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1. Introduction 

Statistical spatial data analysis often requires the aggregation of basic spatial units (areas) into 

larger units (regions) in order to preserve confidentiality, to minimize population differences, to 

reduce the effects of outliers or inaccuracies in the data, or simply, to facilitate the visualization 

and interpretation of information in maps (Wise et al., 1997, 2001). 

An aggregation of this kind can be carried out in two different ways. The first uses as its 

reference point predefined official or normative aggregations, such as counties, districts or states. 

The second aggregates areas into analytical regions in such a way that the resulting regions are 

conveniently related to the phenomena under examination. 

The Statistical Office of the European Communities (Eurostat, 2006) provides a clear 

differentiation between these two types of regions:  

“Normative regions are the expression of a political will; their limits are fixed 

according to the tasks allocated to the territorial communities, to the sizes of 

population necessary to carry out these tasks efficiently and economically, or 

according to historical, cultural and other factors. Whereas analytical (or 

functional) regions are defined according to analytical requirements: functional 

regions are formed by zones grouped together using geographical criteria (e.g., 

altitude or type of soil) or/and using socio-economic criteria (e.g., homogeneity, 

complementarity or polarity of regional economies).”  

Although the use of normative regions has been a common practice among regional scientists, 

in many cases statistical inference based on regions of this type may be strongly affected by 

aggregation problems such as the ecological fallacy (Robinson, 1950), the modifiable areal unit 

problem (Openshaw, 1977a, 1977b, 1984; Openshaw and Taylor, 1981 and Arbia, 1989) or 

aggregation bias (Fotheringham and Wong, 1991; Amrhein and Flowerdew, 1992; Paelinck and 

Klaassen, 1979 and Paelinck, 2000). 

In this paper we focus on methods that can be applied to design analytical regions. We will 

refer to them as “regionalization methods”, to use a term that encompasses the wide range of 

fields in which these methods have been created or applied.1 The variety makes it difficult to 

                                                 
1  Regionalization methods are also known as spatially constrained aggregation methods, zone design and 

constrained clustering, among others. 
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provide a single definition of the regionalization problem, but we can enumerate some 

characteristics that are common to any method that can be used to define analytical regions: 

 

1. All the methods aggregate geographical areas into a predefined number of regions while 

optimizing a particular aggregation criterion. 

2. The areas within a region must be geographically connected (the spatial contiguity 

constraint). 

3. The number of regions must be smaller than or equal to the number of areas. 

4. Each area can be assigned to one and only one region. 

5. Each region must contain at least one area. 

 

Another characteristic of the methods considered here is that they are supervised, in that they 

assume prior knowledge about the aggregation process: relevant variables for the aggregation, 

number of regions to be designed, the regional spatial contiguity constraint and the existence of 

an aggregation criterion.  

The purpose of this study is not to carry out a model competition but to make a qualitative 

comparison of the characteristics of the different methods that can be used in the context of the 

regionalization problem (as defined above). So our main contribution is to present  a taxonomy of 

regionalization methods primarily based on the strategy used to satisfy the contiguity constraint, 

which is the main particularity of all the methods included in this paper. Previous related studies 

are the papers by Fischer (1980), Murtagh (1985) and Gordon (1996, 1999). However, these 

papers provide in-depth analyses of some of these methods rather than an exhaustive review. 

The structure of the paper is depicted in figure 1, where the regionalization methods are 

classified into two main branches. The first branch, discussed in section 2, includes those 

approaches where the spatial contiguity constraint is indirectly satisfied. Section 3 covers the 

second branch of figure 1, which includes the approaches where the spatial contiguity constraint 

is explicitly included within the algorithm. In the last section, we present the main conclusions of 

this research. 

 

FIGURE 1 ABOUT HERE. 
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2. Algorithms without an explicit spatial contiguity constraint 

This section describes regionalization methods in which the contiguity constraint is indirectly 

satisfied, i.e. methods that do not incorporate an explicit procedure for satisfying the spatial 

contiguity constraint. This condition is usually applied a posteriori.  

We classify these methods into two groups: Methods which apply conventional clustering and 

in which the resulting clusters are revised in terms of spatial contiguity, and methods which force 

spatial contiguity by maximizing regional compactness.   

 

2.1. Regionalization via conventional clustering algorithms  

This is probably the simplest regionalization method. Regionalization via conventional clustering 

algorithms was proposed by Openshaw (1973) as a methodological approach for regionalizing 

large datasets, comprising two stages. The first stage applies any conventional partitioning, or 

hierarchical, clustering algorithm to aggregate areas that are similar in terms of a set of variables.2 

In the second stage, each cluster is revised in terms of spatial contiguity by applying the 

following rule: If the areas included in the same cluster are geographically disconnected, then 

each subset of contiguous areas assigned to the same cluster is defined as a different region. 

Openshaw and Wymer (1995) formalized this method on a step-by-step basis for classifying and 

regionalizing census data.  

Note that the number of clusters defined in the first stage is always smaller than or equal to 

the number of contiguous regions resulting in the second stage. Thus, adjustments in the number 

of clusters are required in order to obtain the number of regions desired. In some cases, this is not 

possible; for example, an increment (reduction) of one unit in the number of clusters in the first 

stage can generate an increment (reduction) greater than one in the number of regions in the 

second stage. 

Openshaw and Wymer (1995) stressed the fact that regional homogeneity is guaranteed in the 

first stage. Moreover, this strategy may also help in providing evidence of spatial dependence 

between the areas. Thus, when the clusters in the first stage tend to be spatially contiguous, this 

may imply that the classification variables have some spatial pattern.  

                                                 
2  See Johnson (1967), Anderberg (1973), Everitt (1993), Gordon (1999) for a review of clustering methods.  
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Another characteristic of this methodology is that it does not impose regional compactness.3 

In this case, the regional shape depends heavily on the spatial distribution of the classification 

variables and on the clustering algorithm chosen for the analysis. Johnston (1968), Lankford 

(1969) and Fischer (1980) pointed out that the selection of the clustering algorithm is very 

important for identifying certain spatial patterns. For example, the centroid and Ward's algorithms 

can easily identify circular and dense spatial patterns, whereas single linkage algorithm is useful  

to identify elongated spatial patterns. 

