [15]. Usually routine data are collected close to 100K in order to

mitigate radiation damage (see section 1.3.1), however the usage of another tem-

perature range, for instance from 15K to room temperature, can provide both

dynamical and structural insights. At room-temperature the macromolecules are

active and move but at cryo-temperatures macromolecular motions are very slow

or even null and biological activity is impaired. Varying the temperature of the

crystal between 100K (or lower) and room temperature one can turn the proteic

activity on and off and subsequently trap functional intermediate states that then

could be characterized structurally by crystals [15].

X-ray diffraction data not only contain information about the average 3D struc-

ture of a protein, but also about the conformational distribution around this state.

The B-factors (also known as the temperature factor and Debye-Waller factor) are

able to measure this mean-square atomic displacement. However a recent paper

invite caution in their interpretation, because they showed that B-factors of some

well-resolved atoms underestimate their actual values even sixfold [16].

1.1.3.2 Computational techniques

Experimental techniques provide a lot of useful data that computational tech-

niques needed. Very often, if not always, the initial structure or information

employed comes from experiments, but computation has advantages as it can

describe dynamics completely and can characterize the full conformational en-

ergy landscape of proteins (although conformational substrates and the rates of

interconversion can be located experimentally, the transition pathway at atomic

resolution is out of reach [17]). The computational simulations can be used as a

‘virtual microscope’ to study processes or molecules in a cell that are not directly

accessible in experiments [18]. Time to time the mixture of both ‘worlds’ is in-

creasing, and the incorporation of experimental data into computational models

is most usual.

Protein dynamics can be explored by all-atom (AA) simulations such as Molec-

ular Dynamics (MD) describing the conformational fluctuations of the system at

time scales ranging from picoseconds to hundreds of nanoseconds. MD allows to

follow the atomic positions with time, identifying the most relevant conformations

characterizing conformational transitions as well as monitoring microscopic prop-

erties over time, allowing the prediction of equilibrium macroscopic properties of

the system.

In general the description of dynamical events in the microseconds time scale

or beyond is out of reach by conventional MD with current computational power.

However there are efforts to span the achievable time-scale and in this direc-

tion, the impressive progress that have been done by Shaw and co-workers to
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cover extremely longer time scales by using a special-purpose machine for MD,

has to be highlighted. They recently reported the first 1-millisecond simulation

for the bovine pancreatic trypsin inhibitor [19]. But this achievement although

impressive is just one unusual case. Employing traditional all-atom simulation

the microsecond-to-millisecond time scale is inaccessible, despite the increasing

computing power. To overcome this problem some possible solutions are being

addressed.

One of them is the ongoing development of more approximate methods to cover

longer time scales as coarse-graining (CG) techniques [20–24]. This methodology re-

duces the number of degrees of freedom of the system accelerating the simulations

and thus expanding the achievable time-scales, but at the cost of loosing cer-

tain information about the system. To overcome this limitation, hybrid AA/CG

models are being developed [25–27].

Another alternative to accelerate the dynamic process and span the time-scale

is apply an external force [28–30], like targeted [31,32] (TMD), steered [33,34] (SMD) or

accelerated MD (AMD) methods [35]. When instead of an external force an empir-

ical potential is added to the force field, the method is called Restrained MD [36]

(RMD). The application of prior knowledge about the system, regarding the reac-

tion coordinate or the end points, as happens with enhanced sampling methods as

Metadynamics [37], Umbrella Sampling [38] or Transition Path sampling [39] is also a

good and useful option.

Other interesting variant of MD is Replica Exchange (RE). Nowadays is com-

mon the use of generalized-ensemble techniques to speed up simulations of systems

with rugged, multiple minima, free-energy landscapes [40]. Whereas classical MD

is useful to study systems where barriers at room temperature are smaller or com-

parable to the thermal energy, RE is specially indicated for systems that have

potential wells separated by relatively high barriers. RE allow systems of similar

potential energies to sample conformations at different temperatures. By doing

so, energy barriers on the potential energy surface might be overcome, enabling

the exploration of new conformational space, improving the sampling by exchang-

ing the temperature of non-interacting replicas of the system running at several

temperatures.

A further alternative is Monte Carlo (MC). MC is a simulation method widely

used to explore the protein energy landscape, quite different to MD. The par-

ticularity of MC is that instead of allowing the calculation of the different pro-

tein conformations along of the trajectory at a certain temperature, it constructs

canonical ensembles generated randomly and accepted or rejected according to a

certain criteria. This criteria usually is such that the probability to find the system

in state i is proportional to the the Boltzmann weight (exp(Ei/kBT )) [18,41]. MC is



1.2. Enzyme Catalysis 7

not suitable to calculate the kinetc properties, but it samples the configurational

space much faster than MD.

To study protein dynamics regarding local motions (such as chemical reactions

or electronic reorganizations) at single atomic detail (like reactivity or spectro-

scopic properties of enzymes), Quantum Mechanics (QM)/Molecular Mechanics

(MM) methods are generally used [42–45]. QM methods allows the simulation of

bond breaking/formation events such as proton or phosphoryl transfer reactions.

On the other hand MM techniques are represented by parameterized force fields

that allow the description of the energetics of the system in a fast way. The com-

putational cost of simulating a whole protein with QM methods is unaffordable

now a days. Thus QM/MM methods enable the simulation of the chemically ac-

tive region (substrates and cofactors of the biochemical reaction studied) at QM

high resolution level, combining it with an MM treatment for the surroundings

(the full protein and solvent).

Depending on the kind of information to be extracted as well as the nature and

the time-scale of the process to study, as happens with experimental techniques,

some simulation techniques will be better suited than others. To fully characterize

a proteic system multiscale simulations are needed. Nowadays going beyond of

actual models and create hybrid AA/CG/QM methods is the goal (see [46] for a

recent review of the state of the art).

More details about some of these techniques can be found in the Methods

section (Chapter 3).

1.2 Enzyme Catalysis

Enzymes are the most proficient catalysts in nature. Enzymes are mainly globu-

lar proteins, i.e. proteins with a generally rounded, spherical shape. They make

up the biological machinery, involved into the acceleration of each of the huge

diversity of biochemical reactions, until reaching biologically relevant time-scales,

which fall into the micro-second to second time range [47]. On the other hand most

of non-catalyzed biochemical reactions take place in time scales ranging from min-

utes to millions of years [48,49]. In the absence of enzymes, the reaction in solution

can be more than 10 orders of magnitude slower with respect to enzyme catalyzed

reactions [3]. Conceptually, enzymes reduce the activation barrier between reac-

tants and products in a (bio)chemical reaction, that is nothing but an energy

barrier between reactants and products that has to be overcome by thermal acti-

vation of the reactants [47]. How enzymes are able to be so efficient reducing it, is

an ongoing question.
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An initially explanation is that the enzyme binds the substrate in the transition

state stronger than in the ground state, but this not answer completely because

opens a new question: how can the differential binding be accomplished? [50]

Figure 1.3: Representation of the rate-enhancement of some enzyme-catalyzed reactions
(ODC, orotidine 5’-phosphate decarboxylase ; STN, staphylococal nuclease; ADA, caf
intestinal adenosine deaminase; CDA, bacterial citidine deaminas; KSI, ketosteroid iso-
merase; CM, chorismate mutase; TIM, tryposphate isomerase; CYC, cyclophilin; CAN,
carbonic anhydrase). Adapted from Radzicka & Wolfenden [48].

Unravelling the origin of such efficient catalysis has a tremendous potential,

because enzymes are key targets for drug discovery [51,52], and they are increasingly

used in industrial processes such as biofuels or detergent production [53–56].

Enzymes are the best example of pre-organization in nature. The orientation

of the aminoacid functional groups located at the active site cavity allow to create

the perfect scenario to carry out catalysis, efficiently binding the substrate and

electrostatically stabilizing the reaction transition state [57]. The specific binding of

the altered substrate in the transition state, is what enhances the catalytic power

of the enzymes [49]. Other factors such as steric strain, desolvation or entropy have

been proposed to play role in decreasing the activation energy, but its contribu-

tion is very small compare to the transition state stabilization (TSS) [3,57,58]. The

specificity (the preferential and favoured binding of a certain substrate to a certain

enzyme) is the hallmark of enzymes.
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One of the first models addressed to understand enzymatic specificity was the

well known Lock and key mechanism developed by Fischer [59]. This model treats

the enzyme as an static entity that is complementary in shape to the substrate,

but is deficient in the role of any protein motion. The amazing pictures of the

precise pre-organization of the enzyme, obtained by X-ray crystallography, spread

the view of enzymes as static entities. However, while the technique was evolved,

the increasing number of X-ray structures together with NMR and spectroscopic

studies [3] for free and bounded enzymes rapidly changed this paradigm. The ex-

perimental evidence showed that enzymes present different structures at each state

of the reaction, being considered as deformable structures that require changes in

conformation to bind substrates in the optimal position for efficient catalysis.

Thanks to this new view, almost 70 years later of the Fischer model, Koshland

proposed his Induced fit model [60] that considers some degree of plasticity in the

enzyme and states that the enzyme conformation changes upon ligand binding.

The enzymatic conformational rearrangements are ‘induced’ by the ligand. On

the other hand the conformational selection model [61] state that the ligand could

choose between a subset of pre-existed enzyme conformers. The latter model

takes one step further toward the dynamic view emphasizing that enzymes are

intrinsically flexible.

Nowadays, the dynamic nature of enzymes is commonly accepted and thus it

is the subject of study by many experimental and computational groups. Several

studies, mostly since the beginning of the XXI century, have highlighted the role

of protein dynamics in the enzymatic function trying to characterize the vast

range of dynamic events involved [58,62–70]. However the question of how exactly

the protein motions help enzyme catalysis remains open.

1.2.1 Catalytic role of protein motions. Controversy be-

tween dynamics and catalysis

Despite the several studies that have related different kind motions to catalysis

(see table 1.1), as has been stated above, their exact role on the catalytic cycle is

still a matter of much debate [3,71]. The biochemical and biophysical community

are inside an intense debate in that the major issue is what is understand by

‘dynamical effects’ in enzyme catalysis, that at the end is ‘nothing but’ disentangle

whether (global) dynamics at the millisecond time-scale do catalyze the chemical

step [69,72] or do not [73,74].
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Motion Time-scale Reference

Conformational Change ms-s Adenylate Kinase [73,75]

Allosteric Transition ms-s Aspartate transcarbamy-
lase [76], Aminoacid Kinase
Family (AAK) [77]

Slow conformational sampling ms-s Flavin adenine dinu-
cleotide [78], N-acetyl-l-
Glutamate-Kinase [79]

Fast conformational sampling ps-ms Many enzymes [65,80–83]

Table 1.1: Representative experimental and computational examples of protein motion
related to enzyme catalysis in the literature. Adapted from Nagel and Klinman [68]

Experimental and computational studies have proved that proteins have ac-

cessed to an ensemble of conformations encoded into their 3D structures, and thus

that dynamics occur during a catalytic cycle is accepted by all scientists [17,84–86].

However some argue that the term ‘dynamical effects’ should only be used to

asses deviations from Transition State Theory, which is an equilibrium theory,

understanding them as a transfer of energy from a conformational coordinate to

the chemical reaction coordinate in an inertial way [58]. Some experimental [87]

and computational [58,73,88] studies suggest that indeed, these dynamical effects are

small or negligible in enzymes. Other studies, that understand ‘dyanmical effects’

as any time-dependent change in atomic coordinates [66], suggest that fast dynam-

ics are coupled to the enzymatic cycle [89] and there are computational studies

which indicate that promoting vibrations are coupled to the catalytic reaction

coordinate [90–92]. When slower conformational motions are present during the

catalytic cycle, they can become the rate-limiting step. For some enzymes, NMR

results seem to indicate that this is the case [75]. These motions are associated

to ligand binding processes, although they seem to take place also for the free

enzyme, pointing out to an intrinsic functional dynamics [93].

The problem seems to be somehow purely semantic and a clear definition of

what ‘dynamical effects’ are, could be valuable and an step forward. A consensus

approach from both experimental and computational points of view to define the

role of protein motions in determining the outstanding efficiency of enzymes is

required.
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1.2.2 Aminoacid kinase family of enzyme (AAK). N-Acetyl-

l-Glutanate-Kinase (NAGK). Phosphoryl transfer re-

actions in enzymes

Figure 1.4: AAK family enzymes.(A) NAGK from Escherichia coli (EcNAGK), (B)
NAGK from Thermotoga maritime (TmNAGK), (C) CK from Pyrococcus furiosus
(PfCK), (D) UMPK from Escherichia coli (EcUMPK). Panels A, B and C show the
ATP binding domains in green and N domains in yellow. The NAG-binding sites in
EcNAGK (β3-β4 hairpin) and the CK-binding site in PfCK (protruding subdomain
(PS) composed of the strand β5, helix D and hairpin β6-β7) are colored orange. The
N-terminal helices of TmNAGK (red) interlink three EcNAGK-like dimers (delimited
by dotted lines). This hexameric enzyme is indeed regarded as a trimer of EcNAGK-
like dimers. The UMPK is colored by chains. αC helices indicated in panels A and
D highlight the difference in the assembly of the monomeric subunits between the two
structures. Figure reproduced, with permission, from Marcos et al. [77].

One of the most typical reactions that take place in enzymes are the phosphoryl

transfer reactions, for that a very extensive literature exists mainly based on

mechanistic investigations [94,95].

NAGK uses ATP to catalyze the phosphorylation of the amino acid N-Acetyl-

L-Glutamate (NAG) in the biosynthesis of arginine from glutamate in microor-

ganisms and plants. In mammals it proceeds thorough non-acetylated interme-
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diates (Fig. 1.5). NAG phosphorylation by NAGK is the key controlling step

of the byosinthethic route in many organisms, since NAGK is feedback inhibited

by arginine, the end product. From a medical point of view, the fact that in

mammalian cells the arginine biosynthesis proceeds through non-acetylated inter-

mediates makes this route interesting. This interest is due to NAGK activity may

be selectively inhibited and is a target for potential antibacterial drugs given the

regulatory role of this enzyme in bacteria.

From the chemical point of view, the reaction catalyzed by NAGK is rela-

tively uncommon as the phosphoryl group is transferred from ATP to a carboxy-

late group of N-acetyl-glutamate, whereas most of kinases phosphorylate alcohol

groups from protein residues, e.g. serine or tyrosine, and metabolites, attracting

more attention due to they are involved in processes like cancer.

Our computational studies showed that the large-amplitude motions of Ec-

NAGK are intrinsic to the enzyme, and shared among other family members,

thereby pointing to a common mechanism of action [79]. However not all NAGKs

are arginine inhibited, for instance NAGK from Escherichia Coli (EcNAGK) is

an example of an arginine-insensitive NAGK. EcNAGK is the best characterized

enzyme among all NAGKs and Amino Acid Kinase family members. Its mech-

anism of phosphoryl transfer has been subjected to a wide range of biochemical

and crystallographic studies [96–101].

The crystallographic studies [96,97,100] have given insights about the EcNAGK

mechanisms of binding and catalysis. It is a homodimer of 258 residues in each

monomeric subunit, being folded into an αβα sandwich, without presenting co-

operativity as have been shown by Kinetic studies [101]. Each subunit consists of

a N domain that hosts the NAG binding site (NAG lid) and a C domain that

binds ATP (see Figure 1.6). The phosphoryl transfer reaction takes place at the

interface between these two domains.

X-ray structures of EcNAGK complexed with either ADP or with the inert

ATP analogue AMPPNP (PDB codes 1GS5, 1OH9, 1OHA, 1OHB, and 2X2W)

have active sites that are too narrow to let the substrates bind directly, whereas

structures with an unoccupied ATP site (PDB code 2WXB) have a more open ac-

tive site that does allow the substrates to enter. This suggests that the C-domain

and NAG lid undergo a conformational closure that is likely to be triggered by

nucleotide binding (see Figure 1.6), conforming a ‘double drawbridge’ gate [102],

which is rare in active site entrances. Rubio and co-workers [97] hypothesized that

in the closed form of EcNAGK the narrowness of the active site exerts a ‘confor-

mational compression’ on the substrates (O-O distance in Figure 1.5) that favours

catalysis. In this thesis we have study the reactivity of the different crystal struc-

tures of EcNAGK, estimating the significance of ‘conformational compression’ and

determining its contribution to the overall turnover of the enzyme.
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Figure 1.5: Upper panel. Schematic representation of the phosphorylation catalyzed by
NAGK. Lower panel. A) Biosynthetic route of arginine in bacteria. B) Biosynthetic
route of arginine in mammals. Dashed arrows denote more than one chemical step.
Adapted from Ramon-Maiques et al. [96].
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Figure 1.6: Open (green) and closed (blue) conformations of NAGK monomers. The
substrates in van der Waals spheres correspond to the closed conformation.

1.2.3 Application of enhanced sampling methods to en-

zyme catalysis

To understand enzyme catalysis, and mechanism, it is necessary to elucidate the

way in which each enzyme exerts electrostatic and other forces to binding sub-

strate and stabilizing transition state, as we have already explained. The enzymes

employ all possible strategies to achieve the ultimate objective of reducing the

activation free energy. Each enzyme follow its own reaction path, that connects

the several chemical species that evolve during the reaction process, within the

transition between the reactants and products states. These processes are called

rare events because they represent rare but important transition events between

long lived states. These transitions can be represented over a Potential Energy

Surface (PES) or a Free Energy Surfaces (FES), leading to Minimum Energy Paths

(MEPs) and Minimum Free Energy Paths (MFEPs) respectively.

The potential energy surface (PES) is a theoretical concept (in chemical physics

and related areas) used to describe the energy of a given system, respect to the

positions of all the atoms, in other words, a relation between the energy and the

geometry of the system. The PES can be characterized by their minima, which

correspond to locally stable configurations, and by transition regions connecting
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the minima. The Free energy surface (FES) is an averaged projection over the

reaction coordinate of the representative PES minima. In other words, each mini-

mum of the PES corresponds to a local free energy minimum, but projection onto

a lower dimensional space can produce smoother surfaces (with a much simpler

appearance), an important issue regarding proteins (see sections 3.4.1 to 3.4.3 for

further details). For relatively rigid systems (such as many organic molecules),

and for flexible systems with a small number of significant degrees of freedom, it

is possible to determine the PES and FES by sampling the minimum and saddles

points. However for proteins (polypeptide chains with many degrees of freedom)

determine these surfaces is more complicated, almost impossible. Thus is essential

to make several simplifications in the description of proteic PES and FES.

Indeed, the development of approaches for simulating rare events in complex

molecular systems, such as enzymes, is a central concern in chemical physics.

One of the most common problems is the finding of minimum free energy paths

(MFEPs), which describes the chemical mechanism being the resulting energy

barrier a good framework to estimate the rate (k) of the process [103–105] and thus

to connect theory with experiments. It can be calculated using the Eyring equation

under the Transition State Theory (TST) [106]:

k =
kBT

h
e−

∆G‡
RT (1.1)

where ∆G‡ is the Gibbs free activation energy, kB is Boltzmann’s constant, and

h is Planck’s constant.

There are two philosophies to approach the problem. The first one is based

on determining the free energy surfaces against a predefined set of collective vari-

ables (CV) as Metadynamics [37,107], adaptative biased force (ABF) [108] sampling or

Umbrella sampling [38]. These techniques require a precise choice of a few CVs. If

their number increases these methods rapidly become impractical due to the com-

putational expense and difficulty of exploring multidimensional energy surfaces.

Unfortunately, enzymatic reactions are complex, usually defined over roughness

energy surfaces and often need many CVs to be entirely described.

The second approach is based on determining the reaction pathways with-

out making any a priori assumption over the CVs, however the initial and fi-

nal structures are needed. Chain-of-states methods as Zero temperature string

method [109,110] and Nudged Elastic Band (NEB) [111,112] does not suffer from the

limitation of CV imposed, but in their basic versions, these methods produce only

minimum (potential) energy paths (MEPs) as they omit sampling and entropic

contributions [113].

To overcome these limitations there have been developed hybrid methods that

incorporate the best of the two approaches. Maragliano et al. [113] developed the
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String method with collective variables to produce MFEPs. In a related devel-

opment Roux and coworkers proposed a novel method that employed swarms of

trajectories (SoT) to evolve the string and to estimate its average displacement in

CV space [114]. Recently a comparision between both methods have been made [115]

showing that SoT presents the suitable conditions to be applied to the study of

biomolecular reactions as enzyme catalysis.

Alternative approaches to calculate free energies based on CVs have also been

proposed [116], but their application to large systems such as enzymes are rare. An

exception is the work of Zinovjev et al. [117] who adapted the method of Branduardi

and coworkers [116] to study enzyme catalysis and applied it to the mechanism of

isochorismate pyruvate lyase (IPL) (see section 3.4.1 to 3.4.3 for further details

about all these concepts and methods). In this thesis we have implemented the SoT

method into the pDynamo library [118] defining the suitable settings to be applied to

enzyme catalysis.

1.3 Protein damage

In the previous section it has been showed that enzymes catalyze a reaction in

that some ligands are involved and the global dynamics could help somehow the

local dynamics of the active center to carry out the catalytic function (section

1.2). However, sometimes a chemical reaction can occur far from the enzymatic

active site due to the action of external factors.

Proteins are continuously damaged by intrinsic and extrinsic factors in vivo,

influencing several intracellular pathways and resulting in different disorders and

diseases [119]. This damage is mostly produced in vivo but in vitro some experi-

mental procedures damage the biological sample, in some cases, provoking effects

that are not shown in nature.

Submitting a protein to external factors, in vitro or even computationally, like

high temperature or high electrical pulses to study unfolding processes on pro-

teins [120,121] or provoking a cellular stress to visualize the effect of aging [122] is a

common procedure. The problem arises when some experimental procedure desta-

bilize a biological sample unexpectedly in a non desired way, so a deep knowledge

of the effects of protein damage is needed.

1.3.1 High radiation damage. Decarboxylation reactions

High radiation damage is one of the most common techniques producing collateral

effects in vitro, and macromolecular crystallography the scientific field in which
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it is mostly observed [123]. Sometimes the radiation damage is used to monitor

functional aspects of the structural dynamics of enzymes [124], but commonly they

are unexpected or at least non-desirable effects. X-ray radiation damage lim-

its enormously the amount and quality of structural information extracted from

protein and virus crystals [125]. Intense X-ray beams from synchrotron sources

(see Bildernack et al. [126] and Paganin’s book [127] for futher discussion) produces

punctual chemical and structural damage in proteins during crystallographic data

collection affecting the protein conformational motions along of a wide range of

time-scales [125]. This damage even occurs with cryo-cooled crystals at 100K, the

temperature at which the vast majority of crystallographic data is collected [128–130].

The most common signatures of protein damage in crystals are cleavage of disul-

fide bonds and decarboxylation of acidic residues, mainly glutamic and aspartic

amino acids [125,130].

This specific damage is not made directly through the absorption of an X-ray

photon by one of the atoms in the radiation-sensitive group (primary damage).

Rather it is a damage inflicted by radicals created after primary photoabsorp-

tion elsewhere in the protein or the surrounding solvent (secondary damage) [123],

through a charge transfer process (see section 1.3.2). In other words, the X-ray

ionize the sample removing the core electrons and thus generating ‘holes’ in a

primary step and in a secondary step these ‘holes’ are localized on the more stable

places, the aminoacids in a biological context. A lot of ‘shoot-and-trap’ experi-

ments, have been performed to show specific X-ray damage in protein structures

as for instance Weik and coworkers [124]. Chemically identical groups in the same

protein display differential radiation sensitivities, showing that differences in the

chemical and structural environment must be at the origin of the differential sen-

sitivities, although they have remained largely elusive [131]. Another aspect that

remain unresolved and could give some insights is the understanding of structural

features that might rationalize the broad distribution of, for instance, decarboxy-

lation probabilities of chemically identical groups in a protein.

Decarboxylation reactions are of big importance in biology and a common en-

zymatic processes. The mechanism for these enzymatic reactions has been widely

studied experimentally and computationally [132–136]. There are a high number of

enzyme classes (>90), in which decarboxylases are currently organized exhibiting

a variety of different catalytic mechanisms with a shared pattern: the cleavage of

C-C bonds and the subsequent release of CO2
[137].

Regarding radiation damage processes, this pattern is obviously maintained

but with the particularity that could take place in a region far from the active

site of the enzyme and between acidic residues. Decarboxylation of acidic residues

in proteins [129] might also be explained in terms of an electron migration mech-

anism, which is initiated by the capture of a secondary hole on the side chain,
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resulting in the generation of CO2 and a carbon-centered radical [138,139]. Several

studies have been performed over these reactions trying to justify the migration

processes. Some of them tried to relate the radiation-sensitivity with the solvent

exposure [128,140], the distance of the damaged residue to the protein surface [141] or

the influence of the pKa of a carboxyl group [129,140], but without finding any clear

and consensually accepted correlation. Why this process take place remains elu-

sive. In this thesis we have studied the radiation damage induced decarboxylation

in LDH.

1.3.2 Charge Transfer

Charge Transfer (CT) is a basic chemical process that could be defined as the

‘Spontaneous charge redistribution between a reactant state and an acceptor

state’ [142]. This process can take place in two different regimes, diabatic (non-

adiabatic) and adiabatic. To properly understand and explain CT processes, the

Marcus theory of electron transfer [143] that is the seed from CT methods have

‘grown’, is basic.

Figure 1.7: ∆G is the free energy change between the reactants on the left and the
products on the right and ∆E‡ is the activation energy. λ is the reorganization energy.
This is the energy it would take to force the reactants (on the left) to have the same
nuclear configuration as the products (on the right) without letting the electron transfer.
Reproduced from Marcus 1994 [143].

Marcus theory of electron transfer

The Marcus theory describes the electron transfer according to the following

equation [143].
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∆E‡ =
(∆G+ λ)2

4λ
(1.2)

The electron transfer rate is defined as:

kET = Ae
−(∆G+λ)2

4λRT (1.3)

being ’A’ dependent of the electronic coupling |VDA|2.

Figure 1.8: Donor and acceptor PES versus a single reaction coordinate. Non-adiabatic
(full line), Adiabatic curves (dashed line). There is a splitting between the adiabatic
curves which has a magnitude of 2VDA at the crossing point q∗. Reproduced from Kühn
& May 2006 [142].

The IUPAC gold book says that the adiabatic electron transfer process, is

a process in which the reacting system remains on a single electronic surface in

passing from reactants to products. In these kind of processes the electronic

transmission factor is close to unity.

A non-adiabatic electronic state, is one that does not change its physical char-

acter as one moves along the reaction coordinate, whereas the adiabatic Born-

Openheimer electronic states are a mixture of non-adiabatic states and changes

its physical character at their crossing region. The differences between this two

regimes, apart of the different way in that the the Charge transfer is calculated,

Fig. 1.8, arise from the fact of the non-adiabatic CT is define as a charge transi-

tion process for which the vibrational motion is much faster than the motion of

the transferred electron [142], while the adiabatic process proceeds in the opposite

way.
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The ground adiabatic state is thought of as arising from the avoided crossing

between the two states U+ and U− as we can see at Fig. 1.8. The molecules that

are on U+ and U− presents a nuclear coupling, i.e., a spin-orbit interaction. The

adiabatic state thus changes its character whereas diabatic, or non-adiabatic, state

does not suffer this change. The diabatic states, usually, are calculated from the

adiabatic states [144]. This procedure is further explained at Chapter 3, (see section

3.6). Non-adiabatic states play a critical role in ET theory, which is based on the

existence of diabatic states on the reactants and products, where the electron is

localized on the donor and acceptor, respectively. Reactions are characterized by

∆G, and the reorganization energy, λ, of the diabatic free-energy surfaces [143,145]

(see section 1.3.2).

The charge transfer process can be an electron transfer (ET) or a hole transfer

(HT), depending on the type of charge which is transferred. There are different

possible mechanisms for electron or hole transfer, that can be summarize as: direct

exchange or bridge-assisted mechanism, Fig. 1.10, and within the bridge-assisted

mechanism, superexchange or hopping mechanisms Fig. 1.11.

Figure 1.9: Schematic relationship among Hole and Electron transfer [143].
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Figure 1.10: a) Direct mechanism b) Bridge-assisted mechanism. ED represents the
donor energy states and EA the acceptor energy states. E1..4 represent the energy states
of the binding species. Reproduced from Kühn & May [142].

Direct exchange

The charge is transferred from the donor to the acceptor directly, without

interact with other species present in the reaction field. However these species

are necessary and (see Fig. 1.10) its presence influence the process creating the

correct environment where the charge transfer take place.

Bridge-assisted mechanism

The donor and the acceptor are connected by bridging species. The charge is

transferred between the donor and the acceptor but helped by the intermediate

species. Depending on the way in that the help comes, is a superexchange or a

hopping CT process.

• Superexchange

Is a one step process where the bridge species support the delocalization

of the donor state wave function. The orbitals of the intermediate species

influence the reaction indirectly creating the suitable environment in which

the charge transfer is produced.

• Hopping

Is a multi-step process where the charge is transferred between the species

that are involved, including the donor, the acceptor and the bridge. The

electronic wave function is subsequently localized on the various sites during

the transfer.
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Figure 1.11: Bridge-mediated ET between a donor and an acceptor level. The upper
part gives a scheme of the superexchange ET where the initial state wave function
extends over the whole bridge. For the sequential ET (lower part) the electronic wave
function is localized on the various sites during the transfer [142]. Reproduced from Kühn
& May [142].

The charge transfer rate (in non-adiabatic systems) becomes proportional to

|VDA|2, but it also depends on the probability at which the crossing region on the

donor PES UD (see Fig. 1.8) is reached. Accordingly, the ET rate is defined as:

kET ∝ |VDA|2e−
∆E‡
RT (1.4)

E‡ denotes the activation energy needed to enter the crossing region starting

at the minimum position of the donor PES, hence we have E‡ = UD(q∗)−UD(qD).

1.4 Protein dynamics and conformational ensem-

bles

Conformational ensembles, also known as structural ensembles, are the accessible

set of a structures at a certain temperature describing the proteins structure. They

are powerful tools to represent the range of conformations that can be sampled

by proteins, thus allowing for an explicit representation of the dynamics of the

protein. They are indicators of the structural heterogeneity of proteins, that can

be generated purely theoretically or, as is most often the case, by fitting ensembles

of conformations to experimental data [146,147]. Conformational ensembles have

been employed to study different aspects related to fundamental properties of
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proteins, such as molecular recognition or protein folding. They can not provide

the interconversion rate of exchange between conformers or the time-scale of the

dynamics, but inform about its amplitude given insights of the behaviour of the

protein [148]. There are a wide range of techniques able to generate them.

Figure 1.12: Conformational ensembles of the Sendai Virus Nucleocapsid protein gen-
erated by using A) PROFASI [149] REMC simulations and B) the statistical coils based
ensemble generator FlexibleMeccano [150]. Different colors represent different residue
types.

An useful method to generate conformational ensembles is classical MD. MD

is a powerful technique to study protein motions generating dynamically rele-

vant conformational ensembles as was shown by Showalter and Brüschweiler [151].

Furthermore with the new hardware advances like Graphics Processing Units

(GPUs) or the specifically designed ANTON supercomputer [152] the time range

that can cover is being spanned. Additionally, as MD is based on modelling in-

teratomic interactions through empirical potentials (force fields), the continuously

improvement and creation of force fields, as Amber-ff99SB-ILDN [153] parameter-

ized against experimental results allows to a better, more realistic, description of
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the protein behaviour. However there are still processes that can not be routinely

simulated using MD, as when the protein is too big, the conformational space

too vast or the dynamics too slow. In these cases enhanced sampling methods as

accelerated MD [154] or REMD [155] could be used to overpass this limitation.

When simulations are used to generate ensembles by themselves [146,156], the

unique experimental data used is the initial structure. Nevertheless there are

scenarios where the conformational space is too vast to be sampled by MD or

enhanced sampling methods because, for instance, when the behaviour of the sys-

tem (a too much, multidimensional and roughness, complex landscape) can not

be fully describe by force fields, and thus the experimental data play a bigger role.

Some experimental techniques could provide kinetic and structural information

(see section 1.1.3.1) as SAXS that provides information about the hydrodynamic

properties of the proteins and specially NMR techniques that provide atomic reso-

lution. Within NMR techniques it is possible to measure a wide number of param-

eters (RDCs, Chemical Shifts (CS), Nuclear Overhaussen Effects (NOE), Scalar

Couplings (SC), chemical shifts anisotropy in aligned samples, cross-correlated

relaxation rates, Paramagnetic Relaxation Enhancement (PRE) or order parame-

ters (S2)) that can be in principle related to quantities computed from structures,

trajectories and ensembles [147].

These values are used, for instance, to verify simulated ensembles through a

back-calculation. This process implies the calculation of quantities that can be

compared against experimental data as the aforementioned chemical shifts [157] or

RDCs [158]. It is important to take into account the range of validity of the equa-

tions employed and its parameterization as well as the accuracy of both the exper-

imental measurements and the backcalculation process [147]. If the back-calculated

values disagrees with the experimental ones, this difference could be employed as

an empirical potential correction to the potential energy of the protein provided by

the force field (protein-specific force-field correction) and thus run restrained simu-

lations [146,159]. There are other variants of the method as ensemble averaged [160,161]

or time averaged restrained simulations [162,163].

Furthermore the experimental data could serve as a structural filter. In this

case, the data is used to select conformations from a pre-defined pool of con-

formations generated a priori [146,147]. This pool contains all physically possible

conformations that the protein can sample with a certain probability in a pred-

ifined timescale. If the ensembles does not present the correct statistical weights

and as experimental methods contains information about the distribution of the

conformations, they could be use to statistically re-weight them [146,147].

IDPs (see section 1.4.1) are inside the processes that generally traditional MD

can not cover (although there are studies realized employing MD [164,165]). They
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are biologically relevant proteins that can not be represented with conventional

structural determination methods such as X-ray crystallography or cryo-electron

microscopy. Furthermore current force-fields can not sample their vast conforma-

tional space and describe the weak-interactions that dominate its behaviour [166].

IDPs are a perfect example of an scenario in that simulations and experiments

have to converge to generate representative conformational ensembles, and a lot

of efforts are put on it [167].

1.4.1 Intrinsically Disordered Proteins(IDPs)

The effects of dynamics is specially important for IDPs, which are an emerging

family of proteins whose most characteristic feature is that they don’t present a

folded structure [168–170]. This lack of stable structure can be present over the entire

protein length or only in some regions (which are called Intrinsically Disordered

Regions IDRs instead of IDPs) [171,172].

Structural disorder is abundant in all species, although its level is higher in

eukaryotes than in prokaryotes. By conservative estimates, have been shown that

about 40% of eukaryotic proteins contain long disordered regions (of at least 30

residues) [10,168,171,173]. These IDPs or IDRs play key roles in a wide range of

cellular processes including signalling, cell cycle control, molecular recognition,

transcription, translation and replication. Besides, they are involved in numerous

human pathologies such as neurodegenerative diseases, cancer, diabetes and amy-

loidoses [174–179]. However, its study started at the end of the 20th century, and has

been only in the last decade [170] when their existence has been widely accepted,

becoming nowadays a hot scientific topic at both experimental and computational

level [174–176,180–184].

Due to their high implication in diseases, they are perfect candidates to drug

design, but unluckily, this is not happening. There are very few drug targets

based on IDPs in contrast to the bioinformatics studies that, for example, showed

that Post Transcriptional Modifications (PTMs) prefer disordered regions or that

the 79% of cancer associated proteins contain disordered regions of more than

30 residues [184]. This happens because how IDPs perform their diverse func-

tions is not well understood [168,185,186]. Understand their functional and confor-

mational properties, thus, it is of great interest for a wide range of biological

processes. In fact, important advances have been made towards its understand-

ing, specially using spectroscopic techniques, i.e., NMR [167,175,187], single-molecule

fluroescence [188–191] and with atomistic and coarse-grained simulations [192–196].

Along the last years it has been concluded that the protein dynamics is spe-

cially important for IDPs, because owing to their structural plasticity they present
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a highly dynamic conformational exchange. The structure and dynamics of IDPs

(that present multiple binding sites) are closely related to their interactions with

(multiple) binding partners. This phenomena is important for the functional

promiscuity and regulation of these proteins [197]. For instance, many IDPs are

significantly unstructured under physiological conditions, in the unbound state,

and have been shown to undergo coupled folding and binding reactions only upon

binding another protein [175,187,198]. These coupled between folding and binding is

found commonly in biology [174,176,199–203] although not all IDPs present it [172,204,205].

Recently, the interest is put on the observation that these proteins themselves can

be targeted by small molecules [176,206–211].

To study IDPs the usage of conformational ensembles is a widely accepted

option. There are several methods developed to select these ensembles, some

of them specially designed to study IDPs. There are procedures based on MC

as the ENSEMBLE [212] method developed to study IDPs and others on genetic

algorithms such as the ASTEROIDS [213] method focus also on IDPs, concretely

in generate conformations from NMR data, and the EOM [214] created to generate

ensembles from SAXS data. However the most important and limiting factor is

the generation of the set of conformations. The pool has to be representative of

the size of the conformational landscape, or else the selected ensemble couldn’t

represent the structural properties of the protein even being in agreement with

the experimental data. The pool can be composed by statistical coils or from

ensembles determined by simulations [147].

The seminal work of Dobson and coworkers [215] followed by others [150,216,217]

showed that is possible to produce representative ensembles of the whole confor-

mational landscape, generating ensembles where the distribution of the backbone

torsion angles come from the structures deposited in the PDB. These methods

based on statistical coils are aimed to reproduce the structural properties of the

polypetide chains where there are dominated by local structural references, for in-

stance when there are not long-range interactions stabilizing the tertiary structure

as in globular proteins.

These conformational ensembles are very simple but match the experimental

measurements realized over IDPs reasonably well [215–217]. However from Förster

Resonance Energy Transfer (FRET) and EPR experiments have been shown that

IDPs can form transient long-range interaction important for their physiological

roles [174,218,219]. So there are increasing efforts to improve the description of IDPs

(concretely the pool generation methods based on statistical coils).

Additionally, there are another methods not based on using statistical coils,

but on molecular simulations, aimed to generate sets of conformations. An exem-

plifying work was the realized by Head-Gordon and coworkers [165], in that they
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employed MD simulated ensembles, refined with the ENSEMBLE method, and

validated against NMR data. This work was based on the Forman-Key’s study [212]

that showed the presence of secondary structure in the denaturated state, and thus

describing the effect of the long-range interactions in Aβ peptides. It evidenced

that the differences between the Aβ40 and the Aβ42 peptides behaviour is due

to the differences in the sequences, the two extra residues, enabling the formation

of long range contacts with hydrophobic residues along the sequence in the Aβ42

peptide. This is an example, but there are many works that have used this kind

of (simulation based) pool generation methods [211,220–222]. In this thesis we have

developed the MaxEnt algorithm that is able to compare two sets of RDCs gener-

ated experimentally or by simulations and reweight statistically one set over the

other.

1.4.2 Cooperativity of secondary structure elements in pro-

tein ensembles

Some regions of IDPs can adopt secondary structures, at least for a transient

time [175], as have been probed experimentally (specially by NMR) [10,223–225]. These

structured regions, termed MoRFs (also known as molecular recognition elements,

MoREs), are key to recognition processes mediated by coupled folding-binding

events. The interpretation of this experimental data is usually done by stating

that a certain segment of the protein chain adopts a certain secondary structure

in a percentage of the total ensemble. However this way of interpret experimental

data, imply a question: How can the ensembles be represented to better unveil

their structure?

The MORFs are usually described as the ratio of residues that adopt a certain

secondary structure. When we generate ensembles of IDPs it is difficult to visualize

their composition or to detect MoRFs. Sometimes the conformational propensities

for single residues hide the nature of cooperative structures. Thus it is important

to differentiate when residues in a fragment independently adopt a conformation in

a secondary structure region (MORFs), from when that fragment contains a true

secondary structure, with all the residues adopting that conformation at the same

time. In other words if n residues are in a certain secondary structure region the

15% of the time, that does not mean an secondary structure of n residues is present

15% of the time. Whether this happens or not will lead to different experimental

results, such as different RDCs, and is related when the aforementioned open

question: How can the ensembles be represented to better unveil their structure?

In this thesis we have developed SS-map, that represents the cooperativity or the

correlations in secondary structure formation for IDPs
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[56] A. T. Martinez, F. J. Ruiz-Dueñas, A. Gutierrez, J. C. del Rio, M. Alcalde, C. Liers,

R. Ullrich, M. Hofrichter, K. Scheibner, L. Kalum, J. Vind, and H. Lund. Search, en-

gineering, and applications of new oxidative biocatalysts. Biofuels, Bioprod. Biorefining,

2014.

[57] A. Warshel. Energetics of enzyme catalysis. Proc. Natl. Acad. Sci., 75(11):5250–5254,

1978.

[58] S. C. L. Kamerlin and A. Warshel. At the dawn of the 21st century: Is dynamics the

missing link for understanding enzyme catalysis? Proteins: Struct. Funct. Bioinforma.,

78(6):1339–1375, 2010.

[59] R. U. Lemieux and U. Spohr. How Emil Fischer was led to the lock and key concept for

enzyme specificity. In Advances in Carbohydrate Chemistry and Biochemistry, volume 50,

pages 1 – 20. Academic Press, 1994.

[60] D. E. Koshland, G. Némethy, and D. Filmer. Comparison of Experimental Binding Data

and Theoretical Models in Proteins Containing Subunits. Biochemistry., 5(1):365–385,

1966.

[61] J. Monod, J. Wyman, and J.-P. Changeux. On the nature of allosteric transitions: A

plausible model. J. Mol. Biol., 12(1):88–118, 1965.



32 REFERENCES

[62] S. J. Benkovic and S. Hammes-Schiffer. A perspective on enzyme catalysis. Science.,

301(5637):1196–1202, 2003.

[63] P. K. Agarwal. Role of Protein Dynamics in Reaction Rate Enhancement by Enzymes. J.

Am. Chem. Soc., 127(43):15248–15256, 2005.

[64] S. Hammes-Schiffer and S. J. Benkovic. Relating protein motion to catalysis. Annu. Rev.

Biochemistry., 75:519–541, 2006.

[65] L. Masgrau, A. Roujeinikova, L. O. Johannissen, P. Hothi, J. Basran, K. E. Ranaghan,

A. J. Mulholland, M. J. Sutcliffe, N. S. Scrutton, and D. Leys. Atomic description of an

enzyme reaction dominated by proton tunneling. Science., 312(5771):237–241, 2006.

[66] K. A. Henzler-Wildman, M. Lei, V. Thai, S. J. Kerns, M. Karplus, and D. Kern. A hierar-

chy of timescales in protein dynamics is linked to enzyme catalysis. Nature., 450(7171):913–

U27, 2007.

[67] S. D. Schwartz and V. L. Schramm. Enzymatic transition states and dynamic motion in

barrier crossing. Nature. Chem. Biol., 5(8):551–8, 2009.

[68] N. D. Zachary and J. P. Klinman. A 21st century revisionist’s view at a turning point in

enzymology. Nature. Chem. Biol., 5:543–550, 2009.

[69] V. C. Nashine, S. Hammes-Schiffer, and S. J. Benkovic. Coupled motions in enzyme

catalysis. Curr. Opin. Chem. Biol., 14(5):644 – 651, 2010.

