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Chapter 1

Introduction

Economic news often talks about growths and drops of indexes and individual
stocks, but many people (including me before I did this work) do not understand
neither how the stock market works nor what causes its price fluctuations.

Stock markets are complex systems. In empirical sciences, a common strategy
used to study a real system consists in making simplified models that keep their
main features, and analyze them in order to understand further the system dy-
namics. There is a type of models known as agent-based models that are used to
simulate complex systems by creating software objects (called agents) whose be-
havior have global consequences for the system. This concept allows modelers to
connect the micro-level of individuals with the macroscopic patterns, what is essen-
tial to understand systems interactions. One example of agent-based environment
and programming language is NetLogo, created by Uri Wilensky in 1999.

Since individual investors’ decisions control the dynamics of stock markets, it
seems reasonable to treat the stock market as if it is a dynamic system of interact-
ing agents, that will represent investors. The collective behavior of these investors,
each of which acts independently, produces prive movements. Based on Silva’s
(2014) Collective behavior in the Stock Market model, we have designed and imple-
mented a model for the evolution of a very simple market, with a single asset price,
using the NetLogo environment.

On the other hand, companies’ share prices form time series. Statistics supplies
powerful tools and methods to understand the processes behind time series, make
a model of them and, furthermore, forecast future values based on the current
data. Hence, financial time series analysis plays an important role in investments
strategies and other economical applications. We are going to describe the main
methods and models used for this kind of series, but there is so much bibliography
on the statistical treatment of financial series; see, for example, Tsay (2005).
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CHAPTER 1. INTRODUCTION 5

This project has been developed with many objectives. First, we want to in-
troduce agent-based modeling, explain in which cases is useful and, furthermore,
supply the basis of NetLogo programming language so that when the reader reaches
the end of this work, he or she should be able to use and implement simple codes
on NetLogo. Second, this work tries to teach step by step how to build an statis-
tical model to fit given data. Also, we want to find out about distinctive features
of financial time series and most important models used to fit them: ARMA and
ARCH processes. Third, we attempt to understand several economical concepts
and some common behaviors exhibited by investors. Finally, the main purpose of
this project is to reproduce the evolution of a single asset price by an agent-based
model, whose output series of returns will be analyzed viewed as a financial time
series and will be shown to fit an ARCH model.

In summary, this final project deals with agent-based modeling and time series
analysis in the framework of finance. In chapter 2, we expound agent-based compu-
tational economics and, then, we describe the Netlogo environment and the main
features of its programming language in chapter 3. Also, the stock market model
that we have created is explained in chapter 4, as well as its hypotheses and weak-
nesses. In chapter 5, we define and explain all the fundamental concepts, methods
and statistical models that we need to analyze the simulated series of returns in
chapter 6. In the end, the conclusions of the work are described and possible works
that would complement this study are discussed.

To finish this introduction, I would want to explain my personal motivation to
choose this subject as a final project. Basically, I sought a work about time series
analysis because I wanted to go into detail about this area and apply its concepts to
a real analysis. On the other hand, I am interested in the stock market and decision
making under uncertainty, so I chose this subject to learn more about statistical
methods applied to a real problem: investments.
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Chapter 2

Agent-based computational
economics (ACE)

According to Tesfatsion (See Ref. [4]), complex systems are composed of interacting
units whose interactions produce properties that are not properties of the individual
units themselves. Furthermore, a complex system is adaptive if it includes reactive
units, that is, units capable of exhibiting different behaviors in reaction to changed
environmental conditions.

Agent-based computational economics (ACE) is the computational study of eco-
nomic processes modeled as complex adaptive systems. Units are called agents,
and in this case, each agent is an encapsulated piece of software that includes both
data and behavioral methods. For example, agent’s data may be its attributes,
while agent’s behavioral methods may be its strategies or its algorithm for updat-
ing strategies. This encapsulation into agents attempts to achieve a more realistic
representation of real-world systems.

Once the model is implemented, the modeler must specify the initial state of the
economic system by setting each agent’s initial data and behavioral methods. This
will be the last interference, because an ACE model must be dynamically complete,
that is, the simulated economic process must be able to develop over time based on
agents interactions without further interventions from the modeler.

In summary, an ACE model is essentially a collection of procedures encapsulated
into the methods of agents constituting a computationally constructed world of
interacting entities.

6



Chapter 3

NetLogo

3.1 What is NetLogo?

NetLogo is a programmable modeling environment for doing agent-based simula-
tions. It was created by Uri Wilensky in 1999 and it is used for modeling complex
systems and studying their behavior over time.

Agents are single beings which act independently from others. Agent-based mod-
els consist of multiple agents (that could be from different kinds) interacting with
each other if it is necessary. When the model runs, agents behave according to their
rules generating a dynamic system. For example, a model for sheep predation by
wolves may consist of three kinds of agents: wolves, sheeps and grass. These agents
would act according to different rules depending on their types: wolves would try
catching sheeps to eat, sheeps would move around the landscape eating grass where
it would be, and grass would not do anything but grow again after a period of
time. As consequence of agents behavior, maybe wolves or sheeps become extinct,
or maybe the number of sheeps and the number of wolves tend to be constant (de-
spite fluctuations). That is the point of agent-based models: simulating systems
which involve many agents (even hundreds) and watching results of their interaction.

NetLogo lets us create agent-based models, so we could create hundreds or thou-
sands of agents, give them instructions and after that watch their collective behav-
ior as result of all operating independently at the same time. This allows exploring
the connection between individual actions and macro-level patterns emerged from
agents interaction.

In addition, its flexibility lets users do simulations with existent models, modify
the models code based on their interests or create their own models. These two last
actions require knowledge of NetLogo programming language, which we are going
to talk about later in this chapter.
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CHAPTER 3. NETLOGO 8

In summary, NetLogo allows us to make simulations for modeling phenomena
that involve multiple agents operating independently. Because of this, it is used
in disciplines as diverse as psychology, computing sciences, biology, physics or eco-
nomics.

3.2 The NetLogo world

The NetLogo world is the place where agents remain. There are four types of agents
in NetLogo:

• Patches. The world is a two dimensional grid of patches, so we can say that
each patch is a square piece of “ground”. Patches cannot move and they
have coordinates. The patch at coordinates (0, 0) is called the origin and the
coordinates of the other patches are the horizontal and vertical distances from
this one. These coordinates are always integers.

• Turtles are agents that move around in the world while they follow instruc-
tions. They have coordinates too, but in this case they are not necessary
integers because each turtle can be positioned at any point within its patch.
There are no turtles by default, they have to be made by patches or by the
observer. The name turtles is due to the fact that NetLogo is a dialect of the
Logo language, which uses the nomenclature of “turtles”.

• Links are agents that connect two turtles. If either turtle dies, the link dies
too. They do not have coordinates.

• The observer is an external agent. It is not represented in the world but it
can interact with the world creating or destroying agents, assigning properties
to the agents, etc.

When we open NetLogo, our computer screen looks like this:

As we see at the top of Figure 3.1, there are three tabs labeled Interface, Info
and Code. Only one tab at a time can be visible, but you can switch between them
by clicking on the pertinent one.

First tab (Interface) is where users watch models run. It includes several options
to control model and interface settings, a Command center to input commands and
a customizable interface where users can add elements such as plots and monitors.

The second tab (Information) looks like Figure 3.2. It lets modelers add infor-
mation about the purpose of the model, how to run it and suggestions to extend
it, among others. Note that NetLogo is thought to create a community of modelers
that share their models, making it easy for others to see, review, create variations
and comment on their work1. Therefore, this information is useful for other users

1All models uploaded by other NetLogo users can be downloaded from Modelling Commons:
http://modelingcommons.org/account/login
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CHAPTER 3. NETLOGO 9

Figure 3.1: NetLogo interface.

more than for the own modeler.

Finally, the Code tab is where the code for the model is stored. It includes
commands that will be used repeatedly while models will be running. In Section
3.4 we will talk about NetLogo programming language features in depth.

3.3 Interface tab

1. The world is the place where the agents will be shown.

2. Model settings. The Settings... button allows users to change the model
settings: the size and the boundaries of the world, the patch size and the
frame rate, among others.

3. Control panel.

• Simulation speed. The slider lets user control how fast the model runs.

• View updates ( continuous or on ticks ). Only if this check box is selected,
the view of the world will change during the simulation. There are two
update options: “continuous” and “on ticks”. The first updates the
view many times a second while the second one updates it when the tick
counter advances.

4. Command center. This is the place where commands can be input directly,
without being added into the Code tab. This is useful for inspecting and
manipulating agents at a particular time, but it is laborious for commands
that are used many times.

9



CHAPTER 3. NETLOGO 10

Figure 3.2: Info tab of a NetLogo model.

5. Interface elements. NetLogo allows the user to modify the interface tab by
adding elements which can run commands, change parameters used during
the simulation or show the value of variables. In addition, these elements can
be edited, moved, resized or deleted whenever. The different kinds of elements
are:

• Button executes its instructions. There are two types: once or forever.
Once buttons execute their instructions only one time, while forever but-
tons execute their code repeatedly until they are clicked again.
Typically a model has at least a setup button, to set up the initial condi-
tions of the world, and a go button to make the model runs continuously.
Some models have additional buttons that perform other actions.