Finally, when optimizing the aggregation criterion, conventional clustering algorithms like 

the k-means approach (MacQueen, 1967) only allow improving moves. This makes the algorithm 

converge quickly, mainly because it can easily be trapped in suboptimal solutions. It is also 

known that the final solution is very sensitive to changes in the initial centroids. One approach to 

this problem consists of solving it with different initial centroids and then select the best solution. 

Openshaw and Wymer (1995) proposed a simulated annealing4 variant to this algorithm which 

allows non-improving moves as a way to force the algorithm to explore more solutions and avoid 

suboptimal ones. 

 

2.2. Regionalization via maximization of regional compactness  

Another way to obtain spatially contiguous regions is to force the regions to be as compact as 

possible. This strategy was introduced in the early 1960s by Weaver and Hess (1963) as a 

methodological approach to design political districts. The authors saw the opportunity to adapt 

the mathematical formulation for solving the warehouse location-allocation problem to the 

political districting problem. The aim is to select a subset of areas to be region centers 

(warehouses) to which the other areas (customers) are assigned.  

The aggregation criterion consists of maximizing regional compactness by minimizing the 

sum of the “moments of inertia,” defined as the product of the population per area and the 

squared distance from the centroid of each area to the region center it was assigned to.5 It is 

important to note that region centers are not a decision variable but a parameter in the 

                                                 
3  A restriction widely imposed in districting literature (Gillman, 2002). 
4  Simulated Annealing was formulated as an optimization procedure by Kirkpatrick et al. (1983) and first applied in 

the Redistricting Problem by Browdy (1990). 
5  This criterion makes highly populated areas good candidates for selection as the initial set of centers. 
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formulation. The only decision variable in the models is the assignation of areas to the predefined 

region centers. 

The formulation also requires exactly equal populations in the regions. In order to satisfy this 

constraint fractional assignations of one or more areas to more than one region must be allowed. 

An iterative procedure fixes those fractional assignments and re-calculates the new regional 

centers. When the solution without fractional assignments leads to a change of the regional 

centers, the warehouse location-allocation model is solved again with this new set of centers. The 

process stops when no change of centers is needed after solving fractional assignments. 

The satisfaction of the spatial contiguity constraint is not always guaranteed, since the 

assignation of the areas to their closest regional center is based on a weighted distance measure 

(population * distance). Thus, a final inspection of the final solution is required to correct spatial 

disconnections.  

Hess et al. (1965) made a more formal presentation of this method. The fragmentation of 

areas is theoretically6 solved by relaxing the equal population constraint to a “nearly equal” 

population requirement that allows the regional population to be between a lower and an upper 

bound. This relaxation makes it possible to formulate the problem as an integer programming 

model with a decision variable xij = 1 if the population of area j is assigned to the center i, and xij 

= 0 otherwise. xij =1 with i=j, means that area i is selected as region center. A final revision for 

spatial contiguity is still required. 

Kaiser (1966) proposed an aggregation criterion based on a weighted combination of two 

components. The first component is a measure of population equality, in which the population of 

each region should be as close as possible to the ratio between the total population and the 

number of regions to be designed. The second component is a measure of relative geometric 

compactness,7 where the shape of each region should be as close as possible to a circle. This 

relative compactness is calculated as the proportion of the geometric moment of inertia for region 

j and the moment of inertia of a circle with the same geometric area. The minimum value of this 

quotient is one, signifying that region j is a perfect circle. For a given solution, the global 

                                                 
6  It was theoretical because solving the new formulation was computationally difficult at that time. For empirical 

purposes the authors continued to use the procedure proposed by Weaver and Hess (1963).  
7  The use of a relative measure of compactness places more emphasis on regional shape than on regional size, since 

regional size depends on the spatial distribution of population when equal population is required. Thus, the lower 
the population density, the bigger the region must be in order to reach a given regional population. 
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compactness is measured as the average of the relative compactness for all regions. Kaiser's 

regionalization procedure starts from an initial feasible solution that is improved, in terms of the 

aggregation criterion, by moving areas between regions. Two types of moves are allowed: first, 

moving an area from its region to every other region, and second, exchanging every pair of areas 

belonging to different regions.8 Only improving moves are accepted, which means that the 

process may well be trapped in local optimal solutions and be sensitive to the starting solution. 

The iteration process stops when no improving moves are possible. Finally, feasibility in terms of 

contiguity constraint depends on the weight given to the population equality component with 

respect to the compactness component. 

Mills (1967) extends the Hess et al. (1965) location-allocation approach by taking into 

account natural boundaries in the regionalization process9 in such a way that a region is not split 

by these types of boundaries. This condition is achieved by performing what he called 

“permanent assignations,” which consist of assigning an area to a particular center in order to 

avoid this area being assigned to another center located on the opposite side of a given natural 

boundary.  

Hess and Samuels (1971) extended the location-allocation methodology to the sales 

districting model. In this case, the regions are designed in order to equalize regional workload 

rather than regional population. The authors prefer the relaxed version proposed by Weaver and 

Hess (1963) where fractional assignations are adjusted a posteriori. The Hess and Samuels model 

is also extended by Zoltners (1979) to allow the incorporation of more than one attribute to be 

equalized across regions. 

Helbig et al. (1972) formulated a heuristic and an integer programming model very similar to 

the one proposed by Hess et al. (1965). The authors assume that each area has a relatively equal 

population. This assumption makes it possible to replace the two sets of constraints related to the 

upper and lower bound for regional population by a set of constraints specifying the number of 

areas per region. Both the number of areas per region and the location of region centers are then 

adjusted iteratively by running the model several times. This modification avoids having to deal 

with fractional assignations of areas.  

                                                 
8  Note that these moves do not take into account the feasibility in terms of spatial contiguity. 
9 In Mills’ application, the natural boundary was the river Avon in Bristol. 
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George et al. (1997) incorporated modifications to Hess et al. (1965) and presented three new 

versions of the model. The first one incorporated nonlinear penalty functions for deviations from 

the target regional population, in such a way that the bigger the deviation from the desired 

regional population, the bigger the penalty. The second one offers the possibility of inducing the 

model to create a similar solution to a given pre-existing solution by introducing a function that 

reduces the distance from an area to a given center if they appear together in the pre-existing 

solution. The third one avoids having a region split by natural boundaries by introducing a 

penalty function that increases the distance between an area and the centers located in the 

opposite side of the natural boundary.10 

Recently Bacao et al. (2005) proposed a methodology that applies genetic algorithms to 

define the location of the region centers. The algorithm starts by creating an initial set of 

solutions. Each solution comprises a set of region centers, the assignation of each area to the 

closest region centers, and a value for the aggregation criterion. With this initial set of solutions, 

new solutions are created by applying selection, crossover and mutation operators in order to 

improve the aggregation criteria. The algorithm stops when a predefined number of solutions are 

generated without improvements in the aggregation criteria. 