[70] G. G. Hammes, S. J. Benkovic, and S. Hammes-Schiffer. Flexibility, diversity, and coop-

erativity: pillars of enzyme catalysis. Biochemistry., 50(48):10422–30, December 2011.

[71] J. D. McGeagh, K. E. Ranaghan, and A. J. Mulholland. Protein dynamics and enzyme

catalysis Insights from simulations. Biochimica et Biophys. Acta, 1814(8):1077–1092, 2011.

[72] M. Karplus. Role of conformation transitions in adenylate kinase. Proc. Natl. Acad. Sci.,

107(17):E71; author reply E72, 2010.

[73] A. V. Pisliakov, J. Cao, S. C. L. Kamerlin, and A. Warshel. Enzyme millisecond conforma-

tional dynamics do not catalyze the chemical step. Proc. Natl. Acad. Sci., 106(41):17359–

17364, 2009.

[74] S. C. L. Kamerlin and A. Warshel. Reply to Karplus: Conformational dynamics have no

role in the chemical step. Proc. Natl. Acad. Sci., 107(17):E72–E72, April 2010.

[75] M. Wolf-Watz, V. Thai, K. Henzler-Wildman, G. Hadjipavlou, E. Z. Eisenmesser, and

D. Kern. Linkage between dynamics and catalysis in a thermophilic-mesophilic enzyme

pair. Nature. Struct. & Mol. Biol., 11(10):945–949, 2004.

[76] J. C. Gerhart and H. K. Schachman. Allosteric interactions in aspartate transcarbamylase.

II. evidence for different conformational states of the protein in the presence and absence

of specific ligands. Biochemistry., 7(2):538–552, 1968.

[77] E. Marcos, R. Crehuet, and I. Bahar. Changes in dynamics upon oligomerization regulate

substrate binding and allostery in amino acid kinase family members. PLoS Comput. Biol,

7(9):e1002201, 2011.



REFERENCES 33

[78] H. P. Lu, L. Xun, and X. S. Xie. Single-molecule enzymatic dynamics. Science.,

282(5395):1877–1882, 1998.

[79] E. Marcos, R. Crehuet, and I. Bahar. On the conservation of the slow conformational

dynamics within the amino acid kinase family: Nagk the paradigm. PLoS Comput. Biol,

6(4):e1000738, 2010.

[80] P. T. R. Rajagopalan, S. Lutz, and S. J. Benkovic. Coupling interactions of distal residues

enhance dihydrofolate reductase catalysis: Mutational effects on hydride transfer rates.

Biochemistry., 41:12618–12628, 2002.

[81] J. R. E. T. Pineda, D. Antoniou, and S. D. Schwartz. Slow conformational motions that

favor sub-picosecond motions important for catalysis. J. Phys. Chem. B, 114(48):15985–

15990, 2010.

[82] S. Hay and N. S. Scrutton. Good vibrations in enzyme-catalysed reactions. Nature. Chem.,

4(3):161–8, January 2012.
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Chapter 2

Thesis Scope

The main objective of this thesis is to provide a global picture of protein motions,

studying processes that take place at both local and global level. By means of

a wide variety of computational methods we have examined them using some

representative examples.

1) Local motions

The first part of the thesis is devoted to study the local, fast and small-

amplitude, movements of the proteins. Events taking place at the active site

level. The main objectives of this part are:

• Study the catalytic effects of the conformational dynamics unravelling the

conformational compression effect in NAGK, providing another picture into

the controversy between dynamics and catalysis.

• Implement a method (Swarms of Trajectories) to calculate free minimum

energy paths in the pDynamo library for subsequent application in enzyme

catalysis.

• Study of decarboxylation due to high radiation damage in proteins (con-

cretely in LDH), finding a methodology properly describing a charge transfer

produced by synchrotron techniques for subsequent application in QM/MM

studies.

2)Global motions

The second part of the thesis is aimed to study global, slow and large-amplitude

motions specially focused on IDPs, defined by the cooperativity effects of the sec-

ondary structure elements and the characterization of conformational ensembles.

Events that take place at the structure level. The main objectives of this part are:
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• Provide a new tool to refine Protein conformational Ensembles based on

Residual Dipolar Couplings.

• Study the cooperativity effect of the secondary structure elements in protein

ensembles providing a new view to visualize its contribution.



Chapter 3

Methodology

3.1 Quantum Mechanical Methods

Quantum Mechanical methods (QM) are the most rigorous and suitable framework

to describe a molecular system at the atomic level. Ab initio methods aims to

solve the time-independent Schrödinger equation finding the wave function which

concentrates all the information of the microscopic system.

ĤΨ = EΨ (3.1)

where Ĥ is the non-relativistic, non-magnetic electronic Hamiltonian, which

consists of five operators: kinetic energy of the electrons, kinetic energy of the

nuclei, nuclei-electrons coulomb attraction, electron-electron repulsion and nuclei-

nuclei repulsion.

Ĥ = −1

2

∑
i

∇2
i −
∑
A

1

2MA

∇2
A−

∑
i

∑
A

ZA
riA

+
∑
i

∑
j>1

1

rij
+
∑
A

∑
B>A

ZAZB
rAB

(3.2)

where riA is the distance between i electron and A nuclei, rij the distance

between the electron i and j and rAB the distances between nucleus A and B.

MA is the ratio of the mass of nucleus A to an electron and ZA the atomic number

of nucleus A. The Laplacian operators ∇2
i and ∇2

A involve differentiation with

respect the coordinates ith electron and the Ath nucleus.

The complexity of this problem lies on the correlation between the nuclei and

electrons of the system. An analytical solution of Eq. 3.2 is not possible, and

some approximations have been made to avoid the problem, leading to different

accuracy and computational cost.

47



48 Chapter 3. Methodology

The Born-Oppenheimer approximation

The nuclei of molecular systems move slower than the electrons. If the elec-

tronic motion is instantaneous compared to the nuclei, the Born-Oppenheimer

approximation separates the wave function in two parts computing electronic en-

ergies over fixed nuclear positions.

Ψ(ri; Rj) = Ψe(ri; Rj)ΨN(Rj) (3.3)

This approximation, means that the nuclear kinetic energy term is independent

of the electrons, and thus cancelled, the correlation in the attractive electron-

nuclear potential energy term is eliminated, and the intra-nuclear repulsion is

reduced to a constant parameter (qk), dependant of the system geometry, added

to the electronic energy term. Thus the electronic Schrödinger equation is taken

to be:

(Ĥel + V̂N)Ψel(qi; qk) = EelΨel(qi; qk) (3.4)

where Ĥel include the electronic terms of Eq. 3.1, V̂n is the nuclear-nuclear

repulsion and qi are the electronic coordinates, which are independent variables

From this approximation emerges the concept of Potential Energy Surface

(PES), the surface defined by the electronic energy (Eel) over all possible nuclear

coordinates (potential energy). This idea, is of central interest in Computational

Chemistry, and will be addressed in more detail in section 3.4.

The Electronic problem

The Born-Oppenheimer approximation simplifies the Schrödinger equation but

it is not enough to analytically find a wave function of the molecular system. If we

neglect the electron-nuclear correlation, the correlation between electrons is still a

problem for poly-electronic systems. Many computational methods addressed to

find a solution to this electronic problem, are based on the Hartree-Fock method.

3.1.1 Hartree-Fock method

Approximations aimed to solve the inter-electronic interactions problem are needed.

The Hartree-Fock (HF) method is not only a very useful approximation itself, but

also the basis of other accurate models of molecular electronic structure. Let us

assume a system of N non-interacting electrons. Within this context, the Hamil-

tonian is separable, and can be expressed as a sum of one-electron hamiltonians,

in which the electron-electron interaction term represents a Coulombic interac-

tion potential between the electron and the electrostatic field generated by the
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rest of electrons. The eigenfunction of the corresponding Hamiltonian becomes de

product of the N monoelectronic wave functions, known as the Hartree Product.

This product, however, does not fulfil the antisymmetry principle that de-

scribes the behaviour of electrons and other fermions. The exact wave-function

does not only have to satisfy the Schrödinger equation, it is also must to be an-

tisymmetric. This requirement is enforced using the Slater determinants, where

each row correspond to an electron and each column to a monoelectronic orbital

with a given spin, known as spin-orbital χi. Using the exact Hamiltonian, the hi
operator have a set of eigenfunctions that we can take to be a set of spin orbitals

χj.

Applying the exact Hamiltonian to the Slater determinant, with a closed-shell

configuration, the Energy takes the form:

E = 2

N/2∑
i

Hii +

N/2∑
i

N/2∑
i

(2Ji −Kij) (3.5)

where Hii corresponds to the kinetic energy and potential energy of each elec-

tron moving in the field of the nuclei, Jij is the electrostatic repulsion between

a pair of electrons and Kij is the exchange interaction between electrons of the

same spin. The exchange interaction is consequence of the Pauli (antisymmetry)

principle and reflects the reduced probability of finding two electrons of the same

spin close to each other.

According to the variational principle, the best wave-function is the one with

the lowest energy, and the simplest antisymmetric wave function that can be used

for describe the ground state of a N -electron system is a single Slater determinant.

In order to find the best poly-electronic wave functions described by a Slater

determinant the energy as expressed in Eq. 3.5 has to be minimized. If this

minimization is done respect to the molecular orbitals, subject to the constraint

that the molecular orbitals are orthonormal, the Hartree-Fock (HF) equations are

obtained.

f̂χ(xi) = εχ(xi) (3.6)

where f̂i is the mono-electronic fock operator, that is defined for each electron

i as:

f̂i = −1

2
∇2
i −

M∑
k

Zk
rik

+

N/2∑
j

(2Jj(i)−Kj(i)) (3.7)
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where Jj andKj are the one-electron Coulomb and Exchange operators. Within

this mono-electronic Hamiltonian, the kinetic energy and nuclear attraction are

strictly one-electron operator, but Coulomb and exchange operators, are effective

operators in the average field of the remaining electrons. Electrons only feel an

effective potential created by the rest of electrons and do not interact instanta-

neously, i.e. their motion is not correlated. The fock operator depends therefore

on the solution of the Eq. 3.6. In practice, to solve them, is convenient to expand

the orbitals by means of the Linear Combination of Atomic Orbitals (LCAO).

Roothaan and Hall proposed to use an orbital basis set and therefore transform

the Hartree-Fock equations into linear equations, where the variational parameters

are the linear coefficients of the expansion [1,2].

The resulting equations are known as Roothaan-Hall equations. The solution

of the equations is achieved iteratively starting from an initial guess of the solution

until convergence. For this reason the Hartree-Fock method is also called the Self-

Consistent field (SCF) method. Starting from an initial guess of orbitals, one can

calculate the average field seen by each electron and then solve Eq. 3.6 for a new

set of spin orbitals, that are used for calculate new fields. The process is repeated

until self-consistency is reached.

Correlation Energy

The HF assumptions imply a huge progress to carry out molecular orbitals

(MO) calculations. However, as HF neglect the electron correlation in the cal-

culation of the inter-electronic interactions, it can have important chemical con-

sequences when it comes to determining accurate wave functions and molecular

properties derived there-from. A consequence of that, the energy difference be-

tween that obtained with the Hartree-Fock method E0, in the limit of an infinite

basis set, and the exact, non-relativistic, energy of the system ζ0 is named corre-

lation energy.

Ecorr = ζ0 − E0 (3.8)

Subsequent improvements are aimed to incorporate the correlation energy,

including more Slater determinants, for improve the wave function in order to

obtain the exact energy, and also to reduce the computational cost, the dynamical

bottleneck of the method.

Electron correlation is frequently divided into dynamic and non dynamic(static)

correlation. The first one, arises from a Hartree-Fock wave function that is im-

proved by small contributions of many other determinants representing alternative

configurations, reflecting the inter-dependence of the motion of electrons. The

second one, is related to wave functions in which the contributions of few deter-

minants dominate the description of the wave function; typical of molecules with
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nearly degenerate Slater determinants, in which different electronic configurations

are necessary for the description of the system.

The Hartree-Fock method can be considered as a bifurcation point, from which

emerge two different ways for compute the wave function.

• Post Hartree-Fock methods. These methods use the Hartree-Fock wave

function as a starting point toward finding an improved wave function and

recovering the correlation energy. The computational demand of this alter-

native is notoriously higher.

• Semi-Empirical methods. These methods simplifies the Hartree-Fock

calculations by parameterizing integrals, against experimental data, with

the aim to make the calculations much faster. In some cases can increase

the accuracy of Hartree-Fock.

3.1.2 Post Hartree-Fock methods

There are three main commonly called post Hartree-Fock methods: Perturbation

Theory, Configuration Interactions and Coupled Cluster theory. Here, we are

going to explain only the one used in this thesis, the Perturbation theory.

Perturbation Theory

The Rayleigh-Schrödinger perturbation theory provides a scheme by which the

wave function can be gradually improved by adding corrections to a given order.

This theory is based on that the ‘true’ Hamiltonian operator Ĥ is expressed as

the sum of the more tractable ‘zeroth-order ’ Hamiltonian H0 (for which a set of

molecular orbitals can be obtained) and a perturbation term, V .

Ĥ = Ĥ0 + λV (3.9)

where λ varies from 0 to 1 and allows the expression of the wave function and

the energy as a Taylor expansion of increasing order corrections.

A variant of this theory is the so-called Moller-Plesset (MP-n) theory, in that

the ‘zeroth-order ’ Hamiltonian operator is a lineal combination of Fock operators.

The eigenvalue of this Hamiltonian is the sum of the energies of the occupied

Hartree-Fock orbitals. This leads to a ‘error ’ because each orbital energy includes

the electron-electron repulsion of the occupying electrons with all of the other

electrons, being this repulsion counted twice. This does not correspond with

the Hartree-Fock energy, so the perturbation term V has to correct this double

counting and include the ‘true’ Hamiltonian’s repulsion term.
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V =
occ.∑
i

occ.∑
j>i

1

rij
−

occ.∑
i

∑
j

(Jij −
1

2
Kij) (3.10)

The (MP1) first order correction to the zeroth-order energy does not advance

beyond the Hartree-Fock level in determining the energy, in fact returns the

Hartree-fock energy. Thus, we must consider, at least, the second order correction

(MP2) to recover the correlation energy, which is computed as:

EMP2 = EHF

occ.∑
i

occ.∑
j>i

virt.∑
a

virt.∑
b>a

[(φiφj | φaφb)− (φiφa | φjφb)]2

εi + εj − εa − εb
(3.11)

Eq. 3.11 shows that the approximation to the correlation energy is made by

considering many excited configurations, wich implies the calculation of a huge

amount of integrals. The MP-n method is not variational and thus one may obtain

energies lower than the exact one, showing a convergence behaviour as a function

of n (MP1 = HF, MP2, MP3, MP4).

Furthermore there are other approximations based on Moller-Plesset. Specially

interesting is one, used in this thesis, that is based on MP2: the spin-component-

scaled MP2 (SCS-MP2) method [3,4]. It was developed by Grimme which out-

performs the standard MP2 in the description of the correlation energy. This

is a semi-empirical modification of MP2 in which the MP2 correlation energy is

partitioned into parameterized contributions from parallel and antiparallel spin

components. In this thesis we have employed the SCS-MP2 method to perform

single point calculations over different images of reaction profiles calculated by

QM/MM methods

3.1.3 Semi-Empirical methods

The semi-empirical methods are based on the parameterization of some integrals

against experimental data, with the objective of reducing the computational cost

and allowing the increase of the size of the system, that is one of the Hartree-Fock

bottlenecks. Bigger systems imply an increment of the number of integrals to

solve as N4. Semi-empirical methods in order to reduce the computational cost

only compute a fraction of these integrals, parameterizing the rest of them. These

parameters reproduce thermochemical and structural experimental data.

All semi-empirical methods ignore the core electrons because of they are less

sensitive to changes in the chemical environment. The remaining valence orbitals
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are represented with a minimal basis set of Slater-type orbitals. The main dif-

ferences among these methods lie in the number of neglected (not-computed)

integrals and the way they are parameterize.

ZDO (Zero Differential Overlap)

The most of the semiempirical methods are based upon this approach. In this

approximation, the overlap between pairs of different orbitals is set to zero for all

volume elements dν.

If the ZDO approximation is applied to the two-electron repulsion integral

(µν|λσ), the integral will be equal to zero. In addition all three and four-center in-

tegrals are neglected. If we apply this approach to all orbital pairs, the Roothaan-

Hall equations could be obtained in a very simplified version, at least for a closed-

shell regime.

CNDO (Complete Neglect of Differential Overlap) [5,6]

The CNDO was the first approach that implemented the ZDO approximation.

Computationally, it represents a vast simplification of Hartree-Fock theory. It

reduces the number of two-electron integrals having non-zero values from formally

N4 to simplify N2, because of the number of integrals to compute is dramatically

reduced and the remaining ones are already parameterized and do not require

explicit calculation.

INDO (Intermediate Neglect of Differential Overlap) [7]

Coming from CNDO emerges the INDO model. The key change from CNDO

is that the integrals between different types of orbitals are distinguished and adopt

different parameterized values.

NDDO (Neglect of Diatomic Differential Overlap)

This approach complements CNDO and INDO by adding flexibility to the

description of the two-center two-electron integrals. In this approximation only

differential overlap between atomic orbitals in different atoms is neglected. All

integrals (µν|λσ) are explicitly computed provided that µ and ν belong to the

same atom, and λ and σ are centered in the other atom.

MNDO (Modified Neglect of Differential Overlap) [8]

Based on the NDDO formalism, Dewar and Thiel reported the MNDO method.

They suggested to modify the two-center two-electron integrals as interactions

between multipoles replacing the continuous charge clouds, thus simplifying the

calculation and reducing the computational cost.

The nuclear repulsion energy, named as core-core term, in NDO methods has

to be modified, since the electron-electron terms do not compensate repulsion

between nuclear charges and, at long distances, uncharged atoms or molecules
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experience a net repulsion. The way this is corrected underlies the difference

between the NDDO-based methods.

VNN(A,B) = Z
′

AZ
′

B(sAsB|sAsB)(1 + e−αARAB + e−αBRAB) (3.12)

where Z
′
A denotes that the nuclear charge has been reduced by the number of

core electrons and α exponents are taken as fitting parameters.

• AM1 [9]

One critical limitation of MNDO is that it does very poorly in the prediction

of hydrogen bonding geometries and energies.

Recognizing this to be a major drawback, particularly with respect to mod-

elling systems of biological interest, Dewar and co-workers modified the func-

tional form of their NDDO model. To alleviate this problem, they modified

the nuclear repulsion term by adding up to four gaussian functions to each

atom, creating the so called Austin Model 1 (AM1). The nuclear repulsion

energy between any two nuclei A and B is computed as:

V AM1
NN (A,B) = V MNDO

NN (A,B) +
Z
′
AZ

′
B

RAB
∗

∗

(∑
k

akAe
−bkA(RAB−ckA)2

∑
k

akAe
−bkB(RAB−ckB)2

) (3.13)

where k is between two and four depending on the atom, and the constants

ak,bk and ck are fitted to molecular data.

Although AM1 is one of the most broadly used methods in a wide variety of

applications, the parameterization process had not be optimal, so Stewart

reported a reparameterization fo AM1 adding two gaussian functions for

each atom in the so called PM3 [10] method. RM1 [11] is another more recent

reparameterization that keeps the AM1 core-core expression and gives better

results than AM1 and PM3.

d orbitals in MNDO models

With only s- and p- functions included, the MNDO/AM1/PM3/RM1 methods

are unable to treat a large part of the periodic table, specially from the third row

and lower. Furthermore from ab-initio simulations it is know that d-orbitals sig-

nificantly increase the flexibility and improve the description of the wave function

of hypervalent atoms such as phosphorus. It is patently obvious that such orbitals

need to be included.
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Thiel and Voityuk [12–14] described the first NDDO model with d orbitals, called

MNDO/d. Following the same philosophy as MNDO, new one- and two- electron

integrals involving d-orbitals were parameterized. Based on the MNDO/d for-

malism, extensions of AM1 have been reported by multiple groups. Voytiuk and

Rösch first described an AM1/d parameter set for Mo [15] and Lopez and York [16]

reported a parameter set for P. Winget and coworkers described an alternative

model, named AM1*, that adds d orbitals to P, S, and Cl [17]. The only difference

with standard AM1 is that the core-core term involving the newly parameterized

atoms adopts a different expression with two element-pair specific parameters.

• AM1/d-Phot [18]

Another AM1 based model using d-orbitals, was described by Nam and

coworkers, called AM1/d-PhoT for P, H and O atoms involved in phospho-

ryl transfer reactions. To avoid the overstabilization of hypervalent struc-

tures given by AM1, the core-core term includes a parameter (gscale) that

attenuates the artificially attractive interactions involving P atoms.

In this thesis we have employed the AM1 and AM1/d-Phot semi empirical

methods to perform different enzyme related calculations.

3.1.4 Basis sets

• STOs and GTOs

The basis set is the group of mathematical functions from which the wave

function is constructed. These functions are usually based on the molecular

orbitals of the hydrogen atom such as the Slater type orbitals (STOs) that

are centered at the nuclei to construct the wave-function of the molecules

and its radial part is described as:

R(r) = Nrn−1e−ζr (3.14)

where N is the normalizing constant, n is the quantum number, r is the

electron-nucleus distance and ζ is a constant that account for the partial

shielding of the nuclear charge by the electrons.

However, practically, STOs leads to an inefficient evaluation of three- and

four-center integrals, given the large number of integrals to compute. An

alternative to STOs are the Gaussian Orbitals, GTOs:

R(r) = Nxiyjzke−αr
2

(3.15)
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where α determines the width of the Gaussian, x,y,z are the cartesian co-

ordinates and the integers j,i,k, determine the type of orbital. However,

GTOs even an alternative to STOs present problems regarding their poor

representation at short and large nuclear distances. This is the reason why

semiempirical methods employs STOs discarding three- and four-center in-

tegrals.

STOs and GTOs are usually combined, keeping the accurate radial shape of

the first ones, and the computational efficiency of the second ones. In these

cases a linear combination of GTOs, called primitives is used to represent

a given STO. When a basis function is defined as a linear combination of

GTOs is called contracted.

• Split-Valence basis set

Another commonly used type of basis set are the called Split-Valence de-

veloped by Pople and coworkers. They are employed given that valence

orbitals are those involved in chemical bonding and, thus, are more sensitive

to the environmental changes than core orbitals. Such basis contains one

contracted basis function for describe core orbitals and double- or triple-ζ

basis sets for valence orbitals. One example is the popular 6-31G basis set.

• Polarization and Diffuse functions

Moreover to increase the flexibility and thus improve the description of the

molecular orbitals, functions with higher angular momentum than that the

valence orbitals, called polarization functions are employed. Diffuse func-

tions are also used to add more flexibility, enabling the basis set to lo-

cate electron density far from the nucleus, specially necessary for negatively

charged atoms. For instance, the 6-31+G(d) is a double-ζ basis set with

polarization and diffuse functions.

• Ahlrichs basis set

Ahlirchs basis sets follow the same philosophy of Pople basis sets but are

optimized to higher extent, giving the same accuracy but using smaller basis

sets and thus reducing the computational cost. Some examples are the

Ahlrichs split valence plus polarization SVP and diffusion SVP+ or the

Ahlrich’s triple-ζ TZV(2d) basis set, used in this thesis.

In general for a proper use of Post Hartree-Fock methods it is important to

use larger basis set with diffuse and polarization functions of high angular

momentum, to recover a high percentage of the correlation energy. Usually

these basis sets imply a huge computational cost, so a common strategy

is perform single point calculations using larger basis sets over molecular
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geometries energy minimized with a smaller basis set. Due to the geometry

parameters are less sensitive than the energy to the size of the basis set, this

approach achieves a good balance between computational cost and energy

and structure determination. In this thesis we have employed different basis

set schemes, Split-Valence and Ahlrichs basis sets, with polarization and

diffuse functions to perform QM/MM optimizations as well as single point

calculations.

3.1.5 Density Functional Theory methods

In view of the poor predictions of chemical bonds and molecular properties af-

forded by HF approximation and semi-empirical methods and the high compu-

tational cost of post HF approaches, it is beneficial to seek out methods that

circumvent the need to represent the many-body electronic wavefunction. Within

this necessity appeared the Density Functional Theory (DFT).

Density Functional Theory based methods are an alternative to the ab-initio

methods to introduce the correlation effects into the solution of the electronic

Schrödinger equation. With respect to previous attempts DFT methods follow

an alternative route. In DFT what fully determine the properties of a molec-

ular system is the electronic density as demonstrated by the Hohenberg-Kohn

theorems [19].

Hohenberg-Kohn theorems

The first (existance) theorem establishes the existance of a 1:1 relation between

the electron density and the wavefunction. In this regard, the system energy

depends exclusively on the density and thus the energy is a functional of the

density. Anyway, this first theorem only prove the existence of the functional, but

does not indicates its expression.

The second (variational) theorem proves that the electron density follows the

variational theorem as the wavefunction, so the better the approximation to the

exact electron density the lower the associated energy. The Hohenberg-Kohn the-

orems provide an alternative way to the Schrödinger equation, but the lack of

knowledge about the exact form of the functional made the DFT theory imprac-

tical.

Kohn-Sham equations

It is not until 1965, when Kohn and Sham [20] found a practical way to find the

system properties directly from the density, that the breakthrough in DFT-based

methods started. The crucial idea behind the Kohn-Sham method is to consider

the real system as a fictitious system of non-interacting electrons whose density
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is the same as that of the real system where electrons do interact. The energy

functional adopts the following form:

E[ρ(r)] = Tni[ρ(r)] + Vne[ρ(r)] + Vee[ρ(r)] +4T [ρ(r)] +4Vee[ρ(r)] (3.16)

where Tni refers to the kinetic energy of the non-interacting electrons, Vne to

the nuclear-electron interaction, Vee to the classical electron-electron repulsion,

4T is the correction to the kinetic energy due to the inter-electronic interaction,

and 4Vee represents the quantum corrections to the electron-electron repulsion

energy. The corrections to the kinetic energy and inter-electronic repulsions are

gathered into the so-called Exchange correlation term Excρ(r)].

The resulting Kohn-Sham equations are very similar to the HF ones:

hKSi χi = εiχi (3.17)

where hKS is the Kohn-Sham mono-electronic operator:

hKSi = −1

2
∇2
i −

N∑
k

Zk
|ri −Rk

+

∫
ρ(r′)

|ri − r′|
dr′ + Vxc (3.18)

being Vxc the one-electron operator whose expected value is Exc

Vxc =
δExc
δρ

(3.19)

The main difference between this method and Hartree-Fock is that this last one

is an approximate theory whereas Kohn-Sham method provides the exact solution

for the exact Exc[ρ(r)] functional.

Exchange-Correlation functionals

However the exact form of this functional is not known and thus some ap-

proaches have been developed to calculate the exchange and correlation energy

terms, gathered into the exchange-correlation functional. These approaches differ

in using either only the electron density (LDA) or the electron density and it’s

gradients (GGA). The hybrid functionals are another approach, in which mixtures

of DFT and Hartree-Fock exchange energies are used.

All the functionals are composed by mathemathical expressions and param-

eters that are fitted to experimental data because of DFT could be regarded as

semi-empirical methods, although their number of parameters is much lower than

the actually classified as semi-empiricals.
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• Local density approximation functionals (LDA)

The LDA term was originally used to indicate any functional where Exc for

some position r is determine from ρ exclusively, i.e, for the ‘local’ value of

ρ. In these functionals, the analytical expression of the exchange functional

was derived by Slater,

Ex[ρr] = −9α

8

(
3

π

)1/3 ∫
ρ4/3(r)dr (3.20)

and has a simple form, in contrast to the most wide used correlation energy

functional which corresponds to the mathematical model of Vosko, Wild and

Nusair (VWN) [21].

LDA is too inaccurate for describing molecular properties because of overbind-

ing in chemical bonds and the underestimation of barrier heights, reason why

the application of these functionals is limited to solid-state physics.

• Generalized Gradient Approximation (GGA)

Because the electron density of a molecule is not uniform, it is reasonable

to improve the LDA approximation making it depend not only on the local

density, but on the extent to which the density is locally changing, the

gradient of the density. The functionals that improve LDA approaches using

the gradient of the density, are known as GGA functionals.

εGGAxc [ρ(r)] = εLDAxc [ρ(r)] +∇εxc

[
|∇ρ(r)|
ρ4/3(r)

]
(3.21)

where εxc is defined as the energy density, thus the exchange functional

Exc[ρ(r)] is defined as:

Exc[ρ(r)] =

∫
ρ(r)εxc[ρ(r)]dr (3.22)

Despite the improvements respect to LDA, GGA also has drawbacks, that

can be overpassed by including an additional correction to the GGA ap-

proach using the second derivative of the density. Such type of functional is

known as meta-GGA.

• Hybrid functionals

From the Hellmann-Feynman theorem, it is established that the Exchange-

correlation energy can be computed from the non-interacting system accord-

ing to the following expression:
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Exc = (1− a)EDFT
xc + EHF

xc (3.23)

The basic idea behind the hybrid functionals is approximate the Exc by

mixing exchange energies calculated in an exact manner (adding part of the

exact Hartree-Fock exchange energy) with those obtained from DFT (GGA)

methods in order to improve the results of the pure DFT. Probably the the

most widely used functional of this type is the B3LYP [22–24], although other

useful functionals such as BHLYP [24,25] or mPW1PW91 [26] were also devel-

oped. Indeed, as all these functionals have a huge parameter dependence

and thus are very system specific, a plethora of them have been designed.

The inclusion of HF exchange in a hybrid functional, present advantages as

the compensation of the underestimation by pure functionals of the impor-

tance of ionic terms in describing polar bonds [27], or the improvement in the

description of the energy barrier. The GGA functionals tend to underes-

timate the barrier and HF, on the other hand, overestimate it. Thus the

addition of HF could act as a back-titration to the barrier description ac-

curacy. For instance, following this idea, the MPW1K [28] was optimized for

properly describing the kinetics of H-atom abstractions or the mPW1N [29]

that was developed for halide/haloalkane nucleophilic substitution reaction.

However, despite of the mentioned improvements, current functionals still

present important shortcomings. One of the main limitations is their inac-

curacy describing long-range dispersion interactions, because of in current

exchange-correlation functionals the energy depends on the local density and

its derivatives, which are also local, so they cannot describe accurately the

electron correlation at long distances.

Several approximations for including dispersion interactions have been made.

For instance, a modified version of the exchange functional by Perdew and

Wang (PW) was obtained by Adamo and Barone in the mPWPW91 func-

tional, used in this thesis to describe phosphoryl transfer reactions. It

gives remarkable results both for covalent and noncovalent interactions in a

quite satisfactory theoretical framework encompassing the free electron gas

limit and most of the known scaling conditions [26]. Nowadays, however, the

M06 family of functionals [30] are among the most accurate and widely used

for describing non-covalent interactions as well as the kinetics and ther-

mochemistry. Within the dispersion interaction context, in recent years,

there have been important advances due to the development of the DFT-D

methods [31,32] by including semi-classical (MP2-like) corrections of disper-

sion interactions to standard exchange-correlation functionals, the so-called

DHDF double hybrid density functionals.
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All these subsequent developments, and the ones that are coming, have con-

tributed to increase noticeably the number of functionals currently available.

In this thesis to study enzyme catalysis reactions, we have performed sev-

eral DFT QM/MM and single point calculations using the BHLYP and the

mPWPW91 functionals.

3.2 Molecular Mechanics

Quantum-mechanical methods provide the most accurate description of the molec-

ular electronic structure. However, a complete description of a molecular system

extends beyond the knowledge of the electronic structure of a single molecular

structure and, as invoked by the Born-Oppenheimer approximation, the potential

energy surface requires to be explored. Furthermore the explorations of complex

systems with degrees of freedoms as proteins by QM methods is unaffordable

because the computational expense makes this exploration unachievable. Thus

methods that require less computational resources are needed.

Molecular Mechanics (MM) methods calculate the interaction potential of the

particles using a force field, reducing the computational cost by lowering the cost

of the energy calculation. A force field is a set of parametrized equations that

allow the evaluation of the energy and the gradient of the system with a low

computational cost. Nevertheless they have a limitation: they are not able to

reproduce the formation and rupture of chemical bonds. This happens because

they are parameterized with mathematical expressions that only depend on the

nuclear positions and ignore the electrons. Due to this limitation, the combination

of MM methods with QM methods, is a good and useful option (see section 3.3).

Molecular mechanics force fields express the energy of a molecular system as

a summation of different contributions that are expressed as mathematical func-

tions. The parameters of these functions have been optimized against experimen-

tal data and QM calculations. The most used are the AMBER [33], CHARMM [34],

GROMOS [35] and OPLS [36] force fields (encompass within Class I or diagonal force

fields [37]), from that exists different versions (extended atom force fields) aimed to

obtain more realistic results [38,39]. The energy of the system in any MM force field

is divided into bonding and non-bonding terms (E = Ebonding +Enon−bonding ). As

the common form of potential energy, molecular mechanics assumes additivity of

energy potentials thus could be expressed (for Class I force fields) as:

V (r) = Vstr + Vben + Vtors + Vimp + Vcross + Vvdw + Velec (3.24)
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being the five first terms, stretching, bending, torsion, impropers and cross

terms, such as Urey-Bradley, that constitutes the bonding terms, and the last

ones Van der Waals interactions and electrostatic interactions encompass within

the non-bonding terms. Each force field implement them in its own way.

3.2.1 Bonding-Interactions

The energy associated with bonding terms is computed using functions that model

the energy penalties due to deviations of internal coordinates from their reference

values.

Eb =
bonds∑
i

Kb(b− b0)2 +

angles∑
i

KΘ(Θ−Θ0)2 +
torsions∑

i

Kφ(1 + cos(nφ− δ))+

+

impropers∑
i

(Kψ(ψ − ψ0)2 +

Urey−Bradley∑
i

KUB(UB1,3 − UB1,3,o)
2

(3.25)

The first term corresponds to the stretching between each pair of bonded

atoms described by an harmonic potential, whose force constant reflects the bond

strength. The second term is the angle bending contribution, also modelled by

an harmonic potential. The use of a simple harmonic potential is, in principle,

enough because there are non significant deviations from the equilibrium position

expected. The third term corresponds to proper torsions which model the energy

changes due to bond rotations, which are responsible of the main conformational

changes of the molecule, indicating the number of minimum energy conformations

resulting from the bond rotation. These three first terms are included in all the

force fields, however the two last terms are present only in some of them. In this

thesis we have employed the AMBER, GROMOS and OPLS force fields.

3.2.2 Non-Bonding-Interactions

The non-bonded terms comprise Van der Waals and electrostatic pair-wise inter-

actions,

Enb =

i<j∑
V anDerWaals

{
Aij
R12
ij

− Cij
R6
ij

}
+

i<j∑
Electrostatic

qiqj
εrij

(3.26)
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The Van der Waals interactions describe the attraction or repulsion between

atoms that are non-bonded. A common way to model them is with the popular

Lennard-Jones potential, which describe the inter-atomic repulsion at very short

distances and the stabilization by virtue of dispersion interactions at relatively

long distances. The simplest model for describe electrostatic interactions is the

Coulomb’s law, which defines the interaction energy between two point charges

separated by a given distance.

Non-bonded interactions represent the most time-consuming part of the MM

calculations. The evaluation of these interactions scales as N2, being N the num-

ber of atoms. To alleviate this computational cost some approaches could be

employed. For instance using spherical cutoff schemes that restrict the evalua-

tion for all possible pairs to only some of them. Three different cutoff schemes

have been developed. In the simplest scheme (truncation), only the interactions

within a cutoff distance are computed. However, this introduces discontinuities

in the distance-dependent non-bonding interaction energy, and the correspond-

ing forces, leading to potential artifacts. To avoid this problem, there are other

schemes aimed to gradually set to zero the distance-dependent interactions: the

switch and shift functions. The shift functions alter the interaction energy func-

tion, E(r), gradually from the beginning in order to reach the zero value at the

cutoff distance, while the switch functions smoothly alter the interaction energy

within a buffer region [a, b], so that E(b) = 0 and E(r for r ≤ a) remains un-

changed. These cutoff schemes has to be large enough due to the Lennard-Jones

potential present a rapid decay (as 1/r6).

On the other hand electrostatic interactions decay much more slowly (as 1/r),

thus the effects of the long-range interactions contributions to the electrostatic en-

ergy are non-negligible. Even for non-charged particles, dipole-dipole interactions

decay more slowly (as 1/r3). Therefore the cutoffs schemes have to be larger than

for Van der Waals interactions to account them. To avoid using excessively large

cutoffs and minimize the loss of accuracy, alternative faster methods have been

devised, as the Ewald summation method, to compute long-range interactions (see

section 3.2.5). In this thesis we have computed the full NB interactions or we have

employed switch functions as well as a variant of the Ewald summation method,

the Particle Mesh Ewald (PME), depending on the simulation performed.

3.2.3 Solvent treatment: Explicit solvation

In biomolecular systems, such as proteins or small ligands, the effect of the solvent

is very important, thus its modelling is a key aspect. There are two philosophies

to do it: the explicit and the implicit (also known as continuum) solvation. In the

first one the molecules are placed around the simulated solute (protein) molecule
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only accounting for their electrostatic influence on the solute, while in the second

one the various physical influences of solvent molecules on the solute (electrostatic

(including induction), cavitation, exchange repulsion, and dispersion attraction)

are taken into account. The solvation effects are calculated by extra terms added

to the force fields. In this thesis only the explicit model have been employed.

The explicit solvation of the system requires the definition of a water model,

simple MM models that describe water-mediated polar interactions. These models

assume a fixed geometry for the water molecules, which are treated as rigid entities,

and only consider non-bonding terms. They differ in the number of interaction

sites. For instance the SPC (Single Point Charge) water model [40] presents three

interaction sites as well as the TIP3P [41], in which a point charge is defined at

the oxygen and two hydrogen atoms. There are also 4 interaction sites models as

TIP4P [41] and even with 5 like TIP5P [42] model. However has to bear in mind

that an increment of the number of interaction sites imply an increment of the

computational cost. Furthermore current force fields have been parameterized in

conjunction with a given water model, thus has to take it into account to choice

the proper water model. The use of a water model not compatible with the force

field may lead to some inconsistencies. In this thesis we have employed the TIP3P

and the SPC water models.

3.2.4 Periodic Boundary conditions (PBC)

The simulation of a solute immersed in a solvent is usually done under Periodic

Boundary Conditions (PBC). That means immerse the system into a unit cell

that is infinitely replicated in the three spatial dimension avoiding, in principle,

surface effects. Thus solvent molecules at the edge of the cell interact with solvent

molecules as a bulk.

The use of PBC imply following the minimium-image convention, which means

that when a particle crosses the boundary of the unit cell, an image of that particle

enters to replace it, conserving the total number of particles in the cell. Within

this approximation, non-bonding interactions are limited to use a cutoff of a max-

imum Length of L/2 where L is the length of the dimension of the box. Depending

on the shape of the system different unit cell geometries can be used to construct

the lattice. The cubic shape is the most broadly used, however others are more

compact for a given thickness of the water layer reducing the amount of solvent

molecules needed in the system, as for example rhombic dodecahedron. Thus the

selection of the simulation box is important to make the calculation more com-

putationally efficient. In this thesis we have employed orthorhombic and rhombic

dodecahedron boxes.
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3.2.5 Ewald summation method

PBC are used by a lot of simulation schemes as the Ewald summation method,

which employ them advantageously. The Ewald sum was first devised by Ewald

to study the energetics of ionic crystals. This scheme use PBC to compute long-

range electrostatic interactions in a more precise form than using cutoff schemes.

This technique calculates the electrostatic energy of the system with an infinite

number of periodic images adopting a reciprocal-space technique. In this method,

a particle interacts with all the other particles in the simulation box and with all

of their images in an infinite array of periodic cells. The position of each image

box (simply assumed to be a cube of side L containing N charges) can be related

to the central box by specifying a vector, each of whose components is an integral

multiple of the length of the box.

By definition, the total electrostatic energy of the central box with the infinite

array of periodic images is given by:

V =
1

2

∞∑
|n|=0

N∑
i=1

N∑
j=1

qiqj
|rij + n|

(3.27)

where n is the vector (nxL,nyL,nzL), being nx , ny and nz integers and L the

size of the box.

The problem comes from that the summation in Eq. 3.26 converges extremely

slowly and is conditionally convergent. A conditionally convergent series contains

a mixture of positive and negative terms, that when are accounted alone give

divergent series. Thus the order in that they appear is important. An additional

problem is that Coulomb interaction can vary rapidly at small distances. Ewald

devises a trick to convert this sum into two series, each of which converges much

more rapidly, which essentially is based on perform one summation in the real

space and another in the reciprocal space.

The trick, more in detail, is based on surrounding each charge of the system

with a Gaussian charge distribution of opposite sign. Thus the summation arising

from point-charges and Gaussian charges is convergent and is carried out in the

real space. Then, the ‘neutralizing’ Gaussian charge distribution is re-neutralized

by a second Gaussian charge distribution over the infinite summation that is

performed in the reciprocal space by Fast Fourier Transformation.

In practice, there are implementations of this method that improve the perfor-

mance of the reciprocal sum, as the Particle Mesh Ewald method (PME) [43] which

scales as Nlog(N) and finds wide application in MD simulations. Some linear-

scaling implementations have also been done for hybrid QM/MM calculations [44].
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3.3 Hybrid Quantun Mechanics / Molecular Me-

chanics

The systems of chemical interest in computational ‘biosciences’(biology, biochem-

istry and biophysics) and catalysis, are often condensed phase systems with many

thousands of participating atoms [45]. The usage of QM methods to describe these

systems most of the time implies an unaffordable computational demand as we

have already commented. MM methods, on the other hand, are only an effi-

cient alternative to QM methods if there are not bond-breaking/formation events

and/or other related electronic processes. From this situation arises a necessity

to develop new methods to treat these systems computationally, and the most

useful and logical tool are the QM/MM methods, a quantum mechanics calcula-

tion embedding into a classical molecular mechanics model of the environment.

Typically the events aimed to study tend to occur in a small part of the whole

system, such as enzyme active sites, thus the small reactive region is described

with QM methods and the remaining part of the system with MM force fields.

The QM/MM approaches were first introduced by the seminal work of Warshel

and Levitt in 1976 [46] and along the years several distinct schemes have been

devised. Within the QM/MM framework the Hamiltonian is defined as:

H = HQM +HMM +HQM/MM (3.28)

where HQM describes the interaction between the quantum mechanical parti-

cles, HMM accounts for the interaction of all particles represented by a MM force

field and HQM/MM evaluates the interaction between both QM and MM particles.

The most important differences between the exisitng QM/MM schemes arising

from the treatment of the QM/MM coupling term.
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Figure 3.1: Schematic representation of the different components in a QM/MM scheme.
Adapted from Field 2007 [47]

QM/MM (electrostatic) coupling schemes

Some schemes have been devised to account the electrostatic coupling between

the QM charge density and the charge model used in the MM region. All of them

are characterized essentially by the extent of mutual polarization and are classi-

fied accordingly as mechanical embedding, electrostatic embedding, and polarized

embedding [48]. Here we are only going to explain the second one, because is the

only one used in this thesis.

Electrostatic embedding

The electrostatic embedding is the most used scheme in biomolecular simula-

tions. It eliminate the major shortcomings of mechanical embedding by perform-

ing the QM calculation in presence of the MM charge model. The MM atomic

partial charges are readily available from the force field and their inclusion in the

QM Hamiltonian is efficient.

