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Abstract
Female and male adult Wistar rats were fed standard chow or a simplified cafeteria diet for

one month. Then, the rats were killed and the white adipose tissue (WAT) in four sites: peri-

gonadal, retroperitoneal, mesenteric and subcutaneous (inguinal) were sampled and fro-

zen. The complete WAT weight in each site was measured. Gene expression analysis of

key lipid and glucose metabolism enzymes were analyzed, as well as tissue and plasma

lactate and the activity of lactate dehydrogenase. Lactate gradients between WAT and plas-

ma were estimated. The influence of sex and diet (and indirectly WAT mass) on lactate lev-

els and their relationships with lactate dehydrogenase activity and gene expressions were

also measured. A main conclusion is the high production of lactate by WAT, practically irre-

spective of site, diet or sex. Lactate production is a direct correlate of lactate dehydrogenase

activity in the tissue. Furthermore, lactate dehydrogenase activity is again directly correlated

with the expression of the genes Ldha and Ldhb for this enzyme. In sum, the ability to pro-

duce lactate by WAT is not directly dependent of WAT metabolic state. We postulate that, in

WAT, a main function of the lactate dehydrogenase path may be that of converting excess

available glucose to 3C fragments, as a way to limit tissue self-utilization as substrate, to

help control glycaemia and/or providing short chain substrates for use as energy source

elsewhere. More information must be gathered before a conclusive role of WAT in the con-

trol of glycaemia, and the full existence of a renewed glucose-lactate-fatty acid cycle is

definitely established.

Introduction
Lactate is the main by-product of peripheral organ utilization of glucose under conditions of
anaerobiosis / hypoxia [1] or when used by glycolytic obligatory cells such as mammalian
erythrocytes [2]. Lactate is also an acidifying factor modulating oxygen release in hypoxic tis-
sues (Bohr effect) [3]. Lactate is one of the main splanchnic (essentially liver) organs' substrate

PLOSONE | DOI:10.1371/journal.pone.0119572 March 5, 2015 1 / 19

a11111

OPEN ACCESS

Citation: Arriarán S, Agnelli S, Sabater D,
Remesar X, Fernández-López JA, Alemany M (2015)
Evidences of Basal Lactate Production in the Main
White Adipose Tissue Sites of Rats. Effects of Sex
and a Cafeteria Diet. PLoS ONE 10(3): e0119572.
doi:10.1371/journal.pone.0119572

Academic Editor: Jonathan Peterson, East
Tennessee State University, UNITED STATES

Received: November 14, 2014

Accepted: January 15, 2015

Published: March 5, 2015

Copyright: © 2015 Arriarán et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper.

Funding: This study was done with the partial
support of grants of the Plan Nacional de
Investigación en Biomedicina (SAF2012-34895) and
the Plan Nacional de Ciencia y Tecnología de los
Alimentos (AGL-2011-23635) of the Government of
Spain, as well as of CIBER-OBN (Institute of Health
Carlos III). S. Agnelli was the recipient of a Leonardo
da Vinci fellowship, and S. Arriarán a predoctoral
fellowship of the Catalan Government, in both cases
covering part of the time invested in this study. The

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0119572&domain=pdf
http://creativecommons.org/licenses/by/4.0/


for gluconeogenesis [4], and helps transfer "oxygen debt" from glycolytic muscle during exer-
cise to the liver, completing a Cori cycle [5]. Lactate is, also, a good substrate for lipogenesis in
the liver [6] and other tissues [7,8].

Lactate is a main by-product of most tumour cells, which show high rates of glycolysis [9]
due to the Warburg effect [10]. In addition, lactate may be used as energy substrate by a num-
ber of tissues: heart [11], brown and white [12] adipose tissues, muscle [13], glia [14] and oth-
ers, including the biota [15], because of its rapid conversion to pyruvate. Lactate is the main
circulating 3C substrate, and cell (cytoplasmic) reducing power exporter, reflecting NADH sta-
tus, and acting as a marker and modulator of oxygen availability and utilization [16]. These
multiple roles place lactate at the centre of a critical metabolic switch. The changes in the rate
of synthesis, transport in the blood and final disposal deeply modulate (and/or are the conse-
quence of) important metabolic substrate shifts.

The main form of adipose tissue, white adipose tissue (WAT) is usually associated with en-
ergy storage in the form of an enormous vacuole containing essentially triacylglycerols. Howev-
er, a significant part of body fat reserves are not found in the main WAT sites, but present in
other cell types, such as myocytes or hepatocytes [17] or, more commonly, as WAT inter-
spersed between other cell types in a number of tissues [18–21]. Curiously, all body reserves'
mass changes are correlated between the macroscopic and disperse triacylglycerol depots,
which, this way, show a remarkable uniformity in its physiological function as reserve organ
[22], irrespective of variation in additional specialised functions [23,24].

We have recently observed that cultured 3T3L1 adipocytes, in the absence of undifferentiat-
ed fibroblasts, use glucose at extremely high rates, releasing lactate under conditions of full nor-
moxia [25]. This is in agreement with in vivo lactate production by WAT [26–28] parallel to its
low consumption of oxygen [29,30]. The limiting factor for lactate production under high me-
dium glucose seems to be the availability of ADP [25]. The WAT breakup of 6C glucose to two
3C units may be directed to decrease glucose availability [25] in order to help protect the tissue
from excess substrate and the damaging hypertrophy caused by excess energy substrates [31].
This defence mechanism may help restrict the supply of substrates (mainly glucose), but also
that of oxygen, possibly inducing hypoxia, which has been suggested to favour the development
of inflammation [32,33] and the consequent WAT immune response [34]. However, the limit-
ed needs of oxygen of adipocytes [25], and the lowWAT oxygen consumption [30] suggest
that the development of inflammation in WATmay not be directly related to oxygen supply.

In the present study we intended to find whether WAT lactate production in vivomay be in
some way related to the excess energy supply of high-energy diets, but also to check whether
sex [35] may also affect the WAT breakup of glucose to 3C units.

Materials and Methods

Animals, diet and experimental setup
All animal handling procedures and the experimental setup were in accordance with the ani-
mal handling guidelines of the corresponding European and Catalan Authorities. The Com-
mittee on Animal Experimentation of the University of Barcelona authorized the specific
procedures used in the present study.

Nine week old female and male Wistar rats (Harlan Laboratory Models, Sant Feliu de
Codines, Spain) were used. Six animals per group were housed in cages (two same-sex rats in
each) with wood shards for bedding. They had free access to water and were kept in a con-
trolled environment (lights on from 08:00 to 20:00; 21.5–22.5°C; 50–60% humidity). Two
groups of animals for each sex were selected randomly, and were fed ad libitum, for 30 days,
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with either normal rat chow (type 2014, Harlan) or a simplified cafeteria diet as previously de-
scribed [36].