• Sliders set the value of global variables, which are accessible by all agents.

• Switches are a visual representation for a true/false global variable.

• Choosers let users pick a value for a global variable from a list of options.
The choices may be strings, numbers, booleans, or lists.

• Input boxes are places where users input a value of a global variable.
Possible values only depends on the type of the input box (strings or
numbers, for example).

• Monitors display the value of a reporter.

• Plots show data generated by the model.

• Output. This is a scrolling area of text which can be used to create a log
of activity in the model.

• Notes allows modelers to add informative text in the Interface tab.

10



CHAPTER 3. NETLOGO 11

Figure 3.3: Example of a code tab of a NetLogo model.

3.4 NetLogo programming language

3.4.1 Agents

In NetLogo, there are specific commands for each agent. However, other commands
can be run by several agent types. All information about pre-built commands, such
as their syntax or which agents are able to run them, can be found in the NetLogo
Dictionary2. If it is not specified which agents have to run each command, the code
will be run by the observer if it is permitted.

Examples:

i) forward (or fd) is a turtle-related command. Its syntax is “forward number”.
With this command, the turtle moves forward by number steps (if number is
negative, the turtle moves backward).

ii) distance command can be run only by a turtle or a patch. Its syntax is
“distance agent” and it reports the distance from the agent to the given turtle
or patch.

3.4.2 Ask

The observer is not represented in the world but it can give a command to the
patches or turtles using ask.

Its syntax is: ask agent/agentset [commands], and it makes that the specified
agent or agentset runs the given commands.

2https://ccl.northwestern.edu/netlogo/docs/dictionary.html
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CHAPTER 3. NETLOGO 12

Figure 3.4: Example of interface tab of NetLogo model.

Therefore, the observer uses ask to ask all turtles, all patches or all links to
run commands. You can also use ask to have an individual agent do the same.
However, when a command is directly given to a group of agents, you only have to
give the command itself.

Examples:

i) ask turtles [ face patch 0 0 ]. All turtles will be oriented towards patch
(0,0).

ii) ask patch 0 0 [ set pcolor green ]. Only the patch with coordinates
(0,0) will turn green.

3.4.3 Procedures

In NetLogo, commands and reporters tell agents what to do.

Commands are actions that have to be performed by an agent or agentset, re-
sulting in some effect. Some examples are forward or face, used before.

Reporters are instructions for computing a value, which the agent then ”reports”
to whoever asked it. The instruction distance used before in this section is an
example. It may be used within a command as a condition.

On one hand, we have commands and reporters pre-built in NetLogo; they are
called primitives. As we said before, the NetLogo Dictionary has a complete list of
primitive commands and reporters. Among them, there are arithmetic operators
like +, -, *, /, >, >=... and other common mathematical functions like sin, exp,
log, mean or variance. It is also possible generate random numbers with primi-
tive reporters like random (which reports a random integer number), random-float
(which reports a random floating point number) or random-normal (which reports

12



CHAPTER 3. NETLOGO 13

a random number of a normal distribution with mean and standard-deviation spec-
ified). Finally, important primitive commands are the ones that control flow like
if, ifelse or stop, and all the logic commands like and or or.

For instance, we are going to analyze in depth the following instruction:

ask patches[

ifelse distance (patch 0 0) > 5 [set pcolor red][set pcolor yellow]

]

In this case, we have used three primitive commands (ask, ifelse, set), one prim-
itive reporters (distance) and one primitive variable3(pcolor):

1. ask. See Section 3.4.2.

2. ifelse. Syntax: ifelse reporter [ commands1 ] [ commands2 ]. Descrip-
tion: reporter must report a true/false value. The agent runs commands1 or
commands2 depending on whether it reports true or false, respectively. The
reporter may report a different value for different agents, so some agents may
run commands1 while others run commands2.

3. distance. Syntax: distance agent. Description: as we explained in 3.4.1, it
reports the distance from the agent to the given turtle or patch.

4. set. Syntax: set variable value. Description: sets variable to the given value.

5. pcolor. Description: variable containing the color of a patch.

Therefore, that code would turn the color of patches into red or yellow, depending
on if they were farther or closer than 5 units of distance from, respectively.

On the other hand, commands and reporters defined by the modeler are called
procedures. Their code begins with to or to-report, depending on whether it is
a command procedure or a reporter procedure, followed by a name which will be
its label in the program. To put an end to the procedure, end is used.

For example, the code for a procedure called move that makes turtles walk
randomly around the world would look like this:

to move

ask turtles[

rt random 360

fd 1

]

end

3See 3.4.4.
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CHAPTER 3. NETLOGO 14

Many commands and reporters take inputs, which are values that the command
or reporter uses in performing its actions or computing its result. Procedures can
take inputs too by putting their names in square brackets after the procedure name.

Finally, when buttons were explained in Section 3.3 we said a model typically has
at least a setup and a go button, but in reality these buttons are just a quick way to
run two procedures called setup and go, respectively. This works for all procedures
and commands, so buttons of the Interface tab contain instructions (either the
name of the procedure or command, or lines of code directly) that will be run when
users press them. So in our example we could add a button called move which may
contain the code “move”. It would call the procedure move when a user clicked the
button.

3.4.4 Variables

Variables (or agent variables) are places to store values (such as numbers) in an
agent. There are global variables, turtle variables, patch variables, or link
variables. In addition, there are some primitive variables like color or pcolor,
but you can also define your own variables.

Global variables have a single value, and every agent can access them at whatever
time. New global variables can be created by adding a switch, slider, chooser or
input box in the Interface tab, or by using globals at the beginning of the Code
tab. For example, globals [price] would create a global variable called ”price”.

Turtle, patch, and link variables are different. Each turtle has its own value for
every turtle variable, so there are the same number of values for a turtle variable
as turtles in the world. The same goes for patches and links, but it is important
to know that a turtle can read and set patch variables of the patch it is standing
on. New turtle, patch or link variables can be defined by using turtles-own ,
patches-own and links-own, respectively. For example, turtles-own [energy]

would create a turtle variable called energy.

The structure “[variable-name ] of agent/agentset ” used in the correct context
would refer to values of the variable called variable-name for the specified agent or
agentset. For example, [xcor] of turtles used in an observer context would show
the current x coordinate of all turtles. As exception, values of global variables would
be shown by calling their name without brackets in any context, so in the example
above price would refer to the value of the global variable price and it may be used
in other procedures like if price < 100 [...].

In addition, there are local variables that are defined and used only within a
particular procedure. The let command is used to create local variables.

Finally, a distinguished variable-related command is set. Its syntax is set vari-
able value. Thereafter, the given variable stores value, so it is the way to change
values of variables. For example, ask turtles [ set size 3 ] would make tur-
tles change their size (which is a pre-built turtle variable) to 3 (by default is 1).

14



CHAPTER 3. NETLOGO 15

3.4.5 Ticks

In many NetLogo models, time pass in discrete steps called ticks. They are impor-
tant in the setup and go procedures, which should have the following structure:

to setup

clear-all

...

reset-ticks

end

We use clear-all and reset-ticks commands. First one clears the tick counter
along with everything else, and the other one resets the tick counter to zero.

to go

...

tick

end

The tick command advances the tick counter by 1.

3.4.6 Plots

The two basic commands for plotting things are plot and plotxy.

Plot only requires one reporter which will be the y value plotted. The x value
will automatically be 0 for the first point, 1 for the second, and so on. It is especially
useful for plotting a new point of a variable at every time step. For example: plot
count turtles would plot the total number of turtles (using the primitive reporter
count). This function can use reporters made by the modeler.

On the other hand, plotxy requires two reporters that will be the x and y values
of the point plotted. It can use reporters made by the modeler too. For example,
plotxy [xcor] of turtle 1 [ycor] of turtle 1 plots the trajectory of turtle
1.
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Chapter 4

Stock Market Model

Taking Silva’s (2014) Collective Behavior in the Stock Market model as a departure
point, we have designed and implemented a simple agent-based stock market simu-
lating the evolution of a single stock price. Agents represent investors buying and
selling based on their individual decisions.

The general idea for this market model is that investors try to obtain benefits.
Therefore, if investors think that price will rise, they will buy shares of the company
expecting this growth and when price reaches their expected return goal, they will
sell the shares. This strategy is called long buying. In the same way, if investors
think that price will fall, they will borrow shares for selling them at a higher price
and they will buy them later at a lower price to return them. This other strat-
egy is called short selling. Nevertheless, investors’ beliefs may be wrong and price
can fall (rise) while they are expecting its increase (drop). When this happens, the
time until an agent realizes his/her losses and close position will depend on each one.

Investors are divided into two groups: investors affected by disposition effect and
investors who use stop-loss orders, depending on when they close positions. But
independently to the group they belong, all investors try to profit using long buying
and short selling.