HQM/MM =
soluteelectrons∑

i

MMatoms∑
m

qm
rim

+
solutenuclei∑

k

MMatoms∑
m(

zkqm
rkm

+ 4εkm

{(
σkm
rkm

)12 − (
σkm
rkm

)6

}) (3.29)

The first electrostatic term makes the electrons feel the partial charges of the

MM atoms besides the QM nuclei field, i.e., the isolated QM region is polarized by
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the MM electrostatic field, whereas the second electrostatic term introduces the

QM nuclei in the field created by MM charges. In this scheme the Lennard-Jones

contribution avoid that both regions be in excessively close contact as its effect is

primarily limited to boundary atoms.

The QM/MM coupling must be carefully described when the boundary is

defined across chemical bonds, which is the case for most of the situations when

dealing with a proteic system.

Boundary schemes

The first practical step using QM/MM methods consists on dividing the entire

system into an inner, modelled at QM level, and outer, modelled at MM level,

regions. For small biomolecular systems this division is trivial because the solute

is QM treated, surrounded by MM solvent molecules. For instance if the reactants

of a chemical reaction (cofactors, ligands) are not covalently bound to the enzyme

and no protein residue is directly involved in the chemical transformation. If it is

not the case, as usually happens, the division is turn into a delicate step because

it implies the cut of covalent bonds. Some approaches have been devised to treat

it, that could be categorized into link atoms, boundary atoms and frozen localized

orbitals (see Fig.3.2), being the first and the last one the two most used [45,48].

Here as happened with the coupling schemes we are only going to explain the one

used in this thesis, the Link atoms scheme.

Link Atoms

The link-atom method is conceptually simple and the most widely used bound-

ary scheme. In this type of scheme additional atomic centers (L), normally hy-

drogen atoms, are added to saturate the free valence of the QM atoms bonded to

MM atoms of the inner region when the covalent bond between them is cut. The

free valence at Q1 created by the QM-MM division is capped by an additional

atom that is covalently bonded to Q1 (see Fig. 3.2).

The hydrogens, given that the boundary is usually defined as cutting C-C

bonds, are not expected to alter significantly the original environment of the QM

atom at the boundary when replace the original carbon atom. These hydrogens

are only taken into account by the QM calculations being invisible to the MM

calculations. The function of these atoms is cap the QM subsystem, thus are not

part of the entire system.

A problem with this approach is the overpolarization exerted by the frontier

MM atom on the boundary QM atoms due to its close distance to the link atom.

There are several alternatives to alleviate it such as 1) delete the one-electron

integrals associated with the link atoms, 2) delete the MM point charges in the

link region from the Hamiltonian, 3) redistribute the MM atom charge between



3.4. Conformational Sampling 69

their bound MM atoms or 4) using more physically realistic representations such

as gaussian charge distributions centered on the MM boundary atoms.

Figure 3.2: Link atoms scheme. I represent the Inner region, O the Outer and B the
Boundary region. Adapted from Sherwood 2000 [45], Senn and Thiel 2007 [48] and Senn
and Thiel 2009 [49]

In this thesis we have employed pDynamo [50] to performing QM/MM calcu-

lations. pDynamo uses a link atom scheme for treat the division of the system

within an electrostaic embedding.

3.4 Conformational Sampling

Everywhere in nature, dynamical processes occur constantly. We can state fairly

that the execution of dynamics governed by forces is the only work that nature

do. For instance biomolecules (whether in a test tube or inside the cell) move in

space and change its shape and its size by binding or unbinding another molecules

as well as by altering the overall concentration(s) of the system, i.e., changing

the pH or the temperature. The way to understand these phenomena and to

connect experiments and theory is by the use of statistical mechanics. In that sense

thermodynamics will be taught as a natural outcome and statistical mechanics

used to transform the detailed view of the microscopic system into thermodynamic

magnitudes.
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3.4.1 Potential and Free Energy Surfaces

Potential Energy Surface

So far we have described the wide variety of methods available to evaluate the

potential energy for a given nuclei configuration. However, to describe a molec-

ular system this is not enough. Although the energy calculation for one or a

small number of configurations may sometimes be necessary, it can give only lim-

ited information about the properties of a system. As we have commented at

the Introduction, according to Frauenfelder, the dynamical behaviour of a protein

is closely related to the underlying energy landscape, thus to study a molecu-

lar (proteic) system the energy surface has to be taken into account. Under the

Born-Oppenheimer approximation the nuclei move throughout a hypersurface,

with 3N-6 internal degrees of freedom, whose topology determines the reactiv-

ity and other molecular properties of the system, connecting its microscopic and

macroscopic (observable) properties. Thus the sampling of the full conformational

space through the exploration of this hypersurface is a must.

A potential energy surface (PES) is a theoretical concept used to relate the

energy and the geometry of a given system. It describes the energy respect to the

position of all the atoms. Mathematically it is described as a multidimensional

function of the positions of all the atoms of a given system. The PES defined by the

individual terms (i.e. bond stretching, angle bending, torsions, and van der Waals)

gives the contribution to the internal energy, but does not say nothing about the

entropy (constituting its weakest point). However, the entropy is proportional to

the number of states accessible to the system, and thus to the internal energy.

The energy quantifies the molecular interactions of a system and the entropy

its structural variation. The study of the free energy, which takes entropy, and

usually enthalpy, into account, is a good framework to properly describe biomolec-

ular systems, and to compare against experimental measurements (that usually

measure free energies and thermodynamical parameters), although is not always

necessary. Specially having into account the high computational cost of the free

energy computations compared with the ones based on potential energy. By using

statistical mechanics the potential and free energies can be related.

Statistical mechanics: The partition function

In order to treat a collection of molecules (macroscopic systems) in statistical

mechanics, a requirement is that certain macroscopic conditions be held constant

by external influences. Depending on the constant conditions an ‘ensemble’ is

defined. For instance an ensemble where the total number of particles N, the

Volume, V and the Temperature, T remain invariant, is called canonical (NVT)

ensemble.
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In Quantum mechanical methods the wave function is a fundamental function

that characterize the microscopic system. In statistical mechanics there is an

equivalent function: the partition function.

In non-rigid condensed phase systems (such as proteins) we have to compute

the whole partition function through the phase space integral, within the canonical

ensembles, over all spatial r and momentum p coordinates.

Z =
1

h3N

∫
r

∫
p

drdpe
−Hr,p
KBT ≡ Z(N, V, T ) =

∑
i

eEi(N,V,T )/KBT (3.30)

Applied to Eq. 3.30 the usual Hamiltonian expression allows to separate the

atomic momenta from the potential energy V ,

H(r, p) =
N∑
i

p2
i

2mi

+ V (r) (3.31)

therefore the integral over the phase space (p,q) becomes the configurational

integral multiply by a constant:

Z ∝
∫
r

dre
− V (q)
kBT (3.32)

As our condensed-phase system is a biomolecule (protein) made by atoms,

it is necessary to compute the internal molecular motions until the integral of

configuration converged.

Free Energy Surface

The reaction free energy (Helmholtz or Gibbs functions) is the magnitude that

describe the spontaneity in NVT and NPT (constant Pressure P, Temperature

T and number of particles N) ensembles respectively, that is the tendency of

molecular systems to associate or react. In addition under the framework of the

Transition State Theory (see later in this section) it will describe the kinetics of

such process.

Although different both types of free energies are closely related. The Hel-

moltz free energy is defined as F (N, V, T ) = −kBT lnZ(N, V, T ) and the Gibbs

free energy as G(T, P,N) = F + P 〈V 〉. Surely G is the correct measure under

constant pressure conditions but in biomolecular systems the difference between

G and F does not really matter. The difference between G and F can be impor-

tant in dilute systems, but not for solid and liquid phases and large biomolecules

in solution. Basically all of molecular-level biology and experimental biophysics
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processes occurs in the condensed phase plenty of molecules. In such conditions

molecules are basically attractive and fix their own volumes, thus can be consider

a constant volume. Furthermore volume fluctuations in experimental biology sys-

tems are tiny on a relative scale.

To going in more detail let us assume a system described by the cartesian

coordinates x ∈ Rn, having into account Eq. 3.32, with a standard equilibrium

distribution:

p(x) = Z−1e
−V (x)
kBT (3.33)

We assume that there are no constraints in the system, and that the part

of the density arising from the momenta has been integrated out [51]. We now

introduce M CVs that are functions of x and that can distinguish distinct reacting

configurations of the system.

z̃(x) = {z̃1(x), z2(x), ...zM(x)} (3.34)

The free energy, also known as the potential of mean force, associated with

z̃(x) is a function that depends on z = (z1...zM) and is calculated as:

F (z) = −kBT (Z−1

∫
Rn
e−βV (x)δ(z1 − z̃1(x))...δ(zM − z̃M(x))dx) (3.35)

This constitute the M-dimensional free energy surface described in the Intro-

duction.

As the free energy is related to the potential energy, the FES is also related to

the PES. To establish a clear connection between them, we must think in terms of

representative samples of the local minima of the PES, from which a free energy

surface is projected by averaging over the reaction coordinates [52].

Based on all the arguments given, one can reasonably conclude that exploring

the FES is the best option to study biomolecular processes. However sometimes

it is even better to use potential energy instead of free energy. For instance where

the enthalpic and entropic contributions to the free energy barrier are not sig-

nificant, and/or when an accurate description of the electronic structure is more

advantageous. In these cases potential energy barriers are calculated, although a

direct comparison with the experimentally-derived free energy barrier is not pos-

sible. However, a qualitative comparison can then still be done. In this thesis we

have employed both type of energies determining potential and free energy barriers

and constructing the corresponding energy paths.
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Transition state theory

The Transition State Theory (TST) gives the framework of chemical reaction

rate theory.

k = Ae

(
−∆G‡

RT

)
(3.36)

Within TST are encompassed different theories that have a common point:

the assumption of the existence of a hypersurface (transition state) between two

minima (usually reactants and products) in the phase space (energy surface).

The TST assumes that 1) Reactants are in local equilibrium along the reaction

coordinate, 2) the trajectories that cross this hypersurface do not recross, being

thermalized in the products or reactants states and 3) the reaction coordinate de-

grees of freedom are separated from the rest and treated with classical mechanics.

An important point of TST is that connects theory and experiments allowing the

calculation of the reaction rate using the Eyring equation (Eq. 1.1) as we have

commented. For a further review of the TST see for instance Garcia-Viloca and

coworkers 2004 [53] and Truhlar and coworkers 1996 [54].

3.4.2 Stationary points and Energy minimization methods

Stationary points

Statistical mechanics (also called statistical thermodynamics) establishes that

the properties of the most populated ensembles of configurations of the microscopic

system are those that determine the properties of the macroscopic system. The

weight of each of these ensembles (x) is represented by the Boltzmann law (Eq.

3.33).

The low energy configurations are the most representative of a given system

because the population of a given configuration decreases exponentially with the

energy (such as reactants and products) although the high energy configurations

play important roles such as connecting two minima (like the Transition state).

Within a (bio)chemical reaction, the reactants and products (minima of the energy

surface) are connected by a high energy surface (the transition state surface). The

TS structure is at the same time a minimum of this surface and the highest energy

structure along the reaction path.

All the minima and transition states correspond to stationary points of the

energy surface, i.e., the first-derivative of the energy respect to the nuclear coordi-

nates is zero. To distinguish between the stationary points frequency calculations

over them have to be made. If the number of the resulting imaginary frequencies

is zero, it is a minima, if is one, it is an ordinary TS (and a 1st order saddle point)
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and if present more it is an nth order saddle point that depends on the number of

imaginary frequencies (n).

However has to be taken into account that for systems with rugged potential

energy landscapes, where entropic effects play role (as used to happen with multi-

dimensional systems), the saddle point do not necessarily play a role of transition

state.

Energy minimization methods

The search of stationary points is done by using numerically iterative algo-

rithms. We can classify the optimization methods to find stationary points into

three groups: no-derivatives, first-derivatives and second-derivatives respect to the

way in that the the energy is derived over the atomic coordinates (we are going

to explain only the first and second derivatives methods employed during this

thesis). These optimization methods converge to the local minimum. The search

for the lowest energy structure among all minima, i.e. global energy minimum,

is a challenging task for which there is not a single method that guarantees its

finding. The location of saddle points is also a challenging and demanding task.

Oppositely to the location of minimum energy points whose energy values are

reducing until find the minimum, to locate saddle points one has to find a point

that is a maximum in one direction but a minimum in all the others, balancing

both searches.

First-derivative methods

The two most widely used first-order minimization algorithms are the Steepest

Descent and the Conjugate Gradient. These methods gradually change the coor-

dinates of the atoms as they move towards the minimum point, since the force

acting on each atom is equal to minus the gradient, F = −gk.

The steepest descent method takes a step along the direction of the force, which

is the steepest direction at a given point of the energy surface. The direction of the

gradient is determined by the largest interatomic forces, being orthogonal to the

direction of the successive steps. This method is very efficient at the first stages

of a minimization process to relieve the highest energy features of the structure,

but suffers from slow convergence.

The Conjugate Gradient (CG) algorithm outperforms the steepest descent

method near the energy minimum by taking conjugate directions instead of per-

pendicular ones. The conjugate gradient method moves in a direction vk from

point xk where vk results from a combination of the gradient and the previous line

search (directions vector) vk−1:

vk = −gk + γkvk−1 (3.37)
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where γ is a scalar whose definition depends on the specific CG method.

Second-derivative methods

Second-order methods use not only the first derivatives, i.e. the gradients,

but also the second derivatives to locate a minimum. The second derivation of

the energy, i.e. the Hessian matrix, provides information about the curvature of

the function. The Newton-Raphson (NR) method is the simplest second-order

method. On the basis of the Taylor expansion of a function to second-order:

f(x) ' f(x0) + gt(x− x0) +
1

2
(x− x0)tH(x− x0) (3.38)

being each step of NR expressed as:

xk+1 = xk −H−1g (3.39)

Moreover, the Hessian must be positive definite (all eigenvalues are positive)

to ensure that the process minimizes the energy.

It requires the calculation of the inverse of the Hessian matrix, which is com-

putationally demanding and problematic with near-zero eigenvalues. When the

Hessian matrix is not positive, then the NR method moves to points (e.g. sad-

dle points) where the energy increases. This method performs better near the

minimum where the quadratic approximation is more valid, far from it becomes

unstable.

The computational cost of calculating and storing the Hessian at each itera-

tion step motivated the development of methods approximating the Hessian on the

basis of computed gradients. They aim to eliminate the necessity of calculating

the full matrix of second derivatives. These methods are known as Quasi-Newton

methods and, among them, the Broyden-Fletcher-Goldfarb-Shanno (BFGS) is a

widely used one. Furthermore there are variants known as reduced or approxi-

mate second derivatives such as the Limited memory Broyden-Fletcher-Goldfarb-

Shanno (LBFGS). The difference between this one and the original method is that

LBFGS avoid the storage of a dense n x n approximation to the inverse Hessian.

For a system with a large number of atoms, such as a protein, only first deriva-

tives, like CG or a reduced set of approximate second derivatives, as the LBFGS

are numerically affordable. In this thesis we have employed mainly the Conjugate

Gradient and LBFGS methods although the steepest descent has also been used.
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3.4.3 Determination of transition state structures and re-

action pathways

As we have commented above, the transition state structure is identified by a Hes-

sian with one negative eigenvalue, which corresponds to a first-order saddle point

of the potential energy surface, and a reaction pathway is the path connecting two

minima (reactants and products) passing through the transition state structure

where the energy increases to a maximum and then falls.

There are several methods aimed to locate transition state structures and to

elucidate reaction pathways, that are often closely related. However, we are going

to restrict our discussion to the ones used in this thesis. We can classify them as

1) those that optimize a starting structure reasonably close to the true transition

state (local methods) and 2) those that require to know the two connected minima

(reactants and products). Within the second methods, another classification could

be done according to the use or not of predefined collective variables or reaction

coordinates to elucidate the reaction path.

Reaction paths

Any chemical reaction, complex formation or conformational change of a given

system encompass a transition between two different basins, reactants and prod-

ucts, whose relative stability determines the thermodynamics of the process. This

transition proceeds through the transition state structure, that is a high energy

point along the reaction coordinate. The reaction coordinate(s), also called col-

lective variable(s) (CVs), should be something that can be used to parameterize

the reaction paths, usually geometrical parameters such as a dihedral angle or the

difference between the bond forming and breaking. They have to describe the

conformational change, the conversion between reactants and products, being the

major problem that their choice is based on intuition and sometimes the intu-

ition fails. In systems for which little is known about the reaction path, CVs are

not used and a wide number of methods have been developed for finding its best

description, encompassing between the so-called chain of states methods [55] (see

section 3.4.3).

In their simple description, a chemical reaction takes place along the lowest

potential energy, the Minimum Energy Path (MEP), which in mass-weighted co-

ordinates is called the Intrinsic Reaction Coordinate (IRC). When the path refers

to the lowest minimum free energy is the Minimum Free Energy Path (MFEP).

Usually instead of second derivative calculations respect to the path, accurate ap-

proaches are made. These approaches leads to paths that formally are not true

MEPs or MFEPs and thus has to be called (potential or free energy) reaction

paths. We shall use the term ‘reaction path’ or ‘pathway’ to describe the path
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between two minima. Has to be remarked that our use of the word ‘reaction’ does

not necessarily imply a bond formation and/or breaking.

MFEP and MEP

A MFEP is defined on a free energy surface of Eq. 3.35 in the same way as a

MEP is defined on a potential energy surface. It is the path between two minima

on the surface such that the following condition holds:

[M(z).∇F (z)]⊥ = 0 (3.40)

where ∇F (z) is the gradient of the free energy, M > z is the metric tensor and

⊥ indicates projection in the direction perpendicular to the path curve. Further

details can be found for isntance in Maragliano et al. [51,56]. Remark that the

metric tensor is not exclusive of the Free Energy, it also appears when calculating

Minimum Potential Energy Paths in CV.

Figure 3.3: A) A model surface depicting the combination of a reaction coordinate for
the chemical step and a conformational coordinate. The enzyme needs to adapt to a
different conformation to optimally catalyse the reaction (solid red lines). If the sampling
of the chemical transition (green lines) state is sufficient, we will capture the necessary
conformational reorganization (black lines). (B) A one dimensional energy profile of
the same model, where only the chemical step is considered. In such a case, the energy
barrier seems to change with time, as the enzyme samples different conformations.
Without considering this sampling the enzyme would have to surmount in one of the
two steps, a higher energy barrier (dotted curve). Reproduced from Marcos et al. [57]

Local methods

Returning to the previously mentioned classification of techniques (aimed to

locate TS structures and to determine reaction pathways), the first category is

based on Newton-Raphson methods. A good candidate structure to the true TS

implies that the Hessian has an eigenvector with a negative eigenvalue pointing
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to the direction of the transition of interest. This Hessian guides the optimization

process to minimize all degrees of freedom, except one whose energy is maximized,

eventually leading to the transition state structure. In general, to obtain a good

starting structure to find the TS for simple reactions is enough by performing

systematic constraint minimizations at different points (scanning) along the hy-

pothetical reaction coordinate (the key is choose it properly). The highest energy

structure of the scanned coordinate is the best approximation to the transition

state.

Once a given transition state structure has been reached, the most usual way

to obtain the reaction path is by moving towards the reactants and products.

If the minimization process is brusque during the scanning, in some cases, the

transition state can converge to a transition state connecting two other minima,

not the desired ones. To check whether the TS actually connects the reactants

and products, a widely used approach is going forward and backward from the

saddle point until the obtained energy profile is unique [58,59]. This strategy is

specially important for condensed phase systems, such as biomolecules, where

multiple reaction paths may exist.

Chain of States

For the second category, several methods have been developed that make

interpolations based on the two minima, such as the Zero Temperature String

method [60,61] or the Nudged Elastic Band method (NEB) [62,63] developed by Jóns-

son and co-workers. The NEB first linearly interpolates a set of structures or

images between reactants and products. These images are connected by harmonic

springs to build an ‘elastic band’ that is progressively optimized to obtain the

minimum energy path. Each image i is subjected to a force that is defined as:

Fi = −∇V (Ri)|⊥+ Fs
i ||| (3.41)

where the first term is the perpendicular component of the force felt due to

the potential energy surface V and the second term corresponds to the parallel

component of the spring force on the tangent of the path. The goal in the NEB

method is to optimize the images in a concerted fashion so that the force acting

on each image is zero.

The spring forces aim to keep the images uniformly spaced and adopt the

simple form of a harmonic potential as:

Fs
i = ki+1(Ri+1 −Ri) + ki(Ri−1 −Ri) (3.42)

The tangent of the path at image i was originally defined as the vector joining
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images i+ 1 and i− 1. However, alternative definitions of the tangent have been

proposed exhibiting improved performance.

Regarding the reaction pathway, these kind of methods such as the string

method or the NEB present drawbacks. Mainly, there are not able to produce

minimum free energy paths, only minimum (potential) energy paths [51].

SoT

Other methods are based on CVs, as we have already commented, and thus

are able to produces MFEPs but also present drawbacks. For instance, the CVs

has to be precisely chosen because as its number increase these methods becomes

computationally inefficient and unable to fully explore multidimensional energy

surfaces. Unfortunately proteins usually needs a reasonable high number of CV

to be completely described and also present a roughly energy landscape.

However, there are hybrid methods that incorporate the best of the two ap-

proaches. In this sense, the String method with collective variables [51] is able to

produce MFEPs, and in a related development Roux and coworkers proposed a

novel method that employed Swarms of Trajectories (SoT) to evolve the string

and to estimate its average displacement in CV space [64]. The main advantage of

the SoT is that it avoids the estimate of the potential of mean force and the metric

tensor (see Eq. 3.35 and Eq. 3.40) simplifying the calculations and speeding up

them.

The SoT method needs an initial reaction path to start. Let us assume that the

initial path is composed by N images and it is defined by M CVs that are functions

of x and that can distinguish distinct reacting configurations of the system. Eq.

3.35 can be used to determine the MFEP if a convenient representation of the

path as a function of the variables, z, is available. In the SoT method this is

done by parameterizing the path z(α) as α ∈ (0, 1), where α = 0 represents the

reactants sate and α = 1 the products sate. It is then assumed that the CVs evolve

according to a non-inertial Brownian dynamics over some time step, according to:

zi(∆t) = zi(0) +
∑
j

(
− βDij[z(0)]

∂F

∂xj
[z(0)] + ∂zjDij[z(0)]

)
∆t+Ri(0) (3.43)

where Dij is he diffusion tensor (that is equal to the metric tensor M(z) mul-

tiply by kBT ) and Ri(0) is the gaussian thermal noise with mean of 0, and that

is equivalent to the average drift [65] (or displacement) when the average of the

thermal noise in Eq. 3.43 is averaged to zero. Once Eq. 3.43 has been defined, it

can be employed to locate the most probable transition path (MPTP) [51,64] which

is the path such that a system anywhere along it will have the highest probability
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of remaining on it as it evolves. This is so because the most probable value of the

Gaussian noise is zero.

Once the initial path is obtained, for each of the images of the path a trajectory

is generated restrained around the collective variables (z). Thereafter unbiased

trajectories are performed and the average displacement, ∆zN , of the collective

variables is calculated along them for each of the images of the path. After it the

path is reparameterized according to the average displacement.

∆zi(∆t) = zi(∆t)− zi(0) ≡ zi(∆t) =

= zi(0) +
∑
j

(
− βDij[z(0)]

∂F

∂xj
[z(0)] + ∂zjDij[z(0)]

)
∆t

(3.44)

All these steps are repeated until the convergence is reached.

An important insight of the SoT is the reparameterization [51,60,61,66] which con-

sists in interpolating a curve through the path image structures and then redis-

tributing them along the interpolated path. This is essential because it avoids the

problem of the path images converge to regions of low free energy after repeated

cicles applicating the Eq. 3.44. In this thesis we have computed MEPs and MFEPs

to study enzyme catalyzed reactions and protein damage events. Furthermore we

have implemented the SoT method into the pDynamo library [50].

3.4.4 Sampling Techniques

The above mentioned methods are able to energy minimize a molecular system.

In fact they are conceived to yield the lowest-energy structure of a given basin. In

reality, however, that is merely an approach to the state defined by this basin of

the PES since temperature promotes fluctuations within the basin implying that

there are a lot of similar structures that contributes to characterize this state.

There exits a wide rage of techniques aimed to sampling the energy surface. Here,

we are going to address the commonly employed MD simulation techniques as well

as other methodologies (less) employed in this thesis such as the MC techniques.

3.4.4.1 Molecular Dynamics

One of the most used methodologies to explore the potential energy surface of

complex systems with some degrees of freedom, is the molecular dynamics. This

technique integrates the Newton’s laws of motion, constructing trajectories that
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allow to describe the temporal evolution of the positions and velocities of the

particles of the system.

Additionally, MD calculations allow to calculate macroscopic properties of the

system. These properties are calculated averaging the values obtained from a

certain property along a trajectory long enough. The simulations has to be long

enough to extract statistically significant information from time trajectories to

predict relevant observable properties. Assuming the ergodic hypothesis, that

postulates that an average of the value of a given property over time is equiva-

lent to the average over all configurations defining the corresponding statistical-

thermodynamical ensemble, we could extract thermodynamic information of the

system, i.e., the macroscopic properties of the system.

Integration of the equations of motion

The integration of the equations of motion can not be done analytically and

for this reason, the use of algorithms based on finite differences, as the Velocity

Verlet algorithm, is required.

These algorithms, divide the integration in some steps of time ∆t and require

the calculation of the forces that actuates on each particle of the system at a

time t. These forces, allow the calculation of the acceleration and new velocities

and positions at a time t + ∆t, according to the second Newton law. Integration

algorithms assume that the time-dependent positions can be expressed with a

Taylor expansion:

r(t+ ∆t) = r(t) + ν(t)∆(t) +
1

2
a(t)∆t2 (3.45)

By adding the former equation to the corresponding expansion for the reverse

time step, r(t−∆t), the widely used Verlet algorithm is obtained:

r(t+ ∆t) = 2r(t)− rt−∆t) + a(t)∆t2 (3.46)

where the acceleration is computed directly from the force at time t. Its

main drawback is that the velocities are not included explicitly tending to loose

numerical precision.

An important aspect of these algorithms is the size of the time step chosen,

as one of the methodological limitations is the required size of the time steps.

Due to this, the exploration is limited to dynamical processes that take place

within the ps-ns time scale. If the time step is too large, it could produce high

energy overlaps causing instabilities in the integration algorithm. On the other

hand, excessively short time steps will not allow to cover biologically relevant

(long enough) time scales and thus will not obtain pertinent chemical information
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of the system. Therefore, a detailed balance between computational expense and

stability in the numerical integration is needed. The time step usually adopted is

within the fs time scale, which is around one order of magnitude shorter than the

fastest molecular processes.

To overpass the time step limitation, some strategies have been proposed and a

useful one is freezing the bonds. This procedure allow to increase the time step size

without causing instabilities. To do this, several methods including constraints

in the equations of motion have been developed, being the most widely used the

SHAKE [67] and LINCS [68] algorithms.

Temperature and Pressure control

To get the macroscopic properties of the simulated systems the proper statis-

tical mechanical (conformational) ensembles need to be calculated. By following

the equations of motion the NVE ensemble can be described because of the po-

tential and kinetic energy of the system will fluctuate and exchange, thus the

total energy is conserved. This ensemble, however, is not appropriate to describe

molecular properties of real systems as many experimental studies are carried out

at constant temperature and/or pressure. In these conditions, the thermal energy

of the system is exchanged with the exterior. Therefore MD simulations require

incorporating thermostats and barostats (the Berendsen thermostat and barostat

are ones of the most used) to mimic these constant variables. By constant does

not mean constrain the variable to a certain value during the whole simulation,

but that along the simulation the variable only oscillates around an average value

and does not drift.

MD system setup

To start a simulation experimental data, such as a crystallographic structure

or an NMR ensemble, or a theoretical model is required. From them the atomic

coordinates are extracted and the initial velocities are assigned. The assignment

is usually based on the Maxwell-Boltzmann distribution at a given temperature.

Equilibration and production phase

Once the initial velocities are assigned the system is equilibrated until start the

data collection phase. The equilibration is important to ensure that the kinetic

energy (atomic velocities) is equally distributed among all degrees of freedom and

oscillates around a mean value, i.e., the system is relaxed. After it, the production

run starts.

The limiting, and most computationally demanding, part of each simulation

step is the calculation of forces, that determines the accessible time scale. The

current computational power allows MD simulations with molecular mechanics

force fields to reach hundreds of nanoseconds, whereas those using a QM potential
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energy function (usually a semi-empirical) have access to hundreds of picoseconds

at most. Depending on the molecular properties of interest this is enough or not.

MD limitations

The main limitation of molecular dynamics is the limited amount of confor-

mational space that can be explored, that at the end is related to the timescale

that is able to cover. MD simulations describe conformational fluctuations over

a broad range of time scales, i.e. from picoseconds to hundreds of nanoseconds.

This allow, for instance, for accurate sampling of local motions of amino acid

side chains or subdomains that take place at fast time scales. However, large-

amplitude conformational changes, such as substrate-binding or allosteric events,

occur at slower time scales (micro-milliseconds) that are inaccessible by standard

MD techniques (as we explained at the Introduction).

A plethora of sampling methods aimed to broaden the exploration of the con-

formational space has been emerged. Of increasing importance and utility are

Coarse-grained models, which vastly reduce the number of degrees of freedom

and interaction sites by replacing sets of atoms by beads, and Replica exchange

methods that running independent simulations at different temperatures are able

to improve the MD description of the energy landscape. In this thesis we have

performed several MD calculations within the Gromacs [69] and the pDynamo [50]

programs, using the Berendsen thermostat and barostat and in some of them the

LINCS algorithm.

3.4.4.2 Coarse Grained methods

The Coarse-Grained (CG) models vastly reduce the number of degrees of freedom

and interaction sites, by replacing sets of atoms by beads, due to the potential

energy surface is smoothed out leading to reduced friction, allowing the use of

larger time steps. Generally, the less number of beads, the less expensive the sim-

ulation is. Furthermore, most CG models only compute short-range interactions,

typically cut-off at a distance around 1 nm. All these strategies are aimed to

reduce the computational expense [70].

Combining accuracy and predictive power in a few parameters is a difficult

task achieved through different strategies giving rise to a variety of models and

parameterization recipes. A typical classification of the coarse-grained models for

proteins is based on the level of coarse-graining, i.e, the number of beads [71–73].

The advantages of using CG models are obtained at the cost of a number of

emerging problems in the parameterization. The elimination of internal degrees of

freedom have to be compensated, because their effect must be taken into account,

in an implicit manner. Their effect have to be accounted in the effective forces
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acting over the explicit degrees of freedom of the system [72]. Depending on the

class of the CG model the potential energy is described accordingly, by the force

field, to account the particularities of each of them [71,73].

Class Number of beads Type of bead

I 1 bead Cα
[74–77]

II 1 bead Cβ
[78]

III 2 beads Cα , Side chain (CM , Cβ or centroid) [79–82]

IV 2 beads Backbone CM , Side chain CM [83]

V 1-3 beads Cα , 0-2 beads for side chain [84]

VI 1-6 beads Backbone centroid , 0-5 beads for the side chain [85,86]

VII 1-2 beads Cα , Backbone centroid , Side chain centroid [87–89]

Table 3.1: Classification of the CG (minimalist) models for proteins according to the
number of beads. CM, center of mass. Adapted from Tozzini 2010 [73]

The CG models apart of differing by the level of coarse graining are classified

according to the philosophy of the force fields. There are two main categories

of approaches, bottom up and top-down. In bottom-up approaches (also called

structure-based coarse graining), effective CG interactions are extracted from ref-

erence atomistic simulations in a systematic way by using inverse Monte Carlo

(IMC) [90], iterative Boltzmann inversion (IBI) [91], force matching (FM) [92,93], or

related methods. Top-down approaches (also known as thermodynamic-based

coarse graining), are based on match experimental data, especially thermody-

namic properties. Typically, simple analytical interaction potentials are used and

the parameters are optimized in an iterative procedure. As each approach has

its own beneficial properties (bottom-up used to capture more fine details of the

interaction and top-down are most transferable), many CG force fields rely on a

combination of these two routes [70] (see the works of Tozzini [71–73] for a review on

the different types of protein CG models, Brini et al. 2009 [94] for a review on CG

parameterization philosophies and Ingólfsson et al. 2014 [70] for a recent review on

the biomolecular applications of CG models).

Depending on the system to simulate one or another approach is better suited

due to the different CG schemes are designed to study different properties. Some

CG models are used to reproduce the solvent and other the system atoms, i.e. the

protein. In this thesis we have used the Profasi [95] and the Campari [96,97] force

fields that represent the solvent with CG schemes.
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3.4.4.3 Monte Carlo techniques

Profasi and Campari are able to run MC simulations. The MC techniques are an-

other methods widely used to explore the protein energy landscape. In MD simu-

lations the system is simulated along the time, integrating the Newton’s equation

of motion, observing how the conformational ensembles goes changing whereas

MC constructs canonical ensembles generated randomly and accepted or rejected

according to a certain criteria. There are several MC applications but thereafter

we refer MC to the methods referred to compute equilibrium properties of classical

many-body systems.

MC methods are a extended class of computational algorithms oriented to

obtain the probability distribution of some characteristic of the system. These

methods usually rely on repeated random sampling, i.e, simulations are run many

times, although this is not a must because performing one run can be enough

(it depends on the simulating system). MC methods simulate accurately equilib-

rium thermodynamic and physical properties of a system of interest, as they are

designed by construction to do so. MC simulations can be conducted in several

different statistical mechanical ensembles, depending the sampled distributions

on the ensemble employed. However for proteins as happens with other methods

usually the NVT (canonical) ensemble is employed.

MC methods although unable to provide kinetic information are a good choice

because they easily treat different thermodynamic ensembles performing a con-

stant temperature simulation in contrast to the often required thermostat tech-

niques in MD simulations. Furthermore they only need energies to generate the

atomic trajectories without requiring expensive force calculation. Besides, these

methods do not suffer of inaccuracies due to discrete-time approximations of the

equations of motion.

A Monte Carlo simulation generates configurations by making random changes

to the positions of the atoms over an initial system (as well as their orientations

and conformations when necessary) from that the potential energy of each con-

figuration of the system, together with the values of other properties, could be

calculated by deterministic computations [98].

MC step

A MC algorithm constitutes a markov process in which a random walk is

constructed in such a way that the probability of visit a particular configuration

of the system is proportional to the Boltzmann factor (Eq. 3.33). Depending on

the change in the probabilistic value of the energy function (∆U = U2 − U1) the

step is accepted or rejected based, commonly, in the Metropolis criterion.

• If ∆U ≤ 0→ is accepted with a probability, P (accept) = 1
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• If ∆U > 0→ compute a uniform random number Ranf within the interval

[0, 1). If the probability P (accept) = e
− ∆V
kBT > Ranf , is accepted.

This process constitute the called MC step. There are different MC methods

but all of them follow the mentioned pattern.

In fact, a MC algorithm is composed by a group of MC steps that generate

a Markov chain of states and has no history dependence. That means that the

movement depends only on the actual and the previous step, not in the more

previous (if exist). Using the definition of MC steps, i.e. the randomly genera-

tion of N MC points in the configurational space, the average value of a certain

observable can be calculated as:

〈A〉 ≈ 1

NMC

NMC∑
i=1

A
(−→ri ) (3.47)

MC move

Once the MC step is accepted the system moves (this movement constitutes a

MC move) adopting a new atomic configuration. As in MC methods the dynamic

principles by which the atomic positions evolve incorporate random moves over

the initial system, the dynamics of MC trajectories are not representative of the

true system dynamics. On the other hand it depends on the type of the random

moves performed. There are several standard Monte Carlo moves that one can

use to explore conformational degrees of freedom. One simple example is the

single-particle displacement that perturbed the position of the atoms within the

maximum displacement range. This displacement is computed as a free parameter

that can be turned to adjust the efficiency of the moves.

Regarding biomolecular simulations, specially chain molecules such as proteins,

a combination of different kind of moves is employed. Commonly a torsional space

sampling is used, that sometimes is augmented by sampling of angular degrees of

freedom [99] or even the Cartesian coordinates directly [100]. The inclusion of such

moves is determined by the force field used for the calculations [97]. For instance

in the PROFASI code [95], first a pivot-type rotation about individual backbone

bonds is performed, followed by a semi-local backbone update, employing the Bi-

ased Gaussian Steps (BGS) method, which rotates up to eight consecutive torsion

angles simultaneously [101] and finally a rotation of individual side-chain angles is

implemented [102].
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3.4.4.4 Replica Exchange / Parallel Tempering

MD and MC simulations are usually carried out at a given temperature, starting

from a representative initial configuration that ends reaching the thermal equi-

librium. However the system of interest can have two or more potential wells

separated by relatively high barriers. This is the case of globular proteins in

solution that need a macroscopic time to fold into an specific configuration.

To study IDPs (see section 1.6.1), that are multiconfigurational and not well-

folded proteins, Replica Exchange (RE) methods are more suitable than, for in-

stance, MD due to the replicas performed on this kind of simulations prevent

the system to fall into an energy minimum from which can not scape, result-

ing into a bad definition of the conformational landscape; a potential problem

due to the extended nature of IDPs. Replica Exchange methods, also called

Parallel-Tempering, try to overcome the multiple-minima problem by exchanging

the temperature of non-interacting replicas of the system running at several tem-

peratures. Both Monte Carlo, REMC, and Molecular Dynamics, REMD, variants

are possible.

Formally the RE methods, applied to biomolecular systems, simulate M repli-

cas of an original system of interest, each at a different temperature. By including

an exchange mechanism between different temperatures, a total ensemble is gener-

ated encompassing the full range of temperatures. RE methods are ideally suited

for run in parallel because each replica runs on a separate processor and there

is only communication between processors when exchanges are attempted. The

method is not restricted to a range of temperatures, but could involve a range of

Hamiltonians, representing different parameters of the system.

In REMC by allowing configuration exchange between different (typically ad-

jacent in temperature) replicas, the systems simulated at lower-temperature can

access a representative set of low-energy regions of the energy landscape without

be trapped into a local energy minima. In this thesis we have performed several

REMC simulations to study IDPs using the Profasi and Campari force fields.

3.4.5 Data analysis

The biomolecular simulations can quickly generate very large amounts of com-

plex data. As a consequence of the more available computational power, larger

biomolecular simulations could be performed, i.e. researchers can tackle larger

systems and simulate for longer time scales, producing more data [103]. These sim-

ulations usually generate (time-dependent or not) trajectories and it is not obvious

from their direct visualization the relevant properties that one can (or should) ex-

tract. However, there are several data analysis techniques able to to overpass this
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issue. Each of them use to be designed to an specific purpose (Here we are going

to summarize some of these techniques used in this thesis).

3.4.5.1 Principal Components Analysis (PCA)

Principal component analysis is one of the most important techniques to the study

of multivariate data. Although one of the earliest multivariate techniques, it con-

tinues being one of the most used. It is extremely versatile with applications in

many disciplines [104,105]. PCA converts a set of observations (probably correlated

variables of the system) into principal components (a set of values of linearly

uncorrelated variables), which number is not higher than the number of origi-

nal variables. The dimension reduction, i.e. the reduced set of new variables,

is achieved through an orthogonal and linear combination of the original vari-

ables [104]. Focusing on protein dynamics simulations, this can provide a simplified

description of the correlations between parameters that could be related somehow

to different states or conformations of the studied system.

For instance analyzing QM/MM enzymatic calculations, where usually mul-

tiple trajectories (to achieve statistical significance) are generated, it allows the

exploration of the diverse conformations of the system (such as reactants, TS and

products). By using a set of geometrical parameters, relevant to the enzymatic

process, could be found correlations between them related to the variance of the

conformations.

Lets us consider the PCA method in more detail. Mathematically PCA is

defined as a orthogonal linear transformation assuming all basis vectors are an

orthonormal matrix [104]. PCA is oriented to extract the correlations and variances

of a dataset finding the eigenvectors and eigenvalues. Thus, the PCA is computed

by determining the eigenvectors and eigenvalues of the covariance matrix (that is

used to measure how much the dimensions vary from the mean with respect to

each other) built as:

Qij = 〈(ri − 〈ri〉)(rj − 〈rj〉)〉 (3.48)

where rk is the k component of vector r = r1...r3N which defines the coordi-

nates of a system of N atoms. Q is a symmetric N x N matrix, whose diagonal

elements represent the variables variations and the off-diagonal elements the cor-

relation between the variables. The eigenvectors of Q are N-dimensional vectors

that indicate the principal components or essential modes and the corresponding

eigenvalues the variations of the mode [104,106].

PCA is often used as the first step, reducing dimensionality, before undertaking
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another multivariate technique such as partial least square regression(PLSR) or

cluster analysis.

3.4.5.2 Partial Least Square Regression (PLSR)

PLSR [107] is used to find the fundamental relations between two matrices (X and

Y). Is a well-known multivariate linear regression (chemometrics) method that

does not suffer from linear dependencies among measured parameters and avoids

noise overfitting problems when the number of correlated variables or parameters

(X values) is high. PLSR produces new latent variables (variables that are not

directly observed but are rather inferred) that optimally predict changes in the

independent variables (Y values) from the observed variance in the dependent

variables (X values).

PLSR regression is particularly suited when the matrix of predictors has more

variables than observations, and when there is multicollinearity among X values.

Thus is a good option after PCA being the X matrix composed by the principal

components. Furthermore, since PLSR is based on a bilinear model (X and Y data

are projected to new spaces), it is a reliable and robust method for the validation

and interpretation of statistical data.

3.4.5.3 Deviation techniques

Another simple but very useful methods employed to analyze biomolecular simu-

lations are based on position measurements. These methods compare differences

between two data sets, in our case, the variability of the atomic positions distri-

bution functions.

Root Mean Square Displacement (RMSD)

Root mean square deviation (RMSD) is a measure of how much the protein

structure changes along the simulated trajectory, i.e, along the time. It measures

the average distance between the atoms (usually the backbone atoms) of the con-

formational ensembles, for instance comparing the structure of a partially folded

protein and the native state.

Furthermore this measure could be used as a control of the simulation, because

the RMSD could be measured along the simulated trajectory; if the RMSD is still

changing on average at the end of your simulation, probably is due to it is not

long enough and is not equilibrated. If the equilibrium is reached the RMSD

values should stabilize around a fixed value. The RMSD for the conformation

corresponding to the frame x is computes as:
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RMSDx =

√√√√ 1

N

N∑
i=1

(r
′
i(t(x))− ri(t(ref)))2 (3.49)

where N is the number of atoms in the atom selection, tref is the reference

time, (typically the first frame t = 0 and ri is the position of the selected atom in

the frame x recorded at time t(x).

3.4.5.4 Reweighting techniques

As we have explained at the Introduction (see section 1.4) the ensembles have

to be representative of the simulated system. Despite the development of more

accurate force fields, there are still continuing inconsistencies [108]. A good option

to overpass the problem is to reweight the simulated ensembles. Reweighting

techniques allows to ‘expand’ the results from the original simulation to fit the

‘correct’ (generated experimentally or theoretically) ensembles.

Maximum Entropy Principle

A recently proposed way to reweight conformational ensembles is using the

maximum entropy (MaxEnt) method [109,110] that is a logically consistent way to fit

data to previously known models introducing the minimum possible modifications.