The experimental setup consisted, thus, of four groups of 6 rats each: male-control, female-
control, male-cafeteria and female-cafeteria. Rat weight and food consumption were measured,
and we found that these parameters followed closely previous studies done using the same ex-
perimental setup [22]. Diet composition was (expressed as energy content): carbohydrate 67%,
protein 20%, and lipid 13% for controls; the mean composition of the cafeteria diet ingested
was: carbohydrate 47%, protein 12% and lipid 41%.

In a complementary study to analyse tissue blood flows, we used two additional groups of
male rats, from the same supplier, stock, and age; they were subjected to the same feeding pro-
tocols (control or cafeteria diet) for 30 days. These animals were used exclusively for the mea-
surement of tissue blood flow as described below.

Tissue sampling
At the end of the experiment, on day 30, the animals were anesthetized with isoflurane at the
beginning of a light cycle, and blood was drawn from the exposed aorta using dry heparinized
syringes, killing the animals by exsanguination. Blood was centrifuged 20 min at 2000xg, at
2–4°C. Plasma was frozen and kept at -20°C.

The rats were rapidly dissected, taking large samples of mesenteric (ME), perigonadal (peri-
ovaric in females and epididymal in males, PG), retroperitoneal (RP) and subcutaneous (ingui-
nal fat pads, SC) WAT, which were frozen in liquid nitrogen. The samples were weighed, and
stored at -80°C until processed. Later, the dissection of the dead rats continued, carefully ex-
tracting the remaining WAT in ME, PG and RP sites; the rats were skinned, and the subcutane-
ous WAT was dissected completely. The weights of WAT thus dissected were added to those of
the frozen samples to know the mass of the four WAT sites.

WAT cellularity
Portions of frozen WAT were used for the estimation of total DNA with a classical chemical
method [37]. Since a rat cell contains 5.6 pg of DNA [38], we were able to calculate the approx-
imate number of cells per unit of WAT volume. We knew the weights and the density:
~0.9 g/mL [39] of WAT, and thus we determined the number of cells per g of tissue, and in the
whole site, as well as their mean size, simply dividing the tissue volume by the number of cells.

Tissue protein content was estimated with a reliable biuret-Folin method [40]. After devel-
opment of colour, turbidity was eliminated by adding to the tubes small amounts of finely pow-
dered solid MgO, which adsorbed the suspended fat remnants, and centrifuging the tubes
before reading their absorbance.

Estimation of tissue lactate
Samples of WAT tissue (in the range of 50 mg) were homogenized, still frozen, with a tissue
disruptor (IKA-T10 basic Ultra-Turrax, IKA, Stauffen Germany) in 1 ml of chilled acetone:
water mixture, to a final proportion (including the expected water content of the samples) of
1.25:1 [41]. The homogenate was centrifuged; all proteins removed with the precipitate, and
floating lipids, not soluble in the diluted acetone, were discarded. The acetone tissue extract
and plasma (10μL samples) were used for the estimation of lactate (kit 1001330 Spinreact, Sant
Esteve d'en Bas, Spain), using sodium L-lactate (Sigma-Aldrich) as standard.

The proportion of lipid per g of tissue in rats treated with the same experimental setup is
known [22]. By discounting the mass of fat and protein from that of tissue we were able to ob-
tain an estimate of the amount of water present in the WAT samples (in the range of 20%).
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The moles of lactate per mL of tissue or plasma and the amount of water in that same volume
allowed us to calculate the molal concentrations of lactate in plasma and tissues, and to estab-
lish a molal concentrations ratio for each individual rat WAT site.

Measurement of lactate dehydrogenase activity
Amodified UV method was used [42]. Frozen tissue samples were homogenized, using the tis-
sue disruptor, in 10 volumes of chilled Krebs-Ringer bicarbonate solution, pH 7.8 containing
5 mM dithiothreitol, 0.5% bovine serum albumin, 1% dextran (MW 200,000), 0.1% Triton
X-100, and 1 mM EDTA. Freshly (i.e. not later than 3 h after thawing/homogenisation in the
buffer) prepared homogenates were used for all enzyme activity measurement incubations, car-
ried out at 25°C. Homogenates were centrifuged at 4°C and 5,000xg for 10 minutes to obtain a
clear intermediate phase (precipitated debris and floating lipid were discarded). The reaction
mixture contained 150 μMNADH, 125 mg/L bovine serum albumin and 1 mM sodium pyru-
vate (all products were obtained from Sigma-Aldrich). The proportion of original tissue in
each measuring well was in the range of 2.0–2.5 mg, in a volume of 0.02 mL of homogenate, di-
luted to the adequate proportions with homogenization medium. Absorbance at 340 nm was
measured at intervals of 30 s for up to 10 min. In each case, the decrease in absorbance due to
the formation of NAD+ was plotted, and initial (V0) activities were determined from the course
of the reaction at different times. V0 was assumed to correspond to Vmax under the described
conditions of analysis. Protein content was measured in each of the homogenates used for en-
zyme activity estimation, and used for the presentation of enzyme activities, expressed in
nkat/g of protein to allow comparisons between samples with different fat content.

Gene expression analysis
Total tissue RNA was extracted from the frozen tissue samples using the Tripure reagent
(Roche Applied Science, Indianapolis IN USA), and were quantified in a ND-100 spectropho-
tometer (Nanodrop Technologies, Wilmington DE USA). RNA samples were reverse tran-
scribed using the MMLV reverse transcriptase (Promega, Madison, WI USA) system and
oligo-dT primers.

Real-time PCR (RT-PCR) amplification was carried out using 10 μL amplification mixtures
containing Power SYBR Green PCR Master Mix (Applied Biosystems, Foster City, CA USA), 4
ng of reverse-transcribed RNA and 150 nM of primers. Reactions were run on an ABI PRISM
7900 HT detection system (Applied Biosystems) using a fluorescent threshold manually set to
0.15 for all runs.

A semi-quantitative approach for the estimation of the concentration of specific gene
mRNAs per unit of tissue weight was used [43]. Rplp0 was the charge control gene [44,45]. We
expressed the data as the number of transcript copies per gram of protein in order to obtain
comparable data between the groups. The genes analysed and a list of primers used is presented
in Table 1.