At each time period, agents have either a long position, or a short position or
fetch information from their neighbors and the market sentiment to enter the mar-
ket. Investors with a long position close it depending on the price. If sale at the
current price produces a revenue higher than their individual expected return, they
sell. Closing a losing position depends on the type of investor. Investors using
stop-loss orders sell if the price decrease results in a loss greater than the stop-loss
boundary. Investors affected by the disposition effect sell if losses are greater than
2.25 times their expected return. Finally, if the price has not reached these limits,
both types of investors hold their position in this time period. Similarly, investors
with a short position close it depending on the price. If buying at the current price
produces a revenue higher than their individual expected return, they buy. Closing

16



CHAPTER 4. STOCK MARKET MODEL 17

a losing position also depends on the type of investor. Investors using stop-loss
orders buy if the price increase results in a loss greater than the stop-loss boundary.
Investors affected by the disposition effect buy when losses are greater than 2.25
times their expected return. Finally, if the price has not reached these limits, both
types of investors hold their position in this time period. If investors do not buy or
sell, they enter the market with a probability buyprob of long buying and sellprob
of short selling. Otherwise, agents do not operate.

Another assumption of the model is that all investors use the same strategy for
deciding when they should enter the market. But the same strategy does not mean
they act in the same way in a given situation; it will depend on their individual
beliefs in the information they have and the market sentiment. With this, we try
to capture the idea that there are investors who occasionally exhibit overconfidence
resulting in risky operations and also the influence of market sentiment in decision
making.

By default, heterogeneous expectations are considered, so every agent has a
unique expected return. This captures the idea that every individual has a different
behavior in risk situations.

4.1 Model hypotheses

Based on Silva’s (2014) model, we consider a market populated by 10.000 agents
divided into two groups: investors affected by the disposition effect and investors
who use stop-loss orders. Independently to the group they belong, all investors use
long buying and short selling as strategies.

Agents collect information on whether their neighbors are buying (or selling) and
will be willing to buy (or sell) depending on this information. In addition, at any
moment an investor j may have additional information recommending to buy or
sell. To model this situation, we use an auxiliary variable Oj t

buy(or sell) for agent j and

time step t. For example, if Oj t
buy = 1, the agent possesses extra information advising

him to buy; if not, Oj t
buy = 0, and analogously for selling. We balance the influence

of his preferred choice and his surrounding behavior. We use a weighting term
ωj t representing the investor’s confidence in his own information: if ωj t = 0, the
agent pays no attention to the information he owns; if ωj t = 1, his own information
receives the same weight as that of his neighbors; when ωj t grows, the weight given
to his own information increases towards overconfidence. Finally, we assume that
ωj t follows a uniform distribution on the interval [0, ωmax] where ωmax is a maximum
value previously established.

17



CHAPTER 4. STOCK MARKET MODEL 18

On the other hand, investors get information on the global sentiment of the
market, so we define a market sentiment index I by:

I = Dt + Ishock

where

Dt =
bt − st
n

, (4.1.1)

n = 10000, bt and st are the total number of buyers and sellers in the time period t,
respectively. Also, Ishock is a constant related to additional information (Ishock > 0
is related to good news about the company, while Ishock < 0 to bad news and
Ishock = 0 means that there is no important information).

Nevertheless, each agent uses I differently, and the random parameter βj ∈ [ 0, 1)
captures this fact. βj = 0 means that agent j is not influenced by market sentiment,
whereas βj = 1 means that agent j keeps in mind this information to make decisions.

In summary, the probability that agent j buys stocks in a given time period t is:

P buy
j t =

bj t + ωj tO
buy
j t

8 + ωj tO
buy
j t

+ βj I , if I > 0 (4.1.2)

where bj t is the number of buyers around agent j (maximum 8) and the last term
(βj I) is not considered if I ≤ 0.

The probability that agent j sells stocks in a given time period t is:

P sell
j t =

sj t + ωj tO
sell
j t

8 + ωj tOsell
j t

+ βj |I| , if I < 0 (4.1.3)

where sj t is the number of sellers around agent j (maximum 8) and the last term
(βj |I|) is not considered if I ≥ 0.

By default, heterogeneous expectations are considered, so every agent has a
unique expected return. In addition, expected returns follow a uniform distribu-
tion on the interval [0, rmax], where rmax is a maximum value previously established.

Finally, we consider a hyperbolic tangent functional form for the excess demand,
resulting in the following stock price in the time period t:

pt = pt−1 (1 + tanhDt) (4.1.4)

Note that Dt ∈ (−1, 1) and it is both a measure of the market sentiment and
what rules the law of supply and demand: Dt > 0 iff bt > st, that is there are more
buyers than sellers and price increases due to price formula 4.1.4 (as the law of
supply and demand states); Dt < 0 iff st > bt, that is there are more sellers than
buyers and price decreases (as the law of supply and demand states too).

18
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4.2 Investors affected by the disposition effect

On their analyses of decision under uncertainty, Kahneman and Tversky (1979)
realized that people behavior is different in the domains of gains and losses: risk
aversion prevail when there are gains, whereas risk seeking is exhibited in the do-
main of losses. That is, people tend to choose prospects with less risk (even if
their expected value is lower) when their choices involve profits, however they pre-
fer choices with a substantial probability of a loss to a sure loss which is smaller.
Furthermore, Kahneman and Tversky also realized that losses produce more dis-
satisfaction than joy is produced by an equivalent amount of gains . All these ideas
result in the Prospect theory.

The disposition effect is an irrational behavior observed in financial decisions
that consists in the investors’ tendency to hold losing positions for too long and sell
winning positions too soon.

It can be explained by prospect theory. About selling winning positions early,
prospect theory would say that investors prefer riskless profits to a riskier option
that either produces greater or lower profits. Whereas holding losing positions too
long could be explained by investors’ aversion to losses, which make them choose
risky options that could produce greater losses instead of admit their current losses.

To model this behavior, agents affected by disposition effect only will close a
loser position if there is a variation in price greater than 2.25 times their individual
expected return. Since agents of the model close winning positions when outcome
exceeds expected return independently of price tendency, these agents hold losing
positions too long, sell winning ones too soon, and furthermore, show a greater loss
aversion; so they exhibit the disposition effect. The 2.25 value is the estimation
(based on experiments) made by Tversky and Kahneman (1992) to a parameter of
the value function used in prospect theory to explain the ideas of previous para-
graphs.

4.3 Investors using stop-loss orders

In the stock market, stop-loss orders are one effective way to avoid the disposition
effect. Stop-loss orders protect positions by triggering a market order if the price
exceeds a certain level. There are two types: sell-stop orders, which protect long
positions, and buy-stop orders, which protect short positions. These orders are
based on the assumption that if the price falls (or increases) at a certain value, it
may continue to fall (or to increase) much further, so the loss is capped by closing
the position.

In our model, we suppose that agents who use stop-loss orders always use the
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same strategy, so each one has a unique fixed value as limit. This limit is the
percentage of the investment this agent will accept as losses. If the price at a
given moment means losses greater than this limit, a order to close position will
be requested. For example, an investor who has 5% as limit and has a open long
position whose initial price was 100$ will sell if the price falls below 95$.

4.4 Market entry strategy

If an agent has no stocks, it will enter the market when a chance appears. We sup-
pose investors keep in mind three information sources for deciding when they should
invest: individual beliefs, neighbors’ actions and the global market sentiment.

Couzin (2008) modeled how information is transferred within animal groups
when group members do not know which individuals, if any, have information. In
that paper, he also considered the preferences of individuals who has more infor-
mation than others, a common situation in the stock market.

We adapted Couzin’s idea to the stock market in order to compute the proba-
bilities to make a purchase or a sale, adding a term quantifying the global market
opinion. The results are Eq. 4.1.2 and Eq. 4.1.3.

4.5 Weaknesses of the model

Making a model of the stock market is not easy due to the quantity of factors that
are involved. Even so, we created a model based on the hypotheses discussed before
in this chapter. However, we might assume things that are not always true or we
might simplify some elements too much. Now we are going to discuss these aspects
that could be improved and these real life situations that have been excluded.

First of all, there are intrinsic limitations in the model like the approximation
of expressing the price as a formula or the hyperbolic tangent form of the excess
demand function.

Each investor may have his own market entry strategy, but we supposed only one
strategy for all. Besides that, we use the idea of collective behavior in this strategy
but there is no evidence that it works in financial markets.

Although we introduced irrational behaviors like holding loser positions too long
due to the disposition effect, these are restricted to the moment when agents realize
gains or losses. Thus, spontaneous irrational behaviors are not considered. Because
of this, there are common situations in the real stock market that are not considered
in our model; for example, buying more assets, even if the investor is losing money

20



CHAPTER 4. STOCK MARKET MODEL 21

and price is still falling, because he supposes that price will recover part of its past
value.

In addition, we assume that all agents use both long buying and short selling
equally and this is not always true. Of course there are investors using these two
strategies equally, but many investors only buy long in the real stock market.

Finally, the value of model’s parameters could be discussed too but it is a less
important matter because they affect model dynamics less than other hypothesis.
For example, it may be reasonable that expected return would not be constant for
each agent but different for each investment of this agent. This would capture the
idea that investors has different expected returns depending on several factors like
the operation risk or the entry price.
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Chapter 5

Analysis of financial time series

When a variable is measured sequentially in time at a fixed interval, the data form
a time series. There are time series in many areas, for example: history of average
global temperature in meteorology, birth rates in demography or the daily closing
stock prices in economics. Time series analysis is the group of statistical methods
used to understand the processes behind time series, make a model of them and,
furthermore, forecast future values based on current data.

