Molecular Plant Pathology

Ralstonia solanacearum, a widespread bacterial plant pathogen in the post-genomic era

Journal:	Molecular Plant Pathology
Manuscript ID:	MPP-PP-13-026.R1
Manuscript Type:	Pathogen Profile
Date Submitted by the Author:	n/a
Complete List of Authors:	Peeters, Nemo; INRA UMR441 Laboratoire des Interactions Plantes Micro- organismes (LIPM), 24 chemin de borde rouge, Auzeville CS52627; CNRS UMR2594 Laboratoire des Interactions Plantes Micro-organismes (LIPM), 24 chemin de borde rouge, Auzeville CS52627 Guidot, Alice; INRA UMR441 Laboratoire des Interactions Plantes Micro- organismes (LIPM), 24 chemin de borde rouge, Auzeville CS52627; CNRS UMR2594 Laboratoire des Interactions Plantes Micro-organismes (LIPM), 24 chemin de borde rouge, Auzeville CS52627 Vailleau, Fabienne; INRA UMR441 Laboratoire des Interactions Plantes Micro-organismes (LIPM), 24 chemin de borde rouge, Auzeville CS52627; CNRS UMR2594 Laboratoire des Interactions Plantes Micro-organismes (LIPM), 24 chemin de borde rouge, Auzeville CS52627; UMR2594 Laboratoire des Interactions Plantes Micro-organismes (LIPM), 24 chemin de borde rouge, Auzeville CS52627; UNRS UMR2594 Laboratoire des Interactions Plantes Micro-organismes (LIPM), 24 chemin de borde rouge, Auzeville CS52627; UNRS UMR2594 Laboratoire des Interactions Plantes Micro-organismes (LIPM), 24 chemin de borde rouge, Auzeville CS52627; Université de Toulouse ; INP ; ENSAT, 18 chemin de Borde Rouge Valls, Marc; Department of Genetics, University of Barcelona and Centre for Research in Agricultural Genomics (CRAG)., Edifici CRAG, Campus UAB
Keywords:	Ralstonia solanacearum
	1

SCHOLARONE[™] Manuscripts

1			
2			
3			
4		1	
5			
6 7	1	Ralstonia solanacearum, a widespread bacterial plant pathogen in the post-genomic era	
8 9	2	Nemo Peeters ^{1,2*} , Alice Guidot ^{1,2} , Fabienne Vailleau ^{1,2,3} and Marc Valls ⁴	
10 11	3	*corresponding author, <u>nemo.peeters@toulouse.inra.fr</u> , +33 561285592	
12	4	1-INRA UMR441 Laboratoire des Interactions Plantes Micro-organismes (LIPM) 24 chemin de Borde	
13	5		
14	J	Rouge - Auzeville CS 32027 SI320 CASTAILET TOEOSAN CEDEX, FRANCE	
14	6	2-CNRS LIMR2594 Laboratoire des Interactions Plantes Micro-organismes (LIPM) 24 chemin de Borde	
15	-		
16	/	Rouge – Auzeville CS 52627 31326 CASTANET TOLOSAN CEDEX, France	
17 18	8	3-Université de Toulouse ; INP ; ENSAT ; 18 chemin de Borde Rouge, 31326 Castanet Tolosan, France.	
19	0	A Department of Constine University of Percelone and Centre for Desearch in Agricultural Constraints	
20	9	4-Department of Genetics, University of Barcelona and Centre for Research in Agricultural Genomics	
21	10	(CRAG). Editici CRAG, Campus UAB, 08193 BELLATERRA, CATALONIA, SPAIN	
22			
23	11		
20	10		
24 25	12		
25			
26			
27			
28			
29			
30			
31			
32			
22			
24			
34			
35			
36			
37			
38			
39			
40			
41			
42			
43			
ΔΔ			
7 7 /5			
40			
40			
4/			
48			
49			
50			
51			
52			
53			
54			
55			
56			
50			
5/			
58			
59			
60			

2			
3			
4		2	
5			
6 7	1	Ralstonia solanac <u>earum</u>	
8 9	2	Taxonomy: Bacteria; Proteobacteria; β subdivision; Ralstonia group; genus Ralstonia	
10 11	3	Microbiological properties: Gram-negative, aerobic, motile rod	
12	4	Disease symptoms: Agent of bacterial wilt of solanaceaous plants characterized by a sudden wilt of	
13	5	the whole plant. Typically, stem cross-sections ooze a slimy bacterial exudate. <i>R. solangcearum</i> is	 Formatted: Font: Italic
14	6	also the agent of Moko disease of banana and brown rot of potato.	 Formatted: Font: Not Italic
15	Ũ		
16	7	Disease control: Pathogen-free seed and transplants. Existence of a few resistant and tolerant plant	
17	8	varieties. Prophylactic sanitation practices and cultural rotations.	
18	9		
20	10	Since the last Balatania colongeogrum nathagen profile upo nublished ten years ago (Conin 8	
21	10	Since the last Rustonia solunacearain pathogen profile was published ten years ago (Genin &	
22	11	Boucher, 2002), the studies concerning this plant pathogen have definitely taken the genomic and	
23	12	post-genomic avenue. This was pioneered by the first sequenced and annotated genome for a major	
24	13	plant bacterial pathogen (Salanoubat et al.et al., 2002) and followed by many more genomes in the	
25	14	years after. All molecular features studied have now a genomic flavor. ₇ In the future, this will help to	
26	15	connect the classical field pathology and diversity studies with gene content of specific strains. This	
27	16	contributes to a global understanding of <i>R. solanacearum</i> virulence mechanisms. Figure 1 highlights	
28 29	17	some features specific to <i>R. solanacearum</i> and also displays different plant bioassays.	
30	18		
31			
32	19		
33	20	A electification in four phylotypes	
34	20	A classification in four phylotypes	 Formatted: Normai, Line spacing: single
35	21	In pace with the development of molecular tools, classification of <i>R. solangcearum</i> has undergone •	 Formatted: Space After: 10 pt. Line spacing:
36	22	many changes during the past 10 years. In 2005, Fegan and Prior proposed a new hierarchical	Multiple 1.15 li
37	23	classification based upon the analysis of the sequence of the ITS (Internal Transcribed Spacer) region	
38	24	the <i>brnB</i> and the endoglucanase <i>(eql)</i> genes. The analysis of 1/0 <i>B</i> solang cearum strains isolated	
39	27	from all over the world revealed a subdivision of the species into four phylotypes, which are	
40	25	correlated with the straige' geographical origins. Devloting Lingludes straigs originating primarily	
41	20	correlated with the strains geographical origins. Phylotype Finctudes strains originating primarily	
42	27	from Asia, Phylotype II those from America, Phylotype III those from Africa, and Phylotype IV those	
43	28	from Indonesia, Australia and Japan. This phylotype IV also contains the two close relatives of <i>R</i> .	
44	29	solanacearum: <u>Ralstonia</u> syzygii and the blood disease bacterium (BDB) strains. A multiplex PCR	
45	30	based upon sequence information from the ITS region has been developed to rapidly identify the	
46	31	phylotype to which a strain belongs (Fegan & Prior, 2005). Each phylotype can be further subdivided	
47	32	in groups of strains named sequevars, or sequence variants, according to the egl nucleotidic	
48 49	33	sequence. More than 50 sequevars have been defined so far.	
50	34	This classification was confirmed by comparative genomic hybridization of a set of 18 strains,	 Formatted: Line spacing: Multiple 1.15 li
51	35	representing the biodiversity of <i>R. solanacearum</i> on a microarray representative of the GMI1000	
52	36	reference strain genome (Guidot et al. 2007). Genomic data for nine new R. solanacearum	
53	37	strains also confirmed this classification- (Remenant <i>et al.</i> 2010, Remenant <i>et al.</i> 2011, Remenant <i>et al.</i>	 Field Code Changed
54	38	al 2012) Thanks to the overwhelming phylogenetic data on phylotype II strains, it has been	
55	50		
56			
57			
58			
59			

1			
2			
3			
1			
4		3	
5			
0	1	suggested that this phylotype should be divided in two subgroups IIA and IIB (Castillo & Greenberg,	
1	2	2007. Cellier et al. 2012). One can't exclude that deener sampling in the other phylotypes may	
8	2	zoor, center et u., zo12). One can't exclude that deeper sampling in the other phylotypes may	
9	3		
10	4	The geographic isolation and not best preference, has been the main driver of the separation of $R_{\rm ext}$ = $-\frac{1}{2}$	na:
11	I	Solong solong straine into four phylotypes (Costillo & Croopherg, 2007, Wisker et al. 2012) Using	ng.
12	5	solandcearum strains into four phylotypes (castilio & Greenberg, 2007, wicker et al., 2012). Using	
13	6	coalescent genealogy reconstruction, Wicker <i>et al.</i> (2012) suggested that <i>R. solanacearum</i> originated	
14	7	from the Australian/Indonesian region where phylotype IV strains are found. <u>-A subgroup of the</u>	
15	8	ancestral strains from this region From the Australian/Indonesian region, a subgroup of the ancestral	
16	9	strains probably spread throughout the present Austral-Eastern Africa and Madagascar, and	
17	10	differentiated later in phylotype III and phylotype I (predicted with an East African/Asian origin).	
18	11	Another subgroup of ancestral strains migrated to the actual Brazil and differentiated later into the	
19	12	subgroups IIA and IIP at a time similar to that of the phylotype I/III differentiation, possibly before	
20	12		
21	13	the fragmentation of Gondwana (Castillo & Greenberg, 2007, Wicker et al. <u>et al.</u> , 2012).	
21	14		
22	14		
23	15		
24	10		
25	16	A species complex, let's keep it simple	_
26			
27	17	A species complex is defined as a cluster of closely-related isolates whose individual members may Formatted: Space After: 10 pt, Line spacir	ng:
28	18	represent more than one species. The term 'species complex' was first applied to <i>R. solanacearum</i> by	
29	19	Gillings <i>et al.</i> (1993) to reflect the phenotypic and genotypic variability within the species. Taghavi <i>et</i>	
30	20	al (1996) then confirmed the concent of the <i>B</i> solangcegrum species complex by including <i>B</i> survaii	
31	20	and RDR strains into the R, colongeogram phylogeny. Studies of DNA DNA similarity revealed that the	
32	21	and BDB strains into the <i>k</i> . <i>solutiocedrum</i> phylogeny. Studies of DNA-DNA similarity revealed that the	
33	22	relatedness between <i>R. solanacearum</i> isolates is often just under the 70% threshold level commonly	
34	23	expected within a species (Roberts <i>et al.</i> , 1990). By comparing different strains to the phylotype I Field Code Changed	
35	24	strain GMI1000 by microarray hybridization, the most divergent strains still have 68-69% of their	
36	25	genes hybridizing with the GMI1000 oligonucleotides (Guidot et al.<u>et</u> al. , 2007). More recently,	
37	26	Remenant <i>et al.</i> (2010; 2011) used Average Nucleotide Identity (ANI) to evaluate genetic distances	
38	27	between the eight sequenced genomes from this species complex calculate genomic distances	
39	28	between all conversed generation the species complex. From the results, based on the ANI>95%	
40	20	set off /Konstantinidis & Tiodia, 2005. Konstantinidis at al. 2006) the authors suggested that the P	
41	29	<u>cutori (</u> Konstantinius & Tieuje, 2003, Konstantinius et ul., 2000) the authors suggested that the N.	
42	30	solanacearum species complex should be restructured into three different species: one containing	
43	31	phylotype I and III, a second containing phylotype II, and a third containing phylotype IV including R.	
44	32	syzygii and BDB strains (Remenant et al.et al., 2011). The ANI provides a more robust and accurate Formatted: English (U.S.)	
45	33	measurement of the genetic distance than the DNA-DNA hybridization (Konstantinidis & Tiedje,	
46	34	2005). However, as pointed out by Konstantinidis and Tiedje (200 <u>56)</u> , the ANI <u>should not be</u>	
17	35	considered as the sole argument for species definition (Konstantinidis & Tiedje, 2005). Ecological	
48	36	niche occupation which is a justifiable measurement of the phenotypic potential of a bacterial strain.	
40 70	37	is another important argument for species definition (Konstantinidis et al. et al. 2006, Konstantinidis	
49 50	20	8. Tiedie, 2005). A simple inspection of the esclogical nickes accuried by strains from the	
50	20	A nearly 2003, A simple inspection of the ecological filtrice obcurrently is not activity in the ecological filtrice of the	
51	39	<u>k. solurioceurum species complex indicates that all strains share phenotypic potential, as they are all</u>	
02 E0	40	soil-borne and plant-xylem infecting bacteria, In addition, all R. solanacearum strains from the four Formatted: Font: Italic	
03 54	41	phylotypes -with shared phenotypic potential as they are able to infect tomato plants and cause the	
54 57	42	same symptoms- (Remenant et al.et al., 2010)]. Another important consideration is the (likely	
55			
56			
5/			
58			
59			
60			

allopatric) divergence of related strains accompanied by important genome reduction and ecological specialization like it is the case for *R. syzyqii*, the BDB strains and *R. solanacearum* phylotype IV strains (i.e. PSI07) (Remenant et al., 2011). Despite a high ANI score (>98%), we could argue that these strains should not be the same species, exactly like Burkholderia mallei and B. pseudomallei are justified as different species (Konstantinidis et al.et al., 2006) The renaming proposition of Remenant and colleagues is interesting but should be re-evaluated in the light of more whole genome sequence data to clearly evaluate whether there is a continuum or clustered genetic relatedness in this species complex. For instance, the sequence of strain ACH0732, which is not clearly associated with a specific phylotype (Fegan & Prior, 2005) ewould indeed-be

especially informative.