Measurement of tissue blood flows
On day 27, the rats were implanted with two cannulas through the left carotid artery using
Intramedic PE-10 polyethylene tubing (Becton Dickinson, Parsipanny, NJ USA), under isoflur-
ane anaesthesia. The first carotid cannula was used to draw blood from descending aorta and
the other to inject microspheres directly into the heart outflow following the instructions pro-
vided by the supplier. At 12 h intervals, the viability of the cannulas was checked (without dis-
turbing the animals) by drawing blood up a few mm, followed by refilling with heparinized
saline. On day 30 the rats were transferred to smaller individual cages, shielded from the
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operators. Two hours later, they were injected through the left ventricle cannula with 105 red
latex beads (Molecular Probes, Carlsbad, CA USA) suspended in 0.1 ml of 9 g/L NaCl. At the
same time, blood (about 0.2 mL) was slowly drawn (exactly during 60 s) through the other can-
nula. The rats were, then, anesthetized with isoflurane, and larger blood samples were obtained
from the exposed aorta. Blood and tissue samples were frozen and kept at -80°C. After sacrifice
the position of the cannulas was checked; no placement errors, nor cannula clotting were
found. The weights of all organs analysed were measured.

Blood and tissue samples of known volume/weight were digested with 4 M KOH for 24
hours at 25°C with occasional stirring. The samples were filtered through glass-fibre filters
(GF/D, 2.5 μm, Whatman, Maidstone, Kent UK) and rinsed with Tween-20 (20 g/L) followed
by distilled water. Then, the fluorospheres were extracted from the filter with 2.5 ml of etox-
yethyl acetate. The fluorescence at red (565 nm) excitation wavelength was measured at 598
nm emission wavelength in a spectrofluorimeter. Samples were adequately diluted and com-
pared against tissue blanks, made with pieces of the same tissues from rats of the first experi-
ment, which had not received fluorescent beads. At least two samples and/or extractions for
each tissue were used / carried out. Samples were processed according to the bead supplier
specifications. The number of beads in tissue samples was estimated from the organic extract
fluorescence. The distribution of bead fluorescence equivalents vs. bead controls was used to
obtain a percent distribution of blood flow between organs, since the amount of beads injected
was known: a sample of the injected material was also analysed to correct for possible errors in
the evaluation of injected bead numbers.

Calculation of cardiac output was done by measuring the amount of beads in the blood
drawn for one minute from the artery. Bead concentration and the known amount of beads in-
jected allowed the calculation of cardiac output. Absolute blood flows were calculated from the
number of beads leaving the heart per unit of time and blood volume and the percentage of
beads retained in the organs of the rats.

Table 1. Primers used for the analysis of gene expression in WAT of control and cafeteria diet-fed rats.

gene Protein 5' > 3' 3' > 5' bp

Ldha lactic acid dehydrogenase (muscle type) CACTGGGTTTGAGACGATGA GTCAGCAAGAGGGAGAGAGC 125

Ldhb lactic acid dehydrogenase (heart type) CCAGGAACTGAACCCAGAGA TCATAGGCACTGTCCACCAC 131

Glut4 glucose transporter 4 CTTGATGACGGTGGCTCTGC CACAATGAACCAGGGGATGG 127

Hk2 hexokinase 3 ATTCACCACGGCAACCACAT GGACAAAGGGATTCAAGGCATC 113

G6pd glucose-6P dehydrogenase GACTGTGGGCAAGCTCCTCAA GCTAGTGTGGCTATGGGCAGGT 77

Pdk4 pyruvate dehydrogenase kinase type 4 GTCAGGCTATGGGACAGATGC TTGGGATACACCAGTCATCAGC 137

Pdk2 pyruvate dehydrogenase kinase type 2 TCACTCTCCCTCCCATCAA CGCCTCGGTCACTCATTT 75

Nos3 nitric oxide synthase (endothelial type) CAAGTCCTCACCGCCTTTT GACATCACCGCAGACAAACA 138

Acc1 acetyl-CoA carboxylase type 1 AGGAAGATGGTGTCCGCTCTG GGGGAGATGTGCTGGGTCAT 145

Fas fatty acid synthase CTTGGGTGCCGATTACAACC GCCCTCCCGTACACTCACTC 163

Acly ATP: citrate lyase GACCAGAAGGGCGTGACCAT GTTGTCCAGCATCCCACCAGT 96

Hsl hormone-sensitive lipase CCCATAAGACCCCATTGCCTG CTGCCTCAGACACACTCCTG 94

Lpl lipoprotein lipase GAAGGGGCTTGGAGATGTGG TGCCTTGCTGGGGTTTTCTT 103

Atgl triacylglycerol lipase (adipose tissue) CGGTGGATGAAGGAGCAGACA TGGCACAGACGGCAGAGACT 138

Cpt1 carnitine palmitoleoyl transferase (liver) CCGCTCATGGTCAACAGCA CAGCAGTATGGCGTGGATGG 105

Cpt2 carnitine palmitoleoyl transferase (muscle) TGCTTGACGGATGTGGTTCC GTGCTGGAGGTGGCTTTGGT 152

Lcad long-chain acyl-CoA dehydrogenase ATGCCAAAAGGTCTGGGAGT TCGACCAAAAAGAGGCTAATG 148

Rplp0 60S acidic ribosomal protein 0 GAGCCAGCGAAGCCACACT GATCAGCCCGAAGGAGAAGG 62

doi:10.1371/journal.pone.0119572.t001
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Statistics
Comparisons between groups were done with two- or three-way ANOVA analyses using the
Statgraphics Centurion XVI software (Warrenton, VA USA). Analyses of correlations and
curve fitting (i.e. for V0 estimation) were carried out using Prism 5 program (GraphPad Soft-
ware, San Diego CA USA).

Results
The initial and final weights, energy intake, and the basic plasma parameters are shown in
Table 2. Body weight changes and energy data just repeat what we have previously published
[22]. Plasma glucose, triacylglycerols, total cholesterol and urea were within the normal range,
showing no significant differences between groups, except for higher glucose and lower urea in
cafeteria diet-fed rats.

Table 3 shows the WAT site mass cellularity and protein content for female and male rats
subjected to control and cafeteria diets. There were significant differences between sites for
total mass, mean cell size, number of cells per unit of tissue weight and in the whole site. Sex ef-
fects were limited to SC and RP sites' mass and cell content; PGWAT also showed significant
changes linked to sex for site cell and protein content. No effects attributable to sex were ob-
served on MEWAT. With respect to the effects of diet, all sites showed significant differences
for all the parameters included in Table 3, except for RPWAT protein content.