The main features of many time series are trends and seasonal effects. If these
patterns are deterministic, they can be modeled with functions of time by linear
models. However, sometimes the trends of a time series cannot be explained by
a plausible reason or their changes seem unpredictable; for example, in economic
and financial time series. Both random (stochastic) and deterministic trends can
be removed by differencing.1

Another important feature of time series is that observations near in time tend
to be correlated (or serially dependent). A key question in time series analysis is
how to include this dependency in the models to fit better the data. There are
several methods to explain and estimate this correlation.

Finally, time series can show periods of different variances. This happens when
the variance is serially dependent, technically called conditional heteroskedasticity,
and it is common in financial and climatological time series. A logarithmic transfor-
mation may remove this effect, otherwise there are models that try to incorporate it.

In this chapter, we are going to focus on financial time series analysis. First,
a common strategy for modeling time series is expounded, followed by the main
features of financial time series. Then, basic concepts of time series analysis are
defined and the most popular stationary models are discussed. Finally, we explain
the concept of volatility in economics and, after that, we describe the ARCH models

1Given a time series {xt : t = 1, ..., n and n ∈ N}, note that the differences ∇xt = xt − xt−1,
for t ≥ 2, form a new time series.
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typically used to fit financial time series.

5.1 Model-building strategy

Box and Jenkins (1976) used a methodology in order to build ARIMA models2 that
has become the basis of time series analysis. This strategy has three main steps:

1. Identification

2. Fitting

3. Diagnostics

Identification (or model specification) consists in selecting a model that may fit
an observed time series properly. This step includes plotting the series, calculating
several statistics, determining if the observations are correlated and other proce-
dures in order to identify the main features of the data. In addition, when we
are selecting the model, we should keep in mind the principle of parsimony, which
states that the model with the fewest number of parameters should be selected.
Nevertheless, the selected model is provisional and subject to revision later.

Since models have parameters that must be estimated from the data, the next
step for building a model is calculating the best possible estimate of the parameters
included in the selected model. That is the purpose of the fitting step, and it can
be reached with either least squares or maximum likelihood estimation.

Finally, model diagnostics evaluates the quality of the model we have specified
and estimated. If the model is appropriate, the observed values can be explained by
it and, furthermore, these will satisfy the model assumptions. When this happens,
we have a model which fits the data properly, so it can be used to forecast future
values. Otherwise, we must return to the identification step and repeat the process
until we find a model suitable for the observations.

Nowadays, there are statistical software aggregates like R including procedures
needed for identification and model fitting, so these programs allow analysts to fo-
cus on model diagnostics.

In addition, it is possible that more than one model fits the data. In this case,
we should choose one as implemented in the Akaike Information Criterion (AIC;
Akaike, 1974). The AIC is a measure of the quality of a statistical model for a given
set of data. It rewards a good fitting for the observations but it penalizes a large
number of parameters, so it incorporates the principle of parsimony.

2These models will be discussed later in this chapter.
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Definition 5.1.1. Akaike information criterion (AIC)

AIC = −2× log-likelihood + 2× number of parameters

The first term refers to the maximum probability to obtain the data given the
model, whereas the second term is the penalization for models with too many pa-
rameters. Hence, given a group of possible models for the data, the preferred one
is the one with the minimum AIC.

Note that AIC only provides a rule for deciding between a group of options.
However, if all candidates fit the data poorly, AIC does not warn us about this fact,
so we will choose one model as the better fit erroneously. That is why we must
evaluate if the model candidates are a good fit for the data before using AIC.

5.2 Financial time series and their features

Financial time series analysis includes all the procedures used to study the evolution
of asset valuations over time. Although it is a field of study very empirical due to
the complexity of the subject, there are statistical tools useful for analyzing these
series.

5.2.1 Returns

Definition 5.2.1. Simple return
Let Pt the price of an asset at time index t. The simple (net) return Rt is defined
by

Rt =
Pt − Pt−1

Pt−1

That is, the relative price variation.

Therefore, the simple gross return is: 1 +Rt =
Pt

Pt−1
.

Most financial studies use returns instead of prices. This mainly happens be-
cause returns have no dimensions, so they are very useful to measure investment
opportunities or performance. In addition, returns present better statistical prop-
erties than prices. However, there are several definitions of an asset return.

Holding the assets for k periods between t− k and t gives a simple gross return

1 +Rt[k] =
Pt

Pt−k
=

Pt

Pt−k
=

Pt

Pt−1
× Pt−1

Pt−2
× · · · × Pt−k+1

Pt−k
=

= (1 +Rt)(1 +Rt−1) · · · (1 +Rt−k+1) =
k−1∏
j=0

(1 +Rt−j) (5.2.1)
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Definition 5.2.2. Log return
Let Pt the price of an asset at time index t. The log return (or continuously com-
pounded return) rt is defined by

rt = ln(1 +Rt) = ln

(
Pt

Pt−1

)
= pt − pt−1

where pt = lnPt. Note that the log return is the natural logarithm of the simple
gross return.

In this case, the k-period gross log return is

rt[k] = ln(1 +Rt[k]) = ln[(1 +Rt)(1 +Rt−1) · · · (1 +Rt−k+1)] =

= ln(1 +Rt) + ln(1 +Rt−1) + · · ·+ ln(1 +Rt−k+1) =

= rt + rt−1 + · · ·+ rt−k+1 (5.2.2)

Hence, the multi period log return is simply the sum of log returns involved.

5.2.2 Distributions of returns

Stock returns are usually treated as continuous random variables. Therefore, if we
have n log returns {r1, ..., rn}, the joint density function is:

f(r1, ..., rn; θ) = f(r1)f(r2|r1) · · · f(rn|rt−1, ..., r1) (5.2.3)

where θ is a vector of parameters and it is omitted for simplicity in the right part
of the identity. To obtain eq. 5.2.3 we used successively the relation between joint,
marginal and conditional distributions

fx,y(x, y; θ) = fx|y(x; θ)× fy(y; θ)

Equation 5.2.3 implies that finding the conditional distributions of returns is
essential in financial time series. However, marginal distributions are easier to be
estimated than conditional ones and, in addition, if observed returns have small
correlations, both marginal and conditional distributions tend to be equal. That
is why we are going to discuss the two most popular distributions proposed as
marginal distributions of returns.

1. Normal distribution

A traditional hypothesis is that the simple returns {Rt : t = 1, ..., n} are
independent and identically distributed (iid) as normal variables with constant
mean and variance. That is, Rt ∼ N(µ, σ2), ∀t. However, this assumption
implies several problems:

i) Normal distributions take values in the real line, whereas simple returns
are always greater than -1 as a consequence of definition 5.2.1.
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ii) The multiperiod simple gross return (Eq. 5.2.1) does not follow a normal
distribution because the product of normal distributions is not normally
distributed.

iii) Observed returns series do not seem to be normal; they tend to have
heavier tails than normal distribution (see Fig. 5.1).

Figure 5.1: Comparison of empirical (solid lines) and normal (dashed line) densities
for the daily simple and log returns of Ibex-35 Index. The sample period is from
October 19, 1990 to January 13, 2015. The left plot is for simple returns and
the right plot for log returns. The normal density uses the sample mean while the
standard deviation is estimated by a sample quantile. We do not use the sample
standard deviation due to the high volatility of log returns (See Fig. 5.2).

2. Lognormal distribution

Another common assumption is that the log returns {rt : t = 1, ..., n} are
iid and they follow a normal distribution with constant mean and variance.
That is, rt ∼ N(µ, σ2), ∀t. Therefore, the simple returns Rt are iid random
variables log normally distributed. First, note that

1 +Rt =
pt
pt−1

= exp(rt) =⇒ Rt = exp(rt)− 1 > −1.

Hence, the previous problem with the lower bound of Rt is solved with the
lognormality hypothesis. Furthermore, since the multiperiod log return is
just a sum of log returns (Eq. 5.2.2), which are iid and normally distributed,
the multiperiod log return also follows a normal distribution. So the second
problem of the normality assumption is solved too. However, log-normality
is not consistent with observed log returns, again because they tend to have
heavier tails than the normal distribution (see Fig. 5.1).
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5.2.3 Volatility

As we said in the introduction to this chapter, many financial time series show pe-
riods of low and high volatility. Later on, in section 5.6 we will show a procedure to
model this variability (as conditional heteroskedasticity). Volatility is an important
factor because it quantifies the investment risk. Also, modeling the volatility of a
time series can improve the efficiency in parameter estimation and the accuracy in
interval forecast. However, volatility is not directly observable because we usually
only have one observation for each time period.

We are going to discuss other relevant features of volatility with one example.
Figure 5.2 shows the daily log returns of Ibex-35 Index from October 19, 1990
to January 13, 2015. First, we can see there was a high variance period around
2009, while years 2004 and 2005 had a low variance, so there are volatility clusters.
Second, volatility seems to evolve continuously in time, with no sudden changes.
Third, variances are within a range of values. For example, in Fig. 5.2 limits are
approximately -0.1 and 0.1. Finally, although in this example is not clear, volatility
is also characterized by the leverage effect, which is the tendency of volatility to
increase when the price falls, but not with upwards movements.