We believe that the distinction of these three genomic groups is a good description of the R. solanacearum diversity. However, assigning new species names to these groups would confusingly reinforce the genetic frontier between these strains, undistinguishable for the non-expert from the distance between for example R. solanacearum and R. picketti. Moreover, three different species names for the solanaceous bacterial wilt causing strains could complicate the dialogue between farmers, field pathologists and scientists. An alternate proposition is to generate subspecies; using the names proposed by Remenant and colleagues, we propose the following subspecies: Strains assigned to phylotype II, which includes the type strain K60, should be named R. solanacearum subspecies solanacearum; strains in phylotype I and III R. solanacearum subspecies sequeirae with the type strain GMI1000; strains assigned to phylotype IV including the R. syzygii and BDB strains, R. solanacearum subspecies haywardii, with the type strain PSI07. This proposition combines the advantages of identifying the proximity between phylotypes I and III on one hand and phylotype IV, R. syzygii and BDB on the other hand; without blocking further strain identification in an artificial species level differentiation. This could be exemplified by the strain ACH0732, which could not be classified in one of the four described phylotypes (Fegan & Prior, 2005), highlighting the continuum of genetic diversity in this species complex (Wicker et al., 2012).

Dissemination

Epidemiological analyses revealed that two major routes allow dissemination of R. solanacearum strains in the environment: waterways at a local scale and transport of infected materials at both local and worldwide scales. The severe wilt disease occurring in 1955 on ginger in northern Australia originated from latently infected rhizomes imported from China (Hayward & Pegg, 2012). Numerous studies were conducted on the origin of potato brown-rot strains in North America and demonstrated that all introductions in the last few years have been linked to worldwide Pelargonium production (Norman et al., 2009). Infected Pelargonium material has also been linked to the introduction of potato brown rot strains into Europe (Janse et al., 2004, Janse, 2012) and Taiwan (Cellier et al., 2012). The severe wilt disease occurring in 1955 on ginger in northern Australia originated from latently infected rhizomes imported from China (Hayward & Pegg, 2012). Infected Pelargonium also introduced new R. solanacearum strains to Northern Florida in 2001 probably originating from Martinique (Hong et al., 2008). One to four years later, these strains were detected in different irrigation ponds on tomato farms and ornamental nurseries situated several miles away from the first infected farm. This observation suggested that dissemination of R. solanacearum

Formatted: English (U.S.)

Formatted: Normal, Line spacing: single

Formatted: Space After: 10 pt, Line spacing: Multiple 1.15 li

1		
2		
3		
4		ς
5		
6		
7	1	strains may have occurred through the underground river system common to Northern Florida (Hong
8	2	et al., 2008). Many reports have demonstrated that R. solanacearum can survive in waterways for
9	3	many years and even at low temperatures (4°C) for at least one month (Elphinstone, 2005, Caruso et
10	4	al., 2005). The bacterium can enter into a viable but non culturable (VBNC) state (Alvarez et al.,
11	5	2008). R. solanacearum cells maintained in river water for four years are still able to cause infections
12	6	in tomato plants and this is even true for some VBNC cells (Alvarez et al., 2008, Caruso et al., 2005).
14	7	Host range
15	8	Host range specificity in <i>R. solanacearum</i> is intricateunclear. This The diverse strains in the <i>R.</i>
10	9	solanacearum species complex exhibit an bacterium is characterized by an unusually large host
10	10	range, being able to infect more than 250 plant species in 54 monocot and dicot botanical families
10	11	(Elphinstone, 2005). Host specialization has been reported for some strains, for example the
19	12	However, not all <i>B</i> , solangcearum exhibit broad best range: Some strains only infect a small selection
20	12	of plant hosts, like Make strains (infecting hanana and Helicenig) and or the brown ret strains
21	10	or plant hosts, like works strains (infecting banana and Percond) and or the Diown-fot strains
22	14	(infecting potato and tomato. However, nost specialization in the <i>R. solandcedrum</i> species complex is
23	15	rarely thoroughly described. For example, pathogenicity tests under controlled conditions found that
24	16	most Moko-strains are also virulent to susceptible tomato and potato (Cellier et al.et al. 2012).
20	17	Brown ret strains are clustered into phylotype IIP 1 and IIP 2 historically known as race 2 historical
20	10	Drown of strains are clustered into phylotype inb 1 and inb 2, instoneally known as race 5 blovar 2.
21	18	Only IIB-1 strains maintain a nigh level of virulence under cold temperatures. However, strains from
20	19	other phylogenetic groups were also isolated from diseased potato plants in Europe, the
29	20	Mediterranean and in the highland of West Cameroon (Cellier & Prior, 2010, Toukam et al., 2009).
21	21	This highlights the complexity of the genetic basis for pathogenicity on potato. Many works were
31 22	22	conducted to tentatively identify the genes associated withto host specificity. For that purpose, the
ວ∠ ວວ	23	authors used the methodology of comparative genomic hybridization on pangenomic microarrays
აა ე₄	24	representative of R. solanacearum genes was used to compare gene repertories of hundreds of
25	25	strains for which pathogenicity traits were defined (Guidot et al.et al., 2007, Cellier et al.et al., 2012).
30	26	These works were conducted with potato pathogenic strains and banana pathogenic strains but
27	27	Comparative genomic hybridization of a set of potato pathogenic strains and non-potato pathogenic
31 20	28	strains on pangenomic microarrays representative of <i>R</i> solangeearum genes did not find any genes
20	29	repertory associated to with these nathogenicity on potatotraits (Guidot et al. et al. 2007. Cellier et
39 40	20	al et al. 2012) (Guidet et al. 2007. Collier et al. 2012). Strains causing Make disease are found in
40	21	an <u>et ui.</u> , 2012) [conduct ui., 2007, cond UD, 2012] . Strains causing worke use actionant in
41	31	both phylotypes in (inv-o and inv-24) and the (itb-3 and itb-4) with strains that are pathogenic for
42	32	tomato and potato. Interestingly, pathogenicity tests under controlled conditions found that most
43	33	IIB-3 and IIB-4 Moko-strains are also virulent to susceptible tomato and potato. This illustrates again
44	34	the complexity of the plant / bacterial interaction specificity.
46	35	
47		
48	36	In order to better characterize the specificity of the interaction between <i>R. solanacearum</i> and
49	37	solanaceous plants, a recent analysis has been conducted in controlled conditions to study the
50	38	pathogen interaction between a collection of three solanaceous Solanaceae (tomato, eggplant and
51	39	pepper) representative of the bacterial wilt resistance genetic resources and a collection of 12
52	40	strains representative of the known phylogenetic diversity of <i>R. solanacearum</i> (Lebeau <i>et al.</i> , 2011).
53	41	Interestingly, although all plants belong to the same family Solanaceae, they interact differently with
54	42	the 12 <i>R. solangcearum</i> strains. Six interaction phenotypes were defined and named pathoprofiles
55		
56		
57		
58		

Formatted: Normal, Line spacing: single

Formatted: Space After: 10 pt, Line spacing: Multiple 1.15 li

Formatted: Font: Italic

Field Code Changed

Field Code Changed

based on the aggressiveness of the strains on the host plants. Intermediate phenotypes correspond to latent infection of the plants (bacterial colonization of the xylem tissue with few or no wilting symptoms). No pathoprofile is phylotype specific and none of the plants of this collection were resistant to all tested R. solanacearum strains (Lebeau et al. et al., 2011).

-This study highlights why R. solanacearum is so difficult to control on a long term basis for breeders.

Emergence of strains with a new host range

R. solanacearum is described as a highly flexible organism capable of rapid adaptation to environmental changes and new hosts and to counteract plant resistance. However, characterization of emerging strains in R. solanacearum is difficult and has rarely been reported. The most studied case of R. solanacearumrecently eemerging strains are the phylotype IIB4-NPBBP (Non-Pathogenic on Banana) strains in Martinique (Wicker *et al.,* 2009a, Wicker *et al.*, 2009b). These strains belong to phylotype IIB-4 group in which Moko-disease causing strains also cluster, but they are not pathogenic to banana. The epidemiological data demonstrate that phylotype IIB-4NPB strains constitute an emerging population in Martinique. This genetic group was absent in R. solanacearum collections from the French West Indies until the first strain was isolated in 1999. These strains show a previously unknown host range in R. solanacearum, including cucurbits, ornamental plants and Solanaceae. Importantly, they seem to have expanded their host range from Anthurium-Cucurbitaceae in 1999-2002 to Anthurium -Cucurbitaceae-Solanaceae in 2002-2003 (Wicker et al.et al., 2009a). Moreover, they were recovered from solanaceous wild species and several weeds as well as in the water throughout Martinique, demonstrating their rapid spread over the island. The factors that have favored this emergence of strains with novel host specificity are still unclear. The banana/vegetable rotations in Martinique fields have-probably have a role to play. Indeed the isolation of IIB-4NPB strains from wilted tomatoes or wilted cucurbits was only reported on fields with a preceding that followed a previous banana crop (Wicker et al.et al., 2009b). Interestingly, IIB-4NPB strains were also isolated in Brazil from Cucurbits (Cellier et al., 2012). Because Brazil is a Moko-disease area, it is also possible that IIB-4NPB strains emerged in Brazil and established in Martinique through movement of contaminated ornamental material such as Anthurium.

Formatted: Normal, Line spacing: single

Formatted: Space After: 10 pt, Line spacing: Multiple 1.15 li

Generation of biodiversity

In bacteria, polymorphism created by mutations is redistributed among strains by recombination and horizontal gene transfers. The major contribution of recombination in the evolutionary dynamics of R. solanacearum has recently been demonstrated is debated. Using multilocus sequence analysis (MLSA) and estimations of linkage disequilibrium between eight loci in 58 strains from the four phylotypes, Castillo and Greenberg (2007) concluded that R. solanacearum is an essentially clonal organism. Clonality was specifically found when housekeeping genes were analyzed. However, when virulence-related genes were analyzed, high levels of recombination between R. solanacearum strains were detected (Castillo & Greenberg, 2007).-More recently, by Wicker et al. (2012). The authors conducted MLSA (Multilocus Sequence Analysis) with nine loci (seven housekeeping and two

Formatted: Normal, Line spacing: single

Formatted: Space After: 10 pt, Line spacing: Multiple 1.15 li

1				
2				
3				
4		7		
5				
6				
7	1	virulence-related genes) on a worldwide collection of 89 R. solanacearum strains representative of		
8	2	the four phylotypes and the 51 eql-based sequevars and concluded that recombination play a major		Formatted: Font: Italic
9	3	role in <i>R. solanacearum</i> genome evolution. Interestingly, t <u>T</u> hey detected Phylotype IV as a gene		
10	4	donor for the majority of the recombination events. Interestingly, phylotype I, which is known to		
11	5	affect the highest number of hosts, appeared the most recombinogenic lineage. The only clonal		
12	6	group was phylotype IIB. Interestingly. Phylotype I, which is known to affect the highest number of		
13	7	basis appropriate the most recombing genic lineage. This result reinforces the hypothesis that		
14	, 0	nosts, appeared the most recombiningence integer. This result removes the hypothesis that		
15	0	phylotype i strains possess the highest potential for adaptation to new hosts and environments.		
16	9	I nese findings are in opposite with the conclusion made by Castilio and Greenberg (2007). Using		
17	10	multilocus sequence analysis (MLSA) and estimations of linkage disequilibrium between eight loci in		
18	11	58 strains from the four phylotypes, Castillo and Greenberg (2007) Castillo and Greenberg (2007)		
10	12	<u>concluded that <i>R. solanacearum</i> is an essentially clonal organism. H</u> owever, most (24 on 58) of the		
20	13	strains analyzed by Castillo and Greenberg (2007) belonged to phylotype IIB (phylotype II Group A in		
20	14	Castillo & Greenberg, 2007) which is a clonal group according to Wicker et al. (2012). This could be		Formatted: Font: Italic
21	15	part of the reason why Castillo & Greenberg (2007) arrived at this conclusion.		
22				
23	16	Clonality was specifically found when housekeeping genes were analyzed. However, when virulence-		
24	17	related genes were analyzed, high levels of recombination between R. solanacearum strains were		
20	18	detected (Castillo & Greenberg, 2007).		
20				
21	19	Another important mechanism in the evolution of <i>R. solanacearum</i> genomes is horizontal gene		
28	20	transfer (HGT) (Remenant et al.<u>et al.</u>, 2010, Coupat <i>et al.,</i> 2008, Guidot <i>et al.,</i> 2009, Fall <i>et al.,</i> 2007).		Field Code Changed
29	21	Analysis of the genomic sequences of nine <i>R. solanacearum</i> genomes revealed numerous genomic	_	
30	22	islands, many of them were surrounded by mobile elements such as IS (Insertion Sequence) or		
31	23	hacterionhages suggesting an horizontal acquisition. (Remenant et al. et al. 2010, Remenant et al. et	_	Field Code Changed
32	23	al 2011 Remonant et al et al 2012)		
33	24	<u>u.</u> , 2011, Remenant et al.<u>et u.</u>, 2012).		
34	25	Hierarchical clustering based on the variable genes within the genomic islands among 18 R.		
35	26	solangcearum strains indicated that they were acquired by ancestral strains and were then		
36	27	transmitted vertically within phylotynes (Guidot et al. $et al.$ 2007). Methods based on phylogenetic		
37	27	respectively within phylogenetic state here level detected 151 sense (12.2%) of ferrige		
38	28	reconstruction of gene ramines with prokaryote homology detected 151 genes (13.3%) of foreign		
39	29	origin in the <i>R. solandcedrum</i> Givil 1000 genome (Fail et al. <u>et al.</u> , 2007). The small plasmid carrying		
40	30	the Type IV secretion system detected in the genome of the CMR15 strain was possibly acquired		
41	31	from Xanthomonas citri pv. citrieuvesicatoria, another tomato pathogen prevalent in Cameroon		
42	32	(Remenant et al.et al., 2010) (Remenant et al., 2010a), Interestingly, recombination 'hot spots'		Formatted: Font: Not Italic, French (France)
43	33	were detected in the GMI1000 genome correlating with the presence of Chi-like signature sequences	ALL	Formatted: French (France)
44	34	(Fall et al.<u>e</u>t al. , 2007).	MILL I	Field Code Changed
45			111	Formatted: French (France)
46	35	The frequency of gene transfer between phylogenetically-distant bacteria is expected to be low.	111	Formatted: French (France)
47	36	Nonetheless, HGT between strains from the four phylotypes have been shown to be possible in the	11 11	Field Code Changed
48	37	lab (Coupat et al.<u>et al.</u>, 2008, Guidot et al.<u>et al.</u>, 2009). <u>Coupat and colleagues (2008) (Coupat et al.,</u>	111	Formatted: Erench (Erance)
49	38	2008) demonstrated that 80% of <i>R. solanacearum</i> strains are naturally transformable by plasmids	$\frac{u_j}{u_j}$	Formatted: French (France)
50	39	and/or genomic DNA, and that large DNA fragments ranging from 30 to 90 kb can be transferred	$\frac{\mu}{\mu}$	Field Code Changed
51	40	between strains. The potential to exchange virulence genes by HGT could play a major role in rapid		
52	/1	P_{A} is a particular to exchange virtual to generative series by the role of HGT in an approximation of R is a particular to exchange virtual to exchange virtual to generative series by the role of HGT in an approximation of R is a particular to exchange virtual to exchange vir		Formatted: English (U.S.)
53	41	pathogenicity evolution of <i>n. solundcearain</i> strains. The fole of fight in enhancing the aggressivity of		Formatted: English (U.S.)
54				
55				
56				
57				
58				
59				
60				