Rats fed the cafeteria diet had larger WAT depots, but the relative size order was unchanged.
Mean cell size followed the same pattern in all four groups, irrespective of global higher sizes in
cafeteria diet-fed rats: RP>PG�SC>ME.

Tissue lactate levels (Table 4) were lower in tissue (μmol/g) than in plasma (mM), and were
not affected by sex, except for RP. Cafeteria diet decreased tissue (and plasma) lactate (signifi-
cant for plasma, ME and PG). When the data were expressed in molal units, the picture was
quite different (Fig. 1). The molal concentration ratios for WAT versus plasma were in all cases
higher than 1, i.e. tissue lactate concentration in the water available (i.e. discounting protein
and fat) was up to four-fold higher than in arterial plasma. There was a significant effect of
site and of diet for PG and ME, with no effects of sex. The patterns of molal ratios between tis-
sue and plasma lactate, however, were different in males PG>ME>SC>RP and females
ME>PG>RP>SC. Cafeteria diet changed the patterns to RP>ME>PG>SC in males and
ME>SC>RP>PG in females.

Table 2. Body weight, energy intake and plasma metabolites of control and cafeteria diet-fed rats.

tissue units male control male cafeteria female control female cafeteria P sex i P diet

Initial body weight g 241±6 256±6 161±6 173±7 <0.0001 NS

Final body weight g 372±6 420±20 232±8 277±15 <0.0001 <0.0001

Energy intake MJ/30d 8.71±0.45 19.7±0.99 6.33±0.39 17.9±0.98 <0.0001 0.0121

Plasma glucose mM 7.80±0.32 8.25±0.33 6.60±0.26 8.78±0.24 NS i 0.0002

Plasma triacylglycerols mM 1.50±0.06 1.50±0.01 1.69±0.06 1.51±0.03 0.0390 NS

Plasma cholesterol mM 1.97±0.07 2.28±0.21 1.98±0.16 2.07±0.19 NS NS

Plasma urea mM 3.90±0.17 3.82±0.20 5.13±0.25 3.78±0.20 0.0094 i 0.0025

The data are the mean ± sem of 6 different animals. Up to three significant digits are shown for each mean value. Statistical significance of the differences

between groups (2-way anova): the columns show the P values for sex, diet and their interaction; a i in the interaction column indicates a significant

interaction between the two factors analysed.

doi:10.1371/journal.pone.0119572.t002
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The levels of expression of the genes for the main lactate dehydrogenase isoenzymes in
WAT (Ldha and Ldhb) are presented in Fig. 2. There was a marked difference in expression of
both genes depending on WAT site. The patterns of distribution were fairly similar for both
genes, with maximal expression in SC, and minimal in RP. However, there were significant

Table 3. White adipose tissue mass and cell size in adipose tissue sites of control and cafeteria diet-fed rats.

parameter units site male
control

male
cafeteria

female
control

female
cafeteria

P-site P sex i P diet

WAT site mass g SC 12.3±0.2 19.9±1.0 7.02±0.25 12.3±0.6 <0.0001
S>P>M�R

<0.0001 <0.0001

ME 4.94±0.64 8.38±0.95 3.92±0.33 9.02±1.25 NS <0.0001

PG 7.34±0.50 12.8±1.6 4.83±0.39 11.8±1.70 NS <0.0001

RP 6.29±0.80 9.98±1.38 2.79±0.35 7.81±0.77 0.0051 0.0001

mean cell size nL SC 7.72±0.88 8.34±0.49 7.15±0.39 9.89±0.25 <0.0001
R>P�S>M

NS 0.0088

ME 6.76±0.21 7.12±1.28 4.19±0.84 9.33±0.61 NS i 0.0065

PG 7.72±0.66 9.16±0.84 8.35±0.58 11.1±0.6 NS 0.0061

RP 9.74±0.25 9.48±0.56 9.43±0.78 12.1±0.4 NS i 0.0439

number of cells in the
whole site

106�cells SC 1474±121 2556±69 1000±73 1473±213 <0.0001
S>P�M>R

<0.0001 i <0.0001

ME 658±69 1392±265 906±129 959±116 NS 0.0411

PG 883±25 1382±85 579±31 1069±145 0.0019 <0.0001

RP 681±65 1072±165 298±37 639±46 0.0003 0.0009

number of cells /g tissue 106�cells/
g

SC 122±9 122±8 142±7 101±3 0.0005
M>S�P�R

NS i 0.0122

ME 149±5 134±21 230±35 109±7 NS i 0.0051

PG 134±10 104±7 123±8 87±4 NS 0.0007

RP 103±3 102±5 110±9 83.0±2.6 NS i 0.0262

protein content/g tissue mg/g SC 63.1±11.6 35.0±3.9 51.2±3.8 41.2±4.4 <0.0001
M>R>S�P

NS 0.0105

ME 74.2±7.4 60.9±4.7 86.2±4.2 57.5±2.9 NS 0.0010

PG 44.3±1.6 35.0±2.0 54.4±2.4 47.6±2.6 <0.0001 0.0015

RP 65.1±6.3 63.7±5.2 62.9±4.7 50.7±1.3 NS NS

The data are the mean ± sem of 6 different animals. Up to three significant digits are shown for each mean value. SC/S = subcutaneous inguinal:

ME/M = mesenteric; PG/P = perigonadal (periovaric, epididymal), RP/R = retroperitoneal. Statistical significance of the differences between groups (2-way

ANOVA): the columns show the P values for sex, diet and their interaction. A i in the interaction column indicates a significant interaction between the two

factors analysed. The statistical significance of differences between sites was estimated by a 3-way-ANOVA. P values >0.05 are presented as NS; the

sequences indicate overall significant differences between sites; post-hoc Duncan test: the sign > indicates significantly higher values at the left; commas

are equivalent to NS.

doi:10.1371/journal.pone.0119572.t003

Table 4. Lactate levels in plasma and adipose tissue sites of control and cafeteria diet-fed rats.

tissue units male control male cafeteria female control female cafeteria P sex i P diet

plasma mM 3.10±0.29 2.64±0.21 3.78±0.24 2.57±0.21 NS 0.0028

subcutaneous WAT μmol/g 2.16±0.71 1.57±0.35 2.37±0.37 1.43±0.22 NS NS

mesenteric WAT μmol/g 1.98±0.33 1.80±0.37 2.87±0.17 1.04±0.13 NS i 0.0019

perigonadal WAT μmol/g 2.00±0.22 1.16±0.26 2.12±0.12 0.45±0.10 NS <0.0001

retroperitoneal WAT μmol/g 0.803±0.152 0.781±0.134 1.58±0.21 0.522±0.116 0.0026 i NS