Figure 5.2: Time plot of daily log returns of Ibex-35 Index from October 19, 1990
to January 13, 2015. (Source: www.infomercados.com)

Definition 5.2.3. Volatility
The volatility at time t, σ2

t|, is the conditional variance of a given return:

σ2
t| = V ar(rt|Ft−1)

where Ft−1 is the available information at time t− 1.
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Hence, conditional heteroskedastic models, discussed later in this chapter, focus
on modeling this conditional variance so that it satisfies the properties explained
above.

5.3 Fundamental concepts

5.3.1 Time series model

Definition 5.3.1. Stochastic process
A stochastic process is the sequence of random variables {Xt : t ∈ Z} used as a
model for an observed time series {xt : t = 1, ..., n}. 3 It is usually called time
series model.

5.3.2 Mean and variance

Definition 5.3.2. Mean function
The mean function of a time series model {Xt} is

µt = E(Xt)

That is, the mean function is the expected value of the process at time t. In general,
µt is a function of t. However, if the mean function is constant, we say that the
time series model is stationary in the mean.

Since we usually only have a realization of the time series model, we can, without
assuming a particular trend structure, estimate the mean at each time period by the
corresponding observed value; that is, µt = xt. In practice, we first estimate trend
and seasonal effects, remove them and, after that, we treat the residual time series
(the random component) as a constant in mean series. In this case, the sample

estimate of the population mean µ is the sample mean x̄ =
1

n

n∑
t=1

xt where n is the

number of observations.

Definition 5.3.3. Variance function
The variance function of a time series model {Xt} that is stationary in the mean is

σ2
t = E

[
(Xt − µ)2

]
which may depend on time period t.

If we assume the model is stationary in the variance, we can estimate the con-

stant population variance σ by the sample variance V ar(x) =
1

n− 1

n∑
t=1

(xt − x̄)2

where n is the number of observations.

3We will distinguish the model from the data by using uppercase and lowercase, respectively.
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5.3.3 Stationarity

Definition 5.3.4. Strict stationarity
A time series model {Xt} is strictly stationary if the joint distribution of Xt1 , ..., Xtn

is the same as the joint distribution Xt1+k, ..., Xtn+k, ∀t1, ..., tn, k ∈ Z. That is, the
distribution is the same after an arbitrary time shift.

Definition 5.3.5. Second-order stationarity
A time series model {Xt} is second-order stationary if it is stationary in both the
mean and the variance and, furthermore, the autocovariance Cov(Xt, Xs) depends
only on the number of time steps k between them (that is, k = |t−s|). This number
k is known as the lag.

Note that strict stationarity implies second-order stationarity.

5.3.4 Autocorrelation and the correlogram

Definition 5.3.6. Autocovariance function
The autovariance function (acvf) of a time series model {Xt} is defined as

γt s = Cov(Xt, Xs)

where Cov(Xt, Xs) = E [(Xt − µt)(Xs − µs)] = E(XtXs) − µtµs. Note that γt t =
V ar(Xt).

4

It is a measure of the linear association between whatever Xt and Xs. Positive
values mean that Xs tends to increase when Xt increases, whereas negative ones
mean that Xs tends to decrease when Xt increases. Finally, γt s = 0 indicates no
linear association between Xt and Xs.

Definition 5.3.7. Autocorrelation function
The autocorrelation function (acf) of a time series model {Xt} is given by

ρt s = Corr(Xt, Xs) =
γt s√
γt tγs s

It is a dimensionless measure of the linear association between Xt and Xs. Its
interpretation is equal to autocovariance’s one, with the exception of autocorrela-
tion only takes values between -1 and 1.

For second-order stationary time series models, which have an autocovariance
Cov(Xt, Xs) that depends only on lag k and a mean constant in time, the acvf is
given by

γk = E [(Xt − µ)(Xt+k − µ)]

4V ar(Xt) = E
[
(Xt − µt)

2
]

= E [(Xt − µt)(Xt − µt)] = γt t.
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and does not depend on the time period t. This follows from definition 5.5.9 by
replacing s with t+ k and using µt = µt+k = µ, ∀k.

In addition, the acf is defined by

ρk =
γk
σ2

where σ2 = V ar(Xt) = γt t = γ0, ∀t. Finally, note that ρ0 = 1.

The acvf and acf can be estimated by their sample equivalents. The sample acvf

is ck =
1

n

n−k∑
t=1

(xt − x̄)(xt+k − x̄) and the sample acf is rk =
ck
c0

. Note that c0 is

the variance calculated with denominator n. And ck is also used calculated with
denominator n, although we are summing n − k terms, because then ck ∈ [−1, 1],
∀k ∈ N.

Therefore, both the acvf and the acf are useful in order to evaluate the depen-
dency between observations near in time. That is why we use the correlogram to
do this.

Definition 5.3.8. The correlogram
The correlogram is the plot of rk against the lag k.

If ρk = 0, rk is approximately distributed like a normal with mean −1/n and
variance 1/n. Thus, the limits

− 1

n
± 1.96√

n

are usually plotted in the correlogram to identify statistically significant values.
If rk falls outside this confidence interval, we will have evidence against the null
hypothesis of ρk=0 at the 5% level. If ρk = 0 ∀k, we expect that 5% of the rk fall
outside the limits.

5.4 White noise

A very important example of a stationary model is the white noise.

Definition 5.4.1. White noise
A sequence {Wt : t = 1, 2, ..., n} of random variables is a white noise if the variables
W1, W2,...,Wn are independent and identically distributed with mean zero.

Note that by this definition all the variables Wt have the same variance, which
we will denote σ2

w.

Wt is strictly stationary:
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P (Wt1 ≤ x1,Wt2 ≤ x2, ....,Wtn ≤ xn) = (by independence)

= P (Wt1 ≤ x1)P (Wt2 ≤ x2)....P (Wtn ≤ xn) = (identical distributions)

= P (Wt1+k ≤ x1)P (Wt2+k ≤ x2)....P (Wtn+k ≤ xn) = (by independence)

= P (Wt1+k ≤ x1,Wt2+k ≤ x2, ....,Wtn+k ≤ xn)

Therefore, the autocovariance function is

γk =


σ2
w for k = 0

0 for k 6= 0

because

γk = Cov(Wt,Wt+k) = E[(Wt−µt)(Wt+k−µt+k)] = E[(Wt)(Wt+k)] = V ar(Wt) δk 0 = σ2
w δk 0

And the autocorrelation functin is given by

ρk =


1 for k = 0

0 for k 6= 0

One interesting example of white noise is the Gaussian white noise, which is the
special case when the variables follow a normal distribution (i.e., Wt ∼ N(0, σ2

w)).

5.5 ARMA models

Removing trends and seasonal effects is the first step of time series analysis. How-
ever, sometimes there are correlations between adjacent observations, which can
be detected using the correlogram described before in this chapter. In this section
we are going to discuss the most popular family of stationary models: the ARMA
models.

5.5.1 Moving Average models

Definition 5.5.1. MA(q) process
Amoving average (MA) process of order q is a linear combination of the current
white noise term and the q most recent past white noise terms, so it is given by

Xt = Wt + β1Wt−1 + β2Wt−2 + ...+ βqWt−q (5.5.1)

where {Wt} is white noise with zero mean and variance σ2
w and βq 6= 0.
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If we define the backward shift operator (or lag operator) B by

BXt = Xt−1

we can rewrite equation 5.5.1 as

Xt = (1 + β1 B + β2 B2 + ...+ βq Bq)Wt = φq(B)Wt (5.5.2)

where φq(B) is a polynomial of order q.

Properties

1. MA processes are stationary

Since MA processes consist of a sum of white noise terms, and white noise is
stationary, they are stationary. Therefore, MA models have constant mean
and variance and the autocovariance depends only on the lag.

2. Mean

µ = E[Xt] = (by properties of

= E[Wt + β1Wt−1 + β2Wt−2 + ...+ βqWt−q] = expected value)

= E[Wt] + β1E[Wt−1] + β2E[Wt−2] + ...+ βq E[Wt−q] = (white noise)

= 0

3. Variance

σ2 = V ar[Xt] = (by properties of

= V ar[Wt + β1Wt−1 + β2Wt−2 + ...+ βqWt−q] = the variance)

= V ar[Wt] + β2
1 V ar[Wt−1] + ...+ β2

q V ar[Wt−q] +
∑
i 6=j

βi βj Cov(Wi,Wj) =

= σ2
w (1 + β2

1 + ...+ β2
q ) (5.5.3)

since {Wt} is white noise.

4. Acvf and acf

The autocovariance function is given by

γk = Cov(Xt, Xt+k) =

= Cov

(
q∑

i=0

βiWt−i,

q∑
j=0

βj Wt+k−j

)
= (properties of covariance)
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=

q∑
i=0

q∑
j=0

βi βjCov (Wt−i,Wt+k−j) =

q∑
i=0

q∑
j=0

βi βj γ̂k+i−j = (white noise)

=



σ2
w (1 + β2

1 + ...+ β2
q ) for k = 0

σ2
w

q∑
i=0

βi βi+k for 1 ≤ k ≤ q

0 for k > q

(5.5.4)

where γ̂ refers to the acvf of the white noise sequence {Wt} and β0 = 1.