	8	
1	tomato of R. solanacearum strains has been experimentally demonstrated (Coupat-Goutaland et al.,	
2	2011).	
3		
4		
5	Pathogenicity determinants	 Formatted: Normal, Line spacing: single
6	The main pathogenicity determinant in <i>R. solanacearum</i> is the type 3 secretion system (Boucher <i>et</i>	 Formatted: Space After: 10 pt, Line spacing:
7	al., 1985, Coll & Valls, 2013), a syringe-like membrane appendix that injects the so-called "effector	Multiple 1.15 li
8	proteins" (type 3 effector proteins, or T3E hereafter) into the plant cell cytosol to favour infection	
9	(Erhardt <i>et al.</i> , 2010, Tampakaki <i>et al.</i> , 2010). Mutants defective in any of the >20 <i>hrp</i> or <i>hrc</i> genes,	
10	encoding structural or regulatory proteins of this molecular syringe, are non-pathogenic (Boucher et	
11	al.et al., 1985). Exopolysaccharide (EPS), a loose slime of heterogeneous composition (Orgambide et	
12	<i>al.</i> , 1991) also plays an important role in <i>R. solanacearum</i> pathogenicity. EPS strongly contributes to	
13	the occlusion of the xylem vessels that eventually causes the plant wilting symptoms. EPS is also	
14 15	Important for plant colonization (Araud-Razou <i>et al.</i> , 1998, Husain & Kelman, 1998, Kao <i>et al.</i> , 1992,	 Field Code Changed
15	produces an array of additional factors that also contribute to colonization and/or to symptom	
17	appearance. These are exhaustively reviewed (Genin & Denny, 2012) and include, among others,	
18	type II-secreted plant cell-wall-degrading enzymes, motility or attachment appendages, aerotaxis	
19	transducers, cellulases and pectinases. For instance: type 4 pili, involved in twitching motility, biofilm	
20	formation and root attachment; and the flagella, responsible for swimming motility, were both	
21	shown to contribute to virulence on tomato (Kang <i>et al.,</i> 2002, Tans-Kersten <i>et al.,</i> 2001).	
22	Interestingly, motility and attachment seem to play their <u>a</u> role during plant colonization <u>invasion</u> , as	
23	most mutants affected in these capacities are hypopathogenic when inoculated in the soil but	
24	behave like wild type strains when directly inoculated in plant stems (Meng <i>et al.</i> , 2011, Yao & Allen,	
25	2007). A recent report also involves aggregation due to the FIp Pili in pathogenicity, as a mutant	
26	deficient in these pill diplays wild-type swimming or twitching motility but is impaired in its ability to $c_{1} = c_{1} = c_{1} = c_{1}$	
27	cause wiiting of potato plants (wairun <i>et al.,</i> 2012).	
28		
29		
30	Regulation of virulence genes	 Formatted: Normal, Line spacing: single
31	Bacterial plant pathogens possess sophisticated regulatory circuits to finely control the energy-	 Formatted: Space After: 10 pt, Line spacing:
32	consuming expression of virulence determinants. An exhaustive comparative review on virulence	Multiple 1.15 li
33	regulatory modules in different bacterial pathogens can be found elsewhere (Mole et al., 2007). The	
34	pathways controlling transcription of the main R. solanacearum virulence genes are well known	
35	(Genin, 2010, Genin & Denny, 2012, Schell, 2000). The LysR-family transcriptional regulator PhcA	
36	plays a central role, as it directly or indirectly regulates many of these genes (figFig. 2). PhcA activates	
37	EPS , pectinase and <u>and cellulosecellulase</u>-encoding genes and represses swimming motility, T3SS	
38 20	and siderophore expression_(Genin & Denny, 2012). <u>PhcA represses transcription of a pectinase-</u>	
39 39	encouning gene via Penny, autiougnini also sligniny activates expression of other pectinase genes (Fig. 2) (Rrumbley & Depny, 1000, Clough et al., 1007a)/Rhatt, 2004, Raktonia colanacoarum iron coavenging	
40	to amore a penny, 1990, clough et un, 1997 aftendit, 2004, Raistonia Solanacearum Hon Scavenging	

	9

by the siderophore staphyloferrin B is controlled by PhcA., the global virulence regulator)(Genin, 2005. Control of the Ralstonia solanacearum Type III secretion system (Hrp) genes by the global virulence regulator PhcA}.. Interestingly, transcription of the global regulator PhcA is controlled by a Ralstonia-specific cell-density dependent mechanism that involves 3-hydroxy palmitic acid methyl ester3-hydroxy-palmitoylmethylester (3-OH PAME) produced by the inner membrane protein PhcB (Flavier et al., 1997, Genin & Denny, 2012). At low cell densities, PhcA expression is repressed by PhcR by a post-transcriptional mechanism (Fig. 2). When the amounts of 3-OH PAME build up due to confinement or bacterial densities above 10⁷ cells/ml, the molecule activates the two-component system PhcS/PhcR. PhcR is then phosphorylated and PhcA expression de-repressed (Clough et al., 1997, Schell, 2000). One of the main outcomes of PhcA activation in high-cell density conditions is the production of large amounts of EPS. This control is exerted through induction of XpsR, which directly activates transcription of the eps operon (Huang et al., 1995). Interestingly, it was found that the two-component regulatory system VsrA/VsrD is also required to fully activate xpsR transcription VsrA/VsrD can also activate XpsR transcription and, consequently EPS synthesis (Huang et al., 1998, Schell et al., 1994). In addition, VrsD directly affects swimming motility by repressing transcription of the flagellum genes (Fig. 2). Another two-component system, VsrB/VsrC, has also been described to control EPS synthesis and repress transcription of the pectinase pgIA, adding another layer of control on EPS synthesis (Huang et al.et al., 1995). Although the Vsr genes respond to still-unknown signals, it was found that the Erwinia amylovora homologues of vsrA/D (hrpX and hrpY) are induced in conditions that mimic the plant apoplast (Wei et al., 2000). It is also remarkable that members of both systems (vsrB and vsrD) were identified in a genetic screen amongst 153 R. solanacearum K60 genes induced during growth in tomato (Brown & Allen, 2004). XpsR is thus a central switch in EPS regulation, as it integrates inputs from both VsrAD and PhcA to directly regulate the eps promoter and is required for both its negative control by EpsR and its positive control by VrsC VsrC (Garg et al., 2000, Huang et al.et al., 1995). Regulation of the T3SS exemplifies that, during evolution, regulation-horizontally transferred operons can co-opt transcriptional regulators present in the recipient bacterium has been often over-imposed by natural selection on horizontally-transferred operons (Cases & de Lorenzo, 2001). For instance, although the genes encoding the T3SS are highly conserved across species, the pathways controlling their transcription in R. solanacearum and Xanthomonas sspspp are totally unrelated to those found in Pectobacterium sspspp and Pseudomonas sspspp (Tang et al., 2006). In R. solanacearum, HrpB, an

AraC-type regulator, and HrpG, its upstream OmpR-like two-component response regulator, control hrp/hrc gene expression. HrpB directly triggers transcription of the T3SS genes, probably binding to the so-called hrpll box found in promoter regions (Cunnac et al., 2004a, Cunnac et al., 2004b, Genin et al., 1992) and its expression is controlled by HrpG (Brito et al., 1999) (figFig 2). HrpG and HrpB are both genetically and functionally conserved in Xanthomonas sppspp (Wengelnik & Bonas, 1996, Li et al., 2011, Zou et al., 2006), but unique to R. solanacearum are the upstream regulators that trigger the specific induction of HrpG when the bacterium detects a plant cell wall component (Aldon et al., 2000). PrhA is the outer membrane receptor that perceives this signal (Aldon et al.et al., 2000) and transfers it to the membrane-associated proteins PrhI and PrhR to trigger hrp/hrc expression through the consecutively induced transcriptional regulators PrhJ, HrpG and HrpB (Brito et al., 2002) (figFig. 2). In vitro transcriptomic studies have revealed that the hrp regulators control additional functions other that the T3SS and most of its associated effectors. It was found that HrpB was also involved in regulation of chemotaxis and biosynthesis of various low-molecular-weight chemical compounds,

such as the Hrp-Dependent Factor (HDF), which may induce a cell-density LuxR system (Delaspre et al., 2007, Occhialini et al., 2005). HrpG was found to control an even larger set of T3SS-unrelated genes independently of HrpB (figFig. 2). These encoded known virulence determinants such as pectinolytic and cellulase activities -some of which are common targets of PhcA-, and othersgenes likely involved in plant pathogen interactions, including adhesion factors (lectins), the only predicted catalase enzyme in the genome and an ethylene-forming enzyme that produces this plant hormone (Valls et al., 2006). HrpG was also found to slightly affect known virulence determinants such as pectinolytic and cellulase activities, some of which are common targets of PhcA (Fig. 2). A recent study has also involved HrpG in the control of the last step of methionine synthesis (Plener et al., 2012). It was proposed that HrpG promotes production of MetE, --which synthesises methionine without the need of vitamin B12,- as a way to ensure the biosynthesis of this aminoacidamino acid in the vitamin-poor environment encountered in planta. Thus, HrpG occupies a central node in pathogenicity regulation, since in addition to controlling a panoply of virulence genes, it integrates both plant-cell-dependent induction and metabolic cues that affect transcription of the T3SS (figFig. 2). Examples of the latter metabolic signals are the repression of T3SS genes by casamino acids and their induction during growth in minimal media (Arlat et al., 1992, Genin et al., 2005). Recently, PrhG was identified in strain GMI1000 as a HrpG paralogue that also activates HrpB expression. Interestingly, prhG is induced during growth in minimal medium but not by plant cells, so that this regulator controls expression of the T3SS under minimal medium conditions (Plener et al., 2010). Other-Additional regulatory influences inputs on influencing the expression of the T3SS have also been described, but the regulators involved and their mechanisms of action remain poorly understood. Examples of this these are LrpE, a leucine-rich repeat protein found to negatively regulate expression of hrp genes three- to fivefold (Murata et al., 2006). Similarly, -and the influence of the prKLM operon. Aabsence of any of the latter three genes encoded in the prKLM operon in on strain OE1-1 decreased prhG expression -and consequently that of hrpB and the PopA effector- by 10-fold (Zhang et al., 2011). However, these genes do not encode transcriptional regulators and must influence the *hrp* regulon indirectly by an unknown mechanism. As previously mentioned, the global regulator PhcA modulates T3SS gene expression and it does so at two different levels: by slightly inhibiting prhI/R transcription and by strongly inhibiting hrpB gene expression through an unknown mechanism acting on HrpG- (Yoshimochi et al., 2009a, Yoshimochi et al., 2009b, Genin et al.et al., 2005). Interestingly, EPS production is also slightly down-regulated by HrpG through an increase of the levels of EpsR (Valls et al., 2006) (figFig 2). These examples illustrate that cross-talk occurs between regulatory cascades at various levels. regulatory cascades have cross-talks at various levels to form a complex network co-regulating virulence activities in response to environmental signals. All this knowledge led to the corollary that in R. solanacearum, the infection process takes place in two steps (Schell, 2000, Brito et al.et al., 2002, Mole et al.et al., 2007): First, early in colonization, expression of the T3SStype 3 would be induced by plant cell contact and PhcA would-be not be induced due to low bacterial density, allowing swimming motility to be active. In the second step, when bacterial numbers increaseboost inside the xylem, the PhcA regulator would be expressed, triggering EPS and cellulase production and repressing the T3SS and

siderophore. However, recent in planta expression data using promoter::reporter fusions integrated

in the bacterial chromosome and quantitative RT-PCR have challenged this model- (Monteiro et al.,

2012b, Monteiro et al., 2012a). These studies showed that the hrpB and T3E transcripts are abundant

at late stages of plant colonization, when bacterial numbers are high and plants already wilted. More

Formatted: Font: Italic

Field Code Changed

Formatted: Font: Not Italic

1

2 3 4	
5	
6 7	1
8	2 3
9 10	4
11 12	5
13	6
14 15	7
16	, 0
18	8 9
19	10
20 21	11 12
22	12
23 24	14
25	15 16
26	16
27 28	18
29	19
30 31	20 21
32	22
33 24	23
34 35	24 25
36	23 26
37 38	27
39	28
40 41	29
42	30 21
43	32
44 45	33
46	34 25
47 48	35 36
49	37
50 51	38
52	39 40
53	41
54 55	42
56	
57 58	
59	

60

recently, transcriptome analyses have confirmed this finding, showing half of the *hrpB*-regulated genes are induced in bacteria recovered from the xylem of wilting tomato plants (Jacobs *et al.*, 2012). All these observations illustrate our limitations to predict the behaviour of bacterial virulence genes in real field conditions and suggest the existence of still-unknown inducing signals.