The data are the mean ± sem of 6 different animals. Up to three significant digits are shown for each mean value. Statistical significance of the differences

between groups (2-way ANOVA): the columns show the P values for sex, diet and their interaction; a i in the interaction column indicates a significant

interaction between the two factors analysed. The statistical significance of differences between sites was estimated by a 3-way-ANOVA; the P value was

<0.0001; post-hoc Duncan test (same conventions as in Table 3): plasma > mesenteric, subcutaneous > perigonadal > retroperitoneal).

doi:10.1371/journal.pone.0119572.t004
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differences induced by sex and diet. The effect of sex was less marked on Ldhb, which did not
show significant effects of diet either, in contrast with Ldha. The actual tissue enzyme activities
are shown in Fig. 3. The patterns were comparable to those of Ldha and Ldhb expressions, but
we must assume that the lactate dehydrogenase activity measured in tissue (in fact Vmax under
the conditions of measurement) was the result of the sum of both isoenzyme activities. No dif-
ferences were observed for sex and only RP showed a significant effect of diet; however, the var-
iable "site" was highly significant as in the gene expression analysis. In all groups, the patterns
were comparable, but not identical, with maximal enzyme activity in SC.

The comparison of enzyme activity vs. the expression of the genes for the two isoenzymes
implicated in that activity could not be done in a direct way, since gene expression of an en-
zyme seldom can be directly correlated with its activity in a tissue. However, we plotted (Fig. 4)
the mean values for lactate dehydrogenase enzyme activity per g of tissue protein of all groups
(i.e. different sex and diet) vs. the sum of the corresponding Ldha and Ldhb expressions, also
referred to g of tissue protein. We obtained a significant correlation between expression and
enzyme activity (P<0.0001 vs. zero). When the individual rat data were plotted, we obtained a
little more dispersion, but the slope of the regression line and the P values vs. zero were practi-
cally unchanged. The separate analysis of Ldha and Ldhb gave similar results (the slopes were
practically halved with respect to the sum of expressions, but were superimposable for both
genes). In both cases, the correlation was also significant. These data point at a direct relation-
ship between the expression of both genes and the enzyme activity, but also that their contribu-
tion to final lactate dehydrogenase activity was similar for both isoenzymes (heart type and
muscle type); thus the isozyme pattern of rat WAT is HHMM.When lactate dehydrogenase ac-
tivity was plotted versus tissue lactate expressing both entities per g of protein, a significant cor-
relation was observed between both parameters.

Fig 1. Lactate adipose tissue/plasmamolal ratio of control- and cafeteria diet-fedmale and female
rats. The data are the mean ± sem of 6 animals per group, and are expressed in moles/L of water in the
tissue divided by moles/L of water in plasma. PL = plasma; SC = subcutaneousWAT; ME = mesenteric WAT;
PG = perigonadal WAT; RP = retroperitoneal WAT. Statistical differences between groups: two-way anova
for sex and diet and three-way anova for "site" are marked in red.

doi:10.1371/journal.pone.0119572.g001
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Table 5 presents the expression data for enzymes related with glucose oxidation. As ob-
served for the lactate dehydrogenase genes, there was a marked significant effect of site in all
cases. There were no effects of sex on Glut4, but females had higher hexokinase 2 expression,
significant in ME and RP. The control of glucose entry in the cell was more affected by diet:
Glut4 and Hk2 expressions were significantly lower for all cafeteria diet groups with the excep-
tion of SC. Glucose-6P dehydrogenase gene (G6pd) expression was also lowered by cafeteria
diet, significantly for ME and RP, the latter with higher values in females.

The expressions of the enzymes controlling the critical step of conversion of 3C pyruvate to
2C acetyl-CoA, Pdk4 and Pdk2, showed little change because of sex, with only higher male val-
ues for SC in Pdk4 and PG in Pdk2, and no changes at all induced by the cafeteria diet (with
only a significant decrease in ME for Pdk2).

Fig 2. Lactate dehydrogenase genes (Ldha and Ldhb) expression in WAT sites of female andmale
rats fed control or cafeteria diet. The data are the mean ± sem of 6 animals per group, and are expressed
in fmol/gP (g of tissue protein) to render the figures comparable. The conventions used are the same as
in Fig. 1.

doi:10.1371/journal.pone.0119572.g002
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The expressions of the main genes controlling enzymes of lipid metabolism are presented in
Table 6. The effect of "site" was significant for all genes studied with the exception of Acly,
which was not. The differences related to sex were not evenly distributed, with higher expres-
sion values for males, the exceptions being Acc1 (ME and RP) and Acly (ME) which showed

Fig 3. Total tissue lactate dehydrogenase activity in WAT sites of female andmale rats fed control or
cafeteria diet. The data are the mean ± sem of 6 animals per group, and are expressed in μKat/gP (g of
tissue protein) to render the figures comparable. The conventions used are the same as in Fig. 1.

doi:10.1371/journal.pone.0119572.g003

Fig 4. Linear correlation analysis of the relationship between lactate dehydrogenase activity and
expression or tissue lactate content in WAT sites of male and female rats fed a control or cafeteria
diet. LDH = lactate dehydrogenase; gP = g of protein. Each circle represents the mean value for one group of
rats (i.e. female/male, control/cafeteria). Enzyme activities are those presented in Fig. 3; expression data are
the sum of Ldha and Ldhb (Fig. 2) for the corresponding groups; tissue lactate were those shown in Table 4.
Correlation between lactate dehydrogenase activity and gene expression: r2 = 0.828, significantly different
from zero (P<0.0001). When all the individual data (i.e. all sites and groups) were plotted, the corresponding
values were r2 = 0.380, and P<0.0001. The separate analyses of Ldha and Ldhb (using the mean values)
gave similar results Ldha r2 = 0.642, P = 0.0002, and Ldhb r2 = 0.840, P<0.0001. Correlation between tissue
lactate dehydrogenase activity and lactate content: r2 = 0.583, significantly different from zero (P = 0.0006).
When all the individual data (i.e. all sites and groups) were plotted instead of only the means, the
corresponding values were r2 = 0.307, and P<0.0001.

doi:10.1371/journal.pone.0119572.g004
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higher specific mRNA concentrations in females. In all other cases, males showed higher mean
values: Fas (SC and RP), Lpl (SC), Atgl (SC and PG), Cpt1 (all sites, except ME), Cpt2 (PG) and
Lcad (SC).