Therefore, the autocorrelation function is given by

ρk =


1 for k = 0∑q−k

i=0 βi βi+k/
∑q

i=0 β
2
i for 1 ≤ k ≤ q

0 for k > q

(5.5.5)

5. Invertibility

An MA(q) process is invertible if it can be expressed as a stationary autore-
gressive process of infinite order without an error term, which we are going to
define later. It can be demonstrated that this is equivalent to the fact that
all the roots of φq(B) exceed unity in absolute value.

5.5.2 Auto Regressive models

Definition 5.5.2. AR(p) process
An autoregressive (AR) process of order p is given by

Xt = α1Xt−1 + α2Xt−2 + ...+ αpXt−p +Wt (5.5.6)

where {Wt} is white noise with zero mean and variance σ2
w and αp 6= 0.

Using the backward shift operator, it also can be expressed as

θp(B)Xt = (1− α1 B− α2 B2 − ...− αp Bp)Xt = Wt (5.5.7)

where θp(B) is a polynomial of order p.

The term ‘autoregressive’ of the name is due to the model is a regression of Xt

on the p most recent past terms from the same series.
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Properties

1. Stationarity

An AR(p) process is stationary if, and only if, all the roots of θp(B) exceed
unity in absolute value. In this case, the AR process can be expressed as a
moving average process of infinite order:

(1− α1 B− α2 B2 − ...− αp Bp)Xt = Wt ⇒

⇒ Xt = (1− α1 B− α2 B2 − ...− αp Bp)−1Wt = (1 + β1 B + β2 B2 + ...)Wt

where the parameters βi are functions of α1, α2, etc. and their powers, so
roots’ absolute value must be greater than 1 for convergence.

2. Mean

Assuming stationarity:

µ = E[Xt] = (stationarity)

= E

[
∞∑
i=0

βiWt−i

]
= (properties of the expected value)

=
∞∑
i=0

βiE[Wt−i] = (white noise)

= 0

3. Variance

Assuming stationarity:

σ2 = V ar[Xt] = (stationarity)

= V ar

[
∞∑
i=0

βiWt−i

]
= (properties of the variance)

=
∞∑
i=0

β2
i V ar[Wt−i] +

∑
i 6=j

βi βj Cov(Wi,Wj) = (white noise)

= σ2
w

∞∑
i=0

β2
i (5.5.8)

where β0 = 1.
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4. Acvf and acf

The autocovariance function is given by

γk = Cov(Xt, Xt+k) =

= Cov

(
∞∑
i=0

βiWt−i,

∞∑
j=0

βj Wt+k−j

)
= (properties of covariance)

=
∞∑
i=0

∞∑
j=0

βi βjCov (Wt−i,Wt+k−j) =
∞∑
i=0

∞∑
j=0

βi βj γ̂k+i−j = (white noise)

=


σ2
w

∞∑
i=0

β2
i for k = 0

σ2
w

∞∑
i=0

βi βi+k for k ≥ 1

(5.5.9)

where γ̂ refers to the acvf of the white noise sequence {Wt}.

Therefore, the autocorrelation function is given by

ρk =


1 for k = 0∑∞

i=0 βi βi+k/
∑∞

i=0 β
2
i for k ≥ 1

(5.5.10)

For instance, we are going to discuss the main features of AR(1) models.

Xt = αXt−1 +Wt =⇒ (1− αB)Xt = Wt =⇒ Xt = (1− αB)−1Wt

We have:

(1− αB)−1 = 1 + αB + α2 B2 + ... =
∞∑
i=0

αi Bi

Hence

Xt =

(
∞∑
i=0

αi Bi

)
Wt =

∞∑
i=0

αiWt−i

Its mean is zero and its variance is (see Eq. 5.5.8)

σ2 = σ2
w

∞∑
i=0

(αi)2 = σ2
w

∞∑
i=0

α2i =
σ2
w

1− α2

where the series is convergent if, and only if, |α| < 1. Since θp(B) = 1 − αB,
which root is 1/α, the condition |α| < 1 is equivalent to |1/α| > 1 as we said as
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stationarity condition.

The autocovariance function is given by (see Eq. 5.5.9)

γk =


σ2
w

1− α2
for k = 0

σ2
w α

k

1− α2
for k ≥ 1

 =
σ2
w α

k

1− α2
∀ k

because for k ≥ 1: γk = σ2
w

∞∑
i=0

αi αi+k = σ2
w α

k

∞∑
i=0

α2i

Therefore, the autocorrelation function is

ρk =
γk
σ2

=
σ2
w α

k/(1− α2)

σ2
w/(1− α2)

= αk

Therefore, since |α| < 1, the acf decays exponentially to zero.

5.5.3 ARMA models

The autoregressive moving average (ARMA) models that we are going to describe
in this section are a compact form that combines AR and MA models so that the
number of parameters used is smaller.

Definition 5.5.3. ARMA(p,q) process
An autoregressive moving average (ARMA) process of order (p, q) is given by

Xt = α1Xt−1+α2Xt−2+...+αpXt−p+Wt+β1Wt−1+β2Wt−2+...+βqWt−q (5.5.11)

where {Wt} is white noise with zero mean and variance σ2
w, αp 6= 0 and βq 6= 0.

Using the backward shift operator, it also can be expressed as

θp(B)Xt = φq(B)Wt (5.5.12)

where
θp(B)Xt = 1− α1 B− α2 B2 − ...− αp Bp

and
φq(B) = 1 + β1 B + β2 B2 + ...+ βq Bq
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Properties

1. Stationarity

An ARMA(p,q) process is stationary if, and only if, all the roots of the AR
characteristic equation θp(B) = 0 exceed unity in absolute value. In this case,
the ARMA process can be expressed as a moving average process of infinite
order:

(1− α1 B− α2 B2 − ...− αp Bp)Xt = (1 + β1 B + β2 B2 + ...+ βq Bq)Wt ⇒

⇒ Xt = (1−α1 B−α2 B2− ...−αp Bp)−1 (1+β1 B+β2 B2 + ...+βq Bq)Wt =

= (1 + β̂1 B + β̂2 B2 + ...) (1 + β1 B + β2 B2 + ...+ βq Bq)Wt =

= [1 + (β1 + β̂1) B + (β2 + β̂2 + β̂1 β1) B2 + ...]Wt =

where the parameters β̂i are functions of α1, α2, etc. and their powers, so
roots’ absolute value must be greater than 1 for convergence.

Note that the other properties are the same as for AR models.

5.6 ARCH models

In order to explain volatility, we need a model that allows for conditional changes in
the variance. One option is to use an autoregressive model for the variance process,
which results in the autoregressive conditional heteroskedastic (ARCH) models.

The correlogram of the squared series (after removing linear dependences if it is
necessary) is used to detect ARCH effects because it will show statistically signifi-
cant values of the acf if there is volatility. We also can use tests like the Box-Ljung
test for autocorrelation.

Definition 5.6.1. ARCH(p) process
An ARCH process of order p is given by

Xt = Wt

√√√√α0 +

p∑
i=1

αiX
2
t−i (5.6.1)

where {Wt} is white noise with zero mean and unit variance. Also, α0 > 0 and
αi ≥ 0, for i > 0 .
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In a compact form:

Xt = σtWt, σ2
t = α0 +

p∑
i=1

αiX
2
t−i

Note that, with this structure, large past squared shocks imply a large conditional
variance for the new observation Xt. Consequently, it is more likely that Xt will
have a large value (but not necessarily, because a large variance only increases the
probability of obtaining a large value). This behavior is similar to the volatility
clusters observed in financial time series.

Properties

1. Mean

µ = E[Xt] = (conditional expectation)

= E[E[Xt|Xt−j, j = 1, 2, ...]] = E

E
Wt

√√√√α0 +

p∑
i=1

αiX
2
t−i |Xt−j, j = 1, 2, ...

 =

= E

E[Wt]

√√√√α0 +

p∑
i=1

αiX
2
t−i

 = (white noise)

= 0

2. Variance

σ2
t = V ar[Xt] = E[X2

t ] (conditional expectation)

= E[E[X2
t |Xt−j, j = 1, 2, ...]] = E

[
E

[
W 2

t

(
α0 +

p∑
i=1

αiX
2
t−i

)
|Xt−j, j = 1, 2, ...

]]
=

= E

[
E[W 2

t ]

(
α0 +

p∑
i=1

αiX
2
t−i

)]
= (properties of the expected value)

= σ2
w

(
α0 +

p∑
i=1

αiE
[
X2

t−i
])

= α0 +

p∑
i=1

αi σ
2
t−i

since σ2
w = 1.

If we compare this equation with Eq. 5.5.2, we see that the variance of an
ARCH(p) process behaves like an AR(p) model.
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3. Positive excess kurtosis.