Most of the methods derived from Weaver and Hess (1963) usually place the emphasis on 

regional equality, for example population or workload equality, and regional compactness. In 

these methods, regional homogeneity is assumed to be indirectly reached by imposing 

compactness. This assumption is related to Tobler's first law of geography: “Everything is related 

to everything else, but near things are more related than distant things” (Tobler 1970, p. 236). 

Another common characteristic of these approaches is that they incorporate the concept of 

regional center, which is usually located in a highly populated area within the region. In some 

cases, researchers are not interested in having this type of hierarchy in the regionalization 

process. 

An alternative way of regionalizing via compactness, while taking into account regional 

homogeneity, is to include the x and y coordinates of the centroids of the areas as two additional 

classification variables. This can be seen as a two-objective aggregation criterion. The first 

                                                 
10  This way of introducing information about natural boundaries is more relaxed than the permanent assignations 

proposed by Mills (1967). A similar strategy was implemented by Segal and Weinberger (1977), who replaced the 
squared Euclidean distance of a straight line between each center and all the other areas by the length of the 
shortest path between each center and all the other areas. 
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objective uses non-geographical classification variables (for example, socio-economic variables) 

to measure within-region homogeneity. The second objective uses geographical variables (for 

example, x and y coordinates) to measure the regional compactness. These two objectives are 

combined to calculate pairwise similarities between areas in such a way that areas geographically 

near to each other are likely to be assigned to the same cluster. Once the pairwise similarity has 

been estimated, either hierarchical or partitioning clustering algorithm may be used to aggregate 

the areas.11 

There are many ways to combine geographical distances and non-geographical dissimilarities 

into a single pairwise similarity value. Webster and Burrough (1972), Cliff (1975), and Perruchet 

(1983) proposed different multiplicative and additive forms to combine such elements. These 

authors also applied hierarchical agglomerative algorithms for merging areas.12 

Wise et al. (1997) formulated a multi-objective function with three objectives: a) 

homogeneity, measured as the within region variance of a set of attributes; b) compactness, 

measured as the distance between the centroid of each area and the centroid of the region it is 

assigned to; and c) equality, measured as the difference between the total value of an attribute for 

all areas in a region and the mean total of this attribute for all regions. These three objectives are 

then combined in an additive form and the areas are aggregated by applying a k-means clustering 

algorithm. 

The main drawback in formulating a multi-objective aggregation criterion is that we have to 

determine the proper individual weight for each objective (homogeneity, equality, compactness, 

etc.). For example, the weight assigned to the compactness objective should be strong enough to 

guarantee spatial contiguity (Webster and Burrough, 1972; Wise et al., 1997 and Openshaw et al., 

1998). This assignation of weights has been the main source of criticism of this methodology, 

since it becomes another source of variation in the final solution. 

Regional compactness has been a very important characteristic in problems like political 

districting and sales territory assignment. But it may not be a desired characteristic when the 

                                                 
11  Although this methodology may be considered a slight variation on the one introduced in section 2.1, there are 

two important differences that make us classify this strategy here. First, it achieves spatial contiguity by forcing 
the regions to be compact, which implies a different and more restrictive assumption about the shapes of the 
regions to design. Second, when using this methodology, the researcher has to deal with technical issues like how 
non-geographical and geographical variables are going to be combined into a single similarity function. 

12  Cliff et al. (1975) aggregated the areas by using a Minimum Spanning Tree algorithm, which is equivalent to a 
single linkage hierarchical agglomerative clustering. 
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researcher is interested in detecting spatial patterns that can lead to elongated regions. Note also 

that in these methods there is not much “freedom” in the way the relationships (similarities) 

between areas are defined. These methods require a similarity function directly related to the 

position of the areas in the geographical space; therefore, the closer the areas to a regional center, 

the higher the possibility of assigning those areas to that center. Finally, some of these methods 

represent the areas by their centroids. This representation is often criticized because the final 

solution is, in most cases, sensitive to the selection of those centroids. This sensitivity can 

become a big issue when the areas to be aggregated are large (Horn, 1995 and Martin et al., 

2001). 

 

3. Algorithms with an explicit spatial contiguity constraint 

The methods covered in this section include, within their solution process, additional instruments 

that ensure the spatial contiguity of each region. This implies that these models require 

information about the spatial neighboring relationships between areas.  

We classify these methods into three main categories: exact optimization models, heuristic 

models, and hybrid or mixed heuristic models. 

 

3.1. Use of exact optimization models for the regionalization problem 

The aggregation of n areas into m spatially contiguous regions while optimizing a predefined 

aggregation criterion is not an easy problem to solve optimally (Altman, 1998). Cliff and Haggett 

(1970), Cliff et al. (1975), and Keane (1975) used combinatorial mathematics to approximate the 

number of feasible solutions for a regionalization problem. Since this number depends not only 

on the number of areas and regions but also on how the areas are distributed in the space, these 

authors focused on providing the lower and upper bounds of the total number of aggregations. 

The upper bound results from a totally unconstrained formulation where each area can be 

grouped with any other area. The lower bound tries to incorporate the spatial distribution by 

assuming the extreme case where the areas form a chain, and each area can only be grouped with 

its neighbors.13 

                                                 
13  The number of feasible solutions for a regionalization problem involving the aggregation of 10 areas into 5 

regions is a number between 126 and 42,525 (Keane, 1975).  
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However, the impressive progress of computational capabilities has made it possible to 

provide optimal solutions for problems that only a few years ago were insurmountable. As an 

example, Bixby et al. (2000) uses a Patient Distribution System (PDS) problem with 49,944 rows, 

177,628 columns and 393,657 nonzero variables to illustrate the significant improvements in 

running times through the different versions of CPLEX. With a 296 MHz Sun UltraSparc the 

running times went from 57,840 seconds with CPLEX 1.0 (1988) to 165 seconds with CPLEX 

6.5 (1999).14  

The main challenge for solving regionalization problems via exact methods is to find an 

efficient way to deal with the contiguity constraint. In this section, we describe different 

strategies for incorporating spatial contiguity constraint in optimization models.   