The effects of diet resulted in all cases in either no change or decreased expression; no in-
creased expressions were observed when comparing cafeteria diet and controls. In the case of
Acc1, all sites showed significant effects of diet, and in Fas, all showed significant changes ex-
cept SC. Acly decreased its expression with diet in ME and PG; Hsl showed changes only in RP,
Lpl in PG and RP. Atgl also decreased its expression in RP; Cpt1 in ME and Cpt2 in RP and
ME; there were no changes at all in Lcad.

The estimation of WAT blood flow in male rats fed the control or cafeteria diets is shown in
Fig. 5. The data are referred to g of tissue protein for direct comparisons with the other Figures
and Tables. There was a trend to show lower blood flows for the WAT sites, including the com-
posite value of all four, MA, in cafeteria diet-fed rats but there were no statistically significant

Table 5. Gene expression in WAT of control and cafeteria diet-fed rats in fmol/g protein. I Glucose oxidation and nitric oxide synthase.

protein gene WAT male
control

male
cafeteria

female
control

female
cafeteria

P site P sex i P diet

glucose transporter 4 Glut4 SC 108±29 123±25 161±184 115±8 <0.0001
S�P>M�R

NS NS

ME 31.2±8.6 15.8±3.0 116±36 12.2±0.6 NS 0.0189#
PG 109±8 70.2±2.7 160±54 32.6±6.6 NS 0.0134#
RP 44.0±6.5 25.2±3.9 119±43 26.0±5.8 NS 0.0088#

hexokinase 2 Hk2 SC 11.7±2.5 13.0±1.9 18.9±3.7 14.7±0.9 <0.0001
S�P>M�R

NS NS

ME 7.9±1.2 2.7±0.5 16.8±3.2 1.5±0.2 0.0304f i <0.0001#
EC 2.7.1.1 PG 16.9±2.8 14.6±2.0 25.6±5.7 10.5±2.1 NS 0.0266#

RP 4.1±0.4 2.9±0.4 13.5±4.5 3.3±0.6 0.0084f i 0.0030#
glucose-6P-dehydrogenase G6pd SC 334±73 413±51 257±25 302±36 0.0001 S>P>M�R NS NS

ME 129±18 75.6±9.3 202±32 62.9±4.6 NS i <0.0001#
EC 1.1.1.49 PG 129±12 188±23 285±51 145±16 NS i NS

RP 84.2±14.2 67.0±5.7 183±35 82.0±9.3 0.0048f 0.0037#
pyruvate dehydrogenase
kinase 4

Pdk4 SC 181±73 187±41 22.7±2.6 90.2±21.6 <0.0001
S>P�M�R

0.0113m NS

ME 14.2±3.7 14.4±2.1 7.6±3.9 9.1±1.7 NS NS

EC 2.7.11.2 PG 14.5±5.4 20.6±3.2 8.5±3.2 11.8±2.2 NS NS

RP 13.5±3.5 12.9±1.6 6.1±1.0 17.6±3.7 NS NS

pyruvate dehydrogenase
kinase 2

Pdk2 SC 263±87 167±41 146±13 302±36 <0.0001
S>M�P�M>R

NS NS

ME 120±24 34.2±1.7 193±51 22.9±5.3 NS 0.0009#
EC 2.7.11.2 PG 91.7±12.8 90.1±11.4 86.6±16.8 41.8±3.1 0.0426m NS

RP 48.6±7.6 27.9±3.9 63.9±10.4 31.5±6.1 NS NS

nitric oxide synthase
(endothelial type)

Nos3 SC 75.4±9.5 88.9±6.0 43.2±2.8 65.5±7.2 <0.0001
S>P>M�R

0.0009m 0.0190"
ME 21.6±2.6 15.3±2.3 18.5±1.0 10.4±1.5 NS 0.0054#

EC 1.14.13.39 PG 31.6±6.3 32.9±4.6 22.6±2.4 13.3±1.9 0.0030m NS

RP 14.7±1.1 11.6±1.7 16.1±2.2 9.4±1.2 NS 0.0051#

The data are presented as fmol of the corresponding mRNA for g of tissue protein, and are the mean ± sem of 6 different animals. Up to three significant

digits are shown for each mean value. SC/S = subcutaneous inguinal: ME/M = mesenteric; PG/P = perigonadal (periovaric, epididymal),

RP/R = retroperitoneal. Statistical significance of the differences between groups (2-way ANOVA): the columns show the P values for sex, diet and their

interaction. A superscript f represents higher (overall) values for females and m for males. The arrows show the direction of significant changes for diet: #
indicate (overall) slower values for cafeteria diet-fed rats; a i in the interaction column indicates a significant interaction between the two factors analysed.

The statistical significance of differences between sites was estimated by a 3-way-ANOVA; post-hoc Duncan test (same conventions as in Table 1)

doi:10.1371/journal.pone.0119572.t005

WAT Lactate: Sex and Diet

PLOS ONE | DOI:10.1371/journal.pone.0119572 March 5, 2015 11 / 19



Table 6. Gene expression in WAT of control and cafeteria diet-fed rats in fmol/g protein. II Lipid metabolism.

protein gene WAT male
control

male
cafeteria

female
control

female
cafeteria

P site P sex i P diet

acetyl-CoA carboxylase 1 EC
6.4.1.2

Acc1 SC 74.0±16.3 59±6 149±37 40.3±5.0 0.0020R>S�M�P NS 0.0024#
ME 30.6±4.0 14.6±1.6 165±49 9.2±2.1 0.0134f i 0.0019#
PG 126±12 53.4±9.5 156±66 28.0±4.6 NS 0.0064#
RP 81.0±7.2 33.5±4.8 542±206 27.6±2.7 0.0087f i 0.0019#

fatty acid synthase EC 2.3.1.85 Fas SC 7620
±4110

8762±1955 2447±403 540±47 <0.0001
S>M�P�R

0.0202m NS

ME 192±74 110±22 1660±536 67.3±13.9 NS i 0.0268#
PG 1269±250 701±166 2106±795 319±45 NS 0.0056#
RP 572±85 204±28 3318

±1130
190±32 0.0050m i 0.0007#

ATP: citrate lyase EC 4.1.3.8 Acly SC 167±81 174±43 186±54 71.5±7.7 NSS>M NS NS

ME 22.2±2.9 9.9±2.3 160±34 6.4±1.5 0.0020f i 0.0003#
PG 109±10 88.6±13.9 228±102 39.9±6.3 NS 0.0391#
RP 25.1±4.7 14.6±2.4 295±132 13.3±2.6 NS NS

hormone-sensitive lipase EC
3.1.1.79

Hsl SC 631±131 648±138 486±37 660±63 <0.0001
S�P>R>M

NS NS

ME 166±38 130±23 218±61 110±12 NS NS

PG 674±59 670±70 664±64 461±45 NS NS

RP 458±39 344±49 645±84 295±34 NS i 0.0002#
lipoprotein lipase EC 3.1.1.34 Lpl SC 6300