T3E repertoire

Over the last 10 years, T3E biology has boomed. Over this time, several groups have achieved a very good description of the repertoire of T3Es. DSeveral different methods have been applied to define the set of T3Es in *R. solanacearum*: (i) the search for orthologues of already known T3Es, (ii) the identification of T3Es through gene regulation studies (Cunnac et al.et al., 2004a, Cunnac et al.et al., 2004b, Occhialini et al.et al., 2005), (iii) the search for atypical protein motifs indicating a potential function-not in the eukaryotic host cell cells (Angot et al., 2006) and finally (iv) a functional screen for type 3 injected protein (Mukaihara et al., 2010). Altogether, these efforts generated a comprehensive list of T3Es for two closely-related phylotype I strains (Mukaihara et al.et al., 2010, Poueymiro & Genin, 2009). This latter work is now beingcould now be expanded with the availability of several new genomic sequences spanning the four phylotypes representing the R. solanacearum diversity (Remenant et al.et al., 2010, Salanoubat et al.et al., 2002, Remenant et al.et al., 2011, Xu et al., 2011, Gabriel et al., 2006). This would allow the evaluation of common and specific Rip ("Ralstonia injected proteins" : (Cunnac et al.et al., 2004b, Mukaihara et al.et al., 2010) Cunnac, 2004, Inventory and functional analysis of the large Hrp regulon in Ralstonia solanacearum: identification of novel effector proteins translocated to plant host cells through the type III secretion system}{Mukaihara, 2010, Genome-Wide Identification of a Large Repertoire of Ralstonia solanacearum Type III Effector Proteins by a New Functional Screen}). We have extended the usage of the Rip nomenclature « R. solanacearum proteins injected into plant cells » already used (Cunnac et al., 2004b, Mukaihara et al., 2010) and have now defined more than hundred "Rip genes" in the R. solanacearum species complex (unpublished data).

As already pointed out when the first *R. solanacearum* genome was published (Salanoubat et al.et *al.*, 2002), there are some striking features specific to this bacterium. First, it seems that the T3E
repertoire is larger than in other plant pathogenic bacteria; secondly *R. solanacearum* seems to be
the recipient of a diverse set of T3Es likely acquired by HGT. Indeed, the GALA T3E (Kajava et al.,
2008) or the PPR-containing T3E (Salanoubat et al.et al., 2002), harboring typical eukaryotic features
like the F-box domain (Ho et al., 2008) and PPR motifs (Delannoy et al., 2007), could originate from
an ancestral eukaryotic donor. On the other hand many T3Es could have originated from a HGT from
other pathogenic bacteria since homologs exist in various other animal and plant bacterial pathogens
(Poueymiro & Genin, 2009). This is very likely to be the case for the *Xanthomonas* <u>sppsp</u>. specific
Transcription Activator-Like T3E (Fall et al.et al., 2007). Recently a detailed characterization of these *R. solanacearum* TAL-like T3Es showed that they are indeed nuclear targeted and can function as
transcriptional activators in plant cells (Li et al., 2013). Another particular feature of the *R. solanacearum* effector repertoire is the abundance of duplicated T3E genes. Indeed several T3E
genes are present as gene families _{Sole et al., 2011, Solé et al., 2011, Poueymiro & Genin,
2009)(Poueymiro & Genin, 2009, Remigi et al., 2011, Solé et al., 2012). Interestingly most of these

Formatted: English (U.S.)

Field Code Changed

--- Formatted: Normal, Line spacing: single

Formatted: Space After: 10 pt, Line spacing: Multiple 1.15 li

Formatted: Underline	
Formatted: Underline	
Formatted: Underline	
Formatted: Highlight	
Field Code Changed	

Field Code Changed

2		
3		
4		12
5		
6	1	gene families are conserved among the different <i>R. solanacearum</i> strains (Sole et al.et al., 2012,
0	2	Remigi et al.et al., 2011), see also the MAGe genome browser displaying the sequenced
0	3	<i>R. solangegrum</i> strains (https://www.genoscope.cns.fr/agc/microscope/mage). –The presence of
9	1	these gene families, arising from indicating early gene duplications in a common ancestor, probably
10	-	are likely to undergo followed by diversification of the function of the new paralogous T2Esfunctional
10	c c	diversification to provide adaptation on different best plants like best plants been shown for the CALA
12	6	diversification to provide adaptation on different nost plants, like has been shown for the GALA
13	/	family (Remigi et al.<u>et al.</u>, 2011).
14	8	
10	Ū	
10	9	
10		
10 19	10	Effector-triggered Immunity
20	11	Historically, the first biological function identified for T3Es has been their contribution to the Effector
21	12	Triggered Immunity or FTI (Innes & Dangl. 2006). The T3E PonP1 induces a cultivar-specific HR-like
22	12	response on noturio (Lovie et al. 2002) Arlat et al. (1994) Eurthermore, DenP1 (Poberteen et al.
23	13	2004) and recently DepD1 together with Aug (Deverying et al., 2000) have been shown to
24	14	2004), and recently PopP1 together with AVrA (Poueymiro <i>et al.</i> , 2009) have been shown to
25	15	contribute to the HR-mediated resistance in tobacco. Indeed, upon tobacco root inoculation, the
26	16	double <i>PopP1 AvrA</i> mutant in GMI1000 causes wilting and is undistinguishable from the K60 tobacco-
27	17	pathogenic strain (Poueymiro et al. <u>et al.</u> , 2009). The closely-related T3E PopP2 was shown to be
28	18	responsible for the RRS1-R-mediated resistance in the Nd-1 Arabidopsis ecotype (Deslandes et al.,
29	19	1998). PopP2 interacts directly with RRS1-R in the nucleus of plant cells, leading to an asymptomatic
30	20	and much reduced bacterial colonization (Deslandes et al., 2002, Deslandes et al., 2003). PopP2 has
31	21	been shown to interact with the Arabidopsis <u>Arabidopsis thaliana</u> protein RD19, redirecting its
32	22	localization from lytic vacuoles to the nucleus, where both physically interact. Although its exact role
33	23	has vet to be defined. RD19 is required for the PopP2/RRS1-R-mediated resistance (Bernoux et al.
34	24	2008) Furthermore it has been shown that this T3E belonging to the widespread Yon I/Avrxy family
35	25	displays an acetyltransferase activity. This activity results in an autoacetylation of PonD2 required for
36	25	an offective DepD2/PDC1 P resistance (Tacset et al. 2010) R coloneagerum could be ther table at the T2Es
37	20	all effective PopP2/KK31-K resistance (rasset et al., 2010). K. solandcedrain could harbor other 15es
38	27	triggering plant immunity. Indeed Agrobacterium Agrobacterium tumejuciens-inediated expression of
39	28	AWR5 induces HR-like symptoms in <i>Nicotiana tabacum</i> (Sole et al. <u>et al.</u> , 2012). Interestingly, in the
40	29	same T3E family, the multiple mutant <i>awr1-5</i> displays an increased pathogenicity on <i>Arabidopsis</i> Col-
41	30	0, suggesting the possibility that, at least one of these AWRs is actually recognized by an <i>R</i> -gene,
42	31	triggering a weak ETI in this host (Sole et al.<u>et al.</u>, 2012).
43	22	
44	32	
45	33	
46	55	
47	34	T3E Virulence functions
48		
49	35	Other T3Es have been characterized on the basis of their contribution to disease. Although the exact
50	36	molecular mechanisms have yet to be described, different T3Es have different contributions to
51	37	disease on different host plants <u>. : + OO</u> n tomato, mutants in the T3E <i>RSp0304</i> (<i>HopD1</i> homolog) and
52	38	AWR2, show a decreased disease progression (Cunnac et al. <u>et al.</u> , 2004b). The AWR T3E family is
53	39	collectively needed on both tomato and eggplant for a full pathogenicity. Interestingly AWR2 can
54	40	restore the wild-type phenotype of the multiple $awr(1-5)$ mutant on eggplant (Sole et al., 2012).
55	I	
56		
57		
58		
59		
60		

Formatted: Normal, Line spacing: single

Formatted: Space After: 10 pt, Line spacing: Multiple 1.15 li

Formatted: Normal, Line spacing: single

Formatted: Space After: 10 pt, Line spacing: Multiple 1.15 li

59 60

2		
3		
4		13
5		
6	1	For the GALAs, another well studied T2E family, it was demonstrated that they are collectively
7		roquired on tomate and Arabidencic Arabidencic theliang for a full disease phenetyne (Anget et al. et
8	2	required on contacto and Arabidopsis<u>Arabidopsis</u>, thandrid for a full-disease phenotype (Angot et al.<u>et</u>
9	3	
10	4	GALA3, GALA6 and GALA7 on Arabidopsis, whereas only GALA7 and GALA3 seem to be able to
11	5	restore full virulence of the quadruple mutant gala2 gala3 gala6 gala7 on tomato (Remigi et al.et al.
12	6	2011). In this same family it was also showed that the single <i>gala7</i> mutant (and none of the other
13	7	single mutants) is avirulent on the legume host <i>Medicago truncatula</i> (Angot et al.<u>e</u>t al. , 2006). GALA
14	8	T3Es could potentially control host protein stability since they are likely to form E3-ubiquitin ligases
15	9	inside the host cell (Angot et al., 2007). Although structurally different, several other T3Es have
10	10	similarities with ubiquitin-ligases. This is the case for RSc1349, homologue of the Shigella flexneri
17	11	IpaH ubiquitin ligase (Singer et al., 2008), or the MolK2 specific RSMK00763 T3E homolog of the
10	12	P. syringae AvrPtoB (Poueymiro & Genin, 2009). On M. truncatula, GALA7 together with AvrA are
19	13	both required for the early infection steps of intact roots (Turner <i>et al.</i> , 2009). GALA7, but not AvrA,
20	14	is also required for disease development when colonization is facilitated by cutting the root tips
21	15	(Turner et al.et al., 2009). Another early/late disease development differential role has been shown
22	16	for the T3SS secreted harpin PopA. Indeed, in the Japanese strain OE1-1, constitutive early
23	17	expression of this T3E prevents the natural root infection of N . tabacum, but not the bacterial
25	18	multiplication inside stem-inoculated plants (Kanda <i>et al.</i> 2003)
26	10	
27	19	Classical plant pathoassays enabled to identify only a few T3Es with a virulence function (Cunnac et
28	20	al.<u>et al.</u>, 2004b). This low yield of T3Es with virulence functions out of an important number
29	21	of<u>compared to the large</u> T3E<u>repertoire</u>s (Poueymiro & Genin, 2009), could be explained by
30	22	functional redundancy (Sole et al.et al., 2012, Angot et al.et al., 2006) but could also be explained by
31	23	the fact that some T3Es have only a marginal contribution to virulence, hence undetectable with
32	24	classical wilt scoring. For this purpose a novel assay based on mixed inoculations was developed
33	25	(Macho <i>et al.</i> , 2010). The principle is to compare the ability of two strains to multiply interview host
34	26	when they are co-inoculated, compared to their ability to multiply when inoculated individually
35	27	Interestingly, two T3Fs: Rsn0304 and PonP2, were shown involved for efficient bacterial
36	29	multiplication in three bost plants, ergolant, tomato and bean (Macho et al et al. 2010)
37	20	
38	29	
39		
40	30	
41	24	
42	31	Complex mechanisms underlie Bacterial wilt resistance and tolerance
43	32	Genetic analysis of resistance to bacterial wilt has been developed both on model and cultivated
44	33	plants. In A <i>thaligna</i> , the study of the interaction between two ecotypes. Nd-1 and Kil-0, and two
45	34	strains of <i>R</i> solgnacearum GMI1000 and BCCE402 (both phylotype strains) respectively, revealed
46	25	the implication involvement of <i>BPS1-R</i> , <i>BPS1-R</i> , a TIR-NBS-I BR gene with a WRKY C-terminal domain
47	26	has been described as a single resessive resistance gone against strain CMI1000, through the direct
48	30 27	recognition of the DepD2 effector (Declandes at all at al. 1998, Declandes at al. 2002, Declandes
49 50	57 20	recognition of the PopP2 effector (Designeds et al. <u>et al.</u> , 1996, Designeds et al. <u>et al.</u> , 2002, Designeds
50	38	et al. <u>et al.</u> , 2003). Interestingly, <u>it was demonstrated recently wan der Linden et al., (2013)</u>
52	39	demonstrated that the gene-for-gene interaction RKS1-R-PopP2 is also involved in Kii-U tolerance
52 52	40	(Van der Linden <i>et al.</i> , 2013). Indeed, Kil-U does not exhibit wilting symptoms after its inoculation
54	41	with strain BCCF402 of <i>R. solanacearum</i> , despite a high bacterial multiplication in planta. The
55	42	catalytic triad and the auto-acetylated lysine are conserved in the BCCF402 popP2 allele, but some
56		
57		
58		