The excess kurtosis κ is defined by

κ =
E[X4

t ]

V ar[Xt]2
− 3

and it is a measure of the heaviness of tails. A normal distribution has κ = 0,
whereas heavy-tailed distributions have κ > 0 and light-tailed distributions
have κ < 0.

It can be demonstrated that ARCH models have positive excess kurtosis
(κ > 0), so the distribution of Xt has heavier tails than normal distribu-
tions, which is consistent with observed financial series.

4. Weaknesses of ARCH models

ARCH models assume that positive and negative observations of time series
have the same effects on volatility because it depends on the square of the
previous values, when in reality the reaction of asset prices is different in each
case. Furthermore, ARCH processes tend to overpredict the volatility because
they respond slowly to isolated large realizations.

Volatility models like ARCH, which are commonly used in financial time series
analysis, must be applied to time series with no linear dependencies, so first
we must fit an AR, MA or ARMA model if there are correlations in the data
to remove these dependencies and then we must fit an ARCH to the residuals
of the ARMA.
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Chapter 6

Simulated stock market series

We used the stock market model described in chapter 4 in order to obtain a sim-
ulated time series of log returns. In the current chapter, we are going to apply all
the methodologies, the procedures and the tools learned previously in this work to
the observed data and discuss if they have the main features of real financial time
series.

Figure 6.1: Time plot of 3000 simulated log returns of an asset. The simulation
was made with the stock market model described in chapter 4.

Fig. 6.1 shows a representative run of the simulation process, with n=10000
agents, expected return limit rmax = 0.15, ωmax = 1 and Ishock = 0 . Also, the ratio
of investors affected by the disposition effect to investors using stop-loss orders is 3.
Conventionally, the initial price is set to 100, although it does not affect the model
dynamics. At first sight, the series seems to be stationary, so we will analyze its
correlogram to determine if an ARMA model could fit the data. However, first we
are going to analyze the marginal distribution of log returns and check if the null
hypothesis of normality is rejected or not using the Shapiro-Wilk test.
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Looking at Fig. 6.2 we may think that the simulated log returns follow a normal
distribution because the normal density fits properly to the empirical one. However,
if we look carefully the Q-Q plot (right), we note that both tails are heavier than
the normal ones. To dissipate any doubts, we use the Shapiro-Wilk test, whose null
hypothesis is that the data are normally distributed.

Figure 6.2: Q-Q plot of simulated log returns versus a normal distribution.

Shapiro-Wilk normality test

data: r

W = 0.9974, p-value = 5.469e-05

Since the p-value is 5.469×10−5, we reject the null hypothesis of normality at the
level 0.05. Hence, despite the appearance, the simulated log returns are not normal.

In Fig. 6.1 the series seems to be stationary, so the next step in our analysis
is trying to fit an ARMA model to the data. But first we should verify that the
observations are correlated. According to the correlogram (Fig. 6.3), there are
correlations statistically significant. We also verify it with the Box-Ljung test for
autocorrelation, whose null hypothesis is that observations are not correlated.

Box-Ljung test

data: r.ts

X-squared = 219.5913, df = 9, p-value < 2.2e-16

Since the p-value is less than 2.2× 10−16, we reject the null hypothesis of uncorre-
lated data at the level 0.05. Therefore, an ARMA model seems to be a good fit.

Based on the Akaike Information Criterion (AIC), see Table 6.1, we obtain that
the ARMA model which fits better the data is an ARMA(1,2). Using the arima

function in R, we obtain:
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Figure 6.3: Correlogram of the simulated log returns series.

Call:

arima(x = r.ts, order = c(1, 0, 2))

Coefficients:

ar1 ma1 ma2 intercept

0.9152 -1.1171 0.2707 0

s.e. 0.0159 0.0228 0.0179 0

sigma^2 estimated as 1.036e-06: log likelihood = 16413.03, aic = -32816.05

Therefore, the fitted model is

rt = 0.92 rt−1 + zt − 1.12 zt−1 + 0.27 zt−2 (6.0.1)

where {zt} is assumed to be white noise with zero mean and variance σ2
z = 1.044×

10−6.

ARMA(1,0) ARMA(0,1) ARMA(1,1) ARMA(2,0) ARMA(0,2)
AIC -32655.47 -32643.47 -32660.09 -32667.34 -32679.73
Log Likelihood 16330.74 16324.73 16334.05 16337.67 16343.86

ARMA(2,1) ARMA(1,2) ARMA(2,2) ARMA(3,0) ARMA(0,3)
AIC -32794.82 -32816.05 -32814.99 -32700.98 -32707.69
Log Likelihood 16402.41 16413.03 16413.50 16355.49 16358.85

Table 6.1: AIC and Log Likelihood of fitted ARMA processes.

The model-building strategy described in section 5.1 states that the next step
must be the diagnostics of the fitted model, so we are going to check if the assump-
tions of the model are verified by the data. Therefore, the residual series of the fitted
model should be white noise, which is the same as both the residual series and its
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square should be uncorrelated. However, as we see in Fig. 6.4, the ARMA fit solved
the problem with the correlated observations but cannot explain the correlation in
the variance. The Box-Ljung test confirms our suppositions:

Box-Ljung test

data: res

X-squared = 4.9993, df = 9, p-value = 0.8344

Box-Ljung test

data: res^2

X-squared = 181.4821, df = 9, p-value < 2.2e-16

The p-value of the test for the residuals is 0.8344 and, thus, we can accept the
null hypothesis of no autocorrelations at the level 0.05, while the p-value for the
squared residuals is less than 2.2×10−6, so we reject the null hypothesis at the level
0.05. Hence, we are in front of a conditionally heteroskedastic variance, so we may
need to fit an ARCH model.

Figure 6.4: Correlogram of the residuals of the fitted ARMA(1,2) for the simu-
lated log returns (on the left). Correlogram of the squared residuals of the fitted
ARMA(1,2) for the simulated log returns(on the right).

To verify that an ARCH model could be a good fit, we do the Lagrange Multiplier
test for autoregressive conditional heteroskedasticity (ARCH LM-test), whose null
hypothesis is that there are no ARCH effects in the time series.

ARCH LM-test; Null hypothesis: no ARCH effects

data: res

Chi-squared = 155.5402, df = 12, p-value < 2.2e-16
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Since the p-value is less than 2.2 × 10−6, we reject the null hypothesis and an
ARCH model is required to fit the residuals.

Based on the AIC, we obtain an ARCH(3) (see Table 6.2). Using the garch

function in R:

Model:

GARCH(0,3)

Residuals:

Min 1Q Median 3Q Max

-3.447758 -0.660397 -0.006432 0.665198 3.563245

Coefficient(s):

Estimate Std. Error t value Pr(>|t|)

a0 7.375e-07 3.556e-08 20.741 < 2e-16 ***

a1 1.929e-01 2.534e-02 7.613 2.69e-14 ***

a2 4.589e-13 1.839e-02 0.000 1.000000

a3 8.982e-02 2.391e-02 3.757 0.000172 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Therefore, the fitted model is

zt = at

√
7.38× 10−7 + 0.19 z2t−1 + 0.09 z2t−3 (6.0.2)

where {at} is assumed to be white noise with 0 mean and unit variance. Note that
coefficient a2 is not considered because it is not statistically significant.

ARCH(1) ARCH(2) ARCH(3) ARCH(4)
AIC -32910.17 -32897.33 -32914.47 -32896.64
Log Likelihood 19212.98 19206.64 19215.29 19206.46

ARCH(5) ARCH(6) ARCH(7) ARCH(8)
AIC -32885.96 -32867.46 -32857.13 -32852.36
Log Likelihood 19201.2 19192.03 19186.95 19184.64

Table 6.2: AIC and Log Likelihood of fitted ARCH processes.

As we can see in Fig. 6.5, the ARCH effects seem to be eliminated from the
residuals of the ARCH model, and we are going to verify it by the Ljung-Box tests:

Box-Ljung test
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data: res.garch

X-squared = 4.7878, df = 9, p-value = 0.8524

Box-Ljung test

data: res.garch^2

X-squared = 9.259, df = 9, p-value = 0.4137

Since the p-values are 0.8524 and 0.4137 for the new residual series and its square,
we can accept the null hypothesis of no autocorrelations. Furthermore, if we do the
ARCH LM-test for the residuals of the ARCH:

ARCH LM-test; Null hypothesis: no ARCH effects

data: res.garch

Chi-squared = 21.3472, df = 12, p-value = 0.04552

Although we obtain a p-value less than 0.05, it is very close to that level and we
will accept the hypothesis of no ARCH effects because both correlograms and Box-
Ljung tests suggested it. Therefore, the residuals of the ARCH can be considered
white noise and we finally have found a model which fit the simulated log returns.

Figure 6.5: Correlogram of both the residuals (on the left) and the squared residuals
(on the right) of the ARCH(3) model fit for the residuals of the ARMA(1,2).

