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Abstract

Hyperspectral imaging is an active research area in food and environment analysis.
Hyperspectral images allow obtaining accurate and reliable knowledge about the chemical
composition and distribution of the chemical components on the investigated sample
surface. Results of hyperspectral image analysis can be used to acquire fundamental
understanding of complex chemical systems for research and development, for
commercial testing and adulteration studies, in particular in food and environment
analysis and in industrial process analysis and control. Hyperspectral imaging datasets are
challenging because of their very large size and complexity. Chemometric methods are
proposed to reveal the information contained in the analyzed images as much as possible.

This Thesis deals with the resolution of hyperspectral imaging data by using chemometric
methods, in particular by using appropriate data pretreatment methods and by using
Multivariate Curve Resolution (MCR) methods. The main contribution of the present
Thesis is the study and implementation of the MCR-ALS (Multivariate Curve Resolution
Alternating Least Squares) method for the resolution of hyperspectral images, collected by
remote sensing (airborne or space borne Earth observation instrument) and by micro-
spectroscopy imaging. Specifically, in this Thesis work, we explore the combination of
chemometric and hyperspectral imaging methods for the resolution of spectra (signatures)
and spatial distribution maps of the chemical constituents of a sample. The ultimate goal
of this study is to improve the analysis and interpretation of hyperspectral imaging data by
taking advantage of different chemometric powerful tools. Local rank/selectivity
properties describing the spatial information of spectroscopic images can be used as a
constraint to increase the performance of MCR methods significantly, decreasing rotation
ambiguity uncertainties. Different multivariate resolution methods were compared, such
as MCR-ALS, Independent Component Analysis (ICA), Principal Component Analysis (PCA),
and Minimum Volume Simplex Analysis (MVSA), Multivariate Curve Resolution-Function
Minimization (MCR-FMIN), MCR-BANDS and FAC-PACK. All these approaches have been
used for the evaluation of the extension of rotation ambiguities remaining in the results
after their application. Several hyperspectral images provided by standard and widely
used instruments such as NASA’s Airborne Visible Infra-Red Imaging Spectrometer
(AVIRIS), Raman hyperspectral imaging Spectrometer, and Infrared hyperspectral imaging
Spectrometer have been used as example of data sets to test the different methods, in
particular to test the MCR-ALS method. The effectiveness of MCR-ALS is illustrated by
providing exhaustive comparisons with state-of-the-art methods for spectral unmixing
using both simulated and real hyperspectral data sets.
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Objectives and structures of the Thesis






Obijectives and structures of the Thesis

1.1 Objectives

The main objective of this Thesis has been the development and implementation of

chemometric methods for the analysis of hyperspectral images obtained from remote

sensing or from micro-imaging for the analysis of environment and food samples.

Different simulated and experimental data sets obtained from public remote sensing data

repositories and from experimental measurements have been studied in detail. Especially
important has been the extension and application of the MCR-ALS method for the

resolution of hyperspectral imaging data with the goal of obtaining the signatures (pure

spectra) and distribution maps of the constituents of the analyzed samples.

Objectives of the analysis of hyperspectral imaging

Apply MCR-ALS to the analysis of hyperspectral image from simulated dataset,
experiment datasets including remote sensing hyperspectral image from
environment, and micro-hyperspectral image of food commercial sample from
chocolate. In all these cases, MCR-ALS was proposed to resolve the spectra of the
components in the mixture for their characterization and to estimate their
contributions and distribution maps.

Apply MCR-ALS method to hyperspectral remote sensing image to resolve different
objects in the studied image, such as lakes, hard ground, vegetation, buildings etc.
and to determine their locations in the images studied.

Apply MCR-ALS method to analyze hyperspectral image of the chocolate for
resolution of their particle shape and size at the micro level, which are the
important factor related to the product quality control in the case of food study.
Apply the MCR-ALS method to the analysis of fluorescence data to track the
sources of Dissolved Organic Matter (DOM) in the Ter river for resolving their
various contributions, concentrations, geographical distribution and the
relationship between human activity along the river and its reservoirs.