Field Code Changed

--- (Formatted: Normal, Line spacing: single

Formatted: Space After: 10 pt, Line spacing: Multiple 1.15 li

Field Code Changed

2 3				
4		14		
5		17 1		
6				
7	1	allelic variations in both BCCF402 <i>PopP2</i> and Kil-0 <i>RRS1-R</i> could account for altered protein		
8	2	interactions and/or signal transduction in the plant cell. Still welt can't be excluded either that this		
9	3	RRS1-R-dependent tolerance in Kil-0 could be dependent on other plant or bacterial factors. A		
10	4	quantitative resistance mechanism was also described in A. thaliana against R. solanacearum		
11	5	(Godiard <i>et al.</i> , 2003). Among the three quantitative trait loci (QTLs) identified, one is associated with		
12	6	ERECTA, a leucine-rich-repeat receptor-like kinase (LRR-RLK) involved in development (Torii et al.,		
13	7	1996, Godiard et al.<u>et al.</u>, 2003). This could s uggest <u>that cross-talk can occur</u> s between resistance to		
14	8	R. solanacearum and developmental pathways (Godiard et al. <u>et al.</u> , 2003). In the model legume M.		
15	9	truncatula, recombinant inbred line (RIL) population A17 X F83005.5 enabled to identify three QTLs		
10	10	for resistance to <i>R. solanacearum</i> strain GMI1000 (Vailleau et al., 2007). The fine mapping of the		
10	11	major QTL located on the chromosome 5 of <i>M. truncatula, <u>MtQRRS1</u>, allowed the identification of a</i>		
10	12	64 kb region with a cluster of seven putative <i>R</i> -genes among 15 candidate genes (Ben et al., 2013)	+	Formatted: Font: Italic
20	13	<u>T</u> tomato cultivar 'Hawaii 7996'. This cultivar was described has been described as one of the most		
21	14	stable sources of <u>as</u> resistance resistant to bacterial wilt (Danesh et al., 1994, Mangin et al., 1999,		
22	15	Thoquet et al., 1996b, Thoquet et al., 1996a, Wang et al., 2000). The polygenic resistances identified		
23	16	are phylotype- and strain-specific (Carmeille <i>et al.</i> , 2006). Recently, Wang <i>et al.</i> (201 <u>3</u> 2) identified		
24	17	two major QTLs for resistance to <i>R. solanacearum</i> (<i>Bwr-6</i> and <i>Bwr-12</i>) using the tomato cross 'Hawaii		
25	18	7996' X 'West Virginia 700'- (Wang et al., 2013a). The Bwr12 QTL is specific for resistance to		Field Code Changed
26	19	phylotype I, whereas the Bwr-6 QTL is associated with resistance to phylotype I and phylotype II -		
27	20	strains. Interestingly, the presence of both QTLs has an additive effect, displaying enhanced		
28	21	resistance. In tobacco, Qian et al. (2012) identified four QTLs associated with resistance to, non-		
29	22	characterized, "naturally occurring strains" from bacterial wilt affected areas of China (Qian et al.,		
30	23	2012)(Qian et al., 2012). In eggplant, four QTLs have been identified in a RIL population, these QTLs		
31	24	that exhibit ing resistance to different strains of <i>R. solanacearum</i> (Lebeau <i>et al.</i> , 2013). Among them,		Formatted: Font: Not Italic
32	25	the <i>ERs1</i> QTL has been described as a major dominant source of resistance towards three phylotype		
33	26	I-strains of <i>R. solangcearum</i> (Lebeau et al. et al., 2013). The further characterization of the genetic		
34	27	components underlying these different resistances to <i>R</i> . solanacearum will prove very useful for the		
35	28	nlant breeding community		
30 27	20	plant of county communey.		
31 20	29			
30				
40	30			
41	31	Plant signaling in response to Ralstonia solangrearum		Formatted: Normal Line spacing: single
42	51			Tomatted. Normal, Line spacing. Single
43	32	A link has been described between A. thaliana secondary cell walls and the outcome of the	+	Formatted: Line spacing: Multiple 1.15 li
44	33	interaction with <i>R. solanacearum_</i> (Hernandez-Blanco <i>et al.,</i> 2007). Indeed, a mutation in any of the		
45	34	three secondary cell wall-specific cellulose synthase genes led to a complete resistance to the		
46	35	bacterium. Furthermore, abscisic acid (ABA)-signaling was demonstrated to be involved in this		
47	36	cellulose-synthase-dependent enhanced resistance (Hernandez-Blanco et al.et al., 2007). The role of		
48	37	the cell walls in <i>A. thaliana</i> as barriers against <i>R. solanacearum</i> colonization was also studied through		
49	38	the <i>wat1</i> (Walls Are Thin1) mutant -(Denance <i>et al.</i> , 2012). The <i>WAT1</i> gene is required for secondary		Field Code Changed
50	39	cell-wall deposition and the corresponding mutant shows enhanced resistance to <i>R. solangearum</i>		-
51	40	(Denance et al., 2012). Comparing two different inoculation methods of <i>R. solanacearum</i> in A.		Field Code Changed
52	41	thaliang leaves, by piercing in the central leaf vein or infiltrating a bacterial suspension in the		
53	42	mesophyll, the authors could conclude that wat1 resistance is localized to the vascular system		
54 55				
22 56				
00 57				
57				

	15
1	Moreover, salicylic acid (SA) was identified as a key element of wat1-mediated resistance to R.
2	solanacearum- (Denance et al.et al., 2012). Several other studies identified WRKY transcription
3	factors as important players in modulating the plant response towards <i>R. solanacearum</i> attack.
4	Indeed, Mukhtar et al. (2008) showed that Arabidopsis <u>Arabidopsis. thaliana</u> plants lacking a
5	functional WRKY27 gene exhibited an enhanced tolerance to R. solanacearum strains GMI1000 and
6	Rd-15- (Mukhtar et al., 2008) (Mukhtar et al., 2008). Similar situations were previously observed for
7	the ethylene-insensitive EIN2-1 gene (Hirsch et al., 2002) and the NWS1 gene (Feng et al., 2004), that
8	appeared to be required for full virulence of the bacteria. Recently, two WRKY transcription factors
9	of pepper were identified as important positive and negative contributors to R. solanacearum
10	resistance: Overexpression of CaWRKY40 in tobacco enhanced resistance to R. solanacearum,
11	whereas silencing of CaWRKY40 in pepper attenuated the resistance-(Dang et al., 2012). On the
12	other hand, CaWRKY58-overexpressing tobacco plants showed an enhanced susceptibility to the
13	same strain, and CaWRKY58-silenced pepper plants displayed and enhanced resistance (Wang et al.,
14	2013b). In another work, Feng et al. (2012) identified the abscisic acid (ABA) signaling pathway as
15	important for biological control of Bacterial wilt in A. thaliana. This ABA-dependent defense
16	mechanism was shown to be independent of SA, JA and ethylene in the biological control exerted by
17	an hrpB mutant of R. solanacearum (Feng et al., 2012).

Field Code Changed

Field Code Changed

in vitro<u>Gnotobiotic</u> pathosystems to study root infection

As R. solanacearum infects plants via their roots, in vitrognotobiotic models artificial inoculation systems constitute useful tools enabling to access the host roots systems. Such bioassays, in which axenic plantlets are inoculated with R. solanacearum were described on tomato -(Monteiro et al.et al., 2012b, Vasse et al., 1995), petunia (Zolobowska & Van Gijsegem, 2006), M. truncatula (Vailleau et al.et al., 2007), and A. thaliana (Digonnet et al., 2012). They enable to study the early steps of infection, to follow colonization step by step, and to observe "root symptoms". R. solanacearumplant interaction at the root level was first studied in tomato (Monteiro et al.et al., 2012b, Vasse et alet al., 1995). The authors observed the bacterium penetration via the root extremities and at the axils of secondary root- (Vasse et al., 1995)(Vasse et al., 1995). Ten years later, the set up of in vitroa gnotobiotic experiments on petunia allowed the identification of new root lateral structures (RLS) after the inoculation with R. solanacearum (Zolobowska & Van Gijsegem, 2006). These structures are T3SS dependent and were demonstrated to be highly efficient colonization sites. However, the involvement of specific T3Es on the formation of these RLS has not been proven (Zolobowska & Van Gijsegem, 2006). In the M. truncatula in vitrognotobiotic pathosystem, it was described that *R. solanacearum* penetrates specifically via the root tips (Turner et al.et al., 2009). Bacterial inoculation leads to an arrest of root hair elongation and a reduction in root growth, associated with a browning and a loss of viability of the root tip epidermal cells (Turner et al. et al., 2009). Two T3Es, GALA7 and AvrA have been demonstrated to be partially involved in the induction of the root epidermal cell death phenotype (Turner et al.et al., 2009). For the interaction involving A. thaliana and R. solanacearum, well described and characterized at the whole plant level (Deslandes et al., 1998), an *in vitro* an axenic plant bioassay-system has been recently developed to study the early steps of root colonization by *R. solanacearum* (Digonnet et al.et al., 2012). The authors

	Formatted: Font: Not Italic
1	Formatted: Normal, Line spacing: single
- 1	Formatted: Line spacing: Multiple 1.15 li
1	Formatted: Font: Not Italic
	Field Code Changed

Formatted: English (U.S.) Field Code Changed Field Code Changed

Formatted: English (U.S.)

	16		
1 2 3	showed that the bacteria penetrate <i>A. thaliana</i> plantlets at the root apex. Bacteria induced a plasmolysis of epidermal and cortical root cells, accompanied with pectin degradation. The bacteria then move preferentially <i>via</i> intercellular spaces to then directly invade the vascular cylinder		
4	(Digonnet et al. <u>et al.</u> , 2012). Contrary to the <i>M. truncatula in vitro</i> system (Vailleau et al. <u>et al.</u> , 2007),		Field Code Changed
5	an important bacterial surface colonization can be seen alongside the inoculated plantiets. I nanks to		
7	growth upon host infection. Preferential zones of bacterial penetration are the root tins, correlating		
8	with the zone were plant exudates are produced, attracting <i>R. solanacearum</i> (Yao & Allen, 2006). In		
9	the future, these in vitro-systems will prove important to better characterize the early events of		
10	infection (which cells are targeted by the bacteria?) and the chronology of the cellular <u>plant</u>		
11	colonization <u>.</u>		
12			
13	-in the plant side		
14	Perspectives	*	Formatted: Normal, Line spacing: single
15	In this short review, we have tried to encapsulate all the recent research on R. solanacearum ranging	*	Formatted: Line spacing: Multiple 1.15 li
16	from strain diversity to gene regulation, T3E biology and plant resistance. We would like to finish by		
17	putting the emphasis on the fact that this plant pathogenic bacterium is a research model with		
18	interesting specificities, <i>i.e.</i> root infection, vascular colonization, large T3E repertoire and, broad host		
19	range. We think that further research will shed light both on these specificities as well as on general		
20	infection strategies common between <i>R. solandcedrum</i> and other parasites.		
21	In this post-genomic era some of the challenges lying ahead are: more strain sampling for an evena		
22	better description of the species complex, deciphering the role of the T3Es during infection,		
23	Aintegrative analysis of global in planta expression profiling of the bacterial genes (RNAseq) together		
24	with, metabolic modeling towards a systems biology model, experimental evolution to study		
25	adaptation to different plant hosts.		
26			
27			
28	Useful website, tools	*	Formatted: Normal, Line spacing: single
20			
29 30	pRC resource: The Raistonia chromosome (pRC) plasmids are a set of new integrative plasmids representing useful tools to study gene function in <i>R. solanacearum.</i> (Monteiro et al.et al., 2012b)	4	Formatted: Line spacing: Multiple 1.15 li
31	Stock center: International Center for Microbial Resources - French Collection for Plant-associated		
32	Bacteria CIRM-CFBP, IRHS UMR 1345 INRA-ACO-UA, 42 rue Georges Morel, 49070 Beaucouzé Cedex,		
33	France. http://www.angers-nantes.inra.fr/cfbp/		
34	Ralstonia Genome browser: https://iant.toulouse.inra.fr/R.solanacearum		
35	GMI1000 insertion mutant library:		
36	https://iant.toulouse.inra.fr/R.solanacearumGMI1000/GenomicResources		
37	MaGe Genome Browser: https://www.genoscope.cns.fr/agc/microscope/mage/viewer.php?		