In summary, the complete model for the log returns is one ARMA(1,2)-ARCH(3)
given by:

rt = 0.92 rt−1 + zt − 1.12 zt−1 + 0.27 zt−2 (6.0.3)

where

zt = at

√
7.38× 10−7 + 0.19 z2t−1 + 0.09 z2t−3

and {at} is white noise with 0 mean and unit variance.
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Chapter 7

Conclusions

Throughout this work, we have learned that agent-based simulations are useful to
make models of complex systems such as the stock market, where the collective
behavior of investors, each of which acts independently, produces price movements.
Therefore, ACE models can be used for better understanding of such systems. In
that sense, NetLogo is an agent-based programming language whose simplicity have
allowed us to redesign Silva’s model in order to reproduce a very simple stock mar-
ket.

In addition, time series analysis attempts to understand the processes behind
observations, extract insights from data and make forecasts. It considers time se-
ries as a sequence of random variables, thus powerful tools of the probability theory
can be used. The main purpose of time series analysis is to model trends, seasonal
effects, dependence between adjacent observations and volatile variance. If trends
and seasonal effects are deterministic, they may be solved using linear models or
logarithmic transformations. Also, correlation between adjacent observations is re-
moved by autoregressive (AR) and moving average (MA) models. However, the
compact form of ARMA processes improve the fitted model due to less parameters
are required. On the other hand, ARCH models are used to remove the volatility
effects. The latter is based on the same idea as autoregressive models but applied
to the squared series; that is, variance at each time period is determined by the
most recent past variances. To identify when an ARMA or an ARCH model is
required, we use the correlogram. Finally, AIC is the standard criterion used to
choose between several fitted models so that the model which has the minimum
AIC is the best fit.

Returns (or log returns) are frequently used instead of prices due to they pro-
vide the same information as well as they have no dimensions and present better
statistical properties. However, returns usually do not follow neither a normal nor
a log-normal distribution, so they are considered time series and, furthermore, usu-
ally verify the stationarity assumption. Therefore, returns usually can be fit to an
ARMA or/and an ARCH model.
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The simple agent-based stock market described in chapter 4 has a remarkable re-
alistic feature: typically the simulated returns series can be fit to an ARMA-ARCH
model. Therefore, the output series of returns exhibit several properties of real fi-
nancial time series: their distribution is heavy-tailed and there are both correlation
and volatility.

Nevertheless, this work is just an initial step in a study of the relation between
agent properties, as described by their functionality and parameters, and the sta-
tistical behavior of the resulting series of returns.
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Appendix: NetLogo code
globals[

r ; realized return

D ; demand

I ; indice

p_t-1 ; price t - 1

p_t ; price

buyer ; total buyer

seller ; total seller

hold ; total hold

]

patches-own[

pbuy ; purchase price

psell ; sale price

xi ; expected return

Pb_B ; probability to buy

Pb_S ; probability to sell

lambda ; prospect theory parameter

beta ; permeability parameter

omega ; overconfidence parameter

lim-stp ; stop-loss rule parameter

counter ; turns without operating (auxiliar variable)

DEI? ; disposition-effect investors

STP? ; stop-loss investors

shortselling? ; short selling strategy

buyer? ; auxiliary variable

seller? ; auxiliary variable

transactions ; total number of transactions

]

to setup

if random? = false [random-seed 12345] ; fixed seed of experiment if random? is false

clear-all ; clean previous simulations

let aux (0.0001 + random-float (r_max * 100)) / 100

ask patches[

let t random-float 1 ; auxiliary variable distributed between zero and one

ifelse t < STP [ set STP? true set DEI? false] [ ; handing agents among STP e DEI

set STP? false set DEI? true ] ; handing agents among STP e DEI

set shortselling? false

set buyer? false ; cleaning variable

set seller? false ; cleaning variable

set pcolor (white) ; white for agents not operated in the period

set pbuy 0 ; purchase price equal to zero - initial setup

set psell 0 ; selling price of zero - initial setup

ifelse homogeneity? = true [ set xi aux ]

[ set xi 0.01 + (random-float (r_max * 100) / 100)] ; create heterogeneous expectations

set lambda 2.25 * xi ; recording individual value

set transactions 0 ; resetting number of transactions the agent

set lim-stp 0.01 + random-float xi

set beta random-float 1

set counter 0

]

set I 0 ; setup indice

set p_t P_initial ; setup initial price

set p_t-1 P_initial ; setup initial price

reset-ticks

end

to go ; Run

ask patches[

if ticks > 150 [if counter > 75[set pcolor white set pbuy 0 set psell p_t set shortselling? false]]

ifelse STP? = true[ agent-STP ] [ agent-DEI ]

]

set buyer count patches with [buyer?]

set seller count patches with [seller?]

set hold (max-pycor * max-pxcor) - buyer - seller

ifelse (buyer + seller) != 0 [ set D ((buyer - seller) / (buyer + seller + hold)) ] [ set D 0 ]
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set p_t (((exp(D) - exp(- D)) / (exp(D) + exp(- D)) + 1 ) * p_t-1)

set r (ln(p_t) - ln(p_t-1))

set p_t-1 p_t

I-indice

tick

end

to fetch-information

let info? random 2

let aux random 2

set Pb_B 0

set Pb_S 0

set omega 0.001 + (random-float omega_max)

ifelse info? = 1 [

ifelse aux = 0[set Pb_B ((count neighbors with [pcolor = blue]) + omega) / (8 + omega)]

[set Pb_S ((count neighbors with [pcolor = red]) + omega) / (8 + omega)]

][

set Pb_B (count neighbors with [pcolor = blue]) / 8

set Pb_S (count neighbors with [pcolor = red]) / 8

]

ifelse I > 0 [ set Pb_B Pb_B + beta * I][ set Pb_S Pb_S - beta * I]

end

to agent-DEI ; investors affected by the disposition effect

let t random-float 1

ifelse ticks < 100 [ ifelse t < (1 / 3) [ buy ] [ ifelse t > ( 2 / 3) [ sell ] [ not-operate ] ] ] [

ifelse pbuy = 0 [

ifelse shortselling? = false[

fetch-information

ifelse t < (Pb_B) [ buy ][ ifelse t > (1 - Pb_S) [ set shortselling? true sell] [ not-operate ] ]

][

ifelse p_t > psell [ closing-operation-high-shortselling ] [ closing-operation-falling-shortselling ]

]

][

ifelse p_t > pbuy[ closing-operation-high ] [ closing-operation-falling ]

]

]

end

to agent-STP ; investors using stop-loss orders

let t random-float 1

ifelse ticks < 100 [ ifelse t < (1 / 3) [ buy ] [ ifelse t > ( 2 / 3) [ sell ] [ not-operate ] ] ] [

ifelse pbuy = 0 [

ifelse shortselling? = false[

fetch-information

ifelse t < (Pb_B) [ STP-buy ][ ifelse t > (1 - Pb_S) [ set shortselling? true STP-sell] [ not-operate ] ]

][

ifelse p_t > psell [

ifelse (p_t - psell) > (lim-stp * psell) [ STP-buy-shortselling ] [ not-operate ]

] [

ifelse (psell - p_t) > (xi * psell) [ STP-buy-shortselling ] [ not-operate ]

]

]

] [

ifelse p_t > pbuy [

ifelse (p_t - pbuy) > (xi * pbuy) [ STP-sell ] [ not-operate ]

] [

ifelse (pbuy - p_t) > (lim-stp * pbuy) [ STP-sell ] [ not-operate ] ]

]

]

end

to buy

set buyer? true

set seller? false

set pcolor (blue)

set pbuy p_t

set psell 0

set counter 0
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end

to sell

set buyer? false

set seller? true

set pcolor (red)

set pbuy 0

set psell p_t

set counter 0

end

to not-operate

set buyer? false

set seller? false

set pcolor (white)

set counter counter + 1

end

to STP-buy

set buyer? true

set seller? false

set pcolor (blue)

set pbuy p_t

set psell 0

set counter 0

end

to STP-buy-shortselling

set shortselling? false

set buyer? true

set seller? false

set pcolor (blue)

set pbuy 0

set psell p_t

set counter 0

end

to STP-sell

set transactions transactions + 1

set buyer? false

set seller? true

set pcolor (red)

set pbuy 0

set psell p_t

set counter 0

end

to closing-operation-high

ifelse (p_t - pbuy) > (xi * pbuy) [

set transactions transactions + 1

set buyer? false

set seller? true

set pcolor (red)

set pbuy 0

set psell p_t

set counter 0

] [ not-operate ]

end

to closing-operation-high-shortselling

ifelse (p_t - psell) > (lambda * psell) [

set transactions transactions + 1

set shortselling? false

set buyer? true

set seller? false

set pcolor (blue)

set pbuy 0

set psell p_t

set counter 0

] [ not-operate ]
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end

to closing-operation-falling

ifelse (pbuy - p_t) > (lambda * pbuy) [

set transactions transactions + 1

set buyer? false

set seller? true

set pcolor (red)

set pbuy 0

set psell p_t

set counter 0

] [ not-operate ]

end

to closing-operation-falling-shortselling

ifelse (psell - p_t) > (xi * psell) [

set transactions transactions + 1

set shortselling? false

set buyer? true

set seller? false

set pcolor (blue)

set pbuy 0

set psell p_t

set counter 0

] [ not-operate ]

end

to I-indice

ifelse ISTeste = true [ if ticks > 1 [ set I (D + I_shock)] ] [ set I 0 ]

end
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