±1305
6700±1110 3790±440 4520±670 <0.0001

S>P>M�R
0.0365m NS

ME 1190±38 1630±470 1100±80 1430±260 NS NS

PG 3970±720 3790±440 4320±290 2080±250 NS i 0.0209#
RP 2610±350 1750±110 3440±820 1470±150 NS 0.0052#

triacylglycerol lipase (adipose
type) EC 3.1.1.3

Atgl SC 1320±300 1680±270 701±26 1470±150 <0.0001 S,
P>R>M

0.0426m NS

ME 429±95 412±92 338±95 403±79 NS NS

PG 1450±300 1790±290 1040±150 1180±90 0.0332m NS

RP 700±48 608±74 732±51 536±68 NS 0.0400#
carnitine palmitoyl-transferase
(liver type) EC 2.3.1.21

Cpt1 SC 39.6±14.8 58.9±9.0 19.4±3.9 37.9±7.3 <0.0001
P>S>M>R

0.0426m NS

ME 14.0±2.7 3.8±0.9 13.7±3.6 0.7±0.1 NS 0.0001#
PG 16.3±1.7 18.9±1.1 10.8±1.7 7.7±1.2 <0.0001m NS

RP 3.3±0.5 3.4±0.5 2.0±0.4 2.6±0.2 0.0200m NS

carnitine palmitoyl-transferase
(muscle type) EC 2.3.1.21

Cpt2 SC 10.6±3.0 17.9±2.8 17.0±1.8 13.4±12.7 <0.0001
P>S>M>R

NS i NS

ME 10.7±1.5 7.8±1.0 14.9±3.6 7.5±1.3 NS 0.0214#
PG 25.1±4.3 20.5±1.7 19.2±3.4 11.7±1.7 0.0332m NS

RP 13.4±1.7 11.3±1.7 20.9±3.4 10.5±1.9 NS 0.0130#
long-chain acyl-CoA
dehydrogenase EC 1.3.8.8

Lcad SC 1076±347 1370±155 365±23 733±117 <0.0001
S>P>M�R

0.0037m NS

ME 166±9 196±14 298±60 179±32 NS NS

PG 353±72 653±99 412±91 359±37 NS NS

RP 204±22 379±29 302±49 207±29 NS NS

The data are presented as fmol of the corresponding mRNA for g of tissue protein, and are the mean ± sem of 6 different animals. Up to three significant

digits are shown for each mean value. SC/S = subcutaneous inguinal: ME/M = mesenteric; PG/P = perigonadal (periovaric, epididymal),

RP/R = retroperitoneal. Statistical significance of the differences between groups (2-way ANOVA): the columns show the P values for sex, diet and their

interaction. A superscript f represents higher (overall) values for females and m for males. The arrows show the direction of significant changes for diet: #
indicate (overall) slower values for cafeteria diet-fed rats; a i in the interaction column indicates a significant interaction between the two factors analysed.

The statistical significance of differences between sites was estimated by a 3-way-ANOVA; post-hoc Duncan test (same conventions as in Table 3).

P values >0.05 are presented as NS.

doi:10.1371/journal.pone.0119572.t006
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differences either for the four studied sites or their composite; there was no significant differ-
ence for "site" either.

Table 5 also presented the expression of the most abundant gene for an isoenzyme of nitric
oxide synthase (endothelial type) Nos3. Sex showed significantly higher values for males in SC
and PG. Feeding a cafeteria diet increased the expression of Nos3 in SC, and decreased it in
ME and RP.

Discussion
The production of lactate from glucose by WAT is well known [26–28], and is related to glu-
cose availability [46] in a way similar to that of the Cori cycle [5] between muscle and the
splanchnic bed. However, there are reports on the active use of lactate as lipogenic substrate by
WAT [6,7]. The release of lactate from human and rat subcutaneous WAT has been proven in
vivo [26,47], and we have observed, in cultured 3T3L1 adipocytes [25], that these cells pro-
duced an inordinately large amount of lactate when medium glucose concentration was high.
A number of elegant studies, have found that the oxygen consumption by WAT under basal
conditions is low, justifying a normal operation of the tissue even at low concentrations of oxy-
gen [29,30,48].

The 3T3L1 adipocytes converted almost quantitatively glucose to lactate, which represents a
negligible consumption of oxygen under conditions of normoxia [25]. Consequently, the hy-
pothesis that limited blood (and thence oxygen) supply to WAT, a mechanism of defence

Fig 5. WAT blood flow in male rats fed control or cafeteria diets. The data are the mean ± sem of 6
animals per group, and are expressed in μL/s�gP (g of tissue protein). The conventions used are the same as
in Fig. 1; MA = mean value for SC, MS, PG and RP taking into account their combined masses.

doi:10.1371/journal.pone.0119572.g005
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against excess energy substrate availability [49], may elicit inflammation because of hypoxia
[50,51] should be revised, at least for adipocytes, the main component of WAT.

In this study, we found a considerable difference in the potential for lactate production be-
tween different WAT sites as shown by different levels of activity and gene expression for lac-
tate dehydrogenase. A high enzyme activity is no proof in itself that lactate is being produced
in a given tissue without using dynamic (albeit invasive) tracer studies. However, the data pre-
sented in Fig. 4 show that there is a close correlation between WAT lactate content and lactate
dehydrogenase activity, regardless of site, sex and dietary treatment. These data strongly sug-
gest that the actual lactate tissue levels are a consequence of the lactate dehydrogenase activity.

Furthermore, the plasma/tissue molal lactate ratios proved that, in all samples, lactate con-
centration was higher in water tissue than in plasma, i.e. the lactate in WAT could not come
from plasma (uphill gradient) but was produced in WAT and released to plasma. Evidently,
the main ultimate destination of this lactate is the liver, where it may be used for gluconeogene-
sis, lipogenesis or oxidized to supply energy. Gluconeogenesis is highly improbable under con-
ditions of excess glucose [52]. Oxidation to CO2 for energy is improbable too in liver and other
tissues because of the availability of glucose and the induction of insulin resistance by lactate it-
self [53]. The large presence of fatty acids in cafeteria rats further increased insulin resistance
[54]. In consequence, the most probable fate for most of the lactate produced by adipocytes
will be its incorporation to the hepatic lipogenic pathway, and their final release as
lipoprotein triacylglycerols.