1				
2				
3				
4		17		
5		17		
6				
7	1	Acknowledgements:	+	Formatted: Normal, Line spacing: single
0				
0	2	We thank Freddy Monteiro and Irene Van Dijk for their assistance in the elaboration of figure 2.	+	Formatted: Space After: 10 pt, Line spacing:
9				Multiple 1.15 li
10	3	We want to apologize to colleagues whose work could not be cited because of space limitation.		
11				
12	4	We also thank our colleagues and two anonymous reviewers for their constructive comments.		
13	_			
14	5			
15	6			
16	0			
17	7	Bibliography	.	Formatted: Normal Line spacing: single
18	,	BiblioBidbuy		Tornattea. Normal, Line spacing. Single
19	8	Aldon, D., Brito, B., Boucher, C. and Genin, S. (2000) A bacterial sensor of plant cell contact controls		
20	9	the transcriptional induction of Ralstonia solanacearum pathogenicity genes. EMBO J. 19.		
21	10	2304-2314.		
22	11	Angot, A., Peeters, N., Lechner, F., Vailleau, F., Baud, C., Gentzbittel, L., <i>et al.</i> (2006) Balstonia		
22	12	solanacearum requires F-box-like domain-containing type III effectors to promote disease on		
20	13	several host plants. Proc. Natl. Acad. Sci. USA, 103 , 14620-14625.		
24	14	Angot, A., Vergunst, A., Genin, S. and Peeters, N. (2007) Exploitation of eukarvotic ubiquitin signaling		
20	15	pathways by effectors translocated by bacterial type III and type IV secretion systems. <i>PLoS</i>		
20	16	Pathoa, 3 , e3.		
27	17	Araud-Razou, I., Vasse, J., Montrozier, H., Etchebar, C. and Trigalet, A. (1998) Detection and		
28	18	visualization of the major acidic exopolysaccharide of Ralstonia solanacearum and its role in		
29	19	tomato root infection and vascular colonization. Eur. J. Plant Pathol., 104, 795–809.		
30	20	Arlat, M., Gough, C. L., Zischek, C., Barberis, P. A., Trigalet, A. and Boucher, C. A. (1992)		
31	21	Transcriptional organization and expression of the large hrp gene cluster of Pseudomonas		
32	22	solanacearum. Mol. Plant-Microbe Interact., 5, 187-193.		
33	23	Arlat, M., Van Gijsegem, F., Huet, J. C., Pernollet, J. C. and Boucher, C. A. (1994) PopA1, a protein		
34	24	which induces a hypersensitivity-like response on specific Petunia genotypes, is secreted via		
35	25	the Hrp pathway of Pseudomonas solanacearum. EMBO J. 13, 543-553.		
36	26	Ben, C., Debelle, F., Berges, H., Bellec, A., Jardinaud, M. F., Anson, P., et al. (2013) MtQRRS1, a R-locus	5	
37	27	required for Medicago truncatula quantitative Resistance to Ralstonia solanacearum. New		
38	28	Phytol, in press.		
30	29	Bernoux, M., Timmers, T., Jauneau, A., Briere, C., de Wit, P. J., Marco, Y., et al. (2008) RD19, an		
10	30	Arabidopsis cysteine protease required for RRS1-R-mediated resistance, is relocalized to the		
40 //1	31	nucleus by the Ralstonia solanacearum PopP2 effector. Plant Cell, 20, 2252-2264.		
41	32	Boucher, C., Barberis, P. A., P., T. A. and Demery, D. A. (1985) Transposon mutagenesis of		
42	33	Pseudomonas solanacearum: isolation of Tn5-induced avirulent mutants. J. Gen. Microbiol.,		
43	34	131, 2449-2457.		
44	35	Brito, B., Aldon, D., Barberis, P., Boucher, C. and Genin, S. (2002) A signal transfer system through		
45	36	three compartments transduces the plant cell contact-dependent signal controlling Ralstonia		
46	37	solanacearum hrp genes. Mol. Plant-Microbe Interact., 15, 109-119.		
47	38	Brito, B., Marenda, M., Barberis, P., Boucher, C. and Genin, S. (1999) prhJ and hrpG, two new		
48	39	components of the plant signal-dependent regulatory cascade controlled by PrhA in		
49	40	Ralstonia solanacearum. Mol. Microbiol., 31, 237-251.		
50	41	Brown, D. G. and Allen, C. (2004) Ralstonia solanacearum genes induced during growth in tomato: an		
51	42	inside view of bacterial wilt. Mol. Microbiol., 53, 1641-1660.		
52	43	Carmeille, A., Caranta, C., Dintinger, J., Prior, P., Luisetti, J. and Besse, P. (2006) Identification of QTLs		
53	44	for Ralstonia solanacearum race 3-phylotype II resistance in tomato. Theor. Appl. Genet.,		
54	45	113, 110-121.		
55				
56				
57				
58				
50				
59				
00				

5		
4		18
5		
6		
0	1	Cases, I, and de Lorenzo, V. (2001) The black cat/white cat principle of signal integration in bacterial
1	2	promoters. FMBQ /. 20. 1-11.
8	2	Castillo I A and Greenberg L T (2007) Evolutionary dynamics of Palstonia solanacearum Annlied
9	7	castino, s. A. and Environmental Microbiology 72 , 1325 1329
10	4	Callian C. Depresent P. Chinese, E. Lefonge, P. and Print, P. (2012) Phylogeneurand Depulation
11	5	Cellier, G., Remenant, B., Chiroleu, F., Lefeuvre, P. and Prior, P. (2012) Phylogeny and Population
12	6	Structure of Brown Rot- and Moko Disease-Causing Strains of Raistonia solanacearum
12	7	Phylotype II. Appl. Environ. Microbiol., 78, 2367-2375.
13	8	Clough, S. J., Lee, K. E., Schell, M. A. and Denny, T. P. (1997) A two-component system in Ralstonia
14	9	(Pseudomonas) solanacearum modulates production of PhcA-regulated virulence factors in
15	10	response to 3-hydroxypalmitic acid methyl ester. J. Bacteriol., 179 , 3639-3648.
16	11	Coll, N. S. and Valls, M. (2013) Current knowledge on the Ralstonia solanacearum type III secretion
17	12	system. Microbial Biotechnology, In press.
18	13	Coupat, B., Chaumeille-Dole, F., Fall, S., Prior, P., Simonet, P., Nesme, X., et al. (2008) Natural
10	14	transformation in the Balstonia solanacearum species complex: number and size of DNA that
19	15	can be transferred EEMS Microbial Ecol. 56 14-24
20	16	Course Course and P. Pornillo D. Cuidot A. Prior P. Nosmo Y and Portolla E (2011) Polstonia
21	17	Coupar-Goutaland, B., Berninon, D., Guidol, A., Frior, F., Nesine, A. and Bertona, F. (2011) Raisonna calenacorum Virulance Increased Following Large Interaction Const First Interaction
22	17	solaracearum viruleice increased Poliowing Large interstrain Gene Transfers by Natural
23	18	Transformation. Mol. Plant-Microb. Interact., 24, 497-505.
24	19	Cunnac, S., Boucher, C. and Genin, S. (2004a) Characterization of the cis-acting regulatory element
25	20	controlling HrpB-mediated activation of the type III secretion system and effector genes in
20	21	Ralstonia solanacearum. J. Bacteriol., 186, 2309-2318.
20	22	Cunnac, S., Occhialini, A., Barberis, P., Boucher, C. and Genin, S. (2004b) Inventory and functional
27	23	analysis of the large Hrp regulon in Ralstonia solanacearum: identification of novel effector
28	24	proteins translocated to plant host cells through the type III secretion system. Mol.
29	25	Microbiol., 53, 115-128.
30	26	Danesh, D., Aarons, S., McGill, G. E. and Young, N. D. (1994) Genetic dissection of oligogenic
31	27	resistance to bacterial wilt in tomato Mol Plant-Microbe Interact 7 464-471
32	28	Dang F E Wang Y N Yu L Eulgem T Lai Y Liu 7 O <i>et al</i> (2012) CaWRKY40 a WRKY protein
22	20	of penger plays an important role in the regulation of tolerance to heat stress and resistance
33	20	to polytonia colonososumi information <i>Blant Coll Environ</i> 27, 777
34	50	to Natstolia solaradear uni intection. Prant Cent Environ., 36 , 757-774.
35	31	Delannoy, E., Stanley, W. A., Bond, C. S. and Small, I. D. (2007) Pentatricopeptide repeat (PPR)
36	32	proteins as sequence-specificity factors in post-transcriptional processes in organelles.
37	33	Biochem Soc Trans, 35, 1643-1647.
38	34	Delaspre, F., Nieto Penalver, C. G., Saurel, O., Kiefer, P., Gras, E., Milon, A., et al. (2007) The Ralstonia
30	35	solanacearum pathogenicity regulator HrpB induces 3-hydroxy-oxindole synthesis. Proc. Natl
40	36	Acad. Sci. USA, 104, 15870-15875.
40	37	Denance, N., Ranocha, P., Oria, N., Barlet, X., Riviere, M. P., Yadeta, K. A., et al. (2012) Arabidopsis
41	38	wat1 (walls are thin1)-mediated resistance to the bacterial vascular pathogen, Ralstonia
42	39	solanacearum, is accompanied by cross-regulation of salicylic acid and tryptophan
43	40	metabolism. <i>Plant J.</i> , 73. 225-239.
44	41	Denny, T. P. and Baek, S. R. (1991) Genetic evidence that extracellular polysaccharide is a virulence
45	42	factor of Pseudomonas solanacearum Mol. Plant-Microbe Interact 4, 198-206
46	/3	Deslandes I. Olivier I. Peeters N. Feng D. Y. Khounlotham M. Bourber (<i>et al.</i> (2003) Physical
40	11	interaction between BRSLP a protein conferring resistance to bacterial will and DopP2 a
47	44	the all offsets targeted to the plant puckage <i>Brack Natl Acad Sci</i> 1164 109 9034 9030
48	45	type in election targeted to the plant indices. <i>Piot. Natl. Actual. Sci.</i> 054, 100 , 8024-6029.
49	46	Desiandes, E., Olivier, J., Theulieres, F., Hirsch, J., Feng, D. X., Bitther-Eddy, P., et al. (2002) Resistance
50	47	to Raistonia solanacearum in Arabidopsis thaliana is conterred by the recessive RKSI-R gene,
51	48	a member of a novel family of resistance genes. <i>Proc. Natl. Acad. Sci. USA</i> , 99 , 2404-2409.
52	49	Deslandes, L., Pileur, F., Liaubet, L., Camut, S., Can, C., Williams, K. <i>, et al.</i> (1998) Genetic
53	50	characterization of RRS1, a recessive locus in Arabidopsis thaliana that confers resistance to
50 5/	51	the bacterial soilborne pathogen Ralstonia solanacearum. Mol. Plant-Microbe Interact., 11,
54	52	659-667.
55		
56		
57		
58		

1		
2		
3		
1		10
4 5		19
5		
6	1	Digonnet C. Martinez Y. Denance N. Chasseray, M. Dahos P. Ranocha P. <i>et al.</i> (2012)
1	2	Decinhering the route of Ralstonia solanacearum colonization in Arabidonsis thaliana roots
8	2	during a compatible interaction: focus at the plant cell wall <i>Planta</i> 336 1/110-1/31
9	7	Elabiastona, L.G. (2005) The current Pactorial Wilt situation: A global overview. In: <i>Pactorial Wilt</i>
10	4	Eiphinistone, J. G. (2005) The current bacterial wint situation. A global overview. In: Bucterial wint
11	5	Disease and the Ruistonia Solandeedum Species Complex. (Califyin Allen, P. P. a. A. C. R., ed.).
12	6	I ne American Phytopathological Society, 3340 Pilot Knob Road St. Paul, Minnesota 55121,
12	/	U.S.A., pp. 9-28.
13	8	Erhardt, M., Namba, K. and Hughes, K. T. (2010) Bacterial nanomachines: the flagellum and type III
14	9	injectisome. <i>Cold Spring Harb Perspect Biol,</i> 2, a000299.
15	10	Fall, S., Mercier, A., Bertolla, F., Calteau, A., Gueguen, L., Perriere, G., et al. (2007) Horizontal gene
16	11	transfer regulation in bacteria as a "spandrel" of DNA repair mechanisms. PLoS One, 2,
17	12	e1055.
18	13	Fegan, M. and Prior, P. (2005) How Complex is the "Ralstonia solanacearum Species Complex". In:
19	14	Bacterial Wilt Disease and the Ralstonia solanaceaum Species Complex. (Allen, C., Prior, P.
20	15	and Hayward, A. C., eds.). The American Phytopathological Society, 3340 Pilot Knob Road St.
20	16	Paul. Minnesota 55121, U.S.A., pp. 449-461.
21	17	Feng, D. X., Deslandes, L., Keller, H., Revers, F., Favery, B., Lecomte, P., et al. (2004) Isolation and
22	18	characterization of a novel Arabidonsis thaliana mutant unable to develop will symptoms
23	10	after inoculation with a virulent strain of Balstonia solanacearum. <i>Buttongthology</i> 91 , 280.
24	20	
25	20	295. Fong D.Y. Tassat C. Hanamian M. Barlat Y. Hu, L. Trámaurayova D. et al. (2012) Biological
26	21	Felig, D. A., Tassel, C., Hallelinan, M., Barlet, A., Hu, J., Hellousaygue, D., et al. (2012) Biological
27	22	control of bacterial with in Arabidopsis thailand involves abscissic acid signalling. New Phytol.,
20	23	194 , 1035-1045.
20	24	Flavier, A. B., Clough, S. J., Schell, M. A. and Denny, T. P. (1997) Identification of 3-hydroxypalmitic
29	25	acid methyl ester as a novel autoregulator controlling virulence in Ralstonia solanacearum.
30	26	Mol. Microbiol., 26, 251-259.
31	27	Gabriel, D. W., Allen, C., Schell, M., Denny, T. P., Greenberg, J. T., Duan, Y. P., et al. (2006)
32	28	Identification of open reading frames unique to a select agent: Ralstonia solanacearum race
33	29	3 biovar 2. Mol. Plant-Microbe Interact., 19, 69-79.
34	30	Garg, R. P., Huang, J. Z., Yindeeyoungyeon, W., Denny, T. P. and Schell, M. A. (2000) Multicomponent
35	31	transcriptional regulation at the complex promoter of the exopolysaccharide I biosynthetic
36	32	operon of Ralstonia solanacearum. J. Bacteriol., 182, 6659-6666.
27	33	Genin, S. (2010) Molecular traits controlling host range and adaptation to plants in Ralstonia
37	34	solanacearum. New Phytol., 187, 920-928.
38	35	Genin, S. and Boucher, C. (2002) Pathogen profile Ralstonia solanacearum : secrets of a major
39	36	nathogen unveiled by analysis of its genome Mol Plant Pathol 3 , 111-118
40	37	Genin S Brito B Denny T P and Boucher C (2005) Control of the Balstonia solanacearum Type III
41	38	secretion system (Hrn) genes by the global virulence regulator PhcA FERS Lett 579 2077-
42	30	2021
43	10	Conin S and Donny T. D. (2012) Bathaganamics of the Palstonia salanasaarum Species Complex. In:
44	40	Annu Bay Bhytopothol, Vol 50, pp. 67, 80
15	41	Allilu. Nev. Phytoputitol., Vol 50. pp. 07-69.
40	42	Genin, S., Gougn, C. L., Zischek, C. and Boucher, C. A. (1992) Evidence that the <i>hrpB</i> gene encodes a
40	43	positive regulator of pathogenicity genes from <i>Pseudomonas solanacearum</i> . Mol. Microbiol.,
47	44	6 , 3065-3076.
48	45	Godiard, L., Sauviac, L., Torii, K. U., Grenon, O., Mangin, B., Grimsley, N. H., et al. (2003) ERECTA, an
49	46	LRR receptor-like kinase protein controlling development pleiotropically affects resistance to
50	47	bacterial wilt. <i>Plant J., 36,</i> 353-365.
51	48	Guidot, A., Coupat, B., Fall, S., Prior, P. and Bertolla, F. (2009) Horizontal gene transfer between
52	49	Ralstonia solanacearum strains detected by comparative genomic hybridization on
53	50	microarrays. ISME J., 3, 549-562.
5/		
54		
22		
56		
57		
58		