Originally the method was introduced by Jaynes in 1957 [111] and derives from

minimizing the information included in an ensemble to fit certain observables.

Assuming that we have a set of simulated (by MD or MC) N structures Xj=1,N ,

for a set of M observables q = qi=1,M , according to Pitera and Chodera [109], the

application of the MaxEnt principle resulted in a reweighting of the probability

of each structure j by a term wj defined as:

wj =
M∑
i

exp(λiq
j
i ) (3.50)

The form of the reweighting is kept fix, applying a single parameter λi to each

observable. wj modifies the weight of the structure to fit the objective (usually

experimental) observables. qji represents the value of the observable i in the struc-

ture Xj and q is a M x N matrix. λi is a lagrange multiplier that represent the

constrained experimental data:

c1 =

∫
d(xqi(x)p(x)− qexpi (3.51)

where qexp is the vector that contains the experimental measurements, being

the average value of observable qi for a given reweighting defined as:
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〈qi〉 =
N∑
j

wjqji (3.52)

In this thesis we have employed all the above mentioned data analysis methods.

PCA, PLSR and RMSD to analyze QM/MM an MD simulations and our own

implemented MaxEnt to fit RDCs ensembles of IDPs.

3.5 Charge Transfer methods

Charge transfer (CT) reactions play a very important role in a wide range of

chemical and biological processes (see section 1.3.2). In most of them, charge

transfer occurs between two chemical groups, donor and acceptor, which usually

are separated by several angstroms. One useful way to characterize this transfer

is by calculating the electronic coupling VDA between them. The strength of

this coupling determines whether the process is adiabatic or non-adiabatic. It

determines if the system has a certain probability to jump from the initial to

the final potential energy curves (non-adiabatic and a weak electronic coupling)

or remains on the lower potential energy curve (adiabatic and reasonable high

electronic coupling)(see section 1.3.2.1).

3.5.1 Electronic Couplings

Several procedures have proved useful for calculating electronic coupling matrix

elements [112]. For the system where donor and acceptor are separated by a bridge,

effective coupling can be estimated using Larsson’s formula.

VDA = VD1VnA

N∑
i=1

C1iCni
E − εi

(3.53)

where VD1, VnA are the matrix elements between the bridge and the donor or

the acceptor, respectively, and E is the tunnelling energy. The summation extends

over all states of the bridge.

From this first attempt other approaches, as Newton and Cave [113], describes

the Generalized Mülliken-Hush:

VDA =
|(E2 − E1)|µ12√
(µ1− µ2)2 + 4q2

12

(3.54)
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The adiabatic states are transformed to the diabatic states using the matrix

that diagonalizes the adiabatic dipole moment matrix. For a two state model, the

electronic coupling (the off-diagonal matrix element of the non-adiabatic Hamil-

tonian) can be expressed via the vertical excitation energy E2−E1, the difference

µ1−µ2 of the adiabatic dipole moments and the transition dipole moment µ12
[112].

From this and using the Fragment Charge Differentiation (FCD):

VDA =
|(E2 − E1)|∆q12√

(∆q1 −∆q2)2 + 4q2
12

(3.55)

being ∆q1,∆q2 are the Donor-Acceptor differences in the adiabatic states

ψ1, ψ2, respectively for the two-state model, and ∆q12 are the corresponding off-

diagonal terms. In the same spirit that Eq. 3.55 we can derive the SFCD (or

simplified FCD):

VDA =
1

2
(E2 − E1)

√
1−∆q2 (3.56)

where ∆q is the difference of the charges on donor and acceptor in the ground

state. When donor and acceptor are ‘in resonance’, ED = EA, then Eq. 3.56 -

3.54 are reduced to the minimum splitting expression:

VDA =
1

2
(E2 − E1) (3.57)

The resonance condition imply that µ1 = µ2 in Eq. 3.54, ∆q1 = ∆q2 = 0 in

Eq. 3.55 and ∆q = 0 in Eq. 3.56.

The adiabatic splitting can be calculated as the first excitation energy of the

radical (cation or anion) ∆ = E2 − E1 using a configuration interaction (CI)

method. Alternatively the Koopman’s theorem (which states that in closed-shell

HF, the first ionization energy of a given molecular system is equal to the negative

of the orbital energy of the highest occupied molecular orbital (HOMO)) can be

employed. Doing that ∆ can be estimated as the difference of the one-electron

energies of the two highest occupied molecular orbitals HOMO and HOMO-1

calculated for the closed-shell neutral dimer. This constitutes the one-electron

approximation.

Following the one-electron approximation, the donor and acceptor charges of

the first adiabatic state of the neutral dimer can be estimated via the correspond-

ing Mulliken populations of the HOMO of the neutral system. Then the charge

on a fragment can be estimated as [112]:

q1(F ) =
∑
i∈F

Ci,HOMO

M∑
j=1

Cj,HOMOSij (3.58)
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where Sij is the overlap of atomic orbitals i and j; i runs over atomic orbitals

associated with the selected fragment F while j runs over all Atomic Orbitals

(AOs). The fragment charges of the second adiabatic state are calculated analo-

gously using the coefficients Ci,HOMO−1 of the molecular orbital HOMO-1 in place

of Ci,HOMO
[112]. In this approximation, the general quantity qmn(F) can be defined

by:

qmn(F ) =
1

2
∗

∗

[∑
i∈F

Ci,HOMO+1−m

M∑
j=1

Cj,HOMO+1−nSij +
∑
i∈F

Ci,HOMO+1−n

M∑
j=1

Cj,HOMO+1−mSij

]
(3.59)

and having into account that:

kET ∝ |VDA|2e
−∆E
RT (3.60)

as can be seen at section 1.3.2, we arrive to the formula developed by Rösch

and Voityuk [112], the formula that used to calculate the electronic couplings:

VDA =
∆E12|µ12|
|µD − µA|

(3.61)

where,

µ1 − µ2 =
M∑
i,j=1

(Ci,HOMOCj,HOMO − Ci,HOMO−1Cj,HOMO−1)di,j (3.62)

and

µ12 =
M∑
i,j=1

Ci,HOMOCj,HOMO−1di,j (3.63)

(In this thesis we have employed the FCD method to analyze CT processes in

an ezymatic damage reaction.)
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A. E. Torda, T. Huber, P. Krüger, and W. F. van Gunsteren. The GROMOS Biomolecular

Simulation Program Package. J. Phys. Chem. A, 103(19):3596–3607, 1999.

[36] W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives. Development and Testing of the

OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic

Liquids. J. Am. Chem. Soc., 118(45):11225–11236, 1996.

[37] P. Cieplak, F.-Y. Dupradeau, Y. Duan, and J. Wang. Polarization effects in molecular

mechanical force fields. J. Physics: Condens. Matter, 21(33):333102, 2009.

[38] C. Oostenbrink, A. Villa, A. E. Mark, and W. F. Van Gunsteren. A biomolecular force

field based on the free enthalpy of hydration and solvation: The GROMOS force-field

parameter sets 53A5 and 53A6. J. Comput. Chem., 25(13):1656–1676, 2004.



REFERENCES 97

[39] K. Lindorff-Larsen, S. Piana, K. Palmo, P. Maragakis, J. L. Klepeis, R. O. Dror, and

D. E. Shaw. Improved side-chain torsion potentials for the Amber ff99SB protein force

field. Proteins: Struct. Funct. Bioinforma., 78(8):1950–1958, 2010.

[40] H. Berendsen, J. Postma, W. van Gunsteren, and J. Hermans. Interaction Models for

Water in Relation to Protein Hydration. In B. Pullman, editor, Intermolecular Forces,

volume 14 of The Jerusalem Symposia on Quantum Chemistry and Biochemistry, pages

331–342. Springer, 1981.

[41] W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein. Compar-

ison of simple potential functions for simulating liquid water. J. Chem. Phys., 79(2):926–

935, 1983.

[42] M. W. Mahoney and W. L. Jorgensen. A five-site model for liquid water and the reproduc-

tion of the density anomaly by rigid, nonpolarizable potential functions. J. Chem. Phys.,

112(20):8910–8922, 2000.

[43] D. M. York, T. A. Darden, and L. G. Pedersen. The effect of long−range electrostatic

interactions in simulations of macromolecular crystals: A comparison of the Ewald and

truncated list methods. J. Chem. Phys., 99(10):8345–8348, 1993.

[44] K. Nam, J. Gao, and D. M. York. An Efficient Linear-Scaling Ewald Method for Long-

Range Electrostatic Interactions in Combined QM/MM Calculations. J. Chem. Theory

Comput., 1(1):2–13, 2005.

[45] P. Sherwood. Hybrid Quantum Mechanics/Molecular Mechanics (QM/MM) approaches.

Mod. methods algorithms quantum chemistry, 1:257–277, 2000.

[46] A. Warshel and M. Levitt. Theoretical studies of enzymic reactions: Dielectric, electro-

static and steric stabilization of the carbonium ion in the reaction of lysozyme. J. Mol.

Biol., 103(2):227 – 249, 1976.

[47] M. J. Field. A Practical Introduction to the Simulation of Molecular Systems. Cambridge

University Press, 2007.

[48] H. M. Senn and W. Thiel. QM/MM Methods for Biological Systems. In Atomistic Ap-

proaches in Modern Biology, volume 268, pages 173–290. Springer, 2007.

[49] H. M. Senn and W. Thiel. QM/MM Methods for Biomolecular Systems. Angewandte

Chemie, 48(7):1198–1229, January 2009.

[50] M. J. Field. The pDynamo program for molecular simulations using hybrid quantum

chemical and molecular mechanical potentials. J. Chem. Theory Comput., 4(7):1151–1161,

2008.

[51] L. Maragliano, A. Fischer, E. Vanden-Eijnden, and G. Ciccotti. String method in collec-

tive variables: minimum free energy paths and isocommittor surfaces. J. Chem. Phys.,

125(2):24106, 2006.

[52] D. J. Wales and T. V. Bogdan. Potential Energy and Free Energy Landscapes. J. Phys.

Chem. B, 110(42):20765–20776, 2006.



98 REFERENCES

[53] M. Garcia-Viloca, J. Gao, M. Karplus, and D. G. Truhlar. How enzymes work: analysis

by modern rate theory and computer simulations. Science., 303(5655):186–195, 2004.

[54] D. G. Truhlar, B. C. Garrett, and S. J. Klippenstein. Current Status of Transition-State

Theory. J. Phys. Chem., 100(31):12771–12800, 1996.

[55] E. Weinan and E. Vanden-Eijnden. Transition-path theory and path-finding algorithms

for the study of rare events. Annu. Rev. Phys. Chem., 61:391–420, 2010.

[56] L. Maragliano, B. Roux, and E. Vanden-Eijnden. A comparison between mean forces and

swarms-of-trajectories string methods. J. Chem. Theory Comput., 10(2):524–533, 2014.

[57] E. Marcos, M. Sanchez-Martinez, and R. Crehuet. Interplay between enzyme function and

protein dynamics. A multi-scale approach to the study of the NAG kinase family and two

class II aldolases. In Computational Approaches to Protein Dynamics: From Quantum to

Coarse-Grained Methods. Academic Press, In press.

[58] C. Gonzalez and H. B. Schlegel. Improved algorithms for reaction path following: High-
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Chapter 4

Results

The results of this thesis are divided into two main sections, and several sub-

sections, addressed to highlight the local and global protein movements, encom-

passing the different studies realized. These studies regarding local motions are

related to enzyme catalysis and protein damage and within global movements to

the reweighting of protein conformational ensembles and the cooperativity of sec-

ondary structure elements over them, specially focused on IDPs. Each subsection

presents a brief summary of the study developed to address it, followed by the

corresponding manuscript or the draft for ASAP publication.

4.1 Local Motions

4.1.1 Catalytic role of protein motions

To try to clarify whether the dynamics at the global level influence the local

motions to catalyze the chemical step or not, we decided to use the NAGK en-

zyme. This enzyme has been widely studied by the group of Professor Rubio

(IBV-CSIC) experimentally and theoretically by our group. It constitutes a good

example because it presents a high number of accessible crystal structure repre-

senting different states of the chemical reaction. Rubio and co-workers showed

that those corresponding to transition state analogues had shorter substrate dis-

tances than the crystal structures corresponding to reactants, inferring that the

‘conformational compression’ (O-O distance between substrates ATP and NAG) of

the substrates favours catalysis. To investigate this hypothesis we complexed four

different representative crystal structures, PDB accession numbers 1GS5, 1OH9,

1OHA, and 2X2W, with the natural substrates of the reaction ATP and NAG

(see Fig. 4.1). Then we performed MD followed by QM/MM simulations over the

different crystal structures and different trajectory snapshots for each of them,
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respectively. Among all crystal structures considered, we found that two of them

(1OHA and 1OH9) were particularly useful to address this hypothesis.

Figure 4.1: An schematic picture of the natural substrates of NAGK.

The variety of energy profiles obtained (see Fig. 4.2), even over the same crys-

tal structure, indicate that the energy barrier is not determined by the change in

the distance (between nucleophile and leaving group, i.e. O-O distance) along the

reaction process, i.e. it does not depend on how much compression is needed from

reactants to transition state. Instead, there is a noticeable correlation between

the substrate distance in the reactants state and the energy barrier. The lower

the O-O distance the lower the energy barrier. In this sense, the statistical anal-

ysis (PCA + PLSR) reveals that each reactant conformation proceeds through

its own reaction valley with a transition state whose instability (represented by a

high energy barrier) will increase as the reactants be afar.

Additionally, we found that the energy barrier is not only determined by the

reactants compression distance, but also by its spatial distribution, i.e, the linear

angle of the transferring phosphoryl with the nucleophile and leaving groups (O-

P-O angle). The higher the O-P-O angle plus the shorter the O-O distance, the

lower the energy barrier. Furthermore the role of water in the active site was also

found extremely important. Overall, the structure of the pre-reactive complex

contains relevant predictive information on the energy barrier.

The calculated energy barrier for the chemical step for all our conformations

is significantly lower than the apparent (experimental) energy barrier (∆E‡ = 67

kJ/mol). This energy barrier corresponds to a free energy which implicitly in-

corporates dynamical and tunnelling corrections. All the energy values are based

on approaches: to estimate the average experimental energy barrier from thermo-

dynamical data (that underestimates the dynamical and tunnelling corrections)

and to perform MD and QM/MM simulations (ranging from the choice of the

QM region to the limiting sampling of conformations) that may induce uncertain-
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ties. Furthermore, at the end, our QM/MM calculations return potential energy

instead of free energy.

Figure 4.2: Reactants, transition state and product energies of the five 1OH9 (blue)
and 1OHA (red) structures. The dispersion of energy values is large, even for snapshots
coming from the same crystal structure. The black line represents the average energie
values.

However, the experimental energy barrier almost doubles (constituting a too

much big difference to be cancelled by methodological errors) the calculated aver-

age energy barrier for the chemical step (39 kJ/mol), suggesting that the chemical

step is not the rate-limiting step for this enzyme and that conformational motions

(associated with the lid opening and closing) can be slower than the chemical

reaction. This hypothesis has also been put forward for other enzymes, such as

adenylate kinase, cyclophilin A or dihydrofolate reductase.

Summarizing, our results indicate that the catalytic proficiency of the enzyme

lies in collective motions accessing properly oriented and highly compressed active

site conformations, thus supporting the ‘conformational compression’ hypothesis

inferred by Rubio and coworkers. Besides the fact that the energy barrier depends

too much on the reactants conformation, indicates that maybe the chemical step is

not rate-limiting and, instead, the protein motions leading to catalytic compressed
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conformations (to the extent that the resultant chemical barrier is close to the

conformational barrier) are the limiting process.
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ABSTRACT: The role of motions in the catalytic cycle of an enzyme is the subject of much
debate. Crystallographic results for the enzyme N-acetyl-L-glutamate kinase (NAGK), which is a
suitable target for antibacterial drugs, suggest that a conformational compression of the active
site favors catalysis. We have used a QM/MM scheme to compute energy profiles of the
phosphoryl transfer reaction for 20 conformations of NAGK, starting from four crystal
structures that represent different stages of the catalytic process. All paths show a common
associative mechanism but with a wide range of barrier heights. The position of several active
site residues and water molecules are found to determine the energetic barrier of each
conformation, as revealed by principal component and partial least-squares chemometric
analyses. In particular, conformations in which the two substrates have a shorter distance
separation and a more linear mutual orientation tend to have lower energetic barriers, thus
supporting the putative role of conformational compressive motions in catalysis. Interestingly, these motions are the same that
lead to opening of the active site, which molecular dynamics simulations indicate is a fast process when the enzyme is free of
substrates. Despite the lack of extended sampling, the energy barrier we calculate for the chemical step lies significantly below the
apparent energetic barrier derived from experiment. Although not conclusive, this result supports a previous hypothesis, also
derived from experiment, that conformational motions, rather than the chemical step, are rate limiting.

■ INTRODUCTION

The flexibility of proteins has been widely studied both
experimentally and computationally. Enzymes, being proteins,
are also flexible, but the role of flexibility in catalysis is still
widely debated.1 NMR studies have proved that proteins have
access to an ensemble of conformations, encoded into their 3D
structure.2,3 That dynamics occur during a catalytic cycle is
accepted by all scientists, but some argue that the term
“dynamical effects” should only be used to assess deviations
from Transition State Theory, which is an equilibrium theory.
Some experimental4 and computational5−7 studies suggest that
these dynamical effects are small or negligible in enzymes. By
contrast other studies indicate that fast dynamics are implicated
in the enzymatic cycle8 via promoting vibrations that are
coupled to the catalytic reaction coordinate.9−11

When slower conformational motions are present during the
catalytic cycle, they can become the rate-limiting step, and, for
some enzymes, NMR experiments indicate that this is indeed
the case.12 These motions are often associated with ligand
binding processes, although they have also been observed in the
free enzyme, pointing to an intrinsic functional dynamics.13 It is
unclear, however, whether dynamics at these millisecond time-
scales help catalyze the chemical step14 or not.6,15

The present study focuses on the amino acid kinase (AAK)
family, in particular, on N-acetyl-L-glutamate (NAG) kinase
(NAGK). The amino acid kinase family of enzymes comprises a
series of enzymes that catalyze a phosphorylation reaction and
have a high similarity in terms of sequence and structure.
NAGK catalyzes the phosphorylation of NAG, which is the
controlling step in arginine biosynthesis. This biosynthetic
route in bacteria proceeds through N-acetylated intermediates,
whereas in mammals nonacetylated intermediates are pro-
duced. Consequently, NAGK is a potential target for drugs that
selectively inhibit the bacterial enzymes. The NAGK form of
Escherichia coli (EcNAGK) has been extensively characterized
by biochemical and crystallographic methods16−21 and is
regarded as the structural paradigm of the AAK family of
enzymes. Focusing on EcNAGK, crystallographic studies by
Rubio and co-workers16,17,20 have provided insights into its
mechanisms of binding and catalysis. EcNAGK is a homodimer
of 258 residues, each monomer being folded into an αβα
sandwich. The N-domain of each subunit makes intersubunit
contacts and hosts the NAG binding site (NAG lid), whereas
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the C-domain binds the ATP. The phosphoryl transfer reaction
takes place at the interface between the two domains within
each subunit. Kinetic studies show no evidence of cooperativity
between subunits in EcNAGK,18 and so our study focuses on
the monomer.
The diverse crystallographic structures solved for this enzyme

indicate two types of functional motions:17

(1) X-ray structures of EcNAGK complexed with either ADP
or with the inert ATP analogue AMPPNP (PDB codes
1GS5, 1OH9, 1OHA, and 2X2W) have active sites that
are too narrow to let the substrates bind directly, whereas
structures with an unoccupied ATP site (PDB code
2WXB) have a more open active site that does allow the
substrates to enter. This suggests that the C-domain and
NAG lid undergo a conformational closure that is likely
to be triggered by nucleotide binding (see Figure 2).
According to the terminology coined by Gora and co-
workers,22 both flexible domains can be regarded as a
“double drawbridge” gate, which is rare in active site
entrances.

(2) Rubio and co-workers17 hypothesize that in the closed

form of EcNAGK the narrowness of the active site exerts

a “conformational compression” on the substrates (the

O−O distance in Figure 1) that favors catalysis. This
conclusion is deduced solely from the crystal structures.

Our recent computational studies on the AAK family23,24

showed that the large-amplitude motions of EcNAGK are
intrinsic to the enzyme, and are shared among other family
members, thereby pointing to a common mechanism of action.
We also found that the oligomeric assembly enhances both
intra- and intersubunit collective motions. The latter are
especially important for AAK members with allosteric
regulation as such cooperative motions between subunits are
ultimately responsible for regulating substrate binding events.24

In this work we use computational methods to evaluate the
role of conformational motions in the chemical step of the
reaction catalyzed by NAGK. More specifically our aims were
to (1) study the reactivity of the different crystal structures of
EcNAGK; (2) estimate the significance of “conformational
compression”; (3) determine whether induced fit is a plausible
mechanism for catalysis; and (4) identify to what extent
conformational motions determine the overall turnover of the
enzyme.

■ METHODS
We investigated the catalytic mechanism of EcNAGK using
hybrid quantum mechanical (QM)/molecular mechanical
(MM) potentials in combination with reaction path calcu-
lations. All QM/MM simulations, including system setup, were
done with the pDynamo25 program. Calculations with QM/
MM potentials that employed density functional theory (DFT)
methods were performed using pDynamo and its interface to
the ORCA26−28 quantum chemistry package. We also carried
out some MM molecular dynamics (MD) simulations using the
Gromacs29 program. Figures 1 and 2 have been generated with
the VMD code30 and Figures 3−10 have been generated with
Matplotlib.31 Figures in the Supporting Information use VMD,
matplotlib, LigPlot+,32 and Matlab.33

System Setup. We employed four crystal structures of
EcNAGK, with PDB entries 1GS5, 1OH9, 1OHA, and 2X2W.
For each of these crystal structures, we built a model of the
enzyme complexed with its natural substrates, ATP and NAG.

Figure 1. Structure of reactants with some relevant geometrical
parameters.

Figure 2. Open (green) and closed (blue) conformations of NAGK.
The substrates, in van der Waals spheres, correspond to the closed
conformation.

Figure 3. Energy vs reaction coordinate for the optimized NEB
reaction paths. Each color represents a different crystal structure:
green, 1GS5 snapshots; blue, 1OH9 snapshots; red, 1OHA snapshots;
yellow, 2X2W snapshots.
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Structure 1GS5 contains the ATP analogue AMPPNP and
NAG, so we replaced the NH group linking PΥ and Pβ of
AMPPNP with an oxygen atom. For 1OH9, we replaced the
AlF4 moiety of the ADP-AlF4-NAG complex with a PO3
phosphoryl group, whose coordinates were obtained by
superimposing the ATP structure from 1GS5 into the ADP
moiety of 1OH9. The same procedure was used to add the
transferring PO3 group to structure 1OHA, which only contains
ADP and NAG. Structure 2X2W chain A represents the
product complex of the enzyme, which contains phosphory-
lated NAG (NAGP), using the same procedure as before we
superimposed the Mg and ADP moiety from 1GS5.
Each simulation system consisted of a single monomer of the

corresponding crystal structure complexed with the natural
substrates. The protein structure was immersed in an
orthorhombic water box. To simulate conditions equivalent
to those of kinetic experiments carried out on NAGK,16

protonation states were assigned at pH = 7.0 with PropKa,34

and K+ and Cl− ions were added to achieve a salt concentration
of 100 mM. The OPLS/AA force field35 was used to describe
protein atoms and the TIP3P36 for water molecules.
To generate suitable starting structures for the simulations,

the structure of the solvated protein was first energy minimized.
This was followed by a short molecular dynamics simulation at
a temperature of 300 K with position restraints on the heavy
atoms of the protein to equilibrate the solvent. Finally, in a
second MD simulation, the position restraints on the protein
atoms were progressively relaxed until all atoms were free to
move.
The aim of this protocol was to obtain structures for the

protein that were relaxed, but as close to the initial crystal
structure as possible. Nevertheless, in all the runs, we found
significant distortion of the active site geometry. In particular,
Asp162 coordinated with the Mg cation in the active site,
although it is known that it coordinates two neighboring
lysines, Lys8 and Lys217, which have an important role in
anchoring the substrates.18 Likewise, we noted that NAG
coordinates to the Mg cation, which is again something that is
not observed in the crystal structures. The situation was not
improved by employing semiempirical QM/MM potentials,
although DFT QM/MM approaches provided better results
(see below for a fuller discussion). This sensitivity of the active
site geometry to the energy function was highly unsatisfactory
given that our aim was to compare the reactivity of different
crystal conformations. As a result, we decided to restrict our
equilibrating dynamics to the solvent and the hydrogens of the
protein and substrates, thereby preserving the initial crystal
structure and preventing inappropriate conformations of the
system. For each crystal structure, we performed a MD
simulation of 100 ns, and selected five snapshots at 20 ns
intervals as starting points for our QM/MM calculations.
QM/MM Potentials. Our initial choice for the QM method

to use for the atoms in the QM region was the semiempirical
AM1/d-PhoT,37 as it outperforms the original AM1 model in
the description of phosphoryl transfer reactions. AM1/d-PhoT
includes d-orbitals and incorporates a scaling factor in the
core−core term that attenuates the artificially attractive
interactions involving P atoms. Our previous calculations38

showed the ability of AM1d-PhoT to describe the phosphoryl
transfer, but it has important shortcomings for the present
system. First, it severely underestimates the exothermicity of
the reaction and, second, carboxylic oxygen shows a too strong
interaction with the Mg cation, thereby causing NAG to

coordinate the metal very rapidly during a simulation. Both
these failures can be ascribed to the following limitations in the
parametrization of the AM1d-PhoT method: (i) carboxylic
acids were not included as nucleophiles in the parametrization
training set; and (ii) the Mg cation was not reparameterized,
even though it frequently accompanies ATP.
A further problem that we observed for the semiempirical

QM/MM method was the tendency of MM waters to
substitute for QM ones in the coordination shell of the Mg
cation. In our system, one needs to treat the Mg coordinating
water molecules in the QM region (see below) to get a correct
exothermicity, but the exchange of QM and MM waters was
difficult to prevent, even with the use of constraints. Given that
the main advantage of a semiempirical method is the possibility
to perform molecular dynamics, and the fact that the AM1d-
PhoT method cannot be used for our system, we decided to
employ a DFT QM/MM method instead.
We used the mPWPW9139 DFT functional, as this has been

shown to reliably describe the geometry and energetics of
pentacoordinated phosphorus species40 and of enzymatic
phosphoryl transfer reactions.41

The QM region used had 34 atoms and comprised the three
phosphates of ATP, the acetyl fragment of N-acetylglutamate
(CH2−COO−), the Mg cation, and the three water molecules
that coordinate it (see Figures S1 and S5, Supporting
Information). The inclusion of Lys8 and Lys217 was also
considered (see Figures S3 and S4), as suggested by one of the
reviewers, but their inclusion does not change the shape of the
profile, and if anything, the energy barrier decreases. The basis
set used in all geometry optimizations and reaction path
calculations was the Ahlrichs split valence plus polarization
SV(d) for C, Mg, and N, and SV for hydrogens, and a SV(p)+
for P and O. The need for a diffuse function on P was based on
our previous experience,38 and on O, because most of them
bear a negative charge. Single point calculations were
performed with Ahlrich’s triple-ζ TZV(2d) basis set (hereafter
denoted “large basis set”).
For the DFT QM/MM simulations, the systems setup in the

previous section were pruned by removing all residues of the
system that had no atoms that were less than 25 Å away from
the γ-phosphate of ATP. The final systems contained
approximately 7200 atoms, with the exact number depending
on the starting crystal structure. In the geometry optimizations
and reaction path calculations, only atoms within 20 Å of the γ-
phosphate of ATP (approximately 4200 atoms) were allowed
to move, with the positions of those outside of this remaining
fixed. In the QM/MM Hamiltonian, all electrostatic inter-
actions between QM and MM atoms were evaluated with no
cutoff, irrespective of whether they were mobile or not.
Geometry optimizations were carried out with the double-ζ

basis set, followed by single point calculations with the large
basis set. The latter are the final energies reported in the
manuscript. The larger basis set increases the energy barrier,
but does not change the position of the minima or the TS (see
Figure S2), thus, making single point calculations a valid
approach for improving the accuracy of our calculations.
To evaluate the influence of the solvent configuration on the

total energy, we have performed Poisson−Boltzmann calcu-
lations with the APBS software.42 We report the details in the
Supporting Information.

Calculation of Reaction Paths. The higher computational
demand of DFT QM/MM potentials makes free energy
calculations difficult and so we optimized reaction paths
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between different conformations of the systems using the
Nudged Elastic Band (NEB) method.43−46

Five different reaction paths were optimized for each system
using snapshots taken from the initial MD trajectories. These
snapshots corresponded to the reactants for the 1GS5, 1OH9,
and 1OHA systems and to the products for the 2X2W system.
To obtain the corresponding products or reactants (the other
ends of the paths), we geometry optimized by constraining the
P−O bonds on ATP and NAG and then releasing the
constraint. The NEB calculations themselves were started off
with a small number of intermediate structures but gradually
increased until the energy profile converged. The number of
structures per path depended on the path length and
ruggedness, and it ranged from 19 to 57 images, with an
average of 33.
Statistical Analysis. To evaluate the diversity of the

investigated configurations, we employed a principal compo-
nent analysis (PCA)47 of various geometrical parameters that
have been postulated to be important in the catalytic cycle of
the enzyme. PCA defines a reduced set of new variables, as an
orthogonal and linear combination of the original variables that
provides a simplified description of the correlations between
parameters and the variance in conformations.
As a follow up to the PCA, we used a partial least-squares

regression (PLSR)48 to analyze the conformations. PLSR is a
well-known multivariate linear regression chemometrics
method that does not suffer from linear dependencies among
measured parameters and avoids noise overfitting problems
when the number of correlated variables or parameters is high.
PLSR produces new latent variables that optimally predict
changes in the independent variables (here the energy barriers
or y block values) from the observed variance in the dependent
variables (here the geometrical parameters or x block values).
Since PLS is based on a bilinear model, it is a reliable and
robust method for the validation and interpretation of statistical
data. In this work, the PLS Toolbox package49 was used within
the MATLAB computer and visualization environment.33

Molecular Dynamics. We carried out MD simulations for
analysis purposes on the 1GS5, 1OH9, and 1OHA systems
using the Gromacs29 program. Two were performed with the
OPLS35 forcefield and one with the Ambers99SB-ILDN50

parameter set, for 1GS5. For 1OH9 and 1OHA, one with
OPLS and one with Amber force field were performed. The
SPC51 water model was employed in each case, with the
imposition of periodic boundary conditions via a rhombic
dodecahedral box. The temperature was kept at 300 K, using a
Berendsen thermostat52 with time constant τ = 0.1 ps, whereas
the pressure was kept at 1 bar using the Berendsen barostat52

with an isotropic compressibility of 4.5 × 10−5 bar−1 and time
constant of 0.5 ps. The integration time step was 2 fs, and bond
lengths to hydrogen were constrained with the LINCS
algorithm.53,54 Electrostatics were computed via PME55,56

using a grid of 1 Å, and van der Waals interactions with a
switch function between 0.8 and 0.9 nm.
Before production runs were started, the structure of the

solvated enzyme was energy minimized with the steepest
descent algorithm. Next, solvent surrounding the protein was
equilibrated by running a MD simulation at the target
temperature using harmonic position restraints on the heavy
atoms of the protein, with a force constant of 1000 kJ mol−1

nm−2. Finally, a heating simulation was performed from 0 to
300 K, followed by a 40 ns simulation at 300 K, with snapshots
being saved every 50 ps for subsequent analysis. For the

production run, all position restraints were removed. This was
possible because the constraints used to sample the QM/MM
starting structures were needed to keep the substrates in their
experimental position, whereas these simulations were for the
apo enzyme, free of substrates.

Average Energy Barrier and Experimental Energy
Barrier. The comparison of kinetic data to calculations is
indirect. The correct way to obtain an activation barrier is to
calculate the variation of the rate constant with temperature.
When only a single rate constant is known, one can calculate an
apparent free activation energy from transition state theory
using the Eyring equation. Under this approximation, all
dynamical, tunneling, and temperature effects are included in
the free energy, as this is the single variable that is fit to the rate
constant, although they should in principle form part of the
pre-exponential factor to the rate. Nevertheless, in the majority
of cases, the true free energy of activation will remain the main
contribution to the apparent free energy.
The experimental catalytic rate constant (kcat = 40 s−1)

obtained by Rubio and co-workers16 corresponds to an energy
of activation of 66 kJ/mol, according to the Eyring equation,
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the free energy barrier. To compare this value with the
ensemble of values obtained from the different snapshots, one
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the average rate:57,58
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Here ΔEavg‡ is the average barrier height, R is the gas constant, n
is the number of energy profiles considered, ΔEi‡ is the barrier
height of each snapshot, and T is the temperature (310 K).
Because NEB calculations neglect entropy contributions, we
assume that ΔEi

‡ is a good approximation to ΔGi
‡, as has been

done in previous studies.58,59

■ RESULTS AND DISCUSSION
Heterogeneity of Energy Profiles Across Different

Conformations. Figure 3 shows the energy profile for the 20
reaction paths that were optimized, and the most relevant
energetic parameters are detailed in Table 1. There is
considerable heterogeneity in the profiles, but the figure
conveys two messages. First, the phosphoryl transfer from
ATP to NAG takes place through a one-step mechanism for all
the conformations. Second, the reaction is exothermic in most
of the conformations, as expected from the course of the
reaction in the enzyme’s metabolic pathway. Interestingly, there
is a wide range of variation in the activation energies (33−78
kJ/mol), as well as in exothermicity. This range, although large,
has been observed for other enzymes, including chorismate
mutase57,60−62 and a fatty acid amide hydrolase.63

The barriers are lower than the apparent free energy of
activation of 66 kJ/mol for all structures, except for one. We
have checked that this discrepancy does not stem from a too
small QM region. We have recomputed the NEB profiles with
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an expanded QM region including two lysines of the active site
(Lys8 and Lys217) that interact with ATP and found that the
shape of the profiles does not change (see Figures S3 and S4)
and that the barriers do not increase.
In all reaction paths there is a single transition state in which

the transferring phosphoryl adopts a bipyramidal geometry and
the axial bonds are the ones that are being formed and cleaved.
As shown in Figure 4, the sum of these two bond distances (the
O−O distance) is shorter in the TS than in reactants and
products, and in almost all profiles the minimum O−O distance
corresponds to the TS. Qualitatively this provides a geometric

argument in support of the conformational compression
hypothesis.
A comparison of the P−O distances in reactants and

products shows that the acceptor, NAG, approaches the P atom
before the phosphoryl moiety is cleaved, thereby resulting in an
associative mechanism. We note that a carboxylic acid is not a
good nucleophile and thus tends to favor dissociative
mechanisms, which suggests that it is the configuration of the
enzyme active site in this case that drives the associative
process. As this is the first theoretical study on acyl-kinases, we
wonder whether other members of this and related families
with different tertiary and quaternary structures, such as acetate
kinase, phosphoglycerate kinase, and biotin carboxylase, share
the same associative mechanism.
Figure 5 reveals that when approaching the TS, the O−P−O

angles are close to linearity, as expected for a SN2 reaction. The

only snapshot where this does not happen is the fourth
snapshot of 1GS5, which has a very high barrier. As pointed out
below this is due to the absence of a bridging water molecule
that induces the formation of a strong salt bridge interaction
between Lys61 and NAG. It is interesting to emphasize the idea
that enzymes do not need to bind their substrates very tightly,
because otherwise, the cost of bringing them to the TS
structure increases.
Figures 4 and 5 illustrate that there is a significant variability

in the TS O−O distance and O−P−O angle, respectively, and
the same is evident when other structural parameters of the TS
are analyzed, including the O−P and P−O distances, and
hydrogen bonds with active site residues (data not shown).
This variability is the source of the different energy barriers, but
it does not arise from bringing different reactant conformations
to a single rigid TS geometry, but from different reactant
conformations having different reaction valleys with different
energy barriers.

Geometrical Characterization of Conformational
Diversity in the Active Site. Principal Component Analysis.
To disentangle the information coded in the different
configurations and the source of the different energy barriers,
we have performed a statistical analysis of 16 geometrical

Table 1. Energies (in kJ/mol), with Respect to Reactants, of
the TS and Product Structures Obtained from the Optimized
NEB Reaction Paths

NEB TS (kJ/mol) products (kJ/mol)

1GS5
1 55.0 −6.5
2 51.4 −32.4
3 41.0 −1.7
4 78.6 −2.2
5 54.6 16.8
1OH9
6 45.0 −33.5
7 42.5 −20.7
8 58.4 −17.2
9 50.4 −11.9
10 64.1 14.7
1OHA
11 45.7 9.1
12 38.1 9.5
13 41.7 19.1
14 33.3 −10.0
15 37.2 −10.9
2X2W
16 39.5 −36.9
17 54.1 −24.9
18 46.5 −15.5
19 61.9 −25.1
20 36.9 −51.7

Figure 4. O−O distances along the optimized NEB reaction paths.
The colors correspond to those of Figure 3

Figure 5. Change of the O−P−O angles along the reaction path. The
colors correspond to those of Figure 3. Except for some ill-behaved
cases discussed in the text, the O−P−O angle approaches linearity at
the TS.
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parameters that are detailed in Table 2 using an approach
similar to Lodola et al. The parameters are considered at both

the reactant and TS geometries and are the distances between
several active site residues and the PO3 moiety; the O−O
distance between the ATP and NAG oxygen atoms that transfer
the PO3 moiety; and the O−P−O angle. The structure of the
active site and the positions of the selected residues in the
parameters are depicted in Table 2 and Figures S1 and S5.
We started by performing a principal component analysis

(PCA) of the geometrical parameters to evaluate the diversity
of the configurations and to simplify their characterization. The
results are given in Table 3 from which it can be seen that the
first two principal components (PCs) explain 80% of the
parameter variance.

Figure 6 displays the projection of the 20 conformations on
the first two PCs. PC1 distinguishes 2X2W structures from the
others, whereas PC2 mainly differentiates the fourth 1GS5
structure, which has the highest energy barrier (see below). As
shown in Figure 7, PC1 has large contributions from all
parameters except for the O−P−O angle and the Gly11
distance (15,16 and 7,8, respectively). This is probably due to
the loss of a large number of hydrogen bonds in the 2X2W
structures and also because the O−P−O conformation angle is
less linear in this case.
PC2 is mainly loaded by the Lys61 distance and the OPO

angle (Figure 7). The interaction between the lysine and the
carboxylate moiety of NAG leads to an orientation of NAG
with respect to ATP that is much less favorable for nucleophilic
attack. A closer analysis of the 1GS5 snapshots reveals that the
short contact between Lys61 and NAG is due to a missing
water molecule that bridges Lys61 and NAG in the crystal (and

all of the other snapshots). The absence of this water in 1GS5
allows the formation of a strong salt bridge between Lys61 and
the carboxylate of NAG in the reactants, which must be
disrupted if the PO3 moiety is to be accepted from ATP,
thereby adding a substantial energetic cost to the phosphoryl
transfer.
All 1GS5 structures lack this water molecule and, among

them, the fourth snapshot, which has the shortest Lys61−NAG
distance, is the one with the highest energy barrier in this study
(80 kJ/mol). Although other structures have longer Lys61−
NAG distances and lower barriers, it appears that the bridging
water is necessary to have the most proficient catalytic
conformation. In general, a strong interaction between the
substrates and the enzyme decreases Km, but may also decrease
kcat if that interaction needs to be weakened to reach the
products. This has been highlighted, for example, by Lluch and

Table 2. Geometrical Parameters Used to Characterize the
20 Conformationsa

parameter description parameter index (reactants and TS)

N(Lys217)−O2B(ATP) 1,2
N(Lys8)−O1G(PO3) 3,4
N(Gly44)−O3G(PO3) 5,6
N(Gly11)−O3G(PO3) 7,8
N(Gly45)−OE2(NAG) 9,10
O3B(ATP)−OE2(NAG) 11,12
N(Lys61)−OE2(NAG) 13,14
OPO angle 15,16

aThe residues selected have been identified as being relevant for
binding or catalysis in previous work.17,20 The values of each
parameter at the reactant (odd indexes) and TS (even indexes)
structures are considered.

Table 3. PCA Analysis of the Geometrical Parametersa

principal
component eigenvalue

% of variance
captured

% of accumulated
variance

1 9.92 58.1 58.1
2 3.51 21.9 80.0
3 1.39 8.7 88.7
4 0.726 4.5 93.2
5 0.399 2.5 95.7
6 0.280 1.8 97.4

aThe first two PCs account for 80% of the variance of these
parameters.

Figure 6. Projection of the parameters on the first two principal
components. The first PC differentiates structures 16−20 (from
2X2W), whereas the second mainly differentiates structure 4 (from
1GS5). The colors correspond to those of Figures 3−5.

Figure 7. PC1 loadings in blue. All parameters, except for distances to
Gly11 (7,8) and O−P−O angles (15,16), contribute significantly to
this PC, which serves to differentiate 2X2W conformations from
others in Figure 6. PC2 loadings in green: Gly45(9), Lys61(13,14),
and the OPO(15,16) are the main contributors to this PC, which
distinguishes the fourth 1GS5 snapshot.
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co-workers who showed that the presence of a tyrosine in the
active site of ferredoxin-NADP+ reductase destabilizes reactants
and thereby reduces the energy barrier.64,65

Partial Least Squares Regression Analysis. Table 4 shows
the PLSR results for our data and gives a picture that is different

from that given by the PCA. Although two components still
explain about 80% of the variance in the parameters, these
components only explain 56% of the variance in the energy
barrier. A third component, with a minor 5% weight in the
parameters, has a 21% weight in the variance of the barrier. The
first PLSR component consists of principally the Gly41, O−O,
and Lys61 (mainly at the TS) distances, and the O−P−O angle
(Figure S6).The second component, which has a minor
influence on the barrier, is described by the Lys61 and, to a
lesser extent, Gly44 distances, and the O−P−O angle at the TS
(Figure S7). The third component is again determined by
Lys61 and the change of the O−P−O angle from reactants to
TS (Figure S8).
For a clearer interpretation of the role of each geometric

parameter in the energy barrier we have calculated the variable
importance on projection (VIP) score for each parameter in the
first three components of the PLSR.
The results are displayed in Figure 8, with scores above unity

being regarded as significant.66 These show the importance of
the O−P−O angles, the O−O distance in the reactants, and to
a lesser extent in the TS, and the Lys61−NAG interaction at
the TS on the prediction of energy barrier values. They also
highlight the role of the Gly45−NAG hydrogen bond, which is
a strong interaction in 1OHA, a weaker one in 1OH9 and
1GS5, but is absent in 2X2W.17 Our analysis reveals its role in
stabilizing the TS and thus reducing the energy barrier.
There is a correlation between both the O−O distance in the

reactants and in the TS since lower energy barriers mean
shorter distances. On the contrary, there is no correlation
between the change of the O−O distance between reactants and
TS and the energy barrier. That is, it is not the compression
along the reaction that plays a role. In fact, this value is relatively
constant. This makes sense, because the motions that cause the
compression have a much slower time scale than the chemical
reaction, and cannot be coupled to them. Therefore, there is
not a dynamical effect during the chemical reaction, at least for
the variables that we have considered. However, slow large
amplitude motion will bring the enzyme to conformations that
are more compressed and reactive than others.