Zoltners and Sinha (1983) improved the model proposed by Zoltners (1979). In this new 

proposal, the authors introduce information into the model about adjacency/contiguity between 

areas in order to control the contiguity constraint. There are many alternatives for defininge 

spatial contiguity between areas; in this particular case, Zoltners and Sinha use the road and 

highway network as a way to represent how areas are interconnected. This representation takes 

into account natural obstacles such as mountains, lakes, and rivers. Up to this point, the territory 

has been represented as a network with nodes representing the areas and links representing the 

roads connecting areas. Next, a sequence of steps is performed to reduce the number of links in 

the network. First, a set of areas are selected to be region centers, as many areas as there are 

regions to be designed. Second, the shortest path between each center and other areas is 

calculated using travel time as link weights. Finally, the solution from the shortest paths is used to 

obtain information on the number of adjacency levels between each area and the centers.15 

With this information Zoltners and Sinha formulated a linear optimization model with a 

decision variable xij = 1 if region i includes area j, and xij = 0 otherwise. The key constraint that 

ensures spatial contiguity is that an area j can be assigned to center i at adjacency level k if there 

exists a neighboring area of j assigned to the same center at adjacency level k-1.  

Duque (2004) formulated the regionalization problem as a Mixed Integer Programming (MIP) 

model. As in the method we just saw, Duque borrows concepts from graph theory in order to deal 

                                                 
14  See Bixby (2002) for more information about this topic. 
15  In order to make the reduction less restrictive, the authors also included additional links taken from near optimal 

shortest paths solutions. This implies that there may exist more than one path connecting an area to a given center 
at different or equal adjacency levels. 



 12

with the spatial contiguity constraint. Thus, the areas and their neighboring relationships are 

represented as a connected graph with nodes representing areas and links representing first order 

spatial connectivity between areas.  

According to graph theory, the aggregation of n areas into m contiguous regions can be 

achieved by selecting n-m links from the connected graph. These n-m links can be understood as 

a necessary but not sufficient condition. An additional condition for feasibility imposes that every 

pair of areas belonging to the same region must be connected by one and only one combination of 

links.16 In the literature, this last condition has been referred to as the subtour breaking constraint.   

Duque's formulation includes a set of subtour breaking constraints. It is clear that the 

enumeration of all potential subtours can be extremely difficult and inefficient. An alternative 

approach to dealing with subtours is proposed by Current et al. (1984) for the shortest covering 

path problem (SCPP). It consists of solving a relaxed formulation that does not take into account 

any subtour breaking constraints. Then, if the solution contains subtours, they are eliminated by 

adding the proper subtour breaking constraints and solving the problem again. This process is 

repeated until a feasible solution is obtained. 

Three sets of binary decision variables are used in Duque's formulation: 

 

Xijk

1, if areas i and j j  Ni belong to the same region k, with i  j and Ni =  set of areas j sharing

   a border with area i , 

0, otherwise;









 

Yik
1, if area i belongs to region k,

0, otherwise;





 

Tij
1, if areas i and j belong to the same region k, with i <  j,

0, otherwise;





 

 

The set of variables Xijk are used to select the n-m links, and the set of variables Tij are used to 

select all the pairwise dissimilarities between the areas assigned to the same region.  

                                                 
16  For more information on the properties of this (and other) configurations, see Ahuja et  al. (1993). 
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The linear objective function is formulated as the minimization of the sum of all pairwise 

dissimilarities between the areas assigned to the same region, Min Dij Tij
j1

n


i1

n
 , with Dij defined as 

the dissimilarity relationships between areas i and j, with i<j.  

Later, Duque et al. (2006) formulated three new models for solving the regionalization 

problem. The three formulations have the same objective function used by Duque (2004), but 

each one applies a different strategy to satisfy the spatial contiguity constraint. They are named 

TourRM, OrderRM, and FlowRM.  

TourRM selects n-m links and prevents subtours by adapting the MTZ constraints with lifting 

proposed by Desrochers and Laporte (1991). MTZ constraints were originally formulated by 

Miller et al. (1960) for the Travelling Salesman Problem (TSP). The strategy consists of having a 

decision variable, ui, that numerates the areas in such a way that area i must have a value lower 

than area j if there exists a directed link leading from i to j. Whereas the TSP imposes that each 

area can have at most one entering and one leaving link, TourRM allows areas to have more than 

one entering link in order to provide the flexibility needed to create any regional shape. The set of 

decision variables are: 

 

Xij
1, if the link from area i to j j  Ni is selected, with Ni = set of areas j sharing a border with area i,

0, otherwise;





Tij
1, if areas i and j belong to the same region, with i <  j,

0, otherwise;





 

ui Integer value assigned to area i  

 

OrderRM is based on the contiguity constraint formulated by Cova and Church (2000). In this 

case, the spatial contiguity constraint is achieved by selecting a core area per region. The 

remaining areas are assigned to one core area by taking into account the spatial contiguity order 

between the area and its corresponding core area. Thus, area i can be assigned to core area j at 

order o if and only if there is at least one area in the neighborhood of i that is assigned to j at 

order o-1. The set of decision variables are: 
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Xiko
1, if area i is assigned to area j at order o,

0, otherwise;





Tij
1, if areas i and j belong to the same region k, with i <  j,

0, otherwise;





 

 

FlowRM solves the regionalization problem by adapting Shirabe's model for the spatial unit 

allocation problem (Shirabe, 2005). Shirabe’s model is based on network flow theory in which 

the contiguity constraint is satisfied by designing a connected sub-network representing fluid 

movement from multiple sources to a single sink. FlowRM extends Shirabe's model for a single 

region to solve the problem for m regions. The set of decision variables are: 

 





;region in    to area from

flow ofamount   theindicating  variablecontiguous negative-Non

kji
Fijk  





otherwise; 0,

,region   tobelongs  area if ,1 ki
Yik  





otherwise; 0,

,region for sink  aschosen  is  area if ,1 ki
Wik  





otherwise; 0,

, <  with ,region  same  the tobelong  and  areas if ,1 jikji
Tij  

 