- 58 59 60

2	
2	
3	
4	
5	
6	
7	
8	
g	
1	ი
1	1
1	י ר
1	∠ 2
1	ა ⊿
1	4
1	с С
1	6
1	7
1	8
1	9
2	0
2	1
2	2
2	3
2	4
$\frac{1}{2}$	5
2	6
2	7
2	1
2	8
2	9
3	0
3	1
3	2
3	3
3	4
3	5
3	6
2	7
2	γ Ω
с 0	0 0
3	9
4	Ű
4	1
4	2
4	3
4	4
4	5

29	
60	

5		
6	1	Guidat A Prior P Schoenfeld I Carrere S Genin S and Boucher C (2007) Genomic structure
7	2	and novlogeny of the plant nathogen Ralstonia solanacearum inferred from gene distribution
8	2	and phylogeny of the plant pathogen valstonia solahaeearan merea nom gene alstribution
9	7	Hernandez-Blanco C Eeng D X Hu I Sanchez-Vallet A Declandes I Llorente E et al (2007)
10	5	Impairment of cellulose syntheses required for Arabidonsis secondary cell wall formation
11	5	onhances disease resistance. <i>Plant Cell</i> 19 , 800,902
12	7	Hirsch L. Deslandes L. Eeng, D. V. Palague, C. and Marso, V. (2002) Delayed symptom development
13	, 0	in sin2 1, an Arabidancis athyland inconsitive mutant in reconnect to bactorial wilt caused by
14	0	Relatoria solanasoarum. <i>Rhutonothologu</i> 03 1142 1148
15	9 10	Raisionia solandearum. Phylopathology, 32 , 1142-1146. Ho M S Ou C Chap X P Chien C T and Pi H (2008) The utility E hex for protein destruction
16	10	Collular and Molocular Life Sciences 6 1977 2000
10	12	Huang L. Carney, R. E. Denny, T. R. Weissinger, A. K. and Schell, M. A. (1995) A complex network
17	12	regulates expression of ens and other virulence genes of Dseudomonas solanacearum /
18	17	Rectorial 177 1250 1267
19	14	Buccerior, 177, 1235-1207.
20	15	nualig, J., findeeyoungyeon, W., Galg, K. P., Denny, T. P. and Schen, M. A. (1996) Joint transcriptional
21	17	regulatory potwork, by a response regulator and a LysP type transcriptional activator.
22	10	Pactorial 190 2726 2742
23	10	Buccentri, 100, 2750-2745. Hussin A and Kolman A (1059) Polation of slime production to mechanism of wilting and
24	20	nothogonicity of Decudemenas colonacearum, <i>Phytogethology</i> 49 , 155, 164
25	20	Jacobs J. M. Babuigo J. Mong E. Milling A and Allon C (2012) The in planta transcriptome of
26	21	Balstonia colonocorrum: concorrued physiological and virulonce strategies during bactorial
27	22	wilt of tomato MRio 3
28	23	lones L. D. and Dangl. L. L. (2006) The plant immune system. <i>Nature</i> 111 , 323-329
29	24	Kajava A. V. Anisimova M. and Peeters N. (2008) Origin and evolution of GALA-LRR a new member
30	25	of the CC LPR subfamily: from plants to bacteria? PLoS One 2 o1604
31	20	Kanda A. Vasukobshi M. Obnishi K. Kiba A. Okuno T. and Hikishi V. (2002) Estonic expression of
22	27	Ralida, A., Tasukolichi, M., Olinishi, K., Kiba, A., Okuno, T. and Tikichi, T. (2005) Ectopic expression of
32 22	20	Mal Plant-Microb Interact 16 447-455
აა ექ	30	Kang V W Liu H L Genin S Schell M A and Denny T P (2002) Ralstonia solanacearum requires
34	21	type 4 nili to adhere to multiple surfaces and for natural transformation and virulence. Mol
35	32	Microhial A6 A27-A27
36	32	Kao C C Barlow F and Sequeira L (1992) Extracellular nolysaccharide is required for wild-type
37	34	virulence of Pseudomonas solanacearum / <i>Bacteriol</i> 174 1068-1071
38	35	Konstantinidis K T Ramette A and Tiedie I M (2006) The bacterial species definition in the
39	36	genomic era. Philos Trans R Soc Lond R Biol Sci 361 1929-1940
40	37	Konstantinidis K T and Tiedie I M (2005) Genomic insights that advance the species definition for
41	38	nrokarvotes Proc. Natl. Acad. Sci. 1/SA 102 2567-2572
42	39	Lavie M Shillington E Equiluz C Grimsley N and Boucher C (2002) PopP1 a new member of the
43	40	YopI/AvrRxv family of type III effector proteins, acts as a host-specificity factor and
44	41	modulates aggressiveness of Ralstonia solanacearum, <i>Mol. Plant-Microb. Interact.</i> , 15. 1058-
45	42	1068.
46	43	Lebeau, A., Daunay, M. C., Frary, A., Palloix, A., Wang, J. F., Dintinger, J., et al. (2011) Bacterial Wilt
47	44	Resistance in Tomato, Pepper, and Eggplant: Genetic Resources Respond to Diverse Strains in
48	45	the Ralstonia solanacearum Species Complex. <i>Phytopathology</i> , 101 , 154-165.
49	46	Lebeau, A., Gouy, M., Daunay, M. C., Wicker, E., Chiroleu, F., Prior, P., et al. (2013) Genetic mapping
50	47	of a major dominant gene for resistance to Ralstonia solanacearum in eggplant. Theor Appl
51	48	Genet. in press
51	49	Li, L., Atef, A., Piatek, A., Ali, Z., Piatek, M., Aouida, M., et al. (2013) Characterization and DNA-
52	50	Binding Specificities of Ralstonia TAL-like Effectors. Mol Plant. in press
ວ ວ ⊏ 4		
54		
55		
56		
57		
58		
59		

1		
2		
3		
4		21
5		21
6		
7	1	Li, Y. R., Zou, H. S., Che, Y. Z., Cui, Y. P., Guo, W., Zou, L. F., et al. (2011) A novel regulatory role of
<i>'</i>	2	HrpD6 in regulating hrp-hrc-hpa genes in Xanthomonas oryzae pv. oryzicola. Mol. Plant-
8	3	Microbe Interact. 24, 1086-1101.
9	4	Macho, A. P., Guidot, A., Barberis, P., Beuzon, C. R. and Genin, S. (2010) A competitive index assay
10	5	identifies several Balstonia solanacearum type III effector mutant strains with reduced fitness
11	6	in host plants Mol Plant-Microbe Interact 23 , 1197-1205
12	7	Mangin B. Thoquet P. Olivier I and Grimsley N. H. (1999) Temporal and multiple quantitative trait
13	, Q	Indigin, by induces of resistance to bacterial with in tomato nermit the resolution of linked loci
14	0	Construct 161 1165 1172
15	10	Generics, 131, 1105-1172.
16	10	Meng, F., tab, J. and Aneri, C. (2011) A Motiv initiation in Kastonia solaracearum is hypermotile and
10	11	nas reduced virulence. J. Bacteriol., 193 , 2477-2486.
17	12	Mole, B. M., Baltrus, D. A., Dangi, J. L. and Grant, S. R. (2007) Global Virulence regulation networks in
18	13	phytopathogenic bacteria. Irenas Microbiol., 15 , 363-371.
19	14	Monteiro, F., Genin, S., van Dijk, I. and Valls, M. (2012a) A luminescent reporter evidences active
20	15	expression of Ralstonia solanacearum type III secretion system genes throughout plant
21	16	infection. <i>Microbiology</i> , 158 , 2107-2116.
22	17	Monteiro, F., Sole, M., van Dijk, I. and Valls, M. (2012b) A Chromosomal Insertion Toolbox for
23	18	Promoter Probing, Mutant Complementation, and Pathogenicity Studies in Ralstonia
24	19	solanacearum. <i>Mol. Plant-Microb. Interact.</i> , 25 , 557-568.
24	20	Mukaihara, T., Tamura, N. and Iwabuchi, M. (2010) Genome-Wide Identification of a Large Repertoire
25	21	of Ralstonia solanacearum Type III Effector Proteins by a New Functional Screen. <i>Mol. Plant-</i>
26	22	Microb. Interact., 23, 251-262.
27	23	Mukhtar, M. S., Deslandes, L., Auriac, M. C., Marco, Y. and Somssich, I. E. (2008) The Arabidopsis
28	24	transcription factor WRKY27 influences wilt disease symptom development caused by
29	25	Ralstonia solanacearum. <i>Plant J.,</i> 56, 935-947.
30	26	Murata, Y., Tamura, N., Nakaho, K. and Mukaihara, T. (2006) Mutations in the IrpE gene of Ralstonia
31	27	solanacearum affects Hro Pili production and virulence. Mol. Plant-Microb. Interact., 19, 884-
32	28	895
22	29	Occhialini A. Cunnac S. Reymond N. Genin S. and Roucher C. (2005) Genome-wide analysis of
33	30	gene expression in Balstonia solanarcazium reveals that the brink gene acts as a regulatory
34	21	guitch controlling multiple visulence pathways. Mel Dant Microb Interact, 19, 029, 040
35	27	Organization Controlling Inductive on United to Partways, <i>Mol. Functional Controlling</i> , 16, 555-545.
36	32	Organibide, G., Montrozier, R., Servin, P., Koussel, J., Ingalet-Deniery, D. and Ingalet, A. (1991) Fight
37	33	neterogeneity of the exoposystcharides of Pseudomonals Solahacearum Strain Givi 1000 and
38	34	the complete structure of the major polysaccharide. J. Biol. Chem., 266 , 8312-8321.
39	35	Plener, L., Boistard, P., Gonzalez, A., Boucner, C. and Genin, S. (2012) Metabolic adaptation of
40	36	Ralstonia solanacearum during plant infection: a methionine biosynthesis case study. <i>PLoS</i>
41	37	<i>One</i> , 7 , e36877.
40	38	Plener, L., Manfredi, P., Valls, M. and Genin, S. (2010) PrhG, a transcriptional regulator responding to
42	39	growth conditions, is involved in the control of the type III secretion system regulon in
43	40	Ralstonia solanacearum. <i>J. Bacteriol.</i> , 192 , 1011-1019.
44	41	Poueymiro, M., Cunnac, S., Barberis, P., Deslandes, L., Peeters, N., Cazale-Noel, A. C., et al. (2009)
45	42	Two Type III Secretion System Effectors from Ralstonia solanacearum GMI1000 Determine
46	43	Host-Range Specificity on Tobacco. <i>Mol. Plant-Microb. Interact.</i> , 22 , 538-550.
47	44	Poueymiro, M. and Genin, S. (2009) Secreted proteins from Ralstonia solanacearum: a hundred tricks
48	45	to kill a plant. <i>Curr. Opin. Microbiol.</i> , 12, 44-52.
49	46	Qian, Y. L., wang, X. S., D.Z., W., Zhang, L. N., Zu, C. L., Gao, Z. L., et al. (2012) The detection of QTLs
50	47	controlling bacterial wilt resistance in tobacco (<i>N. tabacun</i> L.). <i>Euphitica</i> . in press.
50	48	Remenant, B., Babujee, L., Lajus, A., Medigue, C., Prior, P. and Allen, C. (2012) Sequencing of K60.
	49	Type Strain of the Major Plant Pathogen Ralstonia solanacearum / Racteriol 194 , 2742-
52	50	2743.
53	50	
54		
55		
56		
57		
E0		

1	
2	
3	
4	
5	
5	
ί Ω	
g	
1	0
1	1
1	2
1	3
1	4
1	5
1	6
1	7
1	8
ן ר	9
2 ว	1
2	2
2	3
2	4
2	5
2	6
2	7
2	8
2	9
3	0
3 2	์ ว
с 2	2
3	4
3	5
3	6
3	7
3	8
3	9
4	0
4	1
4 ∧	2
+ ∕	ى ⊿
4	5
4	6
4	7
4	8
	~