These slow motions on the time scale of the reactions should
not be confused with the still slower on−off states detected in
fluorescence spectroscopy.67,68 In our case, the compressive
motions, associated to the open and closed states, will take
place at least once during each catalytic cycle, as the open
conformation is necessary for product release and entry of
reactants. If the motions are slow enough that they only take
place once, they will be rate limiting. By contrast, the on−off
states seen in other enzymes last for several catalytic cycles and
so the enzymes have memory whether they are in an active or
an inactive conformation.
The PLSR results also showed the relevance of several

residues in determining the barrier height. However, it is
intriguing that the 2X2W profiles, whose structures lack
interaction with many catalytic residues, do not have very
high energy barriers. This can be rationalized by noting that the
2X2W reactant structures were prepared from a conformation
that contained products in the active site using a local
minimization procedure. This was not sufficient to permit the
enzyme geometry to fully adapt to the reactants, and means
that they are less stabilized by the enzyme than the products.
This explains why the reactant and TS energies can be so low
and also why the 2X2W profiles are more exothermic than
those for the other structures (−31 kJ/mol compared to −7 kJ/
mol for the average of the other 15 structures). The high
similarity between the reactant-like crystal structures (1GS5)
and the TS-like crystal structure (1OH9) shows the lack of
large conformational motions from reactants to TS and thus
makes the calculations of the energy barrier from reactants
more reliable.
A full adaptation of the enzyme geometry to the structures

along the reaction path can, in principle, be achieved with a
number of techniques, including potential of mean force
(PMF) calculations as a function of a set of reaction
coordinates. However, such calculations often require simu-
lation lengths to converge that render them impractical with
QM/MM methods, and these effects will only be exacerbated if
sampling of slow motions of the enzyme is also necessary. The

Table 4. Results of the PLSRa

percent variance captured by regression model

principal
component

X block, this
component

X block,
total

Y block, this
component

Y block,
total

1 33.6 33.6 47.4 47.4
2 45.8 79.3 9.1 56.5
3 4.8 84.1 20.1 77.5
4 5.7 89.8 9.3 86.8
5 4.5 94.2 3.8 90.6
6 1.8 96.0 1.2 92.6

aAs before, two components (though not with the same composition)
capture almost 80% of the variance in the parameters (X block).
However, the second component has little impact on describing the
barrier (Y block), and one needs a third component to account for
almost 80% of the Y block variance. Interestingly, this component has
a minor effect (4.8%) on the description of the X block.

Figure 8. VIP scores using three PLSR components. Scores above one
are considered to be the more significant ones. Hydrogen bond of
Gly45 at the reactants (9), O−O distance (11,12), interaction of Lys61
at the TS (14), and O−P−O angle (15,16) are the most influential
parameters in the prediction of energy barrier values of the 20
snapshots.
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fact that different enzyme conformations can lead to different
energy profiles has already been pointed out by Mulholland and
co-workers.1,63,69 An important difference with our work,
however, is that they used only a single initial structure,
whereas we employ starting configurations from four different
crystal structures, thereby allowing a more in-depth of the
conformational dependence of the energy profile.
The “energized” reactant structures in 2X2W shows that the

active site is not fully preorganized to stabilize only the TS,5,7,70

but that it can fluctuate and stabilize preferentially the reactants
and products. Despite being present, this reorganization has
been shown to be smaller in enzymes than in water,71 and it is
one of the sources of the catalytic effect.
Overall, these results show that the variability of energy

barriers within and among crystal structures is similar. Although
all snapshots show a one-step reaction, the “energized”
reactants of 2X2W do not represent the most stable
conformation. Likewise, the strong interaction between Lys61
and NAG in the 1GS5 structures leads to some structures with
high energy barriers and highlights the role of water
coordination in the active site.
Water Dynamics and Magnesium Coordination. In the

1GS5, 1OH9, and 1OHA crystal structures, there are two water
molecules that bind the PO3 moiety. In the corresponding
reaction paths, these molecules follow the PO3 along the
reaction path, thereby supporting the suggestion by Rubio and
co-workers that they aid catalysis by stabilizing the charge of
PO3.

17

We have also analyzed the coordination sphere of the Mg
cation. In the snapshots from 1OHA and 1OH9, as expected,
this ion remains hexacoordinated throughout all the reaction
profiles. The 2X2W snapshots show a pentacoordinated Mg
cation, whereas for 1GS5, coordination varies, both among
snapshots and along the reaction path. We could not correlate
these coordination changes to higher or lower energy barriers,
and we believe it also proves the incomplete relaxation of
reactants in these two sets of structures.
An active role for solvation might provide a simple

explanation for the diversity of energy profiles computed for
the chemical step, that is, different configurations of active site
water molecules lead to different energy barriers, as the NEB
reaction path calculations do not allow solvent equilibration.
Although we have shown an example of the large extent to
which the absence (or presence) of a water bridging NAG and
Lys61 can alter the computed energy barriers, we note that
active site solvation is not the only source of catalytic
hetereogeneity. To make an estimation of the effect of a truly
equilibrated solvent on the energy barriers we have performed
Poisson−Boltzmann (PB) calculations of reactants, transition
state, and products. Despite the oversimplified description of
the PB approximation, we find a variety of energy barriers that
is even broader than that obtained from the QM/MM explicit
description of solvent. The variability of the energy barriers
comes, in part, from the solvent contribution, but to a larger
extent, from the protein conformation (see Table S1). This
indicates that besides active site solvation, other factors also
play an important role in modulating the energy barrier, mainly
conformational compression of the active site.
Conformational compression in 1OHA and 1OH9. We

now turn our attention to evaluating the effect of conforma-
tional compression. Given that the water structure in the active
site of 1GS5 disagrees with the crystallographic evidence, and
that 2X2W structures have energized reactants, we have

excluded these two structures from the following analysis and
focused solely on the 1OHA and 1OH9 structures. When
considering all 20 structures, several geometrical parameters are
needed to explain the heterogeneous energy barriers, but a new
picture emerges if we only examine the group of 10 structures
from 1OHA and 1OH9 that have the most probable reactant
conformations.
For the snapshots obtained from these two structures, we

found a striking correlation of the energy barrier with two
geometric parameters directly linked to the conformational
compression hypothesis: the O−O distance and the O−P−O
angle at the TS (see Figure 9). The correlation is valid across a

wide range of energy values, 35−65 kJ/mol, with a Pearson
correlation coefficient r2 = 0.93, and is shared by snapshots of
the two crystal structures. The lower barriers of the 1OHA
structures, compared to those of 1OH9, correlate with shorter
average O−O distances (4.43 vs 4.84 Å) and more linear
average O−P−O angles (177° vs 175°). Overall, this
correlation underscores the fact that both compression and
proper mutual orientation of the active are important for
lowering the energy barrier.
The reason that 1OHA has longer O−O distances (4.40 Å)

than 1OH9 (4.21 Å) is that the 1OH9 crystal structure contains
AlF4 as a mimic for PO3. Despite the TS-like geometry of AlF4,
Waltho and co-workers72 showed that it is the anionic charge of
AlF4, rather than its geometry, that mainly determines its tight
binding to phosphoryl transfer enzymes. Indeed, the geometries
of the AlF4 TS analogue and the actual TS are quite different as
AlF4 is not bipyramidal and the Al−O and P−O distances are
also not the same. This highlights the danger of extrapolating a
detailed geometrical analysis of TS analogues to the true TS.
The average apparent energy barrier in the 1OHA and 1OH9

structures is 39 kJ/mol, which is 28 kJ/mol below the reference
value. Part of this discrepancy arises from the reduced entropy

Figure 9. Measured vs predicted energy barrier values using a linear
regression model with with two variables: the OO distance and the
OPO angle at the TS. The equation is y = 12.3 OOdistance − 2.68
OPOangle + 460.5. Red dots: 1OHA structures; blue dots: 1OH9
structures.
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of the TS, that we do not account for in our calculations.
Nevertheless, a difference of 28 kJ/mol is large. The presence of
large-scale conformational motions has been demonstrated for
this enzyme with several crystal structures. In other enzymes
these kinds of motions are the rate-limiting step for the catalytic
turnover. Very recently, an NMR study of another enzyme
transferring a phosphoryl group (a phosphatase) showed that
loop motions determine the enzyme turnover.73 Our
identification of a low chemical energy barrier can be explained
if the chemical step is not rate limiting, but the conformational
motions are, as also suggested by Rubio and co-workers.16 The
identification of a partly closed crystal structure containing the
products (2X2W) might indicate that product release is the
slow potentially rate-limiting step.
One could argue that this compressive motion is non-

catalytic, because if the enzyme were always in a rigid
compressed structure, the barrier for catalysis would be lower.
Although that is true, it neglects the fact that reactants and
products need to get in and out of the active site, something
that would be extremely slow in a closed conformation. By
oscillating between these two conformations, the enzyme can
both have the cake (the substrates) and eat it (do catalysis). We
finish by emphasizing that these large scale dynamic motions,
although relevant for catalysis, are completely in equilibrium
and so do not violate Transition State Theory
Stability of the Closed Conformation.We have seen that

conformational motions are relevant to catalysis and we have
suggested that the open form is needed for binding. Either
under an induced fit or a conformational selection scenario, the
open form should be lower in energy in the unbound enzyme.
To test this last hypothesis, we performed seven Molecular
Dynamics simulations, two of a closed conformation 1GS5, two
of 1OH9, and two of 1OHA without the substrates. As Figure
10 shows, the closed form opens after less than 10 ns of
simulation when the substrates are missing, which implies that
the open form of the apoenzyme is more stable. For the other

structures (Figures S9−S14), the opening time changes, but the
behavior is the same. We have checked that this observation is
consistent in two different force fields (OPLS and
AMBERSB99-ILDN)
The fact that this motion is fast agrees with our previous

studies that reported the opening of the enzyme as one of the
most easily accessible collective motions in this protein
family.23 This fast opening of the active site, however, contrasts
to the closed form found for the crystal structure of the
products (PDB code 2X2W) and to the suggestion that lid-
opening is the rate limiting step. It is worth pointing out,
however, that the opening event will probably be much rarer
when the substrates are present as both the reactants, ATP and
NAG, and products, ADP and phosphorylated NAG, are likely
to stabilize the closed conformation. This is because the main
role of the lid is not only to compress the reactants, but also to
avoid compressing (and thus phosphorylating) unwanted
substrates, in particular the more abundant glutamate. The
role of gates in selecting substrates has been reviewed in ref 22,
but we leave the study of selectivity in the case of EcNAGK for
future work.
What our simulations do show is that, once the products are

released, the enzyme will preferentially remain in the open
conformation, ready for a new catalytic cycle. This favors the
induced fit mechanism, rather than the conformational
selection hypothesis, and agrees with the results of previous
work on other enzymes with lid-gated active sites, such as
phosphoenolpyruvate carboxykinase.74 The induced fit mech-
anism does not rule out the possibility that the apoenzyme
samples the closed conformation, but to maximize binding this
sampling should be as rare as possible, as the closed
conformation cannot bind the substrates. The submillisecond
opening of the structure in our simulations, without sampling
the closed conformation again, and the lack of a closed
apoenzyme crystal structure for EcNAGK, supports the idea
that an efficient enzyme with lid-gated active sites should not
waste time sampling the closed conformation without
substrates.

■ CONCLUSIONS
In this work we have analyzed the catalytic mechanism of NAG
kinase. We have used information from several crystal
structures to trace the course of phosphoryl transfer in the
catalytic cycle.
Our results show that the phosphoryl transfer is an

associative one-step mechanism. We found that the TS of the
reaction is more compact (short O−O distance) than reactants
and products and that those conformations with more compact
reactants also have lower energy barriers for phosphoryl
transfer. Rubio and co-workers coined the term conformational
compression16 to indicate this relation between transition state
compactness and catalysis and our results introduce energetic
considerations to the purely geometric description given by
Rubio et al.
The correct alignment of the reactants (reflected in the O−

P−O angle) turns out to be also necessary, in addition to
compression of the O−O distance. Thus, motions that access
conformations that shorten the O−O distance and increase the
O−P−O angles tend to enhance the catalytic power of NAGK.
Even changes that occur on a short-time scale generate local

conformations with a wide range of energy barriers. The fact
that 2X2W snapshots have low energy barriers, despite being in
a product conformation, also points to the difficulty of

Figure 10. RMSD with respect to the closed 1GS5 structure (blue)
and the open 2X2W chain A structure (green) for the a MD
simulation of 1OHA with the AMBERSB99-ILDN force field. In less
than 10 ns, the apoenzyme opens its lid spontaneously. The results for
the other simulations are plotted in Figures S9−S14, and reproduce
the behavior of this simulation. The 1GS5 structure has been taken as
the reference as this structure is the one used by Rubio and co-workers
as the model for the closed structure. Its RMSD with 1OHA is 0.36 Å.
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generating plausible conformations for the truly equilibrated
reactants. This is likely to be a challenge for other enzymes
where fewer structures are available, or when some substrates
are absent. However, it is pertinent to remind the reader that
these observations emerge from a diverse, but still limited, set
of conformations sampled by the enzyme (20 in total obtained
from 4 different X-ray structures). It is the high computational
demands of the DFT/MM method, which is required for an
accurate description of the electronic structure of the molecular
species involved, that makes consideration of a larger set of
reaction pathways or the use of PMF calculations prohibitive.
Other computational approaches, such as free energy
perturbation, can be valuable to enhance the statistical
significance of the variety of energy barriers and thus provide
a more accurate estimation of the catalytic role of compressive
motions. We consider it more appropriate for future work.
The role of water in the active site is also found to be crucial

for this enzyme. Water plays different roles. One molecule
prevents the formation of a salt bridge between Lys61 and the
substrate NAG which overstabilizes the reactants and hinders
catalysis, whereas others reduce the cost of product release, by
accompanying the unbound products.
The energy barrier of the conformations studied is 28 kJ/mol

lower than the apparent experimental energy barrier. This,
together with the experimental observation that the 2X2W
crystal structure contains the products of the reaction, can be
explained by the idea suggested by Rubio and co-workers16 that
lid opening and product release are the rate-limiting step of this
enzyme.
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4.1.2 Swarms of Trajectories applied to enzyme catalysis

One of the major concerns of enzyme catalysis lies on the description of the re-

action path and the associated energy barrier. As we commented in previous

sections, enzymes present multidimensional and rough landscapes that difficult

the calculation of minimum free energy paths. However, as it has been also high-

lighted previously, to directly compare with experimental results free energies are

needed. One example of this problem is our previous NAGK work, in that only

potential energies were obtained preventing a direct comparison with the experi-

mental free energy energy barrier.

Due to this, in close collaboration with Professor Field in Grenoble, we decide

to implement the Swarms of Trajectories (SoT) method into the pDynamo library,

the library we usually employ to perform QM/MM calculations, aimed to apply

it to enzyme catalysis. We wanted to have easily accessible a method to calculate

minimum free energy paths and profiles. The SoT method has never been applied

to this purpose before. So, we needed to devise its correct implementation to

simulate enzyme catalyzed reactions. To check our implementation, we employed

the Chorismate Mutase (CM) and Isochorismate Pyruvate Lyase (IPL), as test

cases.

The SoT method was developed by Roux and coworkers (J. Phys. Chem.

B, 2008, 112 (11), pp 3432 - 3440 ) based on the String method with collective

variables. The method was tested and used with a couple of proteic systems but

it was never employed to study enzyme catalysis. In fact one of the conclusions of

the study in that SoT was first introduced, was that modifications refining formal

and practical aspects would be required to use the method with real biomolecular

applications. An important problem of the method regarding enzyme catalysis was

that it works in a non-inertial, almost overdamped, regime and chemical reactions

work on inertial regimes. However, Maragliano and coworkers in a recent paper

(J. Chem. Theory Comput. 2014, 10 (2), pp 524 - 533 ) that compared the Sot

and the String method with CV, formulated a hypothesis stating that the SoT

could work at inertial short time regimes being the CV evolution independent of

the dynamics.

Within our implementation we confirmed this hypothesis for the first time,

showing that the results of the method do not depend on the dynamical evolution

of the system, only depends on the value of the CVs. To do that we simulate

our test systems at inertial and non-inertial regimes (changing the dynamical

parameters accordingly). The way in that the reaction path is determined does

not matter. Furthermore, an important issue of our implementation is that in the

way we did it, it is possible to calculate the contribution of each collective variable

to the free energy profile.
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Figure 4.3: A) Evolution of the MFEP CVs calculated with SoT in the CM. The
evolution is from light to dark colours. B) Schematic represenattion of the CM. The
CVs are represented by dotted lines.

As a method based on CVs, its selection has to be done carefully. Testing

our implementation we found that if one CV, important to describe the reaction

process, is not taken into account the energy barrier will be underestimated. On

the other hand we also found that if one use a CV that does not play a role in

the description of the chemical reaction, it remains invariant along the energy

path without affecting the energy profile. Furthermore the computational cost is

not affected. Thus this leads us to conclude that if there is a CV whose effect

describing the reaction process is not clear, is better to add it and then check its

contribution.

Summarizing, we have devised the most suitable setup of the SoT method

showing that the results do not depend on the dynamical evolution of the CV.

Besides we have suggested the use of the Minimum Energy Path (MEP) to accel-

erate the optimization as well as to ease convergence problems.
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ABSTRACT: The development of approaches for simulating rare events
in complex molecular systems is a central concern in chemical physics. In
recent work, Roux and co-workers proposed a novel, swarms of trajectories
(SoT) method for determining the transition paths of such events. It
consists of the dynamical refinement on the system’s free energy surface of
a putative transition path that is parametrized in terms of a set of collective
variables (CVs) that are identified as being important for the transition. In
this work, we have implemented the SoT method and used it to investigate
the catalytic mechanisms of two enzymatic reactions using hybrid QM/
MM potentials. Our aim has been to test the performance of SoT for
enzyme systems and to devise robust simulation protocols that can be
employed in future studies of this type. We identify the conditions under
which converged results can be obtained using inertial and Brownian
dynamical evolutions of the CVs, show that the inclusion of several CVs
can give significant additional insight into the mechanisms of the reactions, and show that the use of minimum energy paths as
starting guesses can greatly accelerate path refinement.

■ INTRODUCTION

The theoretical description of enzymatic mechanisms is based
on free energy profiles, and the calculation of these profiles has
become an important problem in computational biochemis-
try.1−4 The free energy profile describes the chemical
mechanism, and the resulting energy barrier allows the
estimation of the rate of the process.5 These profiles are
defined along a hypothetical reaction coordinate whose finding
is highly nontrivial.
There have been different approaches to the description of

these profiles. On the one hand, one can define a set of
presumably relevant collective variables (CVs) and calculate a
free energy surface (aka potential of mean force) depending on
these variables. Once a free energy surface is determined, it is
usually projected in two dimensions and visually inspected to
determine minimum free energy paths (MFEPs) connecting
the different basins. These paths give a one-dimensional
representation of the surface, and the value of the free energy
along these paths produces a free energy profile (see the
Methods section for a mathematical definition).6 Methods such
as adaptive biased force (ABF)7 sampling, metadynamics,8,9 and
umbrella sampling10 require a precise choice of a few CVs. As
these methods describe the full free energy surface, they scale
exponentially with the number of variables and rapidly become
impractical due to the computational expense and difficulty of
exploring multidimensional energy surfaces. Unfortunately,

enzymatic reactions are complex and often need many CVs
to be completely described.
On the other hand, the computational burden would be

highly reduced if one could directly trace the paths in the free
energy surface without having to fully determine that surface.
Chain-of-states methods, that include the zero-temperature
string11,12 and nudged elastic band (NEB)13,14 methods, can
directly determine reaction paths. However, in their basic
versions, these methods produce only minimum (potential)
energy paths (MEPs), as they omit sampling and entropic
contributions.15 Nevertheless, they can be extended or
generalized so that the determination of free energies is, in
principle, possible.11,16,17

In one example of this type, the string method was modified
to produce MFEPs by permitting sampling among a set of
CVs.15 In a related development, Roux and co-workers18

proposed a novel method that employed swarms of trajectories
(SoT) to evolve the string and to estimate its average
displacement in CV space. Subsequently, they applied it to
the study of a large biomolecular transformation.19 Chemical
reactions catalyzed by enzymes, however, have very different
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dynamics than the latter types of processes, as they take place
on the time scale of bond vibrations and involve only small-
amplitude motions of a few atoms. All of these effects make the
relaxation from the transition state an inertial process, far from
the diffusive process that was assumed in the original SoT
formulation. This would suggest that SoT is not a good
framework to study enzyme catalysis, but in a recent
comprehensive study, Maragliano et al. showed that SoT
gives the correct converged MFEP independent of the dynamics
of the system, as long as the time scale chosen to calculate the
changes of the CVs is short enough.20

Alternative approaches to calculate free energies based on
CVs have also been proposed,21 but their application to large
systems such as enzymes is rare. An exception is the work of
Tuñon and co-workers who adapted the method of Branduardi
et al.21 to study enzyme catalysis and applied it to the
mechanism of isochorismate pyruvate lyase (IPL).22 This
method does not seek to optimize a MFEP but instead
calculates the free energy profile associated with the curve
followed by the minimum potential energy path.
In this work, we have implemented the SoT method in the

pDynamo molecular modeling library23 and applied it to the
study of the IPL and chorismate mutase (CM) enzymatic
reaction mechanisms. These are both realistic test cases about
which much information concerning the mechanisms is already
known.22,24−32 Our aim has been to investigate the perform-
ance of SoT in enzymes and to evaluate the conditions under
which it works. We show that using several CVs can give
significant additional insight into enzymatic mechanisms and
also find that large increases in performance can be obtained if
one initiates the SoT calculation from MEPs calculated with a
hybrid string/NEB chain-of-states method.4,33,34

■ METHODS
Computational Details. All methodological development

and simulations, including system setup, were done with the
pDynamo23 program, version 1.8.0. As preliminary work, we
implemented a version of the SoT method in pDynamo and
ensured that it reproduced the results of tests, including those
on the blocked alanine dipeptide, that were published in the
original papers.15,18 Subsequently, to test the validity of our
implementation of the SoT method for the investigation of
enzymatic reactions, we chose two different enzyme systems,
IPL and CM. We studied the reactions using hybrid quantum
mechanical (QM) / molecular mechanical (MM) potentials in
combination with chain-of-states reaction path calculations. As
the QM method in our QM/MM potentials, we employed the
AM135 semiempirical Hamiltonian. Although the latter is less
precise than, say, density functional theory (DFT) methods, it
is much less computationally demanding and thus makes
possible a thorough analysis of the SoT approach to our test
systems. In any case, we intend to apply these higher level
potentials in our future studies using the SoT method.
Isochorismate Pyruvate Lyase. IPL transforms isochor-

ismate into salicylate and pyruvate in a pericyclic reaction
(Scheme 1). Our simulation model of IPL was derived from the
X-ray crystallographic structure with PDB entry 2H9D.36 This
contains the pyruvate-bound IPL from Pseudomonas aerugionsa
(PchB) with two pyruvate molecules in the active site. The
latter were removed and replaced by an isochorismate molecule
which represents the reactant state. The positions of hydrogens
were then built and the whole system solvated in an
orthorhombic water box of dimension 68 × 46 × 36 Å3, with

an appropriate number of Na+ counterions added to neutralize
the overall charge of the system, giving ∼11000 atoms in total.
We used the OPLS/AA37 force field to describe the protein,
together with the TIP3P38 model for the water solvent, and
periodic boundary conditions for the long-range interactions.
To generate a suitable starting structure for the simulation, the
structure of the solvated protein was first energy minimized,
followed by an equilibrating molecular dynamics (MD)
simulation at a temperature of 300 K. For the QM/MM
simulations, the QM region contained just the substrate,
isochorismate, numbering 24 atoms. In the QM/MM
calculations, only atoms within 20 Å from the O7 oxygen of
the substrate were allowed to move (Figure 1).

Chorismate Mutase. CM catalyzes the Claisen rearrage-
ment from chorismate to pyruvate (Scheme 1). We modeled
our CM simulation system from the X-ray crystallographic
structure of the Baciilus subtilis enzyme with PDB entry
1COM.39 The latter contained four homotrimers and one
prephenate (PRE) of which we retained one homotrimer
together with the PRE molecule. The remaining setup was
similar to that we employed for the IPL system, except that we
used K+ and Cl− counterions to neutralize the overall system
charge. The final system had ∼17700 atoms with box
dimension 60 × 50 × 60 Å3. In the QM/MM calculations,
the QM region contained only the substrate, PRE, numbering
24 atoms, and in the reaction path calculations, only atoms
within 12 Å from the C1 carbon of the PRE were allowed to
move (Figure 2).

Initial Reaction Paths. Initial paths are required to perform
SoT calculations. We employed MEPs that were obtained by

Scheme 1. Schemes of the Reactions Catalyzed by
Isochorismate Pyruvate Lyase (IPL) and Chorismate Mutase
(CM)

Figure 1. Transition state structure for the IPL transformation. The
bonds that are being broken or formed are represented with dotted
lines.
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carrying out chain-of-states reaction path calculations using the
hybrid NEB/string method that is implemented in the
pDynamo program.4,33,34 For each of the test cases, we started
from a small number of path structures and gradually increased
them until the energy profile converged. The number of
structures per path depended on the path length and
ruggedness, ranging from 19 to 37 in IPL and from 18 to 28
in CM.
The MFEP and SoT Methods. Here we present a brief

summary of the theoretical background behind the MFEP and
SoT calculations. Readers are referred to the original papers for
a full discussion.15,18,20

The Minimum Free Energy Path. Consider a system
described by the Cartesian coordinates x ∈ Rn with a standard
equilibrium distribution

= β− −p Zx( ) e V x1 ( )
(1)

where β = 1/kBT is the inverse temperature, V(x) is the
potential energy, and Z = ∫ dxe−βV(x). We assume that there are
no constraints in the system, and that the part of the density
arising from the momenta has been integrated out.15 We now
introduce M CVs that are functions of x and that can
distinguish distinct reacting configurations of the system

̃ = ̃ ̃ ̃z z zz x x x x( ) { ( ), ( ), ..., ( )}M1 2 (2)

The free energy, also known as the potential of mean force,
associated with z(̃x) is a function that depends on z = (z1, ...,
zM) and is calculated as

∫ δ

δ

= − − ̃

− ̃

β− −F k T Z z z

z z

z x

x x

( ) ln( e ( ( )), ...,

( ( )) d )

B
R

V

M M

x1 ( )
1 1n

(3)

This is the M-dimensional free energy surface described in the
Introduction. A MFEP is defined on a free energy surface of eq
3 in the same way as a MEP is defined on a potential energy
surface. Thus, it is the path between two minima on the surface
such that the following condition holds:

·∇ =⊥FM z z[ ( ) ( )] 0 (4)

In this equation, ∇F(z) is the gradient of the free energy, M(z)
is a metric tensor that accounts for the curvilinear nature of the
CVs, and ⊥ indicates projection in the direction perpendicular
to the curve. Full details, including an expression for the metric
tensor, may be found in the work of Maragliano et al.15,20 We
note that the metric tensor also appears when calculating
minimum potential energy paths in terms of CVs, so it is not
exclusive to the free energy. The main advantage of the SoT

method is that this tensor is never calculated, as its influence is
implicitly taken into account with the swarms of trajectories
(see below).
As long as the energy barriers are high compared to the

thermal energy and that the reaction trajectories cluster around
reaction tubes, the MFEP corresponds to the path with highest
likelihood, and its maximum corresponds to structures that
have the same chance of falling into either the reactant or
product basins.15

The SoT Reaction Path: Evolution and Reparameteriza-
tion. Equation 3 can be used to determine the MFEP if a
convenient representation of the path as a function of the
variables, z, is available. In the SoT formalism, this is done by
parametrizing the path as z(α), with α ∈ [0, 1], and where α =
0 represents the initial (reactant) state and α = 1 the final
(product) conformation.15,18 It is then assumed that the CVs
evolve according to a noninertial Brownian dynamics over
some time step, Δt, according to

∑ βΔ = + − ∂

+ ∂ Δ +

(
)

z t z D F

D t R

z z

z

( ) (0) [ (0)] [ (0)]

[ (0)] (0)

i i j ij j

zj ij i (5)

where Dij is the diffusion tensor, which is equal to kβTM(z) and
Ri(t) is a Gaussian thermal noise with a mean of zero. Once eq
5 has been defined, it can be employed to locate the most
probable transition path,15,18 which is the path such that a
system anywhere along it will have the highest probability of
remaining on it as it evolves. This is so because the most
probable value of the Gaussian noise is zero. The key finding of
ref 20 was to prove that when δT is small eq 5 also defines a
path that satisfies

− ∇ + ∇ =⊥F k T MM z z z[ ( ) ( ) ( )] 0B (6)

The extra term in this equation compared to eq 3 defining the
MFEP was shown to be negligible (at least for the molecular
system studied),22 and from now on, we will consider that the
SoT method converges to the MFEP. The equivalence of the
SoT methodoriginally defined to locate the most probable
transition pathsand the MFEP can be understood and
expected because the MFEP corresponds to the path with the
maximum likelihood for a system described with a given set of
CVs.15

To evolve an initial path toward the MPTP, an
approximation to eq 5 is needed. A way to accomplish this is
using the so-called average drift40 (or average displacement)
evaluated from an ensemble of unbiased trajectories of length
Δt initiated from each image of the path

∑ β

Δ Δ = Δ −

≡ − ∂ + ∂ Δ( )
z t z t z

D F D tz z z

( ) ( ) (0)

[ (0)] [ (0)] [ (0)]
i i i

j ij j zj ij

(7)

where the thermal noise in eq 5 is averaged to zero. Thus, by
calculating how the CVs evolve as a function of Δt, we need not
calculate the terms on the right-hand side of eq 7.
An important insight of the string method is that of

reparameterization,11,12,15,16 which consists of the imposition of
a constraint, normally a Euclidean distance,15 between
neighboring path images after each iteration. In practice, this
is done by interpolating a curve through the path image
structures and then redistributing them along the interpolated
path. This is essential because it avoids the problem of the path

Figure 2. Transition state structure for the CM transformation. The
bonds that are being broken or formed are represented with dotted
lines.
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images congregating in regions of low free energy after repeated
application of eq 7.
Implementation of the SoT Method. Implementation of the

SoT method is quite straightforward and consists of the
following steps:
(i) Generate a path of N images with M CVs that describes

the reacting system.
(ii) Perform thermalized molecular dynamics simulation for

each image with the values of the CVs for each image restrained
about their starting (reference) values from the preceding
stepeither (i) or (v). This step consists of a short equilibrium
trajectory followed by the generation of a larger production
trajectory for each image. We employed Langevin dynamics for
these simulations using a collision frequency of 25 ps−1. The
CVs were restrained using potentials of harmonic form, with
force constants of 8000 kJ mol−1 Å−2, when a single distance
was being restrained, and of 4000 kJ mol−1 Å−2 for the sum or
difference of two distances. In the case of IPL, we also tested a
larger single-distance force constant of 12000 kJ mol−1 Å−2 but
obtained the same results as with the smaller value (data not
shown).
(iii) Run multiple short unbiased trajectories for each image

using configurations from the trajectories generated in step (ii).
We explored different lengths and types of dynamics for these
unbiased trajectories, the details of which are discussed later.
(iv) Calculate the average displacements of the CVs for each

image arising from the unbiased trajectories using eq 7.
(v) Determine if the differences between the current average

displacements and those of the previous iteration fall below a
certain tolerance level. If so, convergence of the SoT calculation
has been achieved and the simulation stops. If not, the path is
reparameterized by ensuring that the images are redistributed in
CV space and the simulation returns to step (ii).
Free Energy Calculations. As we discussed in the

Introduction, the advantage of finding a MFEP is that we can
directly calculate a free energy profile from it. Thanks to the
metric tensor present in eq 4 and using eq 3, we calculate the
free energy profile from15

∫ ∑α
α

α
α α− =

′
′

∂ ′
∂

′
α

=

F F
z F

z
z z

z
( ( )) ( (0))

d ( )
d

( ( ))
d

i

M
i

i0 0
(8)

where M is the number of CVs and α is a scalar that
parametrizes the path curve. In our implementation, we have
parametrized z(α) as a cubic spline which means that we can
calculate its derivatives with respect to α analytically. The
derivatives of the free energy with respect to the CVs are
obtained from the constrained dynamics simulations of step (ii)
by averaging over the constraint forces applied to each of the
CVs. Once these averages have been determined, we also
parametrize them with a spline so that the integral of eq 8 and,
hence, the free energy profile can be evaluated with an arbitrary
number of points. We calculated confidence intervals for the
profiles using a bootstrap method in which 1000 resamples of
the raw data were generated for each constrained dynamics.
Evolution of the SoT and Dynamics of the Unbiased

Trajectories. The free energy is a thermodynamic property of
a system that does not depend on its dynamical evolution (eq
8). However, the definition of the MFEP is based on the
evolution of the CVs as a function of a time increment (eq 7).
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This formula was deduced assuming that z evolves in the
Brownian regime.18 Later, Maragliano et al. showed that this
formula is valid irrespective of the dynamics of the system,20 as
long as it is in the limit of short-time evolution. In that regime,
the evolution of the CVs depends on Δt2 because the velocities
average to zero. This result is based on Langevin dynamics for a
system (which include inertial dynamics for zero friction).
However, in the overdamped regime (Brownian dynamics), the
velocity does not average to zero but is proportional to the
force:

γ
⟨ ⟩ = − ∂

∂
v

V
xi

i i (10)

where γi is the friction coefficient. Thus, in a Brownian,
noninertial regime, the evolution of the CV is linear with time.
For the IPL system, we have explored three collision

frequencies for the evolution of the unbiased trajectories. A very
low collision frequency of 25 ps−1, close to the inertial regime, a
high collision frequency of 2500 ps−1, close to the Brownian
regime, and an intermediate frequency of 250 ps−1.

■ RESULTS AND DISCUSSION
Minimum Energy Path for IPL. We calculated MEPs with

different numbers of structures for IPL, and these are shown in
Figure S1 (Supporting Information). The potential energy
barrier is high and narrow, which needs a fairly high number of
points to be well-defined. The barrier height is 38 kcal/mol,
which agrees with the value obtained by Tuñon and co-
workers.22

The MEPs in Figure S1 (Supporting Information) are
functions of the coordinates of all the movable atoms in the
system. This is wasteful, as an important part of the path is
devoted to describe relaxations that do not involve any energy
change or motions relevant to reaction. Instead, it is
advantageous to reparameterize these paths in terms of
pertinent CVs, as this permits a more compact description
and the use of less points because the transformation is better
defined. IPL catalyzes the transformation of isochorismate into
salycilate and pyruvate in a one-step process in which a proton
is transferred from C2 to C9 and the C3−O7 bond is cleaved
(Scheme 1, Figure 1, and Figure S2, Supporting Information).
In this section, we have chosen the three most obvious CVs,
namely, the C2−H, C9−H, and C3−O7 distances. In later
sections, we explore the effects of using different sets of
reaction coordinates. Figure S2 (Supporting Information)
shows the energy profile for the reparameterized path and
the evolution of these three CVs along it. It can be seen that
there is an error of approximately 2.5 kcal/mol in the barrier
height for the path with 19 points in comparison to that of 37
points, whereas the latter is in almost exact agreement with the
73-point barrier of Figure S1 (Supporting Information).
We started the SoT simulations from the reparameterized

MEP. This has two advantages. First, the MEP is much closer
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to the MFEP than any arbitrary initial guess. And second, we
avoid the generation of strained geometries that could result in
convergence problems. In fact, for this system, we wanted to
compare convergence starting from a guess obtained by linear
interpolation between the reactant and product structures. This,
however, proved impossible, as sampling one of the frames of
the linear guess resulted in a proton transfer from C2 to C1,
which is both unrealistic and precluded any further
optimization of the path.
As a final remark, we note that, around the barrier, the values

of the three CVs change smoothly along the MEP with no
oscillations. We expect the MFEP to display similar behavior,
although oscillations have been observed in free energy paths
based on the definition of Branduardi et al.21 for many
combinations of the algorithm’s parameters.22

The Dynamics of the IPL System. Figure 3 shows that,
when the friction is low, the CVs relax very fast, whereas, with
high friction, as expected, the evolution of the system is slower.
Thus, even though the ensemble average of eq 9 is not friction
dependent,20 the validity of the expression does depend on the
friction, as the limiting case of eq 10 shows. Even with high
frictions, the trajectories do not fall along the MEP, which
indicates that the MEP and the MFEP will be different, as the
results in the following section show.
It is clear that with a collision frequency of 25 ps−1 we have

to take a much shorter time increment, Δt, than with a collision
frequency of 2500 ps−1. A short Δt is important not only to
remain in the quadratic regime but also to remain in a region
where the curvature of the underlying free energy surface is
negligible compared to the evolution of the CV. Considering
that at low frequency the CVs relax to the reactant values in less
than 100 fs, this time has to be very short. At these short time
scales, the evolution of the CVs cannot be considered Brownian
or diffusive. Figure 4 shows that inertial oscillations remain after
100 fs. Therefore, it is obvious that one cannot find a Δt where
the CVs evolve in a Brownian regime and, at the same time, the
curvature of the free energy surface is not apparent. To alleviate
this, we have two possibilities, both of which we explore. First,
increase the friction coefficient in an artificial manner, or
second, remain in an inertial regime using a short Δt. Although
Vanden-Eijnden showed that the validity of the SoT evolution

does not require diffusive dynamics, in the numerical example
he used, the situation was diffusion-like (see Figure 3 in ref 20),
and thus, our work is the first that studies SoT for inertial
systems.
Figure 4 shows the values of the CVs as a function of time

after averaging over 250 trajectories. It can be seen that the fast
evolution of the CVs is also linked to an inertial evolution, as
oscillations for the low collision frequency remain even after
averaging. These oscillations are almost absent when the
collision frequency is 250 ps−1 and disappear completely for a
frequency of 2500 ps−1. These results confirm that our
simulations with different collision frequencies cover both the
inertial and Brownian regimes.
To confirm these findings, Figure 5 shows the initial

evolution of the CVs in the low and high collision frequency
cases. As expected, at low friction, the evolution is quadratic for
short time scales, so that for times <20 fs the dominant term in
eq 9 is quadratic. By contrast, at high friction, the evolution is

Figure 3. Positions of 250 unbiased trajectories after different simulation times for two different collision frequencies using the IPL system. For the
low collision frequency (left), structures are almost reactant-like after only 40 fs of simulation. The MEP structures (used as a starting curve for the
evolution of the MFEP) are plotted as black dots.

Figure 4. Time evolution of two CVs with different friction
coefficients for the IPL system: d(C3−O7) with friction coefficients
of 25, 250, and 2500 ps−1 (green from dark to light) and d(C2−H) −
d(C9−H) with coefficients of 25, 250, and 2500 ps−1 (orange, from
dark to light). Although we plot the difference of d(C2−H) and
d(C9−H), they were treated as independent variables.
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initially quadratic but reverts quickly to a near linear form, as
expected for Brownian motion.
On the basis of these results, we decided to try two different

evolutions of the system. For the low collision frequency of 25
ps−1, the unbiased trajectories were performed with 10 steps
and a time step of 0.1 fs, resulting in Δt = 1 fs which assured we
remained in the quadratic regime.
Because the change in z was small, we scaled

⟨Δz(Δt)⟩z(̃x(0))=z in eq 7 by a factor of 4 so as to obtain
similar displacements as those in the Brownian regime. The
second setting corresponded to the Brownian regime, with a
collision frequency of 2500 ps−1, for which we performed 10
steps with a time step of 1 fs, which resulted in Δt = 10 fs.

Minimum Free Energy Paths. Figure 6 shows the
evolution of the MFEPs using three CVs and the two

dynamical regimes described in the previous section. One can
see that the MFEP is close to the MEP and that the evolution
for both dynamical regimes is also very similar. We plot the
difference of two of the CVs because of the difficulty of plotting
three CVs separatelynevertheless, in the simulations, they
were treated independently. The values of the CVs along the
paths are compared in Figure 7. These paths are slightly
different from the ones found by Tuñon and co-workers,22 as
ours are smoother and closer to the MEP. In addition, ours

Figure 5. Short time evolution of the CVs for the IPL system (log
scale) for the lowest and highest collision frequency dynamics. The
color code is the same as in Figure 4. The dashed line corresponds to a
linear regime and the dashed−dotted line to a quadratic regime.

Figure 6. Evolution of the MFEP CVs for the IPL system calculated
with SoT and in two different dynamical regimes (low friction, top;
high friction, bottom). In both cases, the evolution is from light to dark
colors. Although we plot the difference of d(C2−H) and d(C9−H),
they were both treated as independent variables.
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seem to better characterize the products as they extend further
and we find that the products have a larger C2−H distance than
C3−O7 distance.
As the final paths are similar in both regimes, one expects

that the free energies will also be similar. The free energy
calculation is independent of the way the path is calculated, and
is determined uniquely by the values of the CVs. As detailed in
the Methods, we calculate the mean force contribution to the
free energy integral with the same settings and the same
underlying dynamics. The resulting profiles are shown in Figure
8, from which it can be seen that the barrier increases slightly
during path optimization. As we start from the MEP, this seems
a reasonable result, because the MFEP will have a better
transition vector and thus a higher free energy.15 Although
Tuñon and co-workers find a free energy barrier lower than the
potential energy barrier, our free energy barrier is above the
potential energy barriers. In both cases, the differences are only
1−2 kcal/mol and thus the discrepancies are small. There are
two reasons to expect a higher free energy barrier than a
potential energy barrier. First, the interactions with the
transition state are stronger than with reactants or products
which will tend to rigidify the ensemble of transition state
structures compared to reactants or products,24 although this
effect is often small.41 Second, the transition state of this
reaction is a cyclic species that is more constrained than either
reactants or products. Figure S4 (Supporting Information)
plots the confidence intervals of the final profile of Figure 8
(bottom). We can see that the oscillations of the path and the
confidence interval are of the same order. The errors tend to
accumulate at the end of the path because the profile is
calculated by integrating the mean force, via eq 8.
Number of Degrees of Freedom. An important differ-

ence between the MEP and the MFEP is that the MFEP
involves sampling along all the nonconstrained degrees of
freedom. Some sets of reaction coordinates that are adequate
for MEPs are not sufficient for MFEPs, as they do not include

all the variables involved in the transition vector at the
transition state hypersurface. When this is the case, the free-
energy barrier is too low. Thus, finding a lower free energy
barrier does not necessarily indicate a more favorable path; it
could also be due to a poor choice of reaction coordi-
nates.15,42,43 The use of SoT frees us from the use of a small
number of degrees of freedom to determine the free energy
profile. This is in contrast to more traditional methods that
calculate free energies as a function of only one or two
coordinates. Employing more coordinates in these schemes
involves an exponential increase in computational cost and also
produces surfaces in more than two dimensions, from which
the extraction of the MFEP is nontrivial because gradients of
these surfaces are not available.

Figure 7. Values of the three CVs for the IPL system in the final path
(same color code as Figure 6). The dashed black values are the MEP
values. d(C3−O7), squares; d(C2−H), circles; d(C9−H), triangles.

Figure 8. Evolution of the free energy profiles calculated from the
MFEP for the IPL system calculated with SoT and in two different
dynamical regimes (same color code as Figure 6).
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A typical approximation that is made when an atom is
transferred is to use the difference of bond distances between
donor and acceptor atoms, as was done in previous work on the
IPL system.25 We recalculated the IPL MFEP with two CVs
defined as z1 = d(C2−H) − d(C9−H) and z2 = d(C3−O7).
The resulting path and its evolution is shown in Figure 9, and is
similar to the three-CV results plotted in Figure 6, thereby
confirming that this is a reasonable simplification in this system.
The MFEP (Figure 10) gives also a barrier equal to the one
obtained with three CVs.