Finally, we should mention two additional approaches to the regionalization problem in the 

context of optimization models. The first is a non-linear optimization model formulated by 

Macmillan and Pierce (1994) where, in order to guarantee that the N areas assigned to a region 

are spatially contiguous, it is sufficient to ensure that the (N-1)th power of their binary contiguity 

matrix has no zero terms. And second, Garfinkel and Nemhauser (1970) formulated a linear 

optimization model that requires the enumeration of all the feasible regions as input. Then, the 

binary decision variable xj is used to select a predefined number of regions such that each area 

belongs to one and only one region. Mehrotra et al. (1998) used a similar approach, but in this 

case the set of feasible regions is generated with a column generation technique (Barnhart et al., 

1998) which creates new solutions from an initial feasible solution. 
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Exact formulations for the regionalization problem are computationally intensive and their 

application is still limited to very small problems. As a very simple illustration, Table 1 presents 

the result for TourRM, OrderRM, and FlowRM models using ILOG CPLEX 9.0 on a Sun Blade 

2500, 500 MHz, 2Gb RAM to aggregate the fourteen counties in Vermont into three and nine 

regions. 

 
TABLE 1 ABOUT HERE 

 

3.2. Heuristic models for the regionalization problem 

This section will cover different heuristic models for regionalizing. These models have been 

widely applied in the literature since the early 1960s, and they have proved to be highly effective 

in cases in which a large number of areas are to be aggregated. The main goal of heuristic models 

consists of finding, in a reasonable time, a solution as close as possible to the optimal, which in 

most cases is unknown. The ability to escape from local optimal solutions in order to reach a 

good solution is a very important component of the heuristic approaches. An additional challenge 

for heuristic models in the regionalization context is the ability to efficiently move from one 

solution to another neighboring solution without breaking the spatial contiguity constraint. 

This review covers four types of heuristics: 1) heuristics based on hierarchical clustering 

algorithms where only contiguous regions can be merged, 2) heuristics where each region starts 

from an area (seed area) to which other neighboring areas are added, 3) heuristics that start from 

an initial feasible solution and search for improvements by swapping areas between regions, and 

4) heuristics based on graph-theory. 

 

3.2.1. Adapted hierarchical clustering algorithms 

This methodology is another way of using conventional hierarchical clustering methods to solve 

regionalization problems. In this case an agglomerative hierarchical clustering algorithm is 

modified in such a way that only spatially connected regions (clusters) are allowed to be merged. 

At the beginning of the algorithm, each area is a region by itself. Further iterations merge one 

region at a time until reaching a predefined number of regions. The research in this area explores 

the use of different methods of agglomerative hierarchical clustering, such as single linkage, 

complete linkage, average linkage and Ward's method, among others. Two characteristics are 

explored in these methods: first, their ability to identify different spatial patterns (Lankford, 1969 
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and Byfuglien and Nordgard, 1973), and second, how the spatial contiguity constraint affects the 

dendograms, which are a graphical representation of the clustering solutions at different scales 

(Ferligoj and Batagelj, 1982).  

Other contributions to this topic have been made by Spence (1968), Webster and Borrough 

(1972), and Margules et al. (1985), who carry out comparisons between different agglomerative 

hierarchical techniques when imposing the contiguity constraint; Openshaw (1973), who 

proposes a way to speed up the regionalization procedure based on hierarchical aggregation 

techniques by reducing the number of calculations and restricting the size of the similarity matrix 

by retaining only the similarities between contiguous areas; and Perruchet (1983), who defines 

spatial contiguity based on the contiguity threshold, which is the maximum distance beyond 

which two areas are not contiguous. 

Hierarchical approaches can be useful when the researcher is interested in nested solutions at 

different scales (number of regions). This nested solution occurs because when two areas are 

merged at a given scale they are forced to be together at higher scales. But, when the researcher is 

interested only in a specific scale this approach may not be the best option since the solution 

obtained is conditioned to the solution at every lower scale (Bunge, 1966). 

 

3.2.2. Seeded Regions 

The main characteristic of these heuristics is that each region is the result of selecting one area 

(seed area) to which other neighboring areas are assigned. The seeds can be generated one at the 

time, which implies that the next seed is selected after a region is completed; or in parallel, when 

all the seeds are selected at once. 

This methodology was first proposed by Vickrey (1961) for solving districting problems. 

Vickrey's method starts by selecting an area at random, which is the reference area. Next, the 

geographically furthest area from the reference area is used as the initial seed for the first region. 

Then, neighboring contiguous unassigned areas are added to the seed in order of increasing 

distance from it. The adding process stops when the region satisfies a predefined condition, for 

example, a minimum population quota. When the first region is finished, the next region is 

designed by selecting as the initial seed the furthest unassigned area from the reference area. The 

strategy of having reference areas was implemented by Vickrey as a way to avoid the creation of 



 17

enclaves, which are the remaining unassigned areas that cannot be a region by themselves. Those 

enclaves must be assigned to an already created region. 

Thoreson and Liittschwager (1967) expanded Vickrey’s method in several aspects. First, they 

proposed repeating the regionalization process several times with different reference areas in 

order to explore new solutions. And second, they introduce a modification of the algorithm to be 

used on a regular lattice. 

Later, Gearhart and Liittschwager (1969) introduced other improvements to Thoreson and 

Liittschwager's algorithm by including new termination rules, new ways to prevent the formation 

of enclaves, different alternatives to seed the regions, and a more formal, clearer presentation of 

the algorithm. 

The seeded regions approach has also been studied by Taylor (1973), Openshaw (1977a, 

1977b), and Rossiter and Johnston (1981). A common factor between these contributions is that 

they select the set of seeds, called “core areas,” at the beginning of the algorithm. Then, 

neighboring areas are added to the cores. The process stops when all the areas are assigned. 

Rossiter and Johnston's method does not consider the next seed until a region has been finished, 

whereas Taylor and Openshaw’s methods allow the regions to grow simultaneously.  