	5		•
•	3	C	ý
;	3	ć)
4	4	()
4	4	1	I
4	4	2	2
	4	3	3
	4	2	ļ
	4	5	5
	4	6	5
	4	7	7
	4	۶	2
	4	c	ر د
1	- 5	č	י ז
1	5	4	, ,
1	2	1	
;	5	2	2
	5	3	3
ļ	5	2	ļ
ļ	5	Ę	5
ļ	5	6	5
!	5	7	7
1	5	5	3
1	5	c	2
	ຣ	ì	`
1	0	C)

22	
~~	

1 2	Remenant, B., Coupat-Goutaland, B., Guidot, A., Cellier, G., Wicker, E., Allen, C., et al. (2010) Genomes of three tomato pathogens within the Ralstonia solanacearum species complex	
3	reveal significant evolutionary divergence. BMC Genomics, 11.	
4	Remenant, B., de Cambiaire, J. C., Cellier, G., Jacobs, J. M., Mangenot, S., Barbe, V., et al. (2011)	
5	Ralstonia syzygii, the Blood Disease Bacterium and Some Asian R. solanacearum Strains Form	
6	a Single Genomic Species Despite Divergent Lifestyles. Plos One, 6, e24356.	
7	Remigi, P., Anisimova, M., Guidot, A., Genin, S. and Peeters, N. (2011) Functional diversification of	
8	the GALA type III effector family contributes to Ralstonia solanacearum adaptation on	
9	different plant hosts. New Phytol., 192, 976-987.	
10	Roberts, S. J., Edengreen, S. J., Jones, P. and Ambler, D. J. (1990) Pseudomonas syzygii, sp-nov, the	
11	cause of Sumatra disease of cloves. Syst. Appl. Microbiol., 13, 34-43.	
12	Robertson, A. E., Wechter, W. P., Denny, T. P., Fortnum, B. A. and Kluepfel, D. A. (2004) Relationship	
13	between avirulence gene (avrA) diversity in Ralstonia solanacearum and bacterial Wilt	
14	incidence. Mol. Plant-Microb. Interact., 17, 1376-1384.	
15	Salanoubat, M., Genin, S., Artiguenave, F., Gouzy, J., Mangenot, S., Arlat, M., et al. (2002) Genome	
16	sequence of the plant pathogen Ralstonia solanacearum. Nature, 415 , 497-502.	
17	Schell, M. A. (2000) Control of virulence and pathogenicity genes of Ralstonia solanacearum by an	
18	elaborate sensory network. Annu. Rev. Phytopathol., 38 , 263-292.	
19	Schell, M. A., Denny, T. P. and Huang, J. (1994) VsrA, a second two-component sensor regulating	
20	virulence genes of Pseudomonas solanacearum. <i>Mol. Microbiol.</i> , 11. 489-500.	
21	Singer, A. U., Rohde, J. R., Lam, R., Skarina, T., Kagan, O., Dileo, R., <i>et al.</i> (2008) Structure of the	
22	Shigella T3SS effector IpaH defines a new class of E3 ubiguitin ligases. Nat. Struct. Mol. Biol.	
23	15. 1293-1301.	
24	Sole, M., Popa, C., Mith, O., Sohn, K. H., Jones, J. D., Deslandes, L., et al. (2012) The awr gene family	
25	encodes a novel class of Balstonia solanacearum type III effectors displaying virulence and	
26	avirulence activities Mol Plant-Microbe Interact 25 , 941-953	
27	Tampakaki A P. Skandalis N. Gazi A D. Bastaki M N. Sarris P. F. Charova S. N. <i>et al.</i> (2010)	
28	Playing the "Harn": evolution of our understanding of hrn/hrc genes. Annu. Rev	
29	Phytopathol 48, 347-370	
30	Tang X Xiao Y and Zhou I M (2006) Regulation of the type III secretion system in	
31	nhytopathogenic hacteria. <i>Mol. Plant-Microhe Interact</i> . 19 , 1159-1166	
32	Tans-Kersten J. Huang H.Y. and Allen C. (2001) Balstonia solanacearum needs motility for invasive	
33	virulence on tomato / <i>Bacteriol</i> 183 , 3597-3605	
34	Tasset C Bernoux M Jauneau A Pouzet C Briere C Kieffer-Jacquinod S <i>et al</i> (2010)	
35	Autoacetylation of the Balstonia solanacearum effector PonP2 targets a lysine residue	
36	essential for RRS1-R-mediated immunity in Arabidonsis PLoS Pathoa 6 e1001202	
37	Thoquet P. Olivier I. Sperisen C. Rogowsky P. Laterrot H. and Grimsley N. (1996a) Quantitative	
38	trait loci determining resistance to bacterial wilt in tomato cultivar Hawaii7996 Mol Plant-	
30	Microhe Interact 9 826-836	
40	Thoquet P. Olivier J. Specisen C. Rogowsky P. Prior P. Anaïs G. et al. (1996b) Polygenic	
40 41	resistance of tomato plants to bacterial wilt in the French West Indies Mol Plant-Microbe	
/12	Interact 9 837-842	
42 //3	Torii K. I. Mitsukawa N. Oosumi T. Matsuura V. Yokovama R. Whittier R. F. et al. (1996) The	
43	Arabidonsis ERECTA gene encodes a nutative recentor protein kinase with extracellular	
44	Anabidopsis Energia gene cheques à parative receptor protein minase with extracendiar	
45	Turner M. Jauneau A. Genin S. Tavella M. I. Vailleau F. Gentzhittel I. et al. (2009) Dissection of	
40	hacterial Wilt on Medicago truncatula revealed two type III secretion system effectors acting	
-+7 /19	on root infection process and disease development. <i>Digit Divisiol</i> 150 1712-1722	
40 10	Vailleau E Sartorel E Jardinaud M E Chardon E Genin S Huguet T et al (2007)	
-+ <i>5</i> 50	Characterization of the interaction between the bacterial will nathogen Paktonia	
50	colanacearum and the model legume plant Medicago truncatula. Mol. Plant Microb	
52	Interact 20 159-167	
52	menuel, zy , 155 107.	

1		
2		
3		
4		23
5		
6	1	Valle M. Copin S. and Boucher C. (2006) Integrated regulation of the type III secretion system and
7	2	other virulence determinants in Ralstonia solanacearum <i>Plos Pathogens</i> 7 798-807
8	2	Van der Linden I. Bredenkamn I. Naidoo S. Fouché-Weich I. Denby K. J. Genin S. <i>et al.</i> (2013)
9	4	Gene-for-Gene Tolerance to Bacterial Wilt in Arabidonsis. <i>Mol. Plant-Microbe Interact.</i> , 26 .
10	5	398-406.
11	6	Vasse, J., Frey, P. and Trigalet, A. (1995) Microscopic studies of intercellular infection and protoxylem
12	7	invasion of tomato roots by Pseudomonas solanacearum. Mol. Plant-Microb. Interact., 8,
13	8	241-251.
14	9	Wairuri, C. K., van der Waals, J. E., van Schalkwyk, A. and Theron, J. (2012) Ralstonia solanacearum
15	10	needs Flp pili for virulence on potato. Mol. Plant-Microbe Interact., 25, 546-556.
16	11	Wang, J. F., Ho, F. I., Truong, H. T. H., Huang, S. M., Balatero, C. H., Dittapongpitch, V., et al. (2013a)
17	12	Identification of major QTLs associated with stable resistance of tomato cultivar 'Hawaii
18	13	7996' to Ralstonia solanacearum. Euphytica, 190, 241-252.
19	14	Wang, J. F., Olivier, J., Thoquet, P., Mangin, B., Sauviac, L. and Grimsley, N. H. (2000) Resistance of
20	15	tomato line Hawaii7996 to Ralstonia solanacearum Pss4 in Taiwan is controlled mainly by a
21	16	major strain-specific locus. Mol. Plant-Microb. Interact., 13 , 6-13.
22	17	Wang, K., Dang, F., Liu, Z., Wang, X., Eulgem, T., Lai, Y., et al. (2013b) CaWRKY58, encoding a groupe I
23	18	WRKY transcription factor of Capsicum annuum, negatively regulates resistance to Ralstonia
24	19	solanacearuu infection. <i>Mol. Plant Pathol.</i> , 14 , 131-144.
25	20	Wengelnik, K. and Bonas, U. (1996) HrpXv, an AraC-type regulator, activates expression of five of the
26	21	six loci in the hrp cluster of Xanthomonas campestris pv. vesicatoria. J. Bacteriol., 178, 3462-
27	22	3409. Wisker E. Grassart I. Coranson Regulu P. Mian D. Guilbaud C. Eagan M. et al. (2000a)
28	25 24	Roletonia colonacearum Strains from Martinique (French West Indies) Exhibiting a New
29	24	Dathogenic Dotential (vol 73, ng 6790, 2007) Appl Environ Microhiol. 75 , 558-558
30	25	Wicker E. Grassart I. Coranson-Beaudu R. Mian D. and Prior P. (2009h) Enidemiological evidence
31	20	for the emergence of a new nathogenic variant of Ralstonia solanacearum in Martinique
32	28	(French West Indies). <i>Plant Pathol.</i> 58 , 853-861.
33	29	Wicker, E., Lefeuvre, P., de Cambiaire, J. C., Lemaire, C., Poussier, S. and Prior, P. (2012) Contrasting
34	30	recombination patterns and demographic histories of the plant pathogen Ralstonia
35	31	solanacearum inferred from MLSA. <i>ISME J.</i> , 6 , 961-974.
36	32	Xu, J., Zheng, H. J., Liu, L., Pan, Z. C., Prior, P., Tang, B., et al. (2011) Complete Genome Sequence of
37	33	the Plant Pathogen Ralstonia solanacearum Strain Po82. J. Bacteriol., 193, 4261-4262.
38	34	Yao, J. and Allen, C. (2006) Chemotaxis is required for virulence and competitive fitness of the
30	35	bacterial wilt pathogen Ralstonia solanacearum. J. Bacteriol., 188, 3697-3708.
40	36	Yao, J. and Allen, C. (2007) The plant pathogen Ralstonia solanacearum needs aerotaxis for normal
40 41	37	Biofilm formation and interactions with its tomato host. J. Bacteriol., 189 , 6415-6424.
42	38	Yoshimochi, T., Hikichi, Y., Kiba, A. and Ohnishi, K. (2009a) The global virulence regulator PhcA
43	39	negatively controls the Raistonia solanacearum hrp regulatory cascade by repressing
40	40	expression of the Prnik signalling proteins. J. Bacteriol., 1, 3424-3428.
45	41	ostivation of response regulator HrpC are controlled by distinct signal caseades in Polstonia
16	42	solanacearum <i>I Gen Plant Pathol</i> 75 196-204
40 //7	43 44	Zhang Y Kiba A Hikichi Y and Ohnishi K (2011) nrhKIM genes of Ralstonia solanacearum encode
18	45	novel activators of hrn regulon and are required for pathogenesis in tomato. FEMS Microhiol
40 70	46	Lett. 317. 75-82.
49 50	47	Zolobowska, L. and Van Gijsegem, F. (2006) Induction of lateral root structure formation on petunia
50	48	roots: A novel effect of GMI1000 Ralstonia solanacearum infection impaired in Hrp mutants.
52	49	Mol. Plant-Microb. Interact., 19, 597-606.
52 52	50	Zou, L. F., Wang, X. P., Xiang, Y., Zhang, B., Li, Y. R., Xiao, Y. L., et al. (2006) Elucidation of the hrp
53	51	clusters of Xanthomonas oryzae pv. oryzicola that control the hypersensitive response in
54		
55		
50		
57		
50		
60		
00		

2			
3 4 5		24	
6 7 8	1 2 3	nonhost tobacco and pathogenicity in susceptible host rice. <i>Appl. Environ. Microbiol.</i> , 72 , 6212-6224.	
9 10 11	3 4 E	Figure legends	
12	5		
13	6	Fig. 1 Macro- and microscopic views of <i>R. solanacearum</i> and illustration of symptoms associated on	Formatted: Normal, Line spacing: single
14 15	7	plant bioassays (a) R. solanacearum growing on complete BG medium (Boucher et al., 1985). The	
15	8	pink color of the colonies is due to the presence of triphenyl tetrazolium chloride in the medium. (b)	
17	9 10	Electron microscopy image of R. solandcedrum rod-snaped cells under division displaying pill structures (by the late lacques Vasse) (c) Symptoms of Pactorial wilt on Medicago truncatula plants	
18	10	Inoculation in liffy nots with two wild-type strains (upper part). Gnotobiotic inoculation with a wild-	
19	12	type strain and an hrn mutant (bottom part) (d) Symptoms of Bacterial will on Arghidonsis thaligng	
20	13	plants, (e) Symptoms of Bacterial will on tomato plants. (f) One eggplant with symptoms of Bacterial	
21	14	wilt, and a healthy control plant.	
22			
23 24	15	▲	Formatted: Space After: 10 pt, Line spacing:
25	16	Fig. 2 Major nathways controlling expression of <i>Ralstonia solangearum</i> virulence genes	
26	10	rig. 2. Wajor patriways controlling expression of Naisconia solandeed and viralence genes.	
27	17	Circles and squares indicate regulatory proteins, the latter representing the main regulatory hubs. In	
28	18	grey, regulatory inputs sensed by the bacterium and in black pathogenicity activities controlled by	
29	19	this regulatory network. Arrows and T-bars indicate respectively, activation or repression. Black lines	
30 31	20	stand for control at the transcriptional level and red lines for post-transcriptional effects. Solid lines	
32	21	represent major effects and dotted lines faint transcriptional influences (modulation). For detailed	
33	22	explanations, see text.	
34	23		
35			
36			
31 38			
39			
40			
41			
42			
43			
44 15			
46			
47			
48			
49			
50			
51 52			
52 53			
54			
55			
56			
57			
58			

190x254mm (96 x 96 DPI)

Figure 2

254x190mm (96 x 96 DPI)