As a next test case, we disregard d(C3−O7) and use only
d(C2−H) and d(C9−H) as our CVs. Although unrealistic here,
this is a situation that could arise because we inadvertently miss
a relevant CV or because we do a traditional free energy
calculation method and cannot afford to include one more
reaction coordinate. Figure 9 shows that the evolution of the
path is correct, and that both distances end with values
equivalent to those of the three-CV optimized path. In that
sense, the path is correctly described. However, if the missing
reaction coordinate is necessary to describe the transition
vectoras we expectthis will show up in the resulting free
energy profile, which is precisely what Figure 10 shows. When
we miss a relevant CV, the free energy barrier is lower than
expected. This missing CV can be found with an analysis of the
committor probability at the top of the barrier,15,42 but this is
an expensive calculation. When in doubt, one can always
include an extra CV to the total set of CVs at no extra cost, and
if that CV is not relevant, the results will not be affected. In the

Figure 9. Evolution of the CVs when using two CVs for the IPL
system. Top: a difference of distances, d(C2−H) − d(C9−H), and a
distance, d(C3−O7). Bottom: the distances d(C2−H) and d(C9−H)
but with an apparently important CV, d(C3−O7), neglected. The
optimized values of d(C2−H) and d(C9−H) when using the full three
CVs are plotted with red triangles.

Figure 10. Free energy profiles calculated from the MFEP when using
two CVs for the IPL system. Top: d(C2−H) − d(C9−H) and d(C3−
O7) correctly represent the transition vector, and thus give a correct
energy profile. Bottom: d(C2−H) and d(C9−H). The relevant d(C3−
O7) CV is underestimated, so the free energy barrier is under-
estimated.
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CM sections that follow, we test the case of including an
irrelevant CV, and show that this is indeed the case.
Lowering the Cost of the SoT. The systems on which

SoT has been used so far18,19 have energies that are
computationally fast to calculate, and thus, there has been
little effort in analyzing the performance of SoT when sampling
is expensive. For QM/MM calculation, the cost of each
calculation is considerable when using semiempirical methods,
as we do here, and would be much higher if DFT or other ab
initio methods were to be employed. In the simulations that we
have reported, we performed 250 × 10 = 2500 steps for the
unbiased dynamics and 1000 + 5000 = 6000 steps for the
constrained dynamics. We have also tried different numbers of
molecular dynamics steps that are displayed in Table 1.

We were surprised to find that even the least expensive
settings gave a good convergence of the path, as is shown in
Figure S3 (Supporting Information). The free energy profiles
had errors of several kcal/mol for the total exothermicity but
had energy barriers within 1 kcal/mol of the converged value.
In any case, an optimized MFEP can always be recalculated
with larger equilibration and sampling times in a final single
iteration. These results suggest that SoT would be a good
approach for calculating MFEPs in enzymes using DFT
methods, as one can limit the number of steps that are
required. In addition, the method is readily parallelizable, as the
calculations for each point along the path are independent.
Chorismate Mutase. CM catalyzes a Claisen rearrange-

ment from chorismate to prephanate (Scheme 1). It is probably
the most studied enzyme with QM/MM methods,24,27−32,44

but we will use it to explore two aspects of the SoT method,
namely, the convergence of SoT when starting far from the
MFEP and how linear combinations of CVs behave.
We first compare the evolution of the MFEP using two

different sets of CVs and starting from an initial linear guess for
the pathway structures in which intermediate images are
linearly interpolated from the reactant and product structures.
We note that there were no convergence problems using a
linear guess for this system in contrast to the problems we
experienced with the equivalent IPL simulations. The first CV
set used z1 = d(C1−C9) and z2 = d(C3−O7) (see Figure 2).
The second used the sum and difference of these two CVs: z1 =
d(C1−C9) − d(C3−O7) and z2 = d(C1−C9) + d(C3−O7).
Because they describe exactly the same subspace, they should
produce the same free energy profile and they should have the
same evolution. Figure 11 shows that this is indeed the case.
Although previous work has shown that z1 = d(C1−C9) −
d(C3−O7) is a sufficient CV to obtain a good free energy
profile, this information is usually only known a posteriori after
the transition state structures or MEP have been determined
and free energy calculations carried out. Being able to include

both distances as independent CVs from the start gives the SoT
approach a great deal of flexibility.
The calculation of the free energy from eq 8 gives the

contribution to the profile as a sum for each of the CVs. In the
previous section, we indicated that the use of irrelevant CVs did
not affect the calculation of the MFEP or the profile. We have
calculated the profile for the CM reaction using the three CVs,
z1 = d(C1−C9), z2 = d(C3−O7), and z3 = d(C5−C6). Figure
12 indeed shows that z3 does not affect the free energy profile,
as was to be expected since this distance is not involved in the
reaction. We note that the cost of including an extra CV is
essentially zero, both in the dynamics and in the free energy
calculation. It is possible, though, that extra CVs could slow
convergence to the final MFEP, although starting with a

Table 1. Different Settings Used in the SoT Simulationsa

equilibration steps sampling steps unbiased steps

1000 5000 250 × 10
1000 1000 250 × 10
500 500 250 × 10
500 500 250 × 5
200 200 100 × 5
100 100 50 × 5

aAs the time step is 1 fs, these values also correspond to the total time
length span of the simulations in fs.

Figure 11. Evolution of two distances when using two different sets of
CVs for the CM system. Red (light to dark), the d(C3−O7) and
d(C1−C) set; purple (light to dark), the d(C3−O7) − d(C1−C9) and
d(C3−O7) + d(C1−C9) set. One can see that the evolution and final
path shape for both sets of CVs are essentially equivalent.

Figure 12. Decomposition of the free energy profile for the CM
system into the contributions of the three CVs used. As d(C5−C6) is
not involved in this reaction, its contribution is zero.
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reasonable guess, such as the MEP, should alleviate this
problem. Returning to Figure 12, we see that the free energy
decomposition in terms of CVs provides insight into their
contributions to the MFEP. Thus, the initial free energy cost
arises from stretching the C3−O7 bond, which is to be cleaved.
In the TS region, both C3−O7 and C1−C9 contribute,
whereas the exothermicity that arises in the descent to products
comes largely from the formation of the new C1−C9 bond. On
the other hand, as the C5−C6 bond remains in its equilibrium
position along the MFEP, its contribution is essentially zero.
Stretching this bond has a free energy cost, but in this particular
reaction, it is not removed from its minimum value at any
point, no mean force acts on it, and, thus, its contribution is
null. This decomposition of the free energy is mathematically
sound in an area where different approaches have proven
complex and controversial.45−48

■ CONCLUSIONS

In this work, we have implemented the SoT method18 and used
it to study two enzyme catalytic mechanisms with QM/MM
potentials. We have devised a suitable SoT simulation protocol
for these types of systems and have shown that the results do
not depend on the dynamical evolution of the CVs used to
describe the reaction: both inertial and Brownian regimes lead
to the same MFEP evolution and final curve. We have also
suggested the use of the MEP as an initial starting guess to
accelerate the optimization and to reduce convergence
problems.
The study of enzyme mechanisms via MFEPs obtained as a

function of a set of CVs has several advantages over studies
based on more traditional methods. First, the computational
cost does not increase with the number of CVs used. Second,
the path can be easily visualized and the variation of several
CVs analyzed independently. Finally, the calculation of free
energies based on these CVs is robust with respect to the set of
CVs and can give insights into their respective contributions to
the free energy barrier and reaction exo- or endothermicity.
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132 Chapter 4. Results

4.1.3 ‘In silico’ enzymatic reactions induced by high radi-

ation damage

X-ray chrystallography is a technique used to study protein structures, being the

different substates of the chemical reaction (reactants analogs, transiton state

analogs and products) trapped into crystals. It is well known that the X-ray

crystallographic methods based on synchrotron radiation techniques provoke un-

desirable radiation damage effects in the protein crystal structure. This damage

is due to the source of radiation employed.

In collaboration with Professor Weik and coworkers, in Grenoble, we studied

two crystal structures representing the apo and the holo forms of the Lacatate

Dehydrogenase (LDH). They found a tryptophan decarboxylation in the apo form

(not in the holo form) that is not found in vivo. Weik and coworkers concluded

that an electron hole is created in tryptophan Trp62, that is transferred to Asp70

in the apo form via Arg64, but not in the Holo form.

test

Figure 4.4: A) Active center of the Apo form. B) Active center of the Holo form. In
both, there are represented Trp62, Glu33, Arg64 and Asp70. The blue balls are N, the
white H, the red O and the turquoise C. The tapes represents chains of proteins that
have been taken into account in the calculations. Here have been only represented some
of them, concretely, four of six.

After carefully revising this hypothesis, some questions emerged. It seems clear

that there is an electron transfer (ET) from Asp70 to Trp62 (Or a hole transfer

(HT) in the opposite direction) in the apo form whereas in the holo form, this
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ET is not possible. However there are in principle a couple of possible answers.

1) It could be impossible because it is thermodynamically inaccessible. That is,

because the electron on the Asp70 is much less stable in the holo form relative

to the apo form. 2) It could be because it is kinetically forbidden: the HT rate

could be much smaller for the holo than for the apo form. Furthermore, there is

another question once it is accepted that the transfer process takes place: why

the proximal Glu33 does not decarboxylate whereas Asp does?.

To check Weik’s hypothesis and to answer these open questions, we performed

MD simulations over the apo and holo crystal structures, followed by QM/MM cal-

culations (reaction coordinate scans) over different trajectory snapshots. Within

the calculated paths we performed electron couplings calculations using the Frag-

ment Charge Differentiation (FCD) method developed by Voityuk and Rösch and

extensively used in biological charge transfer calculations.

First of all we confirmed that it is a HT process and we located the Hole. By

calculating ionization potentials (IP) we confirmed that Glu33 IP is higher than

Asp70 both in the holo and the apo form and thus the radical created can not be

transferred from Glu33 to Asp70. Also we observed that the residue more easy to

ionize is Trp62 (lower IP) followed by Asp70 in agreement with Weik’s hypothesis.

Furthermore we confirmed that thermodynamically the process is possible both

in the apo and the holo form. Thus, why it is not observed in the holo form?

Then, we tested the most plausible biological HT mechanism: Direct and

Bridge assisted and within this last one, Superexchage and Hopping (also called

sequential) mechanisms. First of all we discarded the direct mechanism because

even the shortest distance between Asp and Trp over all the simulations is too

large in both apo and holo forms (7.50 and 12.40Å) to expect an overlap between

the donor and acceptor orbitals. This fact results in electronic couplings negligi-

bles (10−13-10−15) eV within the apo mechanism and zero for the holo form (see

Fig. 4.5). The Hopping mechanism was also discarded because the IP calculations

showed that Glu33 and Arg64 exhibited higher IPs, so the transfer is impossible.

Thus the process proceeds through a superexchange mechanism, i.e., the charge

travels from Trp to Asp, through the orbitals of Glu and Arg which influence the

reaction indirectly creating the suitable environment in which the charge transfer

is produced. The Electronic couplings calculations revealed that within this mech-

anism the apo form has a coupling around 10−6 eV. This value is small compared

to other biological processes (10−2-10−4 eV), but this difference is normal because

the process we observe is slower than other biological events and takes place at

the scale of hours. Furthermore the value of the coupling in the holo form is even

lower (around two orders of magnitude). The HT is so slow that is not seen in

the X-ray crystallography time scale. This is the reason why it is not observed in

the holo form.
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Summarizing, we have devised the suitable computational setup to study radi-

ation damage decarboxylation (at least in LDH proteins), showing that the process

is due to a HT instead of an ET. In addition we found the mechanism through it

proceeds (superexchange) and the reason why it take place in the apo and not in

the holo form.

Figure 4.5: Average coupling term for the superexchange and direct mechanism obtained
from the 16 profiles calculated. The coupling was calculated at the optimized geometries
with the hole on the Trp and on the Asp. Red: coupling for the apo form and Green:
coupling for the holo form within the superexchange mechanism, Blue: Coupling for the
apo form and direct mechanism. For the Holo form the coupling is zero and thus is not
shown.
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Abstract
 Decarboxylation of acidic residues in proteins is one of the most prominent signatures of radiation

damage in macromolecular X-ray crystallography. So far, structural features that might rationalize the
broad distribution of decarboxylation probabilities of chemically identical groups in a protein have
remained elusive. Here, we provide evidence that hole transfer from a nearby tryptophan residue can
cause decarboxylation as shown by QM/MM simulations confirming the finding by dose-dependent
X-ray crystallography (Data not published yet).  Furthermore by electronic couplings calculations we
explain how this transfer take place discriminating between biologically possible scenarios. 

Introduction
 Intense  X-ray  beams  from synchrotron  sources  create  specific  chemical  and  structural  damage  in

proteins during crystallographic data collection. This damage even occurs at 100 K, the temperature at
which  the  vast  majority  of  crystallographic  data  is  collected1-3.  Among  the  most  prominent
manifestations in protein crystallographic radiation damage studies are breakage of disulfide bonds and
decarboxylation of glutamic and aspartic amino acid residues. This specific damage does not result
from direct absorption of an X-ray photon by one of the atoms in the radiation-sensitive group (primary
damage), but rather is the manifestation of damage inflicted by secondary radicals created after primary
photoabsorption elsewhere in the protein or the surrounding solvent (secondary damage)  4. Chemically
identical  groups  in  the  same  protein  display  differential  radiation  sensitivities.  Differences  in  the
chemical and structural environment must be at the origin of the differential sensitivities, yet so far,
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they have remained largely elusive5.

 Decarboxylation of acidic residues2 is initiated by the capture of a secondary hole on the side chain,
resulting in the generation of CO2 and a carbon-centered radical6. Protein crystallographic radiation
damage studies did not provide evidence for a correlation between the radiation-sensitivity of an acidic
residue and its solvent exposure1,7 or distance to the protein surface8, at least not at 100 K. A possible
relation between the pKa of a carboxyl group and its radiation sensitivity has been controversially
discussed2,7.

Lactate dehydrogenases (LDH) catalyze the conversion of pyruvate to lactate, requiring NADH as a
cofactor9. Binding of NADH and the substrate analogue oxamate to LDH from Thermus thermophilus

(TtLDH) results in conformational changes with residues moving as far as 10 Å10. These changes alter
the chemical and structural environments of certain radiation-sensitive groups, such as carboxylates. In
this work, we have invistigateed TtLDH (apo and holo) crystals that consists in a homotetramer similar
to  the  PDB  accession  numbers  2V6M  and  2V7P.  The  enzyme  was  purified  and  crystallized  as
described  earlier10,  either  in  its  apo  form,  or  in  complex  with  NADH  and  oxamate  (holo  form).
Experimentally,  by  radiation  damage  studies,  was  found  that  the  apo  form it  is  highly  damaged,
whereas the holo form it is less, as indicated by differences in the size of the Fo

4 – Fo
1 difference Fourier

maps (Figure 1). Radiation-induced decarboxylation takes thus place to a much larger extend in the apo
than in the holo form. 

Tryptophan-containing  di-  and tripeptides  have been studied  after  UV photolysis  by  electron  spin
resonance at 77 K11. An electron hole was initially created on the aromatic ring to form an aromatic
pi-cation radical. The electron hole was then transferred from the photionized aromatic ring to a nearby
carboxyl group, followed by decarboxylation. The authors suggested that a similar process could take
place in irradiated proteins. Have been hypothesized that the structural results in Figure 1 of crystalline
TtLDH irradiated at 100 K in an X-ray crystallographic experiment could be explained by hole transfer
(HT) from Trp62 to Asp70 that takes place in the apo but not in the holo form. Furthermroe, in the apo
form, there is an Arg64 in between the aromatic Trp62 and the acidic Asp70 residues and its linked to
the latter via a hydrogen-bond assisted salt bridge. Such a salt bridge has been shown to increase the
efficiency of electron transfer in proteins12.   Also that a  radical preferentially forms on a Trp is a
known fact over the literature13,14,15,16. 

In  this  work,  by  Quantum  Mechanical/Molecular  Mechanical  (QM/MM)  hybrid  simulations  we
analysed specific radiation damage in TtLDH crystals in its apo form and in ternary complex with a
substrate analogue and a co-factor, holo form. The radiation sensitivity of one acidic residue halves
when the distance to  a  nearby tryptophan doubles  due to  conformational  changes  that  accompany
formation of the ternary complex. This observation is in line with a mechanism in which an X-ray
induced hole, initially localized on the tryptophan residue, is transferred to the acidic residue, thereby
triggering  its  decarboxylation  (experimental  observations  given by X-ray  dose  crystallography not
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already published). The aim of this study is four fold: 1) Confirm that the charge transfer (CT) is
happening, 2) Check whether a HT (Trp to Asp) or instead an ET in the opposite direction is occurred,
3) Find the biologically plausible mechanism in that this Charge transfer proceeds and 4) if we will
confirmed the transfer between Trp and Asp explain why the transfer dos not take place between Trp
and Glu that is nearer to the donor than Asp. 

Figure 1 Damage to Asp70 in the apo (A) and the holo form (B) of TtLDH. Dashed lines represent H-bonds, whose lengths

are indicated. Negative electron density in  Fo
4 – Fo

1  difference Fourier maps is shown in red. The negative

density on the carboxyl group of Asp70 in the apo form (A) indicates this residue is decarboxylated
under the influence of X-irradiation. In the holo form (B),  the negative density on Asp70 is much

smaller, indicating a lower radiation sensitivity than in the apo. 

Methods

System setup
We prepared the system from the PDB files, for both Apo and Holo forms, using pDynamo17 software
following these steps: (1) We generated a MM model for the system adding hydrogens and using the
standard protonation  states  for  the  acidic  or  basic  residues.  We did  not  take  into account  for  our
calculations the presence of the ligand at the active center, because is too distant to have a significant
role in the process. (2) We minimized the structure of the vacuum system (3) We solvated the system,
with an equilibrated water box and do a short dynamic of the water molecules (0.2ps) (4) We then
pruned the system to a sphere of 25Å of Arg64. This was done to minimize the number of point-charge
interactions to calculate with QM/MM as the Orca8 interface calculates all interactions, without cutoffs.
The resulting system had 7251 atoms in the apo form and 7528 atoms in the holo. An outer sphere of 2
Å was kept fixed. We performed 2 Langevin dynamics of 0.1ns each with tethered heavy atoms, using
force constant of 1000 and 500 kJ/Å2. We did not use a zero force constant at the end, because the salt
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bridge between Asp70 and Arg64, present in the crystal, was lost when removing all tethers.  (5) We
performed a production Langevin dynamics for each of the crystal forms. The first 500ps were kept as
equilibration.  Then  we  took  around  10  snapshots  of  the  trajectory  separated  500ps  each.  These
snapshots were used to calculate the decarboxylation and the couplings with QM/MM methods.

Calculation of IP
To calculate the stability of the radical, we implemented calculations of the Ionization Potential (IP) for
some residues around Trp70. This were done by individual QM/MM calculations, with the relevant
residue comprising the QM region, and the rest in the MM region. Four residues were considered:
Trp62, Arg64, Glu33 and Asp70.

Based on Koopman's theorem, we estimated the IP of each residue from the energy of the HOMO.
These calculations gave us a measure of the energy cost to generate a hole in each of the residues. The
higher the IP is, the less stable a hole is. This calculation were done for 50 frames of both molecular
dynamics trajectories, where each frame separation is 100ps.

Calculation of decarboxylation profiles
To calculate the energy profile for the decarboxylation process, we performed reaction coordinate scans
for structures where the radical is located on Trp62 and Asp70. We used as starting structures the
snapshots of the molecular dynamics, as described above.

The QM region for the optimization consisted of the atoms of Trp62 and Asp70 (33 atoms). The QM
region was described with the BHLYP functional and the SVP9 basis set. We chosen this functional
because it has a high content of Hartree-Fock exchange, and avoids the excessive delocalization of
radicals that pure DFT gives. Previous studies showed that it is adequate to treat radical species20,  21.
Single  point  calculations  were  performed  on  top  of  the  optimized  geometries.  These  calculations
included  Trp62,  Asp70,  Glu33  and  Arg64  in  the  QM  region  (66  atoms),  using  the  BHLYP22,  23

functional ,  and the  SVP basis set.  To improve the energetics of the process,  we recalculated the
exothermicity with MP224, 25 and a TZVP19 basis set and the large QM region: the difference in energy
between the minimum with the hole on the Trp and the final point for the decarboxylation curve. We
only report these pairs of points because the MP2 was unstable in the regions where both curves mix.
Table 1 compares the total exothermicities with DFT and MP2.

In order to locate the radical on Trp62 or Asp70, only these residues were set in the QM region in an
initial  optimization.  When enlarging the  QM region,  both for  the  optimization  or  the single-point
calculations we checked that the orbitals still described the same radical. Along the scans, the orbitals
of the previous point were used as starting guesses to help maintain the radical at a given residue.

We calculated about 10 different decarboxylation processes for each crystal form. In some of them the
geometry scan was discontinuous. We could correct some with several passes of forward and backward
scans. In some cases the discontinuities remained. We finally kept 8 profiles for each form to perform
all further analysis.
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Calculation of electron couplings
We have used the Fragment Charge Differentiation (FCD) method to calculate the coupling term26.
This method has been developed by Voityuk and co-workers and has been applied to several biological
systems27, 28, 29. It gives results very close to the Generalized Mülliken-Hush, at a lower computational
cost. The coupling between the donor and the acceptor is defined by:

V DA=
∣(E2−E1)∣Δq12

√( μ1−μ2 )
2
+4q12

2 (1)

All the terms in the previous equation, based on the one-electron approximation can be calculated from
the molecular orbital coefficients and overlap matrix of the neutral species. Ideally, one should thus
optimize the geometry of the closed-shell species and estimate the energetics of the process based on
the orbital  energies. We tried this  approach, but the decarboxylation process was poorly described
when optimizing the closed-shell species. Thus, we needed to optimize the geometries for both the
acceptor and the donor, i.e. for the hole on Trp62 and Asp70. When doing this we can calculate the
coupling for two different geometries. As the geometry for the crossing between donor and acceptor
states should be intermediate between both geometries, we expect the coupling to be also intermediate
between the two calculated couplings, or at least of the same order. As discussed in the results, the
difference between apo and holo form are very large,  so that  the choice of the donor or acceptor
geometry does not affect our conclusions.

Average energy barrier
The averaging energy was calculated as the apparent energy barrier that would give the same rate as the
average rates arising from the different barriers30.

−∆Eave
‡

=−RTln {1
n∑i=1

n

exp (−∆ E i
‡

RT )} (2) 

where −∆Eave
‡

 is the average barrier height, R is the gas constant, n is the number of energy 

profiles considered , ∆ E i
‡

 is the barrier height of each snapshot and T is te temperature.

The kinetic average depends on the temperature. During the collection data, the crystal is cooled with
liquid nitrogen but is heated by the radiation, so that the temperature is not well-defined. In the main
text, we give the average assuming a temperature of 300K. However, the result is not very sensitive to
the temperature. At 300K the average barrier from the initial state is 0.31eV and 0.30eV if calculated at
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193K, and changes from 0.39eV to 0.38eV in the holo form. The average barrier from the initial state is
0.29eV if calculated at 100K and changes from 0.36eV in the holo form.

Software used
All calculations have been performed with the pDynamo library7, coupled to the Orca program18, which
performed the  QM calculation.  The cclib31 library  has  been  used  to  extract  orbital  coefficients  to
calculate the electronic coupling. The figures have been created with VMD32  and the python libraries
Matplotlib33 and Seaborn34.

Results

Location of the Hole

The fact  that  tryptophan residues  act  as  a  hole  sink,  where  charge  holes  are  primary localized  is
confirmed  by  our  calculations.  One  would  expect  that  the  hole  goes  to  the  residue with  a  lower
ionization potential (IP), because that will create the most stable radical-ion. In the Holo form, Asp70
has a lower ionization potential in 41 out of 51 analyzed structures. In the apo form this ratio increases
up to 49 out of 51 structures. On average, the IP of Trp62 is 0.41(0.92) eV lower than that of Asp70 in
the holo (apo) form. The fact that decarboxylation is observed in the experimental studies suggests that
there must be a mechanisms by which, if the hole is initially located on the Tryptophan, it can be
transferred to Asp70.

Figure  2. Energy difference, in eV, between the ionization potential of Asp70 (blue), Glu33 (green),

and Arg64 (red) and Trp62 as a reference These structures were obtained from  molecular dynamics

simulations. A Holo crystal. B Apo crystal.

Figure 2 shows that the fluctuations of the ionization potential  (IP) difference between Asp70 and
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Trp62 is large, and, in both forms, positive in most of the snapshots. Thus, both apo and holo forms
seem not to favour a hole transfer from Trp62 to Asp70. Before dealing with the decarboxylation event,
let us first consider why the hole should be transferred to Asp70 and not to other closer residues. In
particular, if decarboxylation is the expected result from the hole transfer, one may wonder why Glu33
is not decarboxylated, being also a carboxylic acid, and closer to Trp62 (see Figure 1).

As Figures Figure 2 shows, Glu33 IP is higher than Asp70 both in the holo and the apo form. In the
Holo form their mean IP difference is 0.77eV and it is 0.53eV in the apo form. Thus, if an electron can
be transferred from Asp70 and Glu33, the first one produces a radical that is more stable. As would be
expected from a positive residue, Arg64 has the highest IP in both crystal forms. This residue has also
been plotted because it plays a role in the charge transfer process, even if it does not host the hole.

Decarboxylation
Let  us  assume,  by  now,  that  a  charge  transfer  is  possible  from  Trp62  and  Asp70.  How  can
decarboxylation favour the hole transfer? We have shown that a hole is less stable on Asp70 than on
Trp62.  That  is  true  for  the  geometry  corresponding to  neutral  residues  and also  to  the  optimized
geometries we computed locating the hole on the aspartate and on the tryptophan. However, when the
hole resides on the aspartate, the energy barrier for decarboxylation is very low (see  Figure 3). On
average it is 0.39 for the holo and 0.32eV for the apo form. The lowest barrier is of 0.34 (0.27) in the
holo (apo) crystal. This barrier is low and corresponds to a fast process. When it is considered from the
starting state, with the hole on the Trp, this average barrier is 0.37 for the apo form and 0.42 for the
holo, which is still a low barrier.

The decarboxylation is exothermic, and in several of the snapshots, it leads to structures where the hole
on Asp70 is lower in energy than the hole in Trp62 (Figure 3). As we are doing only potential energy
scans, we are probably underestimating the exothermicity of this process, as the water molecules will
reorganize to better solvating the leaving CO2 moiety (even at low temperature). Higher level MP2
calculations also show that the BHLYP functional employed underestimates this exothermicity. The
average energy difference between the state with the hole on the Trp and the final state with the hole on
the decarboxylated Asp is  -0.91eV in the apo form and -1.24 in  the holo form at  the MP2 level.
Therefore, if the hole can fluctuate between Asp70 and Trp62, even if most of the time is on Trp62, it
will  eventually  reach  Asp70  with  a  stretched  C-C  bonds,  and  that  will  lead  to  an  irreversible
decarboxylation. 

Structure BHLYP/SVP MP2/TZVP
Apo-1 -0.614 -1.743
Apo-2 0.332 -0.857
Apo-3 1.139 -0.376
Apo-4 0.217 -0.954
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Apo-5 0.906 -0.327
Apo-6 0.566 -0.671
Apo-7 -0.239 -1.602
Apo-8 0.473 -0.720
Holo-1 0.0409 -1.109
Holo-2 -0.187 -1.467
Holo-3 0.219 -1.026
Holo-4 -0.515 -1.693
Holo-5 -0.011 -1.265
Holo-6 -0.020 -1.332
Holo-7 0.427 -0.823
Holo-8 0.041 -1.238

Table 1 Exothermicity of each decarboxylation process, calculated as the energy difference (in eV) 
between the minimum of the curve with the electron on the Trp62 and the minimum of the curve with 

the electron on Asp (which corresponds to the decarboxylated species)

Figure 3 A Energy profile for the C-C bond elongation of Asp70 in the apo from. Blue lines correspond

to the state where the hole is on the Trp62, and red lines correspond to the state where the hole is on

Asp70.  B Energy  profile  for  the  C-C  bond  elongation  of  Asp70  in  the  holo  from.  Purple  lines

correspond to the state where the hole is on the Trp62, and green lines correspond to the state where

the hole is on Asp70. We depict 8 decarboxylation processes starting from 8 different snapshots of the
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Molecular Dynamics (see methods) at both the apo and the holo forms. In all cases the zero of energy
has been set as the minimum for the hole on the Trp62.

Hole transfer process
Given that a hole on Asp would lead to decarboxylation, the question is whether the hole transfer can
take place between the Trp62 and the Asp70.

The rate of a charge transfer process is proportional to the crossing of the donor and acceptor surfaces,
the vibronic coupling of these surfaces and the electronic coupling term (VDA).  The first two terms
usually take similar values in similar systems. The resemblance of the profiles between the two crystal
forms suggests that the energy barrier at the crossing point will be similar. The exact nature of the
chemical process also indicates that the vibronic coupling will not create significant differences26, 35, 36.
Thus the electronic coupling arises as the main source of distinction between the apo and the holo form.
The rate of a charge transfer process is proportional to the square of the electronic coupling term.

Different mechanisms for the charge transfer determine different coupling terms. The charge transfer
between two species can take place directly,  when their  orbitals  are in contact.  If  a large distance
separates donor and acceptor, bridge-assisted (sequential and superexchange) mechanisms dominate37.

Figure 4 Coupling term for the direct mechanism. The results for the Holo form are zero, and therefore are not
shown in the current logarithmic scale.

We have calculated VDA for the direct mechanism. The shortest distance between the Asp and the Trp
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in the holo form is 12.40 Å and in the apo form is 7.50 Å (taken from the crystal structure). Both are
large distances to expect an overlap between the donor and acceptor orbitals, which results in negligible
couplings as shown in Figure 4.

The second possible mechanisms is called sequential, because the hole travels from one donor to the
acceptor by hopping to intermediate sites that temporarily host the hole. It corresponds to a chain of
charge transfer events and is common in biological systems such as photosynthetic complex38. In the
system under study, Glu33 and Arg64 are the only intermediate residues that could host the charge. We
have seen that the ionization potential of these residues is higher than for the Asp62, which renders this
process thermodynamically unfavorable.

The third mechanism is superexchange. In superexchange, the charge travels directly from donor to
acceptor, but it travels through the orbitals of intermediate sites, without interact with them. 

Figure  5 Average  coupling  term for  the  superexchange  mechanism  obtained  from  the  16  profiles

calculated. The coupling was calculated at the optimized geometries with the hole on the Trp (blue:
apo form, purple: holo form) and on the Asp (red: apo form, green: holo form).

Figure 5 shows the couplings for the apo and the holo form. It is easy to see that the couplings in the
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apo form are up to three orders of magnitude larger than in the holo form.  As described in the methods
section,  calculating a  coupling  for  two different  geometries  (hole  on  Trp  and hole  on  Asp)  is  an
approximation, and we expect the actual coupling to lie in between these two values.

The overall rate will be determined by a Boltzmann average of the rates at different C-C distances, and
therefore, the most relevant region is the region before the crossing of the two profiles: at C-C distances
lower than 2Å. In this region, the apo form has a coupling around 10 -6eV. This value is small compared
to other biological processes, but we have to consider that the process we observe takes place at the
scale of hours. The value of the coupling in the holo form is at least two orders of magnitude lower.
This  explains why,  even if  the  hole transfer  is  thermodynamically  possible,  it  is  kinetically  much
slower than in the apo form. So slow that it is not seen in the time-scale of data acquisition in X-ray
diffraction.

Conclusions
The biological samples with acidic residues are susceptible to suffer radiation damage events ending in
a decarboxylation reaction during its crystallization. In this work we have used TtLDH to study this
process. We have checked whether the experimental observations stating that a HT is produced in the
Trp62 could be reproducing and explored by QM/MM hybrid simulations. 

We have  showed that  understanding of  side-specific  radiation  damage  needs  to  take  into  account
neighboring residues even if they don’t have a direct role into the process. We have proved that the
observed HT corresponds to a superexchange mechanism between Asp and Trp (with Arg and Glu as
necessary  intermediates).  Also  we  showed  by  electronic  couplings  calculations  why  the
decarboxylation is produced in both crystal forms but the HT is only observed in the apo form.

Furthermore we have proved that  the FCD method is  a useful way to characterize charge transfer
processes produced by radiation damage because with few experimental parameters the transfer process
could be estimate.
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4.2 Global Motions

4.2.1 Cooperativity of secondary structure elements in pro-

tein ensembles

Secondary structure is an important element of IDPs. As we have commented (sec-

tion 1.4.1 ) its structure and dynamics are very related to their function. Thus as

they are very implicated in disease, understanding their structural characteristics

is very relevant.

Some regions (called MoRFs) of IDPs can adopt transient secondary structure

configurations. When we generate IDPs conformational ensembles, generally it is

difficult to determine its composition. Sometimes the conformational propensities

of the individual residues hide the cooperative nature of these ensembles. Thus,

as commented previously it is necessary to differentiate when a fragment has re-

gions that adopt a conformation in a secondary structure and when that fragment

contains a true secondary structure, with all the residues adopting that confor-

mation (at the same time). Both scenarios can exist and will lead to different

experimental results, such as different RDCs, and SS-map will easily visualize the

structural differences between them.

SS-map is a python algorithm freely available for download in ‘http:

code.google. com/p/ss-map/’ designed to represent the cooperativity or the cor-

relations in secondary structure conformations for IDPs, where the use of contact

orders or native contacts is impossible. Although this was the initial purpose it

is also applicable to globular proteins, being a useful tool to analyze the folding

process of small proteins and peptides. It can shed light into the actual conception

of the protein secondary structure.

To visualize the proteins ensembles secondary structure it use the φ and ψ

angles, whose values are characteristics of different secondary structure elements.

The method incorporates four different definitions of the secondary structure ele-

ments based on the Ramachandran (φ and ψ) diagram. These definitions corre-

sponds to Profasi, Flexible Meccano, Campari and DSSP programs. Additionally

one can use its own definition of the φ and ψ angles. The program takes either a

folder with multiple PDB files (one for each protein in the ensemble) with which

it calculates the angles φ and ψ, or an array with the angles φ and ψ for each

structure in the ensemble. It returns either an image, a numpy array and/or a

.txt file containing a matrix (or a graphical representation of this matrix) which

shows in how many structures of the ensemble (in %) the residue y is forming a

structured region of lenght x.

We checked the algorithm against different type of proteins. First we studied
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two folded proteins (HPLC-6 and GB1m2) near its melting temperature (323K),

using Profasi, to test our SS-map against other traditional visualization tech-

niques. Then, we visualized an ensemble of a MoRF from a Measles and a Sendai

virus nucleoprotein whose ensembles were calculated using the Flexible Meccano

(to compare with the results of Blackedge and coworkers), and finally we study

the existence of the polyproline II (PPII) helix in IDPs using the data provided

by Prof.Rohit Pappu (to test our SS-map against his results).

Using SS-map we realized that for HPLC-6 long α-helix segments are not

less frequent than shorter ones, contrary to the observed with usual visualization

methods. With them was observed that the percentage of α-helix conformation

for each peptide gradually decreases with temperature because the α-helices, that

used to emerge from a central residue, get shorter with temperature being them

most frequent than longer ones. What is observed is that the long helix (spanning

34 or 35 residues) is lost between 310 and 315K, and then the ensemble is composed

of helices of several different lengths. There are a non-negligible percentage of

α-helix even at 343K. Then, we studied the GB1m2, a structure that forms a β-

hairpin, and has a very similar melting temperature, 324 K, respect to the HPLC-

6. The SS-map reproduces its structure, two β-strands linked by a central empty

region corresponding to a beta turn and additionally we observed that the β-sheets

behaves different than the α-helix regarding the adoption of secondary structure

with the temperature. Even above the transition temperature, the strands of

the hairpin remain the most populated structures, in contrast to the α-helix.

Thereafter, analyzing the PPII helices we also realized that these helices opposite

to α-helices do not grow from a central residue. It can be concluded that each

type of secondary structure present its own pattern and structural characteristics.

Moreover we studied two IDPs corresponding to the Sendai and Measles virus

showing that the picture is more complex of that was observed in previous studies

of Blackledge and coworkers(J Am Chem Soc 2008; 130:8055-61, Proc Natl Acad

Sci U S A 2011; 108:9839-44 ). The helices of a couple of MORFs (H1 and H2 in

sendai, and H2 and H3 in measles) mix together and form a higher helix.

Summarizing, we created an algorithm that allows the visualization of the pro-

tein secondary structure elements showing the cooperative effect of each residue

to the whole secondary structure. We analyzed various globular and disordered

proteins showing that SS-map can capture information regarding the size, the

presence and the behaviour of secondary structure elements (α-helices, β-strands

and PPII helices) that traditional visualization methods can not capture. Fur-

thermore we showed that the β strands behave in a opposite way with respect to

the α-helices as also happens with PPII. Differences between α-helices, β-strands

and PPII regions become more evident using SS-map.
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Intrinsically Disordered Proteins (IDPs) exist in solution as 
ensembles of structures. This raises a challenge to us, humans, 
as we tend to understand structures by visualizing them,1 and we 
lack ways to represent ensembles. Ensembles contain structural 
information, even when IDPs satisfy random-coil statistics.2,3 
Some regions of IDPs can adopt secondary structures, at least for a 
transient time.4 This can be probed with experimental techniques 
such as NMR, in particular with Residual Dipolar Couplings 
(RDCs).5-8 Structured regions, termed MoRFs, are key to rec-
ognition processes mediated by coupled folding-binding events.9 
The interpretation of data derived from NMR is usually done 
by stating that a certain segment of the protein chain adopts a 
certain secondary structure in a percentage of the total ensemble, 
but this conveys information in a difficult way for scientists not 
familiar with these interpretations. How can the ensembles be 
represented to better unveil their structure?

When studying protein folding, ensembles coming from com-
putations are represented along the reaction coordinate of native 
contacts. This shows that for many (small) proteins, folding is a 
two-state process. Thus it is a cooperative event where most of 
the ensemble at a given temperature is either folded or unfolded. 
Victor Muñoz has pioneered the study of downhill folders, which 
fold in a progressive manner.10 How do MoRFs of IDPs behave? 
Contact order discriminates between two-state and downhill 
folders, but it cannot be used in IDPs because it is based on the 

We present SS-map, a tool to visualize the secondary structure content of ensembles of proteins. When generating 
ensembles of Intrinsically Disordered Proteins, we lose the understanding a single native structure gives for folded 
proteins. It then becomes difficult to visualize the composition of the ensembles or to detect transient helices such as 
MoRFs. Conformational propensities for single residues also hide the nature of cooperative structures. Here we show 
how SS-map describes folded and unfolded ensembles of some peptides and gives a new view of the ensembles used 
to describe Intrinsically Disordered Proteins with residual structure in computational and NMR experiments. This tool is 
implemented in an open-source python code located at code.google.com/p/ss-map
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concept of a well-defined native structure. MoRFs are usually 
described as the ratio of residues that adopt a certain secondary 
structure. It is important to differentiate when residues in a frag-
ment independently adopt a conformation in a secondary struc-
ture region, from when that fragment contains a true secondary 
structure, with all the residues adopting that conformation at the 
same time, even if that structure is only adopted rarely. Indeed, 
if n residues are in an α-helical region 20% of the time, that 
does not mean an helix of n residues is present 20% of the time. 
Whether this happens or not will lead to different experimental 
results, such as different RDCs, and SS-map will easily visualize 
the structural differences of these ensembles.

In this communication we present a way to represent the 
cooperativity or the correlations in secondary structure forma-
tion for IDPs, where the use of contact orders or native contacts 
is impossible. We named our approach SS-map, from Secondary 
Structure map. We first study 2-folded proteins near its melting 
temperature to link our SS-map with other visualization tech-
niques used in the protein folding community. Then, we visu-
alize an ensemble of a MoRF from a measles11 and a Sendai5,12 
virus nucleoprotein. Finally we reconsider the existence of the 
polyproline II helix in IDPs.

The SS-map tool is available for download in htcode.google.
com/p/ss-map/, under the GNU GPL v3 license. Graphical 
output from the SS-map is produced with the matplotlib 
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There are different definitions of secondary structure ele-
ments. Currently our code can use the definition reported in ref. 
14, where all the Ramachandran space is assigned to an element; 
a more restrictive definition as in ref. 15; or a user defined rect-
angular region of the Ramachandran plot. When the ensemble 
is input as a set of PDB files, SS-map uses the Bio.PDB16 module 
of Biopython17 to generate dihedral angles. Alternatively, we can 
use the external code Stride18 to read the secondary structure. 
Differences in applying these definitions will be discussed below. 
A schematic workflow with the different possible input and out-
puts of SS-map is depicted in Figure S1.

The information that SS-map presents requires an image 
for each of the ensembles. This information can be compressed 
in two ways to represent several ensembles in one image. The 
raw-average gives the widely used probability of a certain resi-
due being in the selected conformation, as Figure S2 shows. The 
column-average gives new and complementary information: the 
percentage of fragments of a given length. This information can 
then be combined for different ensembles, for example, at differ-
ent temperatures, such as in Figures 1 and 2.

We first present a study of the unfolding of the peptide 
HPLC-6, which forms an α-helix and has a melting tempera-
ture of 323K when simulated with the Profasi force field.19 The 
percentage of α-helix conformation for each peptide gradually 
decreases with temperature. This is more prominent at the N- 
and the C-terminus (Fig. S2; Fig. S3). The SS-map shows that 
at 313K a long helix spanning most of the residues is the most 
abundant structure (see Fig. 3). At 320K, this long helix is lost 
and fragments of different sizes are almost equally present, but 
in all cases, these fragments grow from the central residue 19. A 
representation of secondary structure per residue (Fig. S2) sug-
gests that helices get shorter with temperature. This is not true: 
Long α-helix segments are not less frequent than shorter ones. 
At 320K, all fragments are rare, and the cumulative percentage 
of helices larger than 20 residues represents only a 21%. This 
number, at 313K is of 71%. At 327K, although the overall per-
centage of α-helix is still 45% (Fig. S2), there is no helix as such, 
only residues that adopt this conformation independently, with-
out any cooperativity. This information cannot be reflected with 
the visualizations traditionally used, such as Figure S2, but it is 

library.13 Details of the simulated ensembles are reported in the 
Supplemental Material.

The visualization tool presented in this work extends the 
calculation of secondary-structure percentage per residue 
one more dimension: we calculate and show the frequency 
of having n exactly contiguous residues in a certain second-
ary structure. For a protein with N+2 residues, this generates 
a matrix of NxN, where an element (m,n) corresponds to the 
frequency of having residue m forming a secondary structure 
element of length exactly n. Frequencies are normalized, so that 
if one wants the probability of residue m forming an helix of  
at least 4 residues, one can get it by summing row m, elements 
4 to N.

Figure 1. SS-map representing α-helices for the HPLC-6 peptide at different temperatures [(A): 313K, (B): 320K, (C): 327K)]. Large helices are lost below 
the melting temperature of 323K and all fragments grow from a central residue. At 320K an ensemble of helices with a wide range of lengths is present 
but shorter helices are not more abundant than longer ones.