Note that the algorithms derived from Vickrey's contribution assume that the number of 

regions is known. So, special attention must be paid to the criterion used for stopping the addition 

of areas to a region. On one hand, if the minimum population per region is set very low, then it is 

likely that the desired number of regions is reached very fast, with many areas waiting for 

assignment (enclaves). On the other hand, if the minimum population per regions is set very high, 

then the algorithm will not be able to create as many regions as wanted.  

  

3.2.3. Modification of an initial feasible solution 

The methods covered in this section require as an input an initial feasible solution which is then 

iteratively modified while searching for improvements in the aggregation criterion. A common 

factor among these methods is that each iteration must be feasible in terms of the spatial 

contiguity constraint. 

This type of regionalization method was proposed by Nagel (1965) for redistricting problems. 

The process starts from an initial feasible solution that is modified by moving areas from their 

current region to another neighboring region. Several conditions must be satisfied before allowing 
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a move: first, the donor region (the region currently containing the area being moved) must have 

more than one area. Second, the donor region cannot lose its spatial contiguity after removing the 

area.  

Nagel allows two types of moves. The basic one is to move one area at the time. The second 

type of move involves trading areas, on a one-for-one basis, between two neighboring regions.17 

These moves are allowed only if there is an improvement in the aggregation criterion. The 

process stops when no improving moves can be performed. 

The contiguity constraint is tested by selecting one area within the region. Then neighboring 

areas belonging to the same region are added until no more areas can be added. If all the areas 

belonging to the region can be added, then the region is spatially contiguous. 

The algorithm called Automatic Zoning Procedure (AZP) proposed by Openshaw (1977a) 

uses the same strategy, but it does not include trading moves. Although the methodological 

approach was not innovative with respect to earlier contributions, the main contribution made by 

Openshaw was to use these regionalization models to explore the effects of the Modifiable Areal 

Unit Problem (MAUP).  

Up to this point all the algorithms were based on a hill-climbing procedure where only 

improving moves were allowed. Sammons (1978) highlighted the need to allow these procedures 

to perform non-improving moves in order to be able to explore a wider range of feasible solutions 

and escape from local optimal solutions, which are very likely to occur when these approaches 

are used. Sammons also introduced a very interesting additional way to explore more solutions 

based on merging/splitting regions: the number of merges must be equal to the number of splits to 

maintain the number of desired regions. In the same book, Openshaw (1978) presents an 

extension of Openshaw (1977a) where merging/split moves are incorporated as well. 

Ferligoj and Batagelj (1982) studied this methodology within the context of clustering with 

relational constraint. The authors see the trading not only as useful for exploring potential 

improvements on the aggregation criterion, but also as a way of preserving the number of areas 

within each region. They also propose several ways to generate the initial feasible solution. 

Browdy (1990) made an important contribution to this type of model. He formulates a model 

for the redistricting problem where non-improving moves are possible by implementing a 

                                                 
17  When trading two areas, each must touch the neighboring region in an area other than the area being traded. This 

move cannot break the contiguity constraint of either of the two regions involved in the trading. 
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Simulated Annealing (SA) structure within the searching process. SA allows non-improving 

moves with a probability that diminishes gradually over iteration time. In this algorithm, special 

attention should be given to the definition of the initial parameters related to the cooling schedule 

to ensure an appropriate trade-off between the execution time and a good solution. 

Macmillan and Pierce (1994) also used SA for redistricting problems in an algorithm called 

ANNEAL. They proposed an alternative method for checking for spatial contiguity called 

switching points, which proved to be more efficient than their method based on the powers of the 

binary contiguity matrix presented in section 3.1. The switching point method does not have to 

iterate over all the areas assigned to the region; it only focuses on the area that is the candidate to 

be removed from the donor region and its first order neighbors, including those neighbors 

assigned to other regions.18 Empirical evidence on the performance of the switching points 

method is provided by Macmillan (2001). 

Openshaw and Rao (1995) proposed two alternative approaches for improving Openshaw's 

AZP model. In one of the approaches, AZP-SA, non-improving moves of areas are allowed by 

using a SA scheme. The other approach, AZP-tabu, uses a well-known heuristic procedure called 

Tabu Search Algorithm,19 which also attempts to escape from local optimal solutions by allowing 

non-improving moves. In AZP-tabu, once an area is moved from one region to another, its 

reverse move is prohibited for R subsequent iterations. R is then the length of the tabu list and its 

value is a key parameter in the algorithm. The authors also provide a version of AZP-tabu where 

the value of R is dynamically adjusted during the searching process.20 

Horn (1995) also took up Sammons' idea of implementing different types of area moves and 

allowing for temporary changes in the number of regions. Horn modifies an initial feasible 

solution with three types of moves: Zone-at-march, moving an area from its region to a 

neighboring region; Territory-at-march, merging two regions; and Territory injection, selecting 

an area to create a new region. Here the number of regions can deviate from a predefined value in 

order to explore new solutions. The allowed maximum deviation from the desired number of 

regions is gradually reduced to zero to ensure a feasible solution. Finally, Horn stresses the 

                                                 
18  The authors enumerate the special cases where this methodology may fail. 
19  For more information on the Tabu Search Algorithm, see Glover (1977, 1989, 1990). 
20  The possibility of dynamically adjusting the value of R is known as the Reactive Tabu Search (Battiti and 

Tecchiolli, 1994). 
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importance of implementing different types of moves and encourages the exploration of moves 

that involve more than one area at the time. 

Duque and Church (2004) introduced the algorithm called Automatic Regionalization with 

Initial Seed Location (ARISeL) where special attention is paid to the design of a good initial 

feasible solution before performing a local search by moving areas between regions. The 

algorithm has two stages. The first stage uses a seeded regions strategy to generate an initial 

feasible solution. Information on how the aggregation criterion changes through the assignation 

process is used to make changes in the initial set of seeds. This first stage generates a set of 

feasible solutions from where the best solution is chosen and then improved in a second stage by 

applying a local search process based on a tabu search algorithm. Using a good feasible solution 

as an input to the second stage will reduce the possibility of getting trapped by a local optimal 

solution and also the number of moves performed during the second stage.21 

 

3.2.4. Graph theory-based models 

Maravalle and Simeone (1995) formulated a heuristic model for regionalization based on graph 

theory. The heuristic called MIDAS-Méthode Itérative d’Agrégation Spatiale represents the areas 

and their spatial contiguity relationships as a connected graph (G) where the link between 

nodes/areas i and j means that those two areas share a border. The problem is formulated as 

follows: “Given a connected graph G, in which a vector of characteristics is associated with 

each vertex, find a minimum inertia partition of the vertex-set of G into a prescribed number of 

connected clusters” (Maravalle and Simeone, 1995, p. 625). 