Adipose tissue is one of the main body producers of lactate [13]. In postabsorptive state hu-
mans, whole adipose tissue releases 60–150 μmol/min; other important lactate producing tis-
sues are the brain (with a contribution of around 50 μmol/min) and skeletal muscle. However,
although skeletal muscle is a main site of lactate production during exercise [5], it also plays an
important role in lactate clearance under basal conditions [13].

It is unclear why WAT contains both muscle and heart type lactate dehydrogenase isoen-
zymes, (HHMM) with different affinities for lactate and markedly distinct functions in differ-
ent organs [55]. In the present conditions, both Ldha and Ldhb genes behaved in a similar way
and both (and especially their combined expression) was closely adjusted to the total enzyme
activity measured, which points to a similar (or shared) regulation in vivo, and also to a gene
expression-linked mechanism of regulation of the enzyme activity. The similar turnover rate of
the isoenzymes [55] agrees with this interpretation.

The limited changes in circulating lactate suggest that its turnover in blood was fast [56] in
agreement with the high capacity of liver to take up and metabolize lactate [57] as indicated
above. However, given the relatively large mass of adipose tissue, at least in the overweight cafe-
teria diet-fed rats, the effect of a significant breakup of glucose to produce lactate is far from
being negligible and undoubtedly may help downregulate glycaemia in a significant propor-
tion, at least under basal, i.e. non-exercise, conditions.

Intake of a hyperlipidic cafeteria diet results in a proinflammatory state [58], which is often
associated with hypoxia [59,60]. However, contrary to what was expected, no increases in lac-
tate dehydrogenase activity, neither of tissue lactate concentrations were found in the WAT of
cafeteria diet-fed rats. The close correlation observed between lactate dehydrogenase activity
and tissue lactate content, irrespective of site, sex and diet, suggests that hypoxia could not be a
critical factor in the regulation of lactate production. This is again in agreement with the need
to revise the purported relationship between hypoxia and inflammation.

There were sex-related differences in the expression of a number of key enzymes related to
lipid synthesis, but the most marked effects were attributable to the exposure to cafeteria diet,
providing an excess of energy. The consequence was an increased WAT mass [61], via in-
creases in both cell numbers and cell size, as observed here and in agreement with previous
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studies [62]. However, the factor "site" was markedly relevant for practically all parameters
studied. The data on the expression of genes involved in lipogenesis from glucose show clearly
that cafeteria diet had a marked overall influence; the entry of glucose into WAT cells was
probably limited, as shown by lower Glut4 and Hk2 expressions. This decrease may be part of
the tissue mechanism of defence against a sustained excess of energy supply and the general-
ized insulin resistance [63] that makes WAT the ultimate destination for excess circulating glu-
cose [49,64]. The relative lack of changes in the expression of pyruvate dehydrogenase kinases
suggest that the oxidation of pyruvate to acetyl-CoA was practically unaffected by diet, i.e. this
was not, probably, an outlet for excess glucose carbon towards lipogenesis, at least in WAT.
Notwithstanding, the maintenance of these expressions unchanged also hinted to a limited suc-
cess of glucose transporter 4 and hexokinase decreases in gene expression to stem the flow of
glucose into the cells. All the genes controlling lipogenesis, from G6pd role in the production of
NADPH, to the cytoplasm supplier of acetate Acly, and to the proper lipogenic enzyme genes
Acc1, and Fas, showed steady decreases in expression under the hyperlipidic cafeteria diet, as
previously observed [22,65]. Lipoprotein lipase expression was also decreased, but only in RP
and PG. The limitations induced in lipid metabolism by cafeteria feeding were less marked on
the lipase genes Hsl and Atgl, which showed decreases only in RP.

WAT lipid utilization, thus, was also limited under cafeteria feeding, an obvious conclusion
because of increases in the rat global fat mass and in all WAT sites. The expression of genes re-
lated to the transfer of acyl-CoA to the mitochondria was also limited (Cpt1 and Cpt2), and
those controlling the oxidation of fatty acids was unchanged (albeit maintained at low levels)
as shown by the lack of effect of diet on Lcad expression. These data agree with those of cul-
tured adipocytes, in which the use of glucose as substrate for lipogenesis was largely shunted to
the production of 3C (lactate) fragments [25] for eventual exportation to the liver. However,
the increase in WAT mass and triacylglycerol accumulation of cafeteria rats is difficult to ex-
plain with loweredWAT glucose uptake, limited lipogenesis and maintained lactate production
capability, unless, incorporation of blood-borne lipids is factored in.

At first, we assumed that the contrast between lactate levels and lactate dehydrogenase activ-
ity in a given WAT site could be due to differences in blood flow. The control of blood flow is
probably a key mechanism of control of substrate access to WAT [49,66,67], and its limitation
under conditions of excess available energy is counterbalanced by the eventual hypoxic effects
induced by this limitation [66,68]. The higher production of NOx in the obese [69] and its ef-
fects countering the vasoconstriction elicited by other factors [70,71] agrees with that interpre-
tation. We have observed decreases in WAT expression of Nos3, the endothelial nitric oxide
synthase gene [72], a key controller of blood flow [73], in most sites of rats fed the cafeteria
diet; but it increased in subcutaneous WAT. However, the blood flow study (done only in
males to limit animal lives and costs), showed a limited variability (not significant) from site to
site in this parameter, which hints to a general uniform control of WAT blood flow comparable
to the ability to uniformly depose fat in all WAT sites and other organs [22] under comparable
energy availability conditions.

In any case, the data on blood flow did not explain the differences in lactate and lactate de-
hydrogenase activity. In spite of the efforts invested, no proof has been found linking blood
flow (or its control) to WAT lactate production or release. Thus, lactate production by WAT
seems to be essentially unrelated to hypoxia and inflammation.

A main conclusion of this study is the production of lactate by WAT irrespective of site, diet
or sex, and that this production is a direct consequence of lactate dehydrogenase activity in the
tissue. Furthermore, this activity is a direct correlate of the main lactate dehydrogenase control-
ling genes' expression. In sum, the ability to produce lactate by WAT is not directly dependent
of WAT metabolic condition. We postulate that a main function of the lactate dehydrogenase
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path of WATmay be that of converting excess circulating glucose to 3C fragments as a way to
control glycaemia and/or providing shorter chain substrates for use as energy source elsewhere.
The higher circulating lactate levels of obese humans [27] supports this interpretation, and sug-
gests a potential role of WAT in the control of glycaemia, at least in obese individuals.

More information must be gathered before a conclusive role of WAT in the control of gly-
caemia and the full existence of a renewed glucose-lactate-fatty acid cycle [74] is
definitely established.
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