Figure 2. Temperature dependence of the presence of secondary 
structure elements at different temperatures. The x-axis represents the 
length of a helix element, and the y-axis the temperature. It shows how 
long helices are present only at low temperatures, and that helices do 
not get shorter, they just become much scarcer at higher temperatures 
(only the region of long helices is plotted, as the remaining region is 
essentially zero)
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random-coil model named Flexible Meccano12,23 to generate an 
ensemble of structures (Fig. 4). Then they added helical frag-
ments—in a statistically robust way—until they achieved a satis-
factory fit of the RDCs. A special conformational treatment was 
given to the N-capping residues of the helices. The N-capping 
modifications are not implemented in the public version of Flexible 
Meccano, and therefore our ensembles differ from the ones used 
by Blackledge and collegues (see the SI for a further discussion of 
this point). Table 1 describes the composition of both ensembles.

The analysis of the ensemble using SS-map shows that the 
picture is more complex than it might seem. For example, helix 
H1 and H2 in the measles virus protein mix together to give 
an ensemble of helices that have lengths from 5 to 8 residues. 
Similarly helices H2 and H3 in the Sendai virus protein cannot 
really be differentiated and extend from the limits stated in Table 
1. In our ensembles helices extend both toward the N-terminal 
and the C-terminal sense symmetrically, due to the lack of the 
N-capping treatment.

SS-map helps to bring light to these features, but as a visu-
alization tool it does not substitute the work to determine what 
constitutes a correct ensemble. Here we have exploited the statis-
tically sound analysis of Blackledge and coworkers to optimize 
the ensemble to fit the experimental data and we have only con-
sidered their best results.

The presence of polyproline II (PPII) helices in IDPs has been 
studied in several works. It has been related to the unexpected tem-
perature behavior of IDPs24 and its content correlates with the net 
charge of the IDPs15 because PPII helices are the most stable con-
formations for charged residues.25 We have analyzed the simulated 
ensembles of four IDPs studied by Pappu and colleagues, but here 
we only report the results for a poly-glutamine of 34 residues (id. 21 
in their work15) because the results are similar for the other IDPs. 

relevant to interpret the results of circular dicroism that revealed 
a non-negligible percentage of α-helix even at 343K:20 our inter-
pretation is that it was only due to isolated residues in α-helix, 
and not to true helical segments.

The information of a range of ensembles at different tempera-
tures can be compressed as previously explained. Figure 1 shows 
that the long helix spanning 34 or 35 residues is lost between 
310 and 315K, and then the ensemble is composed of helices of 
several different lengths. An essentially unfolded ensemble at the 
melting temperature agrees with recent similar findings for the 
more complex Protein A.21

We now focus on a structure that forms a β-hairpin, i.e., two 
β-sheets connected by a turn. We have taken a mutated from of the 
GB1p peptide (GB1m2)22 also studied with the Profasi force field.19 
The simulated melting temperature for this peptide is very similar 
to the previous α-helix, 324K. The SS-map shows two β-strands 
and an empty 4-residue central region, which corresponds to the 
β-turn (Fig. 2). Even above the transition temperature, the strands 
of the hairpin remain the most populated structures, in contrast 
to the α-helix. The SS-map shows that the unfolded state of this 
β-hairpin—ensembles above the folding temperature—has differ-
ent structural characteristics than the unfolded state of the α-helix 
(Fig. 3; Fig. 2). The temperature profile of the SS-map in Figure 2 
also contrasts with the one for the α-helix.

We now focus on a true IDP that contains fragments of partial 
secondary structure. These fragments are called MoRFs and cor-
respond to binding regions of the IDPs.9 Partially ordered regions 
are a challenge for many biophysical techniques,4 but a success-
ful approach is the use of NMR Residual Dipolar Couplings.6-8 
Here we will consider two proteins: a Measles virus nucleocap-
sid protein11 and a Sendai virus nucleoprotein,5 both studied by 
Blackledge and coworkers. In both proteins, the authors used a 

Figure 3. SS-map showing β-strands for the GB1p β-hairpin below the folding temperature [(A): 319K and above (B): 327K]. The temperature depen-
dence of the SS-map shows that at all temperatures the most frequent strand has 4 residues (C).



e25323-4	 Intrinsically Disordered Proteins	 Volume 1 Issue 1

the ensembles contain only 5 consecutive residues. To avoid being 
deceived by single-residue propensities, Pappu and coworkers 
counted only fragments of 3 or more consecutive residues in PPII 
conformation. SS-map removes the arbitrariness of that number 
“3” and conveys more information. As opposed to the α-helix in 
Figure 1, there is no growing helix from any central residue. Thus, 
long helices of PPII do not cooperatively form in solution, at least 

Among all their reported IDPs, this one has the highest PPII con-
tent, as expected from its highest charge. Although the total PPII 
content is 51%, Figure 5 shows that the longest helices present in 

Figure 4. Helical content for the ensembles that reproduces the experimental RDCs of the Sendai virus nucleoprotein5 (A) and the measles virus nu-
cleoprotein11 (B). Both ensembles were generated with Flexible Meccano by mixing ensembles with pre-defined helical content as detained in Table 1. 
Although 3 helices were used for the Sendai protein and 4 for the measles protein, the resulting ensemble is more continuous and mixed than Table 1 
might suggest.

Figure 5. Content of Polyproline II for the 34-residue poly-glutamine, 
the region defining the polyproline II is the same as in the original 
study.15 Although the natural propensity of all the residues is to be in 
PPII with a relevant frequency, the formation of a helix is not a coopera-
tive process and long helices are absent, in contrast to the α-helices of 
Figure 3.

Table 1. Composition of the ensembles generated with Flexible Mec-
cano12,23 to reproduce the RDCs for the Sendai virus nucleoprotein5 and 
measles virus nucleoprotein,11 based on the data provided therein

Residues Population (%)

Sendai

H1 479–484 36

H2 476–488 28

H3 478–492 11

Random coil 468–500 25

Measles

H1 494–499 22

H2 492–497 30

H3 489–502 10

H4 485–502 13

Random coil 481–506 25

Remark that the N-capping aminoacids had a special conformational 
behavior not implemented in the public version of the Flexible Meccano 
code, and therefore the ensembles reported here differ from those 
described in the original references.5,11
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referenced or compared with a native structure and we need new 
tools to visualize these heterogeneous ensembles. In this work 
we presented a tool, SS-map, which literally adds a new dimen-
sion to the representation of IDPs ensembles. By including the 
correlation between secondary structure elements in fragments, 
a more detailed picture emerges. Differences between α-helices, 
β-strands and PPII regions become more evident. The ensembles 
used to reproduces RDCs data can also be visualized and com-
pared. SS-map does not optimize or change the ensembles what-
soever, it only extracts information from them and displays it. 
The results are as realistic as the underlying ensemble is; finding 
these ensembles remains a challenge.28 Finally, this tool can also 
be useful to analyze the folding process of small proteins and 
peptides.29
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in the models used by Pappu and coworkers.15 Considering that 
electrostatic interactions in water increase with temperature,26 it 
would be interesting to study how these ensembles change when 
heated. We leave that for future work.

Although everybody agrees on the qualitative descrip-
tion of α-helices and β-sheets, different groups partition the 
Ramachandran plot in different regions. For example, Blackledge 
and coworkers use big rectangular regions so that any point belongs 
to a given secondary structure.14 Although these regions are larger 
than what is usually accepted, they allow the classification of all 
points in the Ramachandran plot. Pappu and colleagues use much 
more restrictive secondary structure elements,15 closer to more wide-
spread definitions such as the one in the Wikipedia.27 In SS-map 
users can also measure with their own definitions. The effect of 
these arbitrariness could be more important in IDPs than in folded 
proteins, due precisely to their higher disorder. Figure 6B shows the 
ensembles plotted using different criteria. It is interesting that the 
Stride program never considers a fragments of less than 4 residues 
to have a secondary structure, to model as closely as possible how 
crystallographers represent α-helices and β-strands.18 Therefore the 
results differ in those 1 to 3 residue fragments, but agree almost 
quantitatively in the rest. The more restrictive definitions used by 
Pappu and coworkers15 lead to overall lower percentages of second-
ary structure fragments as expected, but the general picture remains 
the same (compare Fig. 6 with Fig. 5). Whether a consensus is nec-
essary or not is something the scientific community has to decide, 
but our present findings suggest that the structural interpretations 
do not change significantly with varying definitions.

Understanding IDPs with partially folded regions is a challenge 
to both computation and experiment.4 Conformations cannot be 

Figure 6. SS-map for the measles virus nucleoprotein showed if Figure 4 using two different criteria to define the α-helix. The external program Stride 
(A), which only considers a secondary structure element when it is larger than 4 residues, and the definition used in ref. 15 (B), which is approximately 
circular and much smaller than the region used by Blackledge and coworkers.14
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4.2.2 Determination of IDPs ensembles from Residual Dipo-

lar Couplings

A usual problem studying protein dynamics by conformational ensembles is that

when we simulate a system and we want to compare against experimental data

to validate it, the simulated ensembles does not match accurately the experimen-

tal values. The reason why this happens is not unique, can have more than one

answer. For instance, it can be a problem of the force-field employed or a prob-

lem of sampling due to computing time limitations. As we have explained at the

Introduction a lot of efforts are putted into improving the force-fields parame-

terizing them with experimental data. But there are also other methods that are

into development aimed to avoid this mismatch such as reweighting the calculated

ensembles to match certain observables.

Trying to shed some light in this direction we created an algorithm (MaxEnt)

that incorporates the maximum entropy principle to fit a set of RDCs from a

simulated ensemble. The maximum entropy is a statistical method that derives

from minimizing the information included in an ensemble to fit certain observables.

On the other hand, the usage of RDCs is because it is a very suitable technique to

characterize protein secondary structure elements at a residue level and has been

widely applied to study IDPs (For instance J. Am. Chem. Soc., 2010, 132 (24),

pp 8407-8418 or Mol. BioSyst., 2012, 8, 58-68 ).

We made MaxEnt, a python algorithm freely available at github (‘https://

github.com/ MelchorSanchez/MaxEnt’). It re-weights a set of RDCs values (back-

calculated from a set of structures) to fit a given set of Residual Dipolar Couplings

values. MaxEnt needs as inputs a matrix of MxN and a vector of N values. The

MxN matrix should contain the N RDCs of the M structures in the ensembles,

and the second vector should contain the reference RDCs. The RDCs to optimize

will be scaled to fit the reference RDCs.

Apart of the Maximum Entropy methodology described at section 3.4.5.4, an

important point of our MaxEnt is the calculation of λ, that represents the gradient

fit according to that the ensembles are reweighted. The RDCs have to be defined

up to a proportionality constant α. Thus the weights in 〈qi〉 =
∑N

j w
jqji need

not be normalized. If we know a set of measured RDCs Q = Qi, we define the

function:

f1(λ) = max
( 1

M
‖α〈q〉 −Q‖2, t2

)
(4.1)

to be minimized. t is a threshold value that is determined by the experimental

or the synthetic precision. In that region f1 is constant. The value of λ can be

obtained analytically minimizing f1(λ) which gives:
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λ =
|〈q〉 ·Q|
〈q〉〈·q〉

(4.2)

Although with some RDCs is not need to normalize the weights, for clarity

and consistency among all types of RDCs we scale them so that they add up to

the number of structures. w = 1 is equivalent to a structure not being reweighted.

Because the scaling adds one degree of freedom, the set of λ = λi that minimize

f1 lies on a 1-dimensional curve. Based on the MaxEnt principle, we seek λ that

minimally modifies the ensemble. By wj =
∑M

i exp(λiq
j
i ) these are the lambda

as close as possible to 0. Therefore we add a penalty term:

f2(λ) =
k

M
‖λ||2 (4.3)

and minimize f = f1 + f2. The value of the new introduced parameter is only

determined by the user-defined threshold t. If k is large, f2 will dominate and

will force low λ that will result in f1 higher than the threshold. Once k is small

enough, f1 reaches the threshold and further reduction of k results in the same

optimal . Therefore the selection of k is done by the algorithm.

To simplify the generation of the MxN RDCs we also created the python

script RunPales, available in the same github folder as MaxEnt. It is a python

3 script that can call the PALES (a software to backcalculate RDCs) executable,

generating the corresponding RDCs and converting it into an array. In other

words, RunPales is nothing but an interface to call the PALES program with the

suitable options, and store the generated results.

Our implementation of the maximum entropy principle present some interest-

ing points. First of all we modified its implementation making it scale invariant

to work with RDCs. Then, the MaxEnt can be used by different experimental

groups using different ensembles, as it can use any given set of structures. Its only

relies on the RDCs values not in the way in that are generated. Thus although we

provide the RunPales, its use is not necessary. Also due to its independence of the

structures we avoid the risk of overfitting problems as the number of parameters

is based only on the number of experimental data. Finally another important

characteristic is its velocity: it can use thousands of structures and converges in

a few seconds.

To check the algorithm we tested it over synthetic and experimental data sets

of the Sendai virus nucleoprotein. The calculated data set were obtained from

REMC simulations using the Profasi and the Campari (coarse grained) physics-

based force fields. Our results showed that despite their limitations, both can

generate better ensemble than simple random-coil methods (widely employed to
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simulate IDPs in general and the Sendai virus nucleoprotein in particular), show-

ing a more predictive power. However the generated ensembles has to be be

slightly modified to fit the reference data to good accuracy. Thus it is necessary

the use of reference (usually experimental) data to improve these ensembles. But

this data is insufficient to fully determine a good representative ensemble, and thus

the pervasive influence of the force field cannot be overlooked, if we wish to have

consistent representations of IDPs ensembles. If the force-field does not correctly

represent the real structural ensemble, although the ensemble will be reweighted

to a stronger extent and correctly fits the ‘reference’ data, its composition is going

to change only slightly.

Summarizing, we devised the suitable implementation of MaxEnt to fit RDCs

data sets in a fast way, avoiding overfitting and being scale invariant (that make

the model independent and potentially applicable to any kind of observable not

only RDCs). Also, we highlighted the relevance of the underlying model, which

sometimes is understimated. And finally, we tested whether some coarse grained

methods (Profasi and Campari) could produce more accurate ensembles than

random-coil-based Force Fields and thus increase the prediction of RDCs.
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Application of the maximum entropy principle to
determine ensembles of intrinsically disordered
proteins from residual dipolar couplings†

M. Sanchez-Martinez and R. Crehuet*

We present a method based on the maximum entropy principle that can re-weight an ensemble of

protein structures based on data from residual dipolar couplings (RDCs). The RDCs of intrinsically

disordered proteins (IDPs) provide information on the secondary structure elements present in an

ensemble; however even two sets of RDCs are not enough to fully determine the distribution of

conformations, and the force field used to generate the structures has a pervasive influence on the

refined ensemble. Two physics-based coarse-grained force fields, Profasi and Campari, are able to

predict the secondary structure elements present in an IDP, but even after including the RDC data, the

re-weighted ensembles differ between both force fields. Thus the spread of IDP ensembles highlights

the need for better force fields. We distribute our algorithm in an open-source Python code.

Introduction

Intrinsically disordered proteins (IDPs) are an emerging family
of proteins characterized by their ability to adopt a vast number
of configurations in solution. Their role in cell signalling,
transcription and aggregation turns them into key proteins in
cancer and neurodegenerative diseases.1,2 One would expect
many of them to be drug targets; however very few studies have
addressed the interaction of IDPs with small molecules.1,3

One reason for this is the difficulty in both generating and
characterizing the ensemble of configurations that turn an IDP
functional.4 A common mechanism of IDPs is a folding transi-
tion upon binding partner proteins.5 The amount of secondary
structure elements in the unbound IDPs governs the kinetics
of this binding process,6 thus the need to understand IDP
secondary structure elements in solution. These regions are also
called MoRFs7,8 and many studies aim at their identification.

A very suitable technique to characterize the secondary struc-
ture at a residue level is the NMR residual dipolar couplings
(RDCs),9 a technique that has been thoroughly developed by
Blackledge10–13 and Forman-Kay14–17 groups, among others. In
an isotropic medium, such as liquid water, dipolar couplings
average out to zero. But if the medium has some preferential
directions, then there is a partial alignment of the molecules and
a residual coupling can be measured.

Contrary to what is the case for folded proteins, in IDPs
the alignment tensor is essentially determined by the local
(secondary) structure.16 When the main mechanism of alignment
is steric, repulsion between the protein and the alignment
medium tends to align secondary structure elements parallel to
the medium. For this reason N–H couplings convey important
information on the secondary structure. When the alignment
medium is parallel to the field they are positive in a-helices – as
all N–H are parallel to the helix – negative in b-sheets – as N–H
are perpendicular to the sheet – and are very low for regions
without any secondary structure, where residue orientations are
random. A qualitative interpretation of RDCs can be based on
these principles, but a quantitative explanation can be achieved if
one is able to generate an ensemble of configurations that
reproduce the measured RDCs.11,12,15,16

The generation of the ensemble that fit the RDCs is the crux of
several approximations used in this field.18 A common approach
is to sample random coil regions of the Ramachandran plot with
codes such as Flexible Meccano,13,19 TraDES,16,20 or BEGR21

and then introduce secondary structure regions and weight
them with a statistical analysis11,17 or a genetic algorithm.13

This is because the physics behind these force fields is very
simple and cannot predict secondary or tertiary structure.
These methods have proved extremely successful in interpreting
several IDP studies, but lack predictive value in terms of secondary
structure elements.

The problem of optimizing an ensemble is a case of infer-
ential structure determination,22 albeit with a much broader
probability distribution. If this distribution comes from a
simulation, we would like to modify it so that it agrees with
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the experimental data. Ideally, the inclusion of the experimental
data should create ensembles that agree among themselves, even
if coming from different simulation methods. Here we explore to
which extent this is true.

We present a method based on the maximum entropy
principle (MaxEnt) to fit RDC data to simulated ensembles.
Maximum entropy is a logically consistent way to fit a distribu-
tion to previously known values introducing the minimum
possible modifications.23,24 It has been advocated very recently
as a powerful technique to solve structural problems25 and it
has already been applied to SAXS ensemble determination.26

We generated our ensembles from two coarse-grained force
fields, which have more accurate physical terms than TRaDES
or Flexible Meccano while remaining computationally affordable.
Coarse-grained methods allow sampling of the large conforma-
tional space essential to describe IDPs and converge RDC data.
However the simulation force-field does not influence the validity
of the presented selection procedure, which can be applied to all
types of ensembles.

Our aim of this work is three-fold. First, we develop a fitting
algorithm to adjust experimental RDCs to an ensemble of con-
formations. We implement our method in a publicly available
code so that it can be compared to others, and can be used by any
research group.27 Second, we explore the information content of
RDC data and the influence of our force field; in other words, how
much do the RDCs constrain the initial ensemble. Considerable
efforts have been made to determine how much different experi-
mental data determine the properties of the ensembles.17 Here we
want to highlight the relevance of the underlying model, which is
often overlooked. And third, we test whether some coarse grained
methods can produce more accurate ensembles than random-coil-
based force fields and thus increase the prediction of RDCs.

Methods

The maximum entropy (MaxEnt) principle derives from mini-
mizing the information included in an ensemble to fit certain
observables. It was first introduced by Jaynes23 and was recently
applied as a way to constrain molecular dynamics on-the-
fly.28,29 Roux and co-workers showed that under certain circum-
stances, their results were equivalent to the more traditional
constrains with harmonic potentials, used also in molecular
dynamics,30 while Vendruscolo and co-workers showed that the
restraint strength can be related to the experimental error.31

Here we present the application of the MaxEnt to the a posteriori
re-weighting of an ensemble that has already been calculated.
We also add some modifications needed to treat RDC data.

We decided to implement an a posteriori re-weighting so that
our method could be applied to ensembles generated with any
software or force field. A second reason is that when applying
the constraints on-the-fly, one usually averages by the number
of replicas running in parallel32,33 but the number of replicas
needed to converge the RDC values for IDPs is of the order of
thousands (see Results section), which means that constraint
molecular dynamics could only be run in supercomputers.

In our a posteriori re-weighting we assume we have a set of N
structures {Xj=1,N} that we have previously calculated with a
Monte Carlo or molecular dynamics simulation. As such, they
have already been generated with a probability proportional to
their Boltzmann factor, which depends on each specific force
field. For a set of M observables q = {qi=1,M}, Pitera and Chodera
showed that the application of the MaxEnt principle resulted in
a reweighting of the probability of each structure j by a term:28

w j ¼
XM
i

exp liq
j
i

� �
(1)

The form of the reweighting is fixed and a single parameter li

applied to each observable. As each structure has already been
generated with a weight according to a given ensemble
(a Boltzmann factor in NVT), w j modifies the weight of the
structure to fit the experimental observables. q j

i represents the
value of observable i in the structure Xj. q is a matrix of
dimension M � N. The average value of observable qi for a
given reweighting is

qih i ¼
XN
j

w jq
j
i (2)

RDCs have the peculiarity that they can only be defined up to a
proportionality constant a, because their absolute value depends
on their degree of alignment, which cannot be measured. This
has two consequences. First the weights in eqn (2) need not be
normalized, and second, one cannot define a simple convex
objective function as Pitera and Chodera did.28 If we know a
set of measured RDCs Q = {Qi}, we define the function

f1ðkÞ ¼ max
1

M
ahqi �Qk k2; t2

� �
(3)

to be minimized. t is a threshold value that is determined by the
experimental precision, and there is no point in optimizing below
that threshold, so f1 is constant in that region. In the case of
experimental RDCs, we chose the value of 1 Hz. The value of a can
be obtained analytically by minimizing f1(k) which gives

a ¼ hqi �Qj j
hqi � hqi (4)

When using N–H and Ca–Ha sets of RDCs a common scaling
factor was used.34 Because of the scaling, the weights need not be
normalized, but for the sake of clarity in the figures and in the
main text we scale the weights so that they add up to the number
of structures, so that a weight equal to 1 is equivalent to a
structure not being reweighted.

Because the scaling adds one degree of freedom, the set of
k = {li} that minimize f1 lies on a 1-dimensional curve. Based on
the MaxEnt principle, we seek k that minimally modifies the
ensemble. By eqn (1) these are the k as close as possible to 0.
Therefore we add a penalty term:

f2ðkÞ ¼
k

M
lk k2 (5)

and minimize f = f1 + f2. Although we are introducing a new
parameter, its value is only determined by the user-defined
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threshold t. If k is large, f2 will dominate and will force low
k that will result in f1 higher than the threshold. Once k is small
enough, f1 reaches the threshold and further reduction of k
results in the same optimal k (Fig. S1, ESI†). Therefore the
selection of k is done by the algorithm. The lack of sensitivity to
k is an important difference with restrained dynamics where its
choice is highly non-trivial.25,30,31 The minimization of f is done
with the Newton-GC method implemented in SciPy.35 For that,
the analytic gradient is required. Its expression is deduced in
the Appendix.

Our implementation converges in less than 10 seconds for the
ensembles used in this work in a 1 processor Xeon machine. This
is to be compared with the Bayesian method developed by
Stultz,36,37 which being their most efficient method takes about
30 minutes in an 8 processor Xeon machine with an ensemble of
299 structures. At the time of writing this paper, Das et al.38

published an interesting paper with a full Bayesian approach
(called FitEnsemble) based on Monte Carlo sampling and imple-
mented in pyMC.39 In the results section we compare our method
with theirs and we show that the full Bayesian approach does not
convey any essentially new information. At present their method
cannot deal with scale-invariant quantities such as RDCs, but we
do not see any fundamental reason why it could not be extended
to treat them and we plan to explore this possibility. That would
allow a cleaner way to introduce the uncertainty of RDCs’
prediction and the experimental error, which are cumbersome
to include in a maximum entropy formalism40 in an ad hoc
manner. As the comparison with FitEnsemble38 will show, both
of these terms are small for RDCs and the MaxEnt principle
results in a fast algorithm. The extension of generative prob-
abilistic models40,41 or maximum likelihood approaches42 to
IDPs is also an attractive alternative, but it is beyond the scope
of this work to evaluate them. The MaxEnt principle gives results
in agreement with the Sparse Ensemble Selection algorithm,43

but the latter is computationally more expensive and needs some
further development to be applicable to IDPs.43

Data

As N–H RDCs are the most discussed RDCs for IDPs we focus on
these data, but we also explore the additional information carried
by Ca–Ha RDCs. We use two kinds of data. First, we test our
method with synthetic data, as that allows comparisons with the
exact result. Then we apply the method to experimental RDCs to
see how it performs. In both cases we use a 53 residue sequence
from the nucleocapsid-binding domain of Sendai virus phospho-
protein. This protein has a crucial role in the replication and
transcription of the negative strand RNA genome.11,44 The
N-terminal domain of this protein is unstructured but contains
some partial secondary structure. The sequence of the simulated
fragment is FVTLHGAERLEEETNDEDVSDIERRIAMRLAERRQED-
SATHGDEGRNNGVDHE (the charges at the end of the sequence
were removed as it is part of a larger protein). This fragment
corresponds to the residue numbering 458 to 510 in ref. 11. We
have analysed only this region as it contains secondary structure
elements11,44 that cannot be predicted with a simple force field
such as Flexible Meccano.

Synthetic data

We run a parallel tempering simulation using the Profasi force
field45,46 in the Profasi code47 with 16 replicas, from 270 to 330 K.

We take T1 = 325.6 K as our reference or ‘‘experimental’’
ensemble. We calculated the RDCs for 8000 uncorrelated
structures with PALES48 using steric alignment, because of
the NMR setup used (see ESI† for the PALES options used).
Then, we have used the ensembles of structures at T0 = 317.0 K
to fit the RDC data at T1.

Because we have simulated both ensembles, we know that
the weight of a given structure j with energy Ej from the
T1-ensemble at temperature T0 is given by the Boltzmann
factor, namely

w
j
Boltzmann / exp � 1

T1
� 1

T0

� �
Ei

� �
(6)

And this can be compared with the reweighting of our MaxEnt
algorithm based on the RDCs.

Experimental data

The experimental data for this study were obtained from the
work of Blackledge and co-workers.11 In their study they
measured N–H and Ca–Ha RDCs and made a statistical analysis
to evaluate which regions of the a-helix needed to be added to
explain the observed results. When comparing with experimental
data, our residue number 1 corresponds to residue number 458
in ref. 11. In this region, 31 N–H RDCs and 25 Ca–Ha RDCs were
measured. RDCs for the 11 terminal residues are not calculated
nor taken into account for the fit side to eliminate the boundary
effects in the RDCs.49,50

The most interesting part corresponds to residues 18 to 34,
because of their tendency to form partial a-helices, also known
as MoRFs.7,8

These data have been simulated with two different coarse-
grained force fields: Profasi45–47 and Campari.51 Profasi was
chosen for its focus on reproducing the folding behaviour of
proteins based on physical terms. We think that using a
physics-based force field is important to work with IDPs as
knowledge-based force fields are biased towards folded proteins.
Profasi has also been applied to IDPs.52,53 The choice of Campari
is justified because it was specifically designed to work with IDPs
and has been applied in several studies.51,54 The Campari system
contains 9 sodium ions to neutralize the charge.

The RDCs were calculated from the PDBs with the PALES
software.48 As the alignment media, poly(ethylene glycol), is
dominated by steric interactions, we used the steric alignment
in PALES (see the ESI† for further details).

Data and code availability

The Profasi and Campari ensembles re-weighted to fit the
experimental data have been deposited in the Protein Ensemble
Database (pE-DB)55 with the code 4AAB. Because the pE-DB
does not support weighted ensembles, the deposited structures
are those structures with weights larger than 0.75 (see below).
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Cross-validation

We have performed two types of cross-validation. First, we use
experimental N–H RDCs as a training set and leave the experi-
mental Ca–Ha as the test set. Second, we use a set of 10 000
structures as a test set and use a variable number of structures in
the training set. We tried the following sizes for the training set:
{100, 250, 500, 750, 1000, 2500, 5000, 7500, 10 000}. When using
smaller sets, MaxEnt could not converge to the requested accuracy
in the training set. Note that the training set is not a subset of the
test set, and in the final case, we have a total of 20 000 structures.
We compare the error in the fit in the test set with the k = {li} and
the scale factor coming from the training set with respect to the
error in that training set. This procedure can tell us the adequate
size of the training set and an estimation of the error.

Results and discussion
Size of the ensemble and error estimation

The number of molecules in an NMR experiment is orders of
magnitude larger than what can be simulated. How many
structures should an ensemble contain? We seek the minimum
number of structures needed so that when we add more
structures to the ensemble (sampling from the probability
distribution given by our force field) the results do not change
appreciably.56 This depends on both the property we measure
and the shape of the probability distribution of the ensemble.
For example, for several folded proteins, a single structure can
reproduce a SAXS curve or a diffraction pattern.

Fig. 1 shows the error in the test set when using different
number of structures for the training set to fit N–H RDCs with
the Campari ensemble. We can see that for training sets
smaller than several thousands, the errors in the test set remain
very large, and increase as we improve the fit in the training set.
In other words, the optimized {li} are not transferable. This
shows us that we need training sets at least of 7000 structures

to determine parameters that do not overfit the experimental
results until an RMS error of approximately 1 Hz. Because this
number is close to the experimental error, we consider ensemble
sizes of 7000–10 000 as adequate.

Alternatively, we can estimate the error when calculating the
mean value for an RDC: the standard error of the mean. There
is certain ambiguity in this value as RDCs can be scaled, but we
take here a fixed scale factor obtained from the fit of the 10 000
structures (a = 2.08). Fig. S2 (ESI†) agrees with our conclusion
that several thousands of structures are needed to get a mean
RDC value of the same order of the experimental error. This
result is independent of the residue we are measuring: the
convergence of all RDCs is the same. Other studies have also
found that the underlying ensembles are more heterogeneous
than what the measured mean value may suggest.56–58

Several previous studies used a smaller ensemble size31,32 to
successfully simulate IDPs. The size of the ensemble in these MD
restrained simulations depends not only on the dispersion of the
measured property but also on the other parameters used for the
restrain, namely its force constant.30,31 These studies run simula-
tions in parallel and were limited by computational resources,
but formally their results are exact only when the number of
replicas tends to infinity. Other computational methods are
expensive, thus limiting the size of the ensembles.4,14,15,17,37

Our method is efficient for thousands of structures so that we
prefer to use the full simulated ensemble.

A second important reason to limit the size of the ensembles
is to reduce the overfitting. This is an issue when the weights of
the structures are the parameters to be optimized, because new
structures introduce new parameters, with the obvious risk of
overfitting. With the MaxEnt algorithm, the number of para-
meters is fixed by the number of experimental data and not by
the number of structures in the ensemble, which again does
not prevent the use of large ensembles.

Synthetic data. What are the RDCs re-weighting?

In this section we analyse to which extent the MaxEnt can
recover an unknown ensemble, using some experimental data
from that ensemble.

To analyse the secondary structure (SS) content of the
ensemble, we use SS-map.59 SS-map is a software that plots
the SS fraction of a given residue on the y axis and the length of
the SS element on the x axis, thus providing a picture of the
SS distribution of an ensemble with the information of the
cooperativity of different SS of individual residues. By plotting
both the fraction of SS and its length, it allows to distinguish,
for example, a fully formed helix of 10 residues present 50%
of the time from 2 fragments of 5 residues spanning the
same range.

The ensemble at T1 represents what in a real situation would
be the unknown ensemble, from which we only know the
measured RDCs. T0 is a calculated ensemble that presumably
will be similar, but does not have to reproduce the data exactly.
MaxEnt should be able to reweight the T0-ensemble so that it
fits the ‘‘measured’’ RDCs. Will the T0 re-weighted ensemble be
more similar to the T1 ensemble?

Fig. 1 Plot of the root mean square (RMS) error allowed when fitting the
training set with respect to the error in the test set. The test set is always of
10 000 structures whereas the training set increases from 100 to 10 000
structures. Results seem converged above 7500 structures and trying to fit
below 1 Hz results in overfitting even for the largest ensembles.
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Fig. 2 shows the SS-map of the synthetic ensembles at
temperatures T0 and T1 and the re-weighted T0-ensemble to
fit T1 N–H RDCs. Because T0 is a lower temperature, this
ensemble presents longer helices. Fig. 3 shows that the applica-
tion of the MaxEnt principle returns a set of weights that can
reproduce the final RDCs.

The re-weighting needed to fit the data gives a set of weights
that are closer to 1 than the exact Boltzmann reweighting (see
Fig. 3). In other words, although the exact Boltzmann weights
can reproduce the RDCs of the objective T1-ensemble (see Fig. S3,
ESI†), the MaxEnt principle tells us that, based on the data, we
do not need to change the weights that much, and that a lower
modification of the ensemble is enough and consistent with
the data.

As Fig. 3 suggests, the energy distribution of the reweighted
T0-ensemble is still closer to that of the T0-ensemble than to
that of the objective T1. On average the energy increases but
remains lower than the T1-energy distribution (see Fig. S4, ESI†).
Fig. S5 (ESI†) shows that most of the structures do not get
re-weighted, and only a few do. For those that get re-weighted
there is a certain correlation between the Boltzmann re-weighting
and the re-weighting given by the N–H RDCs. Of course, if more

data are used, for example Ca–Ha RDCs, the reweighting will
increase, but even when doubling or tripling the number of
experimental data, the degrees of freedom of the ensemble are
much higher. We explore this in the following section.

The N–H RDCs do not give information on the energy but on
the SS content of the structures; thus we expect the re-weighting
to change the SS distribution. Fig. 2 and Fig. S6 (ESI†) reveal
that the re-weighting of the data produced goes in the expected
directions: the T0 ensemble gets depleted from the long helices
that give too large RDCs. But these figures also show that the
SS-map of the resulting ensemble remains different from that
of the objective T1-ensemble. There are still regions of long
helices much less populated in the T1-ensemble. In the following
section we will give a reason why the reweighting is not complete
and only affects some of the structures.

The results from this section suggest that the RDCs give
some information on the SS content of an ensemble, but this
information is limited and cannot fully determine the helical
propensity nor the helical lengths of an ensemble.

Application to experimental RDCs

We now focus on the reproduction of the experimental RDCs.
First we use N–H RDCs and then we include Ca–Ha RDC either
as a form of cross-validation or as a source of further structural
information. Here, we treat the temperature of the simulation
as a parameter, so that we first select the ensemble that best fits
the N–H RDCs. For Profasi, this temperature is 325.6 K, and for
Campari, the temperature is closer to the experimental one:
300.5 K. As these are the only ensembles we will use from now
on, we will refer to them as Profasi and Campari ensembles.
Previous studies showed that some force fields need higher-
than-experimental temperatures to agree with the data;57

however this adds a parameter that limits the predictive power
of Profasi.

The Profasi ensemble fits the N–H RDCs reasonably well,
but shows a region, around residue 35, of too much alpha
helices. The MaxEnt algorithm produces a small reweighting of
this ensemble, with most of the structures retaining a weight
close to one. Therefore the SS-map of the ensemble is visually
indistinguishable from the one shown in Fig. 2.

We can use the Ca–Ha RDCs to cross-validate this refined
ensemble. The Ca–Ha RDCs are very similar to the original
ones, showing that we did not incur overfitting, but differ
significantly from the experimental RDCs (Fig. S7, ESI†). This
shows that Ca–Ha and N–H RDCs are not correlated, and
depend on different structural properties of the ensemble.
The lack of agreement with Ca–Ha indicates that the Profasi
ensemble does not correctly represent the real structural
ensemble.

As fitting one set of RDCs does not affect the other, we can
use MaxEnt to also fit Ca–Ha RDCs The resulting ensemble is
reweighted to a stronger extent and correctly fits the 56 RDCs
(Fig. S8, ESI†). However Fig. 5 shows that despite the use of
the additional 25 Ca–Ha RDCs, the fitted Profasi ensemble has
only changed its composition slightly (compare with Fig. 2).
This change went in the expected direction, increasing the long

Fig. 2 SS-map of the Profasi ensemble at T0 = 317.0 K (right) and
T1 = 325.6 K (left) and the T0 MaxEnt re-weighted ensemble to fit T1

N–H RDCs (middle). The latter ensemble has fewer long helices than the
T0 ensemble, but it still contains more long helices than the T1 ensemble
despite reproducing the RDCs at T1.

Fig. 3 Left: MaxEnt fit of the Profasi T0 = 317.0 K ensemble to the Profasi
T1 = 325.6 K average N–H RDCs (blue). The unweighted ensemble (green)
has too many long alpha-helices compared to the optimized ensemble
(red). Right: distribution of the weights after the ME optimization (blue)
compared to the exact Boltzmann weights.
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helices in the region of residues 20–27 and depleting the
ensemble from helices in the region 31–39 (Fig. S9, ESI†).
However this change was minor compared to the overall
composition of the ensemble. Thus, even the use of 56 RDC
data does not qualitatively change the Profasi ensemble and
hints that it is still far from the real ensemble. We believe that
this information can be used by developers to improve the
quality of this force field. The spread of IDPs’ energy landscape
makes them a good target to find the balance between secondary
structure populations and lengths versus random coils.

The Profasi ensemble differs from the ensemble deduced
by Blackledge and co-workers,11,44 which was mainly composed
of random coil regions and three long helices. Their helices
add up to 75% of the ensemble, and the longest helix has a
population of 11% and ranges from residue 20 to 35. The
robustness of their choice was checked by statistically signifi-
cant improvement compared to other helical combinations.
Despite Profasi being able to reproduce the folding of peptides
and small proteins ab initio,45,60 it does not predict the long
helical elements suggested by Blackledge and co-workers.

The introduction of the experimental data does not reweight
all the structures equally, because the weight of a structure
depends on its RDC values.

The set of RDCs forms a 31-component vector that is difficult
to compare to weight of the structures. We can compress the
information of this vector in its root-mean-square (RMS) value. If
we plot the optimized weights vs. the RMS of the RDC vector for
each structure, a clear trend appears (Fig. 6): the higher the
RMS(RDC) the more reweighted the structure is. This makes
sense, as reweighting a structure with small RDCs does not
improve the fit. In other words, MaxEnt (or any other fitting
procedure) is blind to structures that have low RDCs. Because
RDCs can be scaled, ‘‘low’’ or ‘‘high’’ RDC refers to the value with
respect to the other structures. As is well known, large RDCs
correspond to long helices, and these structures are the ones
MaxEnt finally re-weights to a larger extent.

Only 208 structures out of 8000 have a weight lower than
0.75 (see Fig. 7) when fitting N–H RDCs. Just by removing
these structures from the ensembles and letting the others
unchanged, the fit is almost as good as the optimized one in
Fig. 4 (RMSD = 1.96 Hz compared to the optimized 1.00 Hz,

Fig. 4 Left: MaxEnt fit of the Profasi T1 = 325.6 K ensemble to the experi-
mental N–H RDCs (blue). The unweighted ensemble (green) has a region of
too much alpha-helices compared to the optimized ensemble (red) between
residues 32 and 40. Right: distribution of the weights after the optimization.

Fig. 5 SS-map of the MaxEnt re-weighted Profasi (left) and Campari
(right) ensembles using 31 N–H RDCs and 25 Ca–Ha RDCs. Both ensem-
bles fit the experimental RDCs to the same accuracy.

Fig. 6 Optimized weights for the Profasi ensemble to fit the experimental
RDCs. The x-axis represents the root-mean-square of the RDCs for each
of the 8000 structures, showing that the structures that get significantly
reweighted are the ones that have large RDCs. When using only N–H
RDCs (orange) the reweighting is smaller than when also using Ca–Ha
RDCs. The dotted lines are set at w = 0.75, and define a fraction of
structures that, if removed, improve significantly the fit. See the text for
more details.

Fig. 7 Left: ME fit (red) of the Campari ensemble to the experimental
RDCs (blue). The unweighted ensemble is shown in green. Right: distribution
of the weights after the optimization.
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Fig. S10, ESI†). The SS-map of these structures (Fig. S11, ESI†)
reveals that these 208 structures are mainly long helices in the
region of residues 32–40, just where the original Profasi
ensemble gives RDCs that are too large. Thus the MaxEnt
re-weighting agrees with our biophysical intuition.

We now turn to the comparison with the Campari ensemble.
This comparison is illustrative because it allows disentangling
the fitting procedure with prior distribution of the ensemble.
Indeed, the comparison we did with Blackledge and co-workers
was comparing a different ensemble and a different fitting
procedure. This is a common practice in this field: different
groups have developed sampling force fields and fitting proce-
dures and the results contain information of both. For example,
Forman-Kay group results are based on their ENSEMBLE selection
procedure15,17 from a TRaDES force field16,20 generated structures.
The present comparison will shed light on the information RDCs
provide giving two different ensembles and the same fitting
procedure.

The temperature of the Campari force field is better defined
than that of Profasi, because the best fitting temperature
corresponds to the experimental temperature. However, the
initial ensemble has a worse agreement with the experimental
N–H RDCs and therefore it needs a larger re-weighting (Fig. 7).

The secondary structure of this ensemble is considerably
different from that of Profasi. It lacks the very abundant short
helices of the Profasi ensemble and contains mainly helical
fragments in the region of residues 22–32. This is, indeed, the
region that the RDCs suggest should have helical fragments,
and the region where Blackledge and co-workers deduced the
helices were. There is a quantitative difference because the
amount of helices in the Campari ensemble is lower than that
obtained by Blackledge11 (see also Fig. 4 in ref. 59). However,
it is true that both convey a similar ensemble, whereas the
Profasi one is qualitatively different. Despite the differences,
the Campari and the Profasi ensemble to fit N–H RDCs have
similar scaling factors (a = 3.97 and 3.67, respectively).

As before, the initial ensemble is similar to the optimized one,
so that because the original Profasi and the Campari ensemble
differ, the optimized ensembles still differ, even qualitatively.
Even using the same fitting procedure, the starting ensemble has
a pervasive influence in the optimized one. This is because the
MaxEnt principle minimizes the modifications to the original
ensemble, but this is a positive quality because it avoids over-
fitting or biasing the optimization procedure.

Again, we can introduce the Ca–Ha RDCs to increase the
number of experimental data. As with Profasi, the reweighting
increases, but the final ensemble is qualitatively very similar to
the original. The cross-validation with Ca–Ha RDCs shows that
the Campari predicted values are closer to the experimental
ones. In spite of being closer, the N–H RDC reweighted ensemble
does not improve the Ca–Ha (Fig. S7, ESI†) in agreement with
the results of Profasi, and suggesting that the Ca–Ha are
independent of the N–H RDCs.

Despite the difference between the Campari and Profasi
ensemble, it is worth emphasizing that both are able to
reproduce the positive N–H RDCs in the central region, and

that the MaxEnt re-weighted ensemble does not differ signifi-
cantly from the original ones. This may seem disappointing – if
we expected them to collapse to the same final ensemble – but
it also shows that the initially generated ensembles are physi-
cally reasonable. Based on the relation between energy and
probability DEi = �RT log(wi/w

0
i ), where w0

i = 1/N, the energy
difference for a reweighting of 0.5 is only 0.4 kcal mol�1.
Unfortunately, if we want to predict secondary structure
elements we need these force fields to do better, and the RDC
data can be used to improve them. The weight distribution of
IDP structures is not peaked as with folded proteins, and thus
can be easily reweighted to fit experimental data. Therefore
agreement with experimental data does not guarantee a real
structural ensemble. If we expect insights from the simulated
ensembles we need force fields to have more predictive power.
Campari seems to be more successful in this respect.