The main steps of MIDAS are: first, generation of a spanning tree T of G22, second, 

generation of an initial partition of T by deleting p-1 links where p is the number of regions to be 

designed, and third, the set of p-1 deleted links is iteratively modified by replacing one deleted 

link by another non-deleted link in T. This replacement, which is a neighboring feasible solution 

of T, is allowed if the new solution leads to an improvement in the aggregation criteria. 

Since, for a given T, the number of neighboring solutions is very restricted, the authors 

introduce a fourth step called “tree-modification” which generates a different spanning tree T  of 

G that results from replacing links in T by other unselected links available on G. This new T  
                                                 
21  The number of moves is reduced on average by 36.4% with respect to the total number of moves required by 

AZP-tabu.  
22  The authors applied Kruskal's algorithm in this step (Kruskal, 1956). 
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allows evaluation of new neighboring solutions that are not possible to evaluate from T. This 

process is repeated until there are no improving moves to perform. 

The main advantage of this approach is the fact that spatial contiguity constraint is maintained 

through the iterations without having to test for it at each move, since deleting any combination 

p-1 links from any spanning tree T of G always leads to a feasible solution.  

 

3.3. Mixed heuristic models 

Under this category we classified the heuristics that combine heuristic and exact optimization 

models to solve regionalization problems. The aim of these models is to merge in one model the 

computational power of heuristic approaches with the mathematical accuracy of exact models.  

This combination has been made in two different ways: first, the exact model can be applied in a 

set of neighboring regions to redraw their borders, achieving improvements in the aggregation 

criteria; second, information obtained from multiple solutions generated by any regionalization 

heuristic is used to reduce the number of variables and constraints in an exact model.  

The first method was proposed by Duque (2004). The algorithm called Regionalization 

Algorithm with Selective Search - RASS has as a main assumption that the design of contiguous 

and homogeneous regions is relevant only if there exist both disparities between the areas, which 

justify the design of more than one region, and some evidence of spatial dependence, which 

justifies the requirement of spatial contiguity. If these two properties are present in the data set, 

then the information available on the relationships between areas can be crucial in directing the 

search process in a more selective and less random fashion. The algorithm starts by selecting a 

subset of m neighboring regions. The areas belonging to those regions are passed to an 

optimization model23 to re-aggregate them into m regions. Next, taking into account information 

on the relationships between the areas, the algorithm decides which region should leave the set of 

neighboring regions and which region should be added to the set in order to run the optimization 

model again. Thus, the set of regions passed to the optimization model keeps changing 

throughout the iteration process until a convergence criterion is satisfied. 

The aim of RASS is to take advantage of the optimization model by applying it to a set of 

regions instead of trying to solve the whole problem at once. The local improvements achieved 

with the optimization model may be more difficult to obtain with an area-swapping scheme. 

                                                 
23  Proposed by Duque (2004) and presented in section 3.1. 
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Duque and Church (2004) formulated an alternative way of taking advantage of the 

optimization model for regionalization problems. The authors propose the adaptation of a well-

known heuristic model known as Heuristic Concentration – HC (Rosing and ReVelle, 1997). The 

central idea of this model is to use information from multiple solutions, obtained by any 

regionalization heuristic, in order to reduce the number of variables and constraints in the 

optimization model. The solution obtained from the reduced optimization model will be at least 

as good as the best solution obtained from the heuristic. The algorithm has two stages. The first 

stage runs a regionalization heuristic q times. The best m solutions are taken from the q available 

solutions.  The second stage uses those m solutions to reduce an early version of the OrderRM 

model presented in section 3.1. Thus, if a set of areas is assigned to the same region in all the m 

solutions, those areas will be forced to be together in the optimization model. This information 

can also be used to reduce the index related to the maximum contiguity order (o). Empirical 

evidence shows that this procedure can reduce, on average, 83.8% of the constraints and 84.2% of 

the variables from the fully specified optimization model. 

Middleton (2006) proposed a similar approach. He formulates a heuristic called Heuristic 

Distillation – HD to reduce the FlowRM model proposed by Duque et al. (2006). The algorithm 

uses information from multiple solutions obtained from any heuristic model. Next, information 

from the best m solutions is used to reduce the FlowRM model. Information on neighboring areas 

that are never assigned to the same solution, and on areas that are always assigned to the same 

region, is used to formulate a reduced version of the optimization model. This process can reduce, 

on average, 79.53% of the constraints and 56.51% the variables from the fully specified FlowRM 

optimization model. 

 

4. Conclusions 

In this paper we review more than four decades of contributions to regionalization methods, and 

we have also propose a taxonomy of the different regionalization methods considered in the 

literature based on the strategy used to satisfy the contiguity constraint. Table 2 shows the main 

topics considered in the reviewed studies (column 2) following our proposed taxonomy (column 

1). Taking this information into account, our aim in this study was to provide a big picture of the 

alternative methods that can be applied by researchers who see official aggregations as a source 
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of error when analyzing spatial data. This paper may also be a good starting point for researchers 

interested in developing new regionalization techniques.  

 

TABLE 2 ABOUT HERE 

 

A first conclusion from this review is that there is no ultimate regionalization technique. Each 

technique has characteristics that can be desirable in some applications but undesirable in other 

ones. In table 3 we provide an evaluation of those methods in terms of a set of characteristics. 

This table can be used as a guide for selecting a suitable regionalization method for a specific 

analysis. 

 

TABLE 3 ABOUT HERE 

 

Another conclusion is that, although there is a high degree of subjectivity in the criteria these 

methods use, the application of structured and replicable regionalization methods may reduce the 

criticism that the use of analytical regions usually receives.  

Based on this review we envision various research lines that could contribute greatly to this 

field. First, elements from different regionalization strategies could be combined, leading to more 

powerful algorithms. Second, alternative ways of improving the computational tractability of 

exact optimization models for regionalization problems are needed. Third, less randomized 

aggregation processes could be designed by taking advantage of the available data (not only from 

classification variables but also from the spatial configuration of areas). Fifth, those models based 

on swapping or trading moves of areas could be extended towards the design of more aggressive 

moves that allow improvements in the local search process. And sixth, research addressed to 

assessing the real benefits of using analytical regions is needed.  
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Tables and figures 

 

Figure 1. Taxonomy of methods for solving regionalization problems 

 

 

Table 1. Computational results for 14 counties in Vermont 

  3 regions  9 regions 
 TourRM OrderRM FlowRM  TourRM OrderRM FlowRM 
Rows-cols 1215-159 585 - 427 698 - 337  1215 - 159 1150 - 525 1863 - 767 
OF 14.261 14.261 14.261  1.733 1.733 1.733 
Best-Time (sec)* 29.16 47.04 120.8  0.37 9.56 79.29 
Best-Gap* 60.63% 97.30% 24.79%  1.96% 100.00% 100.00% 
Tot-time (sec) 16180.39 10800 147.55  0.37 10800 10800 
Tot-gap 0.01% 37.15% 0.01%  0.01% 73.94% 100.00% 

* Best-Time and Best-Gap: time and gap reported when the “Best-Integer” is equal to the optimal 
solution. 

 

 
 



 29

Table 2. Overview of the regionalization methods literature 

Method Topics addressed Study 

1. 
Regionalization 
via conventional 
clustering 
algorithms  

Regionalization in two stages Openshaw (1973) and Openshaw and 
Wymer (1995) 

Sensitivity of regionalization results to 
different clustering algorithms 

Johnston (1968), Lankford (1969) and 
Fischer (1980) 

Simulated annealing variant of the k-
means algorithm 

Openshaw and Wymer (1995) 

2. 
Regionalization 
via maximization 
of regional 
compactness  

Consideration of natural boundaries Mills (1967), Segal and Weinberger 
(1977) and George et al. (1997) 

Consideration of pre-existing aggregations George et al. (1997) 
Fractional assignments Helbig et al. (1972) 
Integer programming formulation Hess et al. (1965) and Helbig et al. 

(1972) 
Quantitative measure of compactness Weaver and Hess (1963) 
Types of moves of areas between regions Kaiser (1966) 
Use of genetic algorithms Bacao et al. (2005) 
Weighted combination of multiple 
aggregation criteria 

Kaiser (1966), Cliff et al. (1975), 
Zoltners (1979) and Wise et al. (1997) 

3. Exact 
optimization 
models 

Alternative way to define adjacency 
between areas 

Zoltners and Sinha (1983) 

Alternative ways to satisfy contiguity 
constraint 

Duque et al. (2006) 

Complexity of the regionalization problem Cliff and Haggett (1970), Cliff et al. 
(1975), Keane (1975) and Altman 
(1998) 

Contiguity constraint based on adjacency 
level 

Zoltners and Sinha (1983) 

Contiguity constraint based on subtour 
breaking constraints 

Duque (2004) 

Contiguity constraint based on the power 
of the contiguity matrix 

Macmillan and Pierce (1994) 

Solution obtained by the union of 
predesigned feasible regions 

Garfinkel and Nemhauser (1970) and 
Mehrotra et al. (1998) 

(continued) 
 
 
 

 

Table 2. (continued) 

Method Topics addressed Study 

4. Adapted 
hierarchical 
clustering 
algorithms 

Comparison of hierarchical methods Spence (1968), Webster and Burrough 
(1972), Byfuglien and Nordgard 
(1973) and Margules et al. (1985) 

Hierarchical methods and the 
identification of spatial patterns 

Byfuglien and Nordgard (1973) 
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Monotonic and nonmonotonic hierarchical 
clustering strategies with contiguity 
constraint 

Ferligoj and Batagelj (1982) 

Reduction of similarity matrix Openshaw (1973) 
Spatial contiguity based on contiguity 
threshold 

Perruchet (1983) 

Sub-optimality of hierarchical algorithms Bunge (1966) 
5. Seeded 
Regions 

Multi-start algorithm Thoreson and Liittschwager (1967) 
Use of irregular and regular lattices Thoreson and Liittschwager (1967) 
Ways to grow the regions Vickrey (1961), Taylor (1973), 

Openshaw (1977a), Openshaw 
(1977b) and Rossiter and Johnston 
(1981) 

Ways to prevent enclaves Gearhart and Liittschwager (1969) 
Ways to seed the regions Gearhart and Liittschwager (1969) 

6. Modification 
of an initial 
feasible solution 

Types of moves of areas between regions Nagel (1965), Openshaw (1977a), 
Openshaw (1978), Sammons (1978), 
Ferligoj and Batagelj (1982), Browdy 
(1990) and Horn (1995) 

Use of simulated annealing Browdy (1990), Macmillan and Pierce 
(1994), Macmillan (2001) and 
Openshaw and Rao (1995) 

Use of tabu search Openshaw and Rao (1995) and Duque 
and Church (2004) 

Ways to check for spatial contiguity 
(switching points) 

Macmillan and Pierce (1994) and 
Macmillan (2001) 

7. Graph theory-
based models 

Use of spanning tree Maravalle and Simeone (1995) 

8. Mixed 
heuristic models 

Break the regionalization problem into 
sub-problems 

Duque (2004) 

Use of heuristic concentration Duque and Church (2004) 

Use of heuristic distillation Middleton (2006) 
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Table 3. Regionalization methods and their main characteristics 

 
 

                  Regionalization method 
 
 
 
 
 
 
 

               Characteristics 
 
 

Without an 
explicit 
spatial 

contiguity 
constraint 

With an explicit spatial contiguity 
constraint 
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Number of regions is required         
Information about all pairwise relationships can be 
considered 

        

Relationships between areas do not have to be 
geographically-dependent 

        

Neighboring relationships must be provided         
Guaranteed spatial contiguity         
Regional shape is not constrained         
Optimal solution is guaranteed   *     
May be used to solve large regionalization problems**        
May be easily adapted to any aggregation criterion        
* Only for TourRM, OrderRM, and FlowRM models. 
** 67 areas into 15 regions has been the largest problem solved by applying Heuristic Distillation to reduce 
the fully specified FlowRM model (Middleton 2006). The reduced FlowRM was solved with CPLEX 9.0 on a 
Sun Blade 2500. 500 MHz CPU, 2Gb RAM. 
 
 
 
 
 

 