The Campari ensemble is ‘‘simpler’’ to interpret, but this
does not seem to us a valid reason to favour it. In contrast, the
Profasi ensemble needs less re-weighting and thus has more
predictive power. It is true, however, that the use of an
artificially high temperature in the Profasi ensemble is intro-
ducing a parameter that the Campari force field predicts to a
good accuracy and this can also be the cause for the higher
errors of the Ca–Ha in the Profasi ensemble. The Profasi
temperature was originally defined as the correct scaling para-
meter of the energy to reproduce the melting temperature of
the Trp cage peptide.45 For IDPs maybe this parameter can be
slightly scaled and it is then transferable to other sequences
or maybe rescaling some of the energy terms results in a
shifted temperature. Further systems need to be tested but
our preliminary results suggest that the higher temperature is
transferable among IDPs.

If, as before, we remove the structures that have w o 0.75
and leave the remaining unweighted, the fit of the Campari
ensemble is very good (Fig. S12, ESI†). In this case, the number
of structures removed is larger, 2074 out of 8000 (Fig. S13,
ESI†). As with the Profasi ensemble, the structures that get a
larger re-weighting are the ones that have larger RDC norm.
The consistency of the re-weighting starting from different
ensembles with different RDCs strengthens our confidence in
the validity of the MaxEnt algorithm that we present.

Ideally, one wishes to start with a large pool of structures
and let the data select the ones that agree with the ensemble.
Different initial distributions should swamp to the same
re-weighted distribution. Unfortunately, this is not the case:
not even for folded proteins!41 RDCs do not convey enough
information to make the initial distribution irrelevant. Our
perspective is that the biophysical community has made heroic
efforts in developing experimental techniques to probe IDPs,
and then has hoped the data to speak by themselves, over-
looking the influence of the prior distribution that the force
fields produce.

Profasi and Campari can predict secondary structure elements
in IDP ensembles based only on first principles, i.e. they can go
beyond random coil force fields. But the ensembles they generate
are different, and the RDC fitting cannot make them equal, not
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even similar. They do have an influence on the final ensemble
that can fit the RDC data. This is not to say that the RDCs are not
informative, but that the ensembles that fit the data combine the
information from the RDCs with that of the force fields. Efforts
should be made to improve both experimental methods and
force fields. Indeed, we believe that the efforts in the latter field
lag behind the experimental developments attained in the
IDP world.

Comparison with FitEnsemble

The recent publication of FitEnsemble,38 a method to reweight
calculated ensembles to experimental data, prompted us to
compare this approach with ours. The advantage of FitEnsemble
is that it is a fully Bayesian approach. It is one order of
magnitude slower than MaxEnt, but that involves times of a
bit more than a minute, which is still very competitive. The
problem is that it cannot work with scale invariant quantities
such as RDCs. Here we take the scaling factor of the optimized
ensemble with MaxEnt to compare both methods.

The agreement with both methods is very high (Fig. 8). We
also see that the uncertainty in the weights is low compared to
its dispersion. That confirms our assumption that this is not a
key parameter. We found that the resulting FitEnsemble fit
has much lower errors than the introduced experimental
uncertainty. In particular, for an uncertainty of 1 Hz, the fit
has a root-mean-square error of 0.2. Therefore we optimized
our MaxEnt to a threshold of 0.1. For the FitEnsemble, we used
a regularization strength of 3, as suggested by the authors but
we checked that values of 0.3 and 30 essentially produced the
same average results and the same dispersion.

The extension of FitEnsemble to include a scale parameter
seems to be an interesting approach. Still, questions about
the convergence of MCMC for RDC ensembles need to be

addressed, as well as ensuring that it remains a computation-
ally affordable method.

Conclusions

We present an algorithm based on the maximum entropy
principle, which minimizes the information introduced in the
fitting of experimental data to a given ensemble. We adapted
the algorithm to work with scale invariant measures, such as
RDCs. The algorithm is implemented in an open source code
freely available.27 The advantage of our method is that it can be
used by different experimental groups using different ensembles,
as it can use any given set of structures. It can use thousands of
structures and converges in a few seconds. It also avoids the risk
of overfitting, as the number of parameters depends only on the
number of experimental data, and not on the number of struc-
tures in the ensemble. Cross-validation shows that more than
7000 structures need to be used to get errors close to the
experimental errors of 1 Hz.

It has been claimed that RDCs are one of the best probes of
IDPs’ residual secondary structure,12 but other studies have
questioned the relevance of RDCs in IDP modelling.17 Our
results, with both a synthetic and an experimental data set,
suggest that RDCs can shift the ensembles’ secondary structure
composition, but only to a limited extent. Different sets of
RDCs – N–H and Ca–Ha – give complementary information and
improve the reweighting; however the vast conformational
space that IDPs can sample makes it a complex case of
inferential structure determination,22 so that even with the
large number of RDC experimental data, the amount of data
is sparse compared to the size of the ensemble.40

Neither all-atom nor coarse-grained force fields have the preci-
sion to describe an IDP ensemble,61 as errors of 1 or 2 kcal mol�1

can significantly shift the populations of helices or other secondary
or tertiary structure elements. Therefore the need to use experi-
mental data to improve these ensembles is mandatory. But the
experimental data is insufficient to fully determine this ensemble,
and the pervasive influence of the force field cannot be overlooked,
if we wish to have consistent representations of IDP ensembles.

Even though both Campari and Profasi predict certain secondary
structure elements, their ensembles are qualitatively different. That
determines the composition of the MaxEnt reweighted ensembles.
The combination of Ca–Ha and N–H RDCs suggests that Campari is
more suitable to describe IDPs than Profasi. We still need further
work to test other force fields, improve them, and check other
complementary sources of data that help up further select the
ensembles. One of our future goals is to include SAXS and chemical
shifts in our maximum entropy code.

Appendix

Here we derive the expression of the gradient of f1 and f2,
needed for their optimization.

For the sake of simplicity we will derive the gradient of f1

piecewise. We only consider when the argument in eqn (3) is

Fig. 8 Comparison of the fitting of MaxEnt and FitEnsemble.38 FitEnsemble
results include the estimated error from the Bayesian procedure, but it is of
the order of the point size.
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larger than the threshold; otherwise the gradient is the null
vector. The gradient of the average RDC is

g hqið Þ :¼ @ qnh i
@li

¼ �
XN
j

q
j
i q

j
n exp
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The gradient of the scaling factor a is

gðaÞ :¼ @a
@li
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where s is the sign function of hqi�Q. Finally,
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where � represents the outer product. The gradient for f2 is
trivial:
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Chapter 5

Conclusions

With the aim of providing a picture of different aspects relevant to protein dy-

namics (regarding both local and global motions), in the present thesis we studied

several proteins using a variety of computer simulation methods. Our main ob-

servations in these two different kind of motions are the following:

Local Motions

• The catalytic proficiency of EcNAGK lies in open-close (collective) motions

accessing properly oriented and highly compressed active site conformations.

That supports the ‘conformational compression’ hypothesis inferred by Ru-

bio and coworkers.

• At least for EcNAGK the protein motions leading to compressed catalytic

conformations seems to be the limiting process instead of the chemical step.

• The Swarms of Trajectories (SoT) method can be applied to study enzyme

catalysis because the method is independent of the dynamics of the CV.

We devised a suitable implementation to obtain the contribution of each

collective variable to the free energy profile.

• Within the SoT method the addition of a CV without a role in the chemical

reaction has no effect in the free energy profile nor in the computational cost

of the SoT simulation. However missing a CV which is redundant for the

chemical reaction results in the free energy barrier being underestimated.

• Proteins with acidic residues are susceptible to suffer radiation damage ef-

fects when are exposed to high radiation as the emitted by synchrotron

techniques. In LDH this damage is translated to a decarboxylation. This

process is a HT that proceeds through a superexchange mechanism, deter-

mined by the distance between Asp and Trp.
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Global Motions

• The traditional visualization methods difficult the visualization of cooper-

ativity effects in secondary structure elements leading to incomplete or in-

correct interpretations of their propensities, both in globular proteins and

in IDPs.

• The different secondary structure elements present different φ and ψ angle

values in the Ramachandran diagram as well as different structural sig-

natures between them. α-helices and β-strands behave different with the

temperature and PPII-helices do not grow from a central residue oppositely

to α-helices.

• The Maximum Entropy principle is a good choice to introduce experimental

information in an ensemble. We devised a scale invariant implementation of

it to study RDCs. Our implementation also allow to avoiding the overfitting

as well as accelerating its performance (it can treat thousand of structures

in seconds).

A general conclusion from this thesis is that computational methods are an

efficient and useful tool to characterize protein motions. However the current

computational approaches present limitations and to solve them the incorporation

of experimental data and its correct interpretation is crucial. This necessity of be

complemented comes from different sides: 1) from experiments to computations

and 2) from computations to experiments, as it is good exemplified in IDPs. The

experimental techniques used to study IDPs need computation to provide a global

and unified vision of the conformational landscape (as NMR give only snapshots

of it) and the computational methods need experimental data to improve their

performance.

The convergence of experimental and computational techniques to

the same point is key to achieve a deep understanding of protein dy-

namics.



Chapter 6

Sumario

La presente tesis se centra en el estudio computacional de la dinámica de las

protéınas. Las protéınas son entidades flexibles y como tales se mueven. Este

movimiento es indispensable y esta directemente relacionado con su función. La

dinámica de las protéınas se puede dividir en dos grandes bloques conceptuales

según el número de átomos inolucrados, la escala de tiempo en que que tiene lugar

y la amplitud y dirección de la misma.

Por un lado se encuentran las dinámicas a nivel local, es decir, aquellas que se

producen a nivel de ‘centro activo’ que implican la reorganización de unos pocos

átomos de la cadena lateral de los aminoácidos o del esqueleto de la proteina.

Estas dinámicas locales también suelen considerarse como movimientos rápidos

ya que la escala de tiempo en la cual tienen lugar se encuentra por debajo del

milisengundo (ms). A su vez también se clasifican como dinámicas de pequeña

amplitud. Por otro lado los movimientos globales se dan a nivel de estructura

y engloban procesos como el alosterimo, la modulación conformacional e incluso

el plegamiento de la proteico. Atendiendo a la escala de tiempo se consideran

dinámicas lentas porque tienen lugar en escalas de tiempo iguales o superiores al

miliegundo. Además son consideradas dinámicas de gran ampitud.

Hay cierta controversia con la terminoloǵıa clasificatoria porque a veces los

movimientos locales también se consideran lentos si tenemos en cuenta la frecuen-

cia con la que ocurren ya que generalmente es neceario un movimiento global

para que tenga lugar un movimiento local. Sea como fuere en el momento en

el que suceden son dinámicas muy rápidas, y es por ello que en esta tesis las

hemos definido como tal ya que creemos que esta terminooǵıa describe mejor la

naturaleza de estos movimientos. Para cartacterizar y estudiar estos movimientos

existen una amplia gama de técnicas experimentales y computacionales.

En esta tesis doctoral se ha tratado de dar respuesta a varios fenómenos obser-

vados en relación con la dinámica de las protéınas. Concretamente hemos realizado
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estudios a nivel local, de ’centro activo’, relacionados con la catálisis enzimática

y el daño proteico aśı como, a nivel global, con la determinación y el análisis de

conjuntos conformacionales de protéınas. Estos estudios, se han realizado usando

métodos propios de la qúımica, la bioqúımica y la biof́ısica computacionales, los

cuales se han mostrado como herramientas muy útiles a la hora de estudiar la

dinámca de las proteinas.

Efecto de los movimientos conformacionales en la catálisis enzimática

Las enzimas son macromoléculas biológicas de naturaleza protéıca capaces de acel-

erar la velocidad de las reacciones (bio)qúımicas celulares en más de 10 órdenes de

magnitud, alcanzando escalas de tiempo biológicamente relevantes. La clave de la

extraordinaria eficiencia cataĺıtica de las enzimas reside en la gran preorganización

de su centro activo, el cual presenta aminoácidos con distinta polaridad en una

conformación óptima para unir el sustrato y estabilizar el estado de transición de

la reacción.

La función de los movimientos conformacionales en las protéınas es un tema

de debate muy actual y que genera una gran controversia. La existencia de los

movimientos conformacionales esta ampliamente aceptada por la comunidad cien-

t́ıfica, aśı como el hecho de que la dinámica proteica tiene lugar dentro del ciclo

cataĺıtico, ya que hay estudios computacionales y experimentales que aśı lo de-

muestran. Sin embargo, hay un sector que postula que estos movimientos catalizan

el paso qúımico mientras otro defiende que no. Hay un gran debate en torno al

papel de los ‘efectos dinámicos’ y lo que se entiende por este término. Mientras

para unos solamente son desviaciones de la teoŕıa del estado de transición para

otros representan cualquier modificación conformacioanl que sufra la protéına de-

pendiente del tiempo. El debate, si se analiza en detalle y de forma objetiva,

parece ser de alguna forma mayoritariamente semántico y para terminar con él lo

que se necesita es una definición clara y consenuada de lo que se considera como

‘efectos dinámicos’.

Sea como fuere, y por medio del estudio de la enzima EcNAGK nosotros apor-

tamos nuestro granito de arena esclareciendo el papel de los movimientos con-

formacionales en esta enzima. Experimentalmente esta enzima hab́ıa sido carac-

terizada y ampliamente estudiada junto a otros miembros de su famiĺıa (AAK)

por el grupo del Prof. Rubio en Valencia, al igual que computacionalmente por

nuestro grupo. Es una enzima que constituye un ejemplo idóneo porque hay

depositadas en el PDB seis estructuras caracterizando diferentes estados de la

reacción (bio)qúımica. Rubio y sus colabroadores mostraron que aquellos que cor-

respond́ıan a estrucutras análogas al estado de transición presentaban distancias

entre los substratos de la reacción más bajas que las estructuras cristalinas que
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representaban el estado de reactivos. De aqúı infirieron que la ‘compresión con-

formacional’(distancia O-O entre los substratos, ATP y NAG) del centro activo

favorećıa la catálisis.

Figure 6.1: A) Representación esquemática de los substratos naturales de la EcNAGK.
B) Representación esquemática de la dinámica de EcNAGK. Cuanto más rojo más
comprimı́da es la conformación y cuanto más azul más abierta. Las esferas representan
los substratos indicados en el panel A.

Para investigar esta hipótesis complexamos cuatro estrucutras cristalinas rep-

resentativas (código PDB 1GS5, 1OH9, 1OHA, y 2X2W) con los substratos natu-

rales de la rección, ATP y NAG. Por medio de 1) cálculos de dinámica molec-

ular (MD) seguidos de 2) cálculos de mecánica cuántica / mecánica molecu-

lar (QM/MM) (a nivel DFT usando el funcional mPWPW91) sobre algunos

snapshots de la trayectorias MD generadas y finalmente 3) análisis estad́ısticos

(PCA+PLSR) sobre los resultados de estos últimos, investigamos la reactividad

de la enzima NAGK. Tratamos de esclarecer el papel de los movimientos confor-
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macionales, aśı como la influencia de la distribución espacial de los reactivos y

la distancia entre ellos en el perfil de la reacción y por tanto en la catálisis en-

zimática. Entre todas las estructuras cristalinas empleadas descubrimos que dos

de ellas (1OHA and 1OH9) eran las más adecuadas para nuestros estudios.

Figure 6.2: Enerǵıas de las conformaciones de reactivos, estado de transición y produc-
tos de las cinco estructuras 1OH9 (ĺıneas discontinuas) y 1OHA (ĺıneas sólidas). La
dispersión de los valores energéticos es larga incluso para las esructuras que vienen del
mismo cristal.

La variedad de perfiles de reacción obtenidos incluso sobre la misma estructura

cristalina, indican que la barrera de enerǵıa no esta determinada por el cambio en

la distancia (entre el grupo nucleófilo y el saliente, O-O), al menos no únicamente.

Hay una correlación notable entre la distancia de los reactivos y la barrera enér-

getica, cuanto menor es la distancia menor es la barrera, tal y como determinaron

los análisis estad́ıticos. Sin embargo hay que tener en cuenta la dependecia de

esta distancia y por ende de la barrera respecto a la orientación espacial de los

substratos, es decir, el ángulo lineal entre el grupo fosforilo que se transmite, el

grupo nucleófilo y el grupo saliente. A mayor linealidad del ángulo, menos bar-

rera. Por lo tanto la hipótesis de Rubio se refórmula: A menor distancia O-O

y mayor linealidad del ángulo O-P-O, menor barrera enérgetica y por lo tanto

menos inestabilidad del estado de transición.

La barrera energética calculada para el paso qúımico en todas las estructuras
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crstalinas, cuyo valor medio de 9 kcal/mol, es significativamente menor que la

barrera energética experimental de 16 kcal/mol. Esta última representa la enerǵıa

libre de la reacción, e incluye correcciones dinámicas y de efecto tunel, además de

que nuestros cálculos dan valores de enerǵıa potencial no de enerǵıa libre. Esto

implica que no podemos comparar directamente ambos valores, pero la diferen-

cia energética es tan grande que no puede ser cancelada por este motivo. Esta

diferencia enérgetica tan grande sugiere, al igual que ocurre en otras enzimas, que

los movimientos de apertura y cierre pueden ser más lentos que el propio paso

qúımico de la reacción.

Los resultados sugieren que la velocidad del enzima no depende del paso

qúımico de la reacción sino de la unión o no del NAG en su centro activo, siendo

los movimientos de apertura y cierre del centro activo, inducidos por la presencia

o no del NAG, los que limitan su eficiencia cataĺıtica.

Cálculo de caminos de energa libre en catálisis enzimática

Una de las mayores problemáticas dentro del estudio computacional de la catáisis

enzimática reside en el cálculo de la enerǵıa asociada al camino de reacción, concre-

tamente del de mı́nima energia libre. Los enzimas presentan superfices de enerǵıa

rugosas y multidimensionales que dificultan el cálculo de caminos de enerǵıa libre.

Para calcular caminos de reacción los métodos actuales se podŕıan englobar

dentro de dos grupos. EL primero se basa en el uso de variables colectivas (CV)

o coordenadas de reacción, para describir la superficie de enerǵıa libre (o Poten-

cial de fuerza media). Estas variables idealmente han de ser pocas y su elección

muy precisa ya que el añadir o no una variable supone un incremento notable del

tiempo de cálculo. Desafortunadamente este no es el caso de las reacciones enz-

imáticas por lo que estos métodos son muy costosos. El segundo grupo de métodos

no utiliza las CV pero necesitan un estado inicial y final de la reacción entre los

cuales interpolar el camino de la misma. Estos métodos aunque menos costosos

computacionalmente, en sus versiones más simples solo generan caminos de en-

erǵıa potencial, debido a que omiten las contribuciones entrópicas y de muestreo

(sampling).

En los últimos años han aparecido los llamados métodos h́ıbridos que incor-

poran lo mejor de los ‘dos mundos’. Dentro de estos se encuentra el llamado

enjambre de trayectorias (Swarms of Trajectories (SoT)). Este método desarrol-

lado por Roux y sus colaboradores está basado en el método original de la cadena

(String method) con CV, de Vanden Eijnden. Su caracteŕıstica más relevante es

que para estimar el desplazamiento (durante la optimización) de cada punto del

camino de reacción, se realizan una serie de trayectorias cortas sin ningún tipo

de restricción conformacional (un ‘enjambre’ de trayectorias) sobre las cuales se
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calcula el deslazamiento medio entre la inicial y la final. Repecto al valor obtenido

se evoluciona el camino de reacción.

Figure 6.3: Represenatción esquemaática de un camino de reacción optimizado con SoT
para la enzima Isocorismato piruvato liasa. La optimización va de claro (camino inicial)
a oscuro (camino final optimizado). La figura englobada dentro del cuadrado representa
el enjambre de trayectorias calculado sobre un punto del camino.

En un estudio reciente se compararon ambos métodos y se demostró que SoT,

algo menos costoso computacionalmente, da resultados equivalentes al método

original, siendo ambos matemáticamente equivalentes. También, se sugirió su

aplicacbilidad a sistemas biomoleculares debido a que se hipotetizó que pod́ıa

funcionar a régimenes de tiempo cortos en sistemas inerciales. Hasta el momento

solamente se hab́ıa aplicado a sistemas no inerciales en los cuales las variables

colectivas depend́ıan de forma lineal de la dinámica del sistema, lo cual dificultaba

su aplicacion a reacciones de catálisis enzimática.

En esta tesis, en colaboración con el Prof. Martin Field en Grenoble implemen-

tamos este método en la libreŕıa pDynamo. Esta libreŕıa está escrita en python y

es la que utilizamos en la mayoŕıa de nuestros cálculos relacionados con la catálisis

enzimática. Una vez implementada, la testeamos sobre dos enzimas ampliamente

estudiadas y que requieren un nivel de cálculo, y por tanto de tiempo de com-

putación, bajo. Esto nos permitió realizar muchas pruebas. Estos enzimas son
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la Corismato mutasa (Chorismate Mutase (CM)) y la Isocorismato piruvato liasa

(Isochorismate Pyruvate Lyase (IPL)). Para ello realizamos cálculos QM/MM a

nivel AM1.

Figure 6.4: Represenatción del las estructuras del estado de transición de los susbtratos
de las enzimas utilizadas para testear el método SoT. A) IPL. B) CM.

En este estudio, fuimos capaces de encontrar la forma correcta de introducir

SoT en la libreŕıa pDynamo, aśı como de corroborar la hipótesis que postulaba

que SoT pod́ıa funcionar en reǵımenes inerciales con pasos de tiempo cortos. Esto

además demostró la independencia de la dinámica del sistema respecto del método.

Por otro lado, debido a como lo implementamos, se pueden construir perfiles de

enerǵıa libre a partir del camino de reacción, pudiendo descomponerlos y conocer

la contribución de cada variable colectiva al mismo. Por otro lado si añadimos una

CV que no tiene ningún efecto sobre el camino de la reacción, su valor permanece

invariable a lo largo de la optimizaión y sin un coste computacional adicional. Esto

implica que podemos añadir CV si estamos dudando entre si tiene un efecto o no

ya que no supone un coste adicional, lo cual es interesante debido a la complejidad

de las reacciones enzimáticas.

Daño proteico inducido por radiaciones de alta intensidad

La cristaligraf́ıa macromolecuar por rayos X es una técnica ampliamanete utilizada

para caracterizar estructuras enzimáticas. Los diferentes subestados de la reacción

bioqúımica (análogos de reactivos o del estado de transición por ejemplo) quedan

atrapados (caracterizados) en diferentes cristales. Para realizar los experimentos

correspondientes a esta técnica es común el uso del sincrotrón. Sin embargo, esto

puede generar problemas debido a que la alta radicación utlizada en los métodos de
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sincrotrón puede estropear la muestra y provocar daños por radiaición. El estudio

de estos fenómenos constituye un campo de investigación activo. Por ejemplo, son

capaces de producir reacciones qúımicas en enzimas que no tienen lugar de forma

natural, debido a que producen daños espećıficos en las cadenas lateral esde los

aminoácido.

Las protéınas con residuos ácidos en su interior son especialmente sensibles a

estos efectos. El grupo del Prof. Martin Weik en Grenoble es experto en este tipo

de fenómenos de daño por radiación. Recientemente estudiando la enzima Lactato

Deshidrogenasa (Lactate dehydrogenase (LDH)) observaron que en la forma Apo

de le enzima teńıa lugar la decarboxilación de un triptófano que no era natural y

que suced́ıa lejos del centro activo. Sin embargo en la forma Holo de la misma no

se observaba. Ellos concluyeron que este proceso se deb́ıa a un fenomeno de ’Hole

Transfer’ (HT) entre el Trp62 y el Asp70 mediante la presencia de la Arg64. En

colaboración con ellos estudiamos estas dos estructuras para dar una explicación

del porque de esta reacción.

Tras revisar el sistema surgieron varias cuestiones de forma natural. Parećıa

claro que la trasnferencia de carga teńıa lugar. Lo que hab́ıa que corroborar era

si el proceso teńıa lugar y en caso afirmativo si se dabe entre el Trp62 y el Asp70

o viceversa. También era clave discernir porque se produćıa en la forma apo y no

en la holo. Por otro lado exist́ıa la necesiad de conocer la naturaleza del proceso

aśı como desnetrañar porque se produćıa entre Trp70 y Asp62 y no entre Trp70

y Glu33 que se encuentra más cerca del triptófano y tiene la misma estructura

qúımica que el Asp62.

Figure 6.5: Represenatción de los residuos del centro activo de las formas apo y holo de
la LDH. En ambos están representados Trp62, Glu33, Arg64 y Asp70.



179

Figure 6.6: A) Perfil de enerǵıa de la elongación del enlace C-C del Asp70 en la forma
apo. Las ĺıneas azules corresponden al estado en que el hole se localiza en el Trp62 y las
rojas cuando lo hace en el Asp70. B) Perfil de enerǵıa de la elongación del enlace C-C
del Asp70 en la forma holo. Las ĺıneas negras corresponden al estado en que el hole se
localiza en el Trp62 y las verdes en el Asp70.
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Para responder a todas estas cuestiones realizamos cálculos de MD sobre las

estructruas cristalinas de las formas apo y holo, seguidas de cálculos QM/MM

(scans de la coordenada de reacción) a nivel DFT usando el funcional BHLYP

sobre algunas imágenes de las trayectorias generadas por MD (8 para apo y 8

para holo). Sobre los caminos de reacción realizamos cálculos de acoplamiento

electrónico por medio del método de diferenciación de carga fragmentada (FCD).

En primer lugar, confirmamos que el proceso teńıa lugar. Por medio del cálculo

de potenciales de ionizacion (IP) de acuerdo al teoréma de Koopmans, observamos

que el Glu33 tiene un IP mayor que el Asp70. De hecho el IP más bajo es

el del Trp62 seguido del Asp70, por ello la transferencia se da entre estos dos

aminoácidos, tal como observaron Weik y sus colaboradores. Además confirmamos

que termodinámicamente el proceso es plausible en ambas conformaciones, apo y

holo.

Tras conocer la naturaleza del proceso, testeamos los diversos mecanismos de

HT que se dan de forma habitual en sistemas biológicos: Mecanismo de transfer-

encia directa o mecanismo de puente asistido y dentro de este último los mecanis-

mos de superintercambio y de transferencia secuencial o hopping. El primero que

descartamos fué el de transferencia driecta, porque incluso la distancia más baja

entre Trp y Asp es demasiado alta en ambas conformaciones: 12.40Åen la forma

apo y 7.50Åen la holo, para que se produzca un solapaiento entre los orbitales del

dador y el aceptor. Esto da lugar a unos acoplamientos electrónicos negligibles.

EL mecanismo de transferencia secuencial tambien se descartó, porque los

cálculos de IP hab́ıan demostrado que la transferencia se haćıa entre Asp y Trp.

Este mecánismo implica que la carga sea transferida entre las especies intermedias,

es decir, debeŕıa pasar del Trp al Glu, de ah́ı a la Arg y finalmente al Asp, lo

cual no es posible. Aśı pues el mecanismo por el que se produce es por el de

superintercambio. La carga viaja del Trp al Asp a través de los orbitales del

Glu y la Arg pero sin interaccionar directamente con ellos. Los acoplamientos

electrónicos para el proceso de superintercambio revelaron que en la forma apo el

valor de estos es de alrededor de 10−6 eV mientras que para la forma holo es más

pequeño, alrededor de dos órdenes de magnitud menor. Esto nos indica que es

un proceso muy lento, tanto que no es capaz de ser visto en la escala de tiempo

que puede abarcar los experimentos de cristalograf́ıa de rayos X. Por ello se ve la

descarboxilación en la forma apo y no en la holo.

Efecto de la cooperatividad en la estructura secundaria de las protéinas

La estructura secundaria es un elemento importante de las IDPs, como ya hemos

comentado. Algunas regiones de las IDPs (llamadas MoRFs) pueden adoptar

configuraciones de estructura secundaria transitoria. Cuando generamos conjuntos
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estructurales de IDPs, generalente, es dif́ıcil visualizar su composición. A veces

las propensidades conformacionales de residuos individuales ocultan la naturaleza

de las estructuras cooperativas. Por ello, es necesario diferenciar entre cuando

un fragmento tiene regiones que adoptan una conformación secundaria y cuando

ese fragmento contiene una estructura secundaria completa, todos los residuos del

fragmento adoptan dicha conformación (al mismo tiempo). Ambos escenarios son

plausibles y por medio de experimentos de RDCs se puede ditinguir entre ellos

aśı como gracias a SS-map visualizar facilmente las diferencias estructurales entre

ambos escenarios.

SS-map es un algoritmo escrito en python que se puede obtener de froma

gratuita en ‘code.google. com/p/ss-map/’ y que está diseñado para representar la

cooperatividad o las correlaciones de las conformaciones de estructura secundaria.

Está especialmente orientado al análisis de IDPs, donde el uso de órdenes de

contacto o contactos nativos es imposible. Aunque este fue el propósito inicial

también es aplicable a protéınas globulares, siendo una herramienta útil para

analizar el plegamiento de protéınas pequeñas y péptidos. Gracias a SS-map, se

puede arrojar luz en la percepción real de la estructura secundaria proteica.

Para visualizar los elementos de estructura secundaria de las protéınas se uti-

lizan los valores de los ángulos φ y ψ, siguiendo el diagrama de Ramachandran. El

algoritmo incorpora cuatro definiciones diferentes de los elementos de estructura

secundaria en base a distintos diagramas de Ramachandran ( diferentes valores de

los ángulos φ y ψ). Estas definiciones corresponden a las empleadas por los pro-

gramas DSSP, Profasi, Flexible Meccano y Campari. Además uno puede usar su

propia definición de los ángulos φ y ψ. El programa, como entrada necesita varios

archivos PDB (uno para cada protéına del conjunto conformacional) de los que

extrae los ángulos φ y ψ o directamente una matriz con los valores de los ángulos

φ y ψ para cada estructura del conjunto conformacional. Como salida, devuelve

una imagen, una matriz numpy y/o un archivo txt que contiene una matriz (o

una representación gráfica de esta matriz) que muestra en cuantas estructuras del

conjunto (en %) el residuo y se encuenra formando una región estructurada de

longitud x.

Aplicamos el método a diferentes tipo de protéınas. Primero estudiamos 2

protéınas plegadas (HPLC-6 y GB1m2) cerca de su temperatura de fusión, uti-

lizando Profasi, para comparar nuestro programa con otras técnicas tradicionales

de visualización. Luego, analizamos MORFs del virus measles y de la nucleopro-

téına del virus Sendai cuyos conjuntos estructurales se calcularon utilizando el

flexible meccano (para poder comparar nuestro resultados con los del grupo de

Blackledge). Finalmente, estudiamos la existencia de las hélices de poliprolina II

(PPII) en IDPs a partir de datos proporcionados por el Prof. Rohit Pappu (para

comprobar los resultados del SS-map con los obtenidos por su grupo).
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Figure 6.7: Representación de SS-map mostrando las láminas β de la protéına GB1p
A) por debajo de la temperatura de plegamiento 319K y B) por encima 327K.

(experimental o sintético)

Nuestros resultado mostraron que para HPLC-6 con los métodos de visual-

ización tradicionales se observa que el porcentaje de α−hélice (las cuales emergen

desde un residuo central) para cada péptido disminuye gradualmente con la tem-

peratura, y también que la longitud de las hélices se acorta con la temperatura

lo cual hace que prevalezca la presencia de fragmentos cortos sobre los largos.

Usando SS-map vimos que esto no es cierto y que los segmentos de α hélice tanto

largos como cortos son igual de frecuentes.

Después estudiamos la protéına GB1m2 que posee una estructura que presenta

un giro β y tiene una temperatura de fusión muy similar, 324 K, a la de HPLC-

6. SS-map fue capaz de reproducir su estructura, dos regiones de láminas β

unidas por una región central correspondiente a un giro beta. Además, se observó

que las láminas β se comportan de forma diferente a las hélices α respecto a la

temperatura. Finalmente estudiamos las hélices de PPII. Nos dimos cuenta, al

igual que con las láminas β, que estas hélices se comportan diferente a las α. No

crecen a partir de un residuo central. Se puede concluir que cada tipo de estructura

secundaria presenta sus propias caracteŕısticas y patrones estructurales, y que con

SS-map podemos diferenciarlos.
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Además, estudiamos dos IDPs correspondientes a los virus Sendai y measles.

Gracias a SS-map mostramos que la situación es más compleja de lo que Blackledge

y sus colaboradores hab́ıan mostrado. Las hélices de un par de MORFs (H1 y H2

en Sendai, y H2 y H3 en measles) se mezclan y forman una hélice superior. Gracias

a SS-map mostramos la cooperatividad de los elementos de estructura secundaria

en estas dos IDPs, efecto que no es visible con lo métodos tradicionales.

Determinación de conjuntos conformacionales de IDPs a partir de RDCs

Una forma habitual de estudiar la dinámica de las protéınas a nivel global, es por

medio del uso de conjuntos (‘ensembles’) conformacionales. Estos ‘ensembles’ son

modelos computacionales, generalmente restringidos por valores experimentales,

que describen la estructura de las protéınas. Son herramientas muy potentes

para representar el rango de conformaciones que pueden ser sampledas por las

protéınas, por lo tanto, permitiendo la representación explicita de la dinámica de

las mismas.

Los conjuntos conformacionales se han utilizado para estudiar diferentes aspec-

tos relacionados con propiedades fundamentales de las protéınas como procesos de

reconocimieno molecular o de plegamiento proteico. Este tipo de representaciones

estructurales no son capaces de describir el ratio de intercambio entre confórmeros

o la escala de tiempo de la dinámica, pero como contrapunto informan sobre la

amplitud de la dinámica además de sobre diferentes caracteŕısticas del compor-

tamiento proteico.

El uso de este tipo de representaciones estructurales es muy útil en el estudio

de las proteinas intŕınsecamente desordenadas (IDPs), ya que no pueden ser carac-

teriadas por métodos clásicos de cristalograf́ıa de rayos X o por microscoṕıa crio-

electrónica. Las IDPs son una familia de protéınas que no cumplen el paradigma

tradicional de secuencia-estructura-función, ya que no presentan una estructura

plegada. Esta falta de estructura estable, que puede darse en toda la protéına o

solo en algunas regiones, les proporciona una plasticidad estructural, imposible de

alcanzar por protéınas ordenadas, esencial para llevar a cabo su función celular.

Las IDPs están relacioandas con una amplia gama de enfermedades. Debido

a ello son candidatas perfectas para ser dianas terapeúticas, sin embargo no es

aśı. El motivo no es otro que el desconocimiento sobre como estas proteinas

realizan su función. Su estructura y su dinámica están ampliamente relacionadas

con su unión a ligandos, ya que se trata de proteinas con mútiples dominios de

unión. Este fenómeno de unión es importante para la promiscuidad funcional y la

regulación de estas protéınas. Por ejemplo bajo la unión a uno o varios ligandos

exhiben transiciones orden-desorden (aunque no todas las IDPs lo hacen); adoptan

estructura secundaria de forma transitoria. Por ello, la caracterización del amplio
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rango de estructuras que pueden adoptar estas protéınas es clave para entender

sus propiedades funcionales y conformacionales y las enfermedades en que están

implicadas. A esta compensión han contribuido de forma significativa estudios

experimentales de RMN aśı como computacionaes por medio de modelización

atomı́stica y de grano grueso (‘coarse grained’).

Aunque el uso de conjuntos conformacionales es muy común para el estudio

de la dinámica de las protéınas, no por ello deja de presentar problemas. Uno

muy común es cuando al simular un sistema proteico queremos comparar los val-

ores obtenidos con los de un sistema de referencia para validar las simulaciones.

Frecuentemente los valores no coinciden. No hay una sola razón por la cual esto

sucede. Por ejemplo, puede ser un problema del campo de fuerza empleado o un

problema de muestreo debido a limitaciones de tiempo de computación. Muchos

esfuerzos se están centrando en mejorar los campos de fuerza incorporando datos

experimentales. También se está avanzando en el desarrollo de métodos que per-

mitan recalcular las estructuras generadas en base a ciertos valores (observables)

de un sistema de referencia.

Tratando de arrojar algo de luz en este sentido hemos creado un algoritmo

(MaxEnt) que incorpora el principio de máxima entroṕıa para dado un conjunto

de RDCs (datos experimentales o simulados) hacer que concuerden con un segundo

conjunto (valores de referencia). El principio de máxima entroṕıa es un conocido

método estad́ıstico que se basa en la minimización de la información incluida en un

conjunto de datos para adaptarse a ciertos observables. El hecho de utilizar RDCs

es debido a que estos constituyen una técnica muy adecuada para caracterizar

elementos de estructura secundaria en IDPS.

MaxEnt es un algoritmo escrito en python que se puede obtener de forma

gratuita desde GitHub (‘https: // github.com/ MelchorSanchez / MaxEnt ’). A

partir de un conjunto primario de datos de RDCs de referencia, dado un segundo

conjunto (generalmente calculado a partir de Dinámica Molecular o simulaciones

de Monte Carlo), estos se recalculan y minimizan de acuerdo a un ajuste respecto

del gradiente. MaxEnt necesita como datos de entrada una matriz M x N y un

vector de valores N . La matriz M x N debe contener los N RDCs de las M

estructuras a recalcular, y el vector de valores N debe contener los N RDCs de

referencia.

Para simplificar la generación de la matriz M x N de RDCs también creamos

el script de python RunPales que está disponible en el mismo directorio de github

que MaxEnt. RunPales es un script que puede llamar al ejecutable del programa

PALES (un software utilizado para calcular RDCs a partir de estructuras simu-

ladas), generar los RDCs correspondientes y guardar sus valores en una matriz.

En otras palabras, RunPales no es más que una interfaz que llama al PALES con

las opciones adecuadas, y almacena los resultados generados.
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Figure 6.8: Ajuste por medio de MaxEnt de un conjunto de conformaciones generado
con Profasi a 325K T1=325.6K a otro conjunto de valores experimenales de RDCs (ĺınea
azul). El conjunto estructural sin ajustar (ĺınea verde) presenta una región con demasi-
adas hélices alfa entre los residuos 32 y 40 en comparación con el ajustado (optimizado)
(ĺınea roja).

Nuestra aplicación del principio de máxima entroṕıa presentan algunos puntos

interesantes. En primer lugar hemos realizado una implementación que es invari-

able respecto a la escala del observable para trabajar con RDCs. De esta man-

era, MaxEnt puede ser utilizado por diferentes grupos experimentales empleando

diferentes conjuntos de valores de RDCs, ya que se puede utilizar con cualquier

conjunto de estructuras. Se basa en los valores de RDC no en la manera en que se

generan. Debido a la independencia estructual evitamos el riesgo de problemas de

sobreajuste ya que el número de parámetros se basa únicamente en el número de

datos experimentales. Finalmente otra caracteŕıstica importante es su velocidad:

puede tratar miles de estructuras y convergir en unos pocos segundos.

Para testear el algoritmo utilizamos varios conjuntos de datos simulados y
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experimentales del dominio de unión de la nucleoprotéına del virus Sendai. Los

datos calculados se obtuvieron a partir de simulaciones de monte carlo utilizando

los campos de fuerza Profasi y Campari. Nuestros resultados mostraron que a

pesar de sus limitaciones, ambos pueden generar conjuntos de estructuras razon-

ables y mejores que otros métodos (’random coil’) muy utilizados para estudiar

IDPs, y concretamente esta protéına. Además muestran un mayor poder predic-

tivo que estos. Sin embargo, las estructuras generadas no son perfectas y se hace

necesario modificarlas ligeramente para poder ajustarlas a los datos ‘objetivo’ que

se queŕıan reproducir. Por medio del MaxEnt lo logramos. También nos dimos

cuenta de que para lograr un buen ajuste y poder reproducir estos valores, es

necesario que el campo fuerza con el que se generan las estructuras calculadas

sea lo suficientemente preciso. Sino es aśı incluso usando los datos objetivo no se

loogrará generar una estructura representativa. Es por ello que hay que remarcar

y tener muy en cuenta el campo de fuerza utilizado, algo que generalmente se

subestima.

Conclusiones

Movimientos locales

• La capacidad cataĺıtica de EcNAGK radica en los movimientos (colectivos)

de apertura y cierre que permiten acceder a conformaciones cuyo centro

activo está orientado adecuadamente y altamente comprimido. Estas ev-

idencias, apoyan la hipótesis de la compresión ‘conformacional’ formulada

por Rubio y sus colaboradores

• Al menos para la enzima EcNAGK los movimiento proteicos que dan lugar

a las conformaciones cataĺıticas son el proceso limitante en lugar del paso

qúımico.

• El método de enjambre de trayectorias (SoT) puede ser aplicado al estudio

de la catálisis enzimática porque es independiente de la dinámica de las vari-

ables colectivas (CV). Nosotros, encontramos la implementación adecuada

para obtener la contribución de cada variables colectiva al perfil de enerǵıa

libre.

• Dentro del método SoT el uso de una CV sin ninguna función en la reacción

qúımica no afecta el perfil de enerǵıa libre ni el coste computacional de la

simulación. Sin embargo el omitir una CV importante para la descripción

de la reacción qúımica es relevante ya que puede provocar que se subestime

la barrera de enerǵıa libre.
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• Las protéınas con residuos ácidos son susceptibles de sufrir daños por ra-

diación cuando están expuestas a fuentes de alta radiación como lo son las

técnicas de sincrotrón. En relación con la protéına LDH este daño se traduce

en una descarboxilación. Este proceso es un HT que tiene lugar por medio

de un fenómeno de superintercambio.

Movimientos globales

• El principio de máxima entroṕıa es una buena opción para introducir in-

formación experimental en un conjunto conformacional. Nosotros desarrol-

lamos una implementación independiente de escala del mismo, para estudiar

RDCs (aunque potencialemnte cualquier observable puede ser analizado de-

bido a la mentada invariabilidad de escala). Nuestra implementación además

permite evitar el sobreajustamiento aśı como acelerar su ejecución ( permite

tratar miles de estructuras en segundos).

• Los métodos de visualización tradicionales dificultan la observación de fenó-

menos de cooperatividad en elementos de estructura secundaria dando lugar

a interpretaciones incorrectas o incompletas de sus propensidades tanto en

protéınas globulares como IDPs.

• Los diferentes elementos de estructrua secundaria presentan distintos valores

de ángulos φ y ψ en el diagrama de Ramachandran aśı como diferentes

‘firmas’ qúımicas entre ellos. Las hélices α y las láminas β se comportan de

forma diferente respecto a la temperatura y las hélices de PPII no crecen a

partir de un residuo central, de forma opuesta a las hélices α.

De todos estos estudios, de forma general, podemos concluir que los métodos

computacionales son una herramienta eficaz y útil para caracterizar la dinámica

de las protéınas. Sin embargo, los métodos computacionales actuales presentan

limitaciones y para resolverlos la incorporación de datos experimentales aśı como

su correcta interpretación es crucial. Pero aunque los métodos computacionales

necesitan de los experimentales, esta necesidad también se da de manera opuesta.

Por ejemplo, hay métodos experimentales como los utilizados para estudiar IDPs,

RMN, que solo nos permiten conocer diferentes conjuntos estructurales, como

si fueran fotos de la evolución del sistema a diferentes pasos de tiempo. Para

caaracterizar el paisaje conformacional completo es necesario integrar todos estos

datos por medio de la computación.

La convergencia de los métodos experimentales y computacionales es clave

para poder profundizar en el conocmiento de la dinámica de las protéınas.
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