Objectives of the chemometric analysis

Develop and apply MCR-ALS method for data analysis on hyperspectral imaging to
obtain pure spectral and constituent distribution in the image.



Obijectives and structures of the Thesis

e Adapt MCR-ALS method with selectivity/local rank constraints to improve the
results resolution. FSIW-EFA and correlation coefficient method was proposed for
the application of the selectivity constraint in spectroscopic images.

e Apply spectral/signature pretreatment methods to reduce the light scattering
influence in NIR, the fluorescence background in Raman spectroscopy when the
sample is irradiated, the presence of noise contributions in background and the
baseline contribution.

e Apply MCR-ALS method to simultaneously analyze multiple data set arranged in
arrays or increased multidirectional structures (multiway) and application of the
associated constraint to trilinear models.

e Discuss and compare different ways of calculating the extension of rotation
ambiguity of MCR methods, such as MCR-BANDS and FAC-PACK approaches, which
allow the evaluation of the quality of the results obtained by MCR-ALS.
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1.2 Structure of the Thesis

The Thesis is presented in two sections. In the first introductory part, hyperspectral

imaging technique, their application in different area and chemometric methods are

introduced. In the second part, discussion part of the results, scientific articles and their

detail background introduction and result dissection, and finally, references employed are

included. This Thesis consists of seven chapters that are described below.

In the first chapter, the objectives of the Thesis are presented. Furthermore,
detailed structure and relationship of scientific work of this report are given.

In the second chapter, introduction part, background and state of the art
techniques of hyperspectral imaging and their application in environment and food
area are reviewed. The development of chemometric in hyperspectral imaging and
theories of chemometric methods applied in the Thesis are introduced.

The third chapter, the application of MCR-ALS methods is demonstrated on remote
sensing hyperspectral imaging. The simulated data using spectra from USGS library
and the public remote sensing data (AVIRIS, Airborne Visible/Infrared Imaging
Spectrometer) from NASA are applied for evaluating the chemometric models. The
second part shows the effect of using local rank and selectivity constraints based
on spatial information of spectroscopic images to increase MCR methods
performance and to decrease ambiguity.

In Chapter 4, it shows the application of Raman and Infrared hyperspectral imaging
combined with pretreatment methods and MCR with selectivity constraint to the
analysis of the constituents of commercial chocolate samples.

In Chapter 5, several chemometric resolution methods using bilinear models
describing the data are compared. Various ways to calculate the extension of
rotation ambiguities of MCR are discussed and compared.

In Chapter 6, MCR-ALS with the trilinearity constraint is proposed for the analysis
of excitation—emission fluorescence data from Dissolved Organic Matter (DOM) in
fresh water natural systems, and the results obtained are compared with those
obtained with PARAFAC.

In Chapter 7, the conclusions of the Thesis are presented.
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Introduction

This introductory chapter of the Thesis has two main parts. In the first part, the theoretical
background and applications of hyperspectral imaging are introduced. In the second part
the chemometric methods used in this Thesis are introduced.

2.1 Hyperspectral imaging applied to environmental and food analysis

The theoretical concepts corresponding to hyperspectral imaging and an overview of the
applications of hyperspectral imaging on food and environment analysis are introduced in
this first part.

Hyperspectral imaging is an integrated technology composed of detector and optical
instrumentation on one side, and of computer technology and data processing on the

other side !

. It is also known as chemical or spectroscopic imaging, and it integrates
conventional imaging and spectroscopy to attain both spatial and spectral information

from an object or sample .

Spectroscopic methods can provide detailed fingerprints of the analyzed food and
environment samples using the physical and chemical characteristics of the interaction
between electromagnetic radiation and the material of the sample, such as reflectance,
transmittance, absorbance, phosphorescence, fluorescence, and radioactive decay3, which
are either absorbed or emitted. Spectroscopic analysis can provide qualitative and
quantitative chemical and physical information *>. By scrutinizing the changes in spectra,
one can obtain physical, chemical, and biological information of the analyzed products.
However, direct application of spectrometers to samples can only usually detect a small
portion of them; therefore, the spectra, strictly speaking, are sometimes not
representative of the whole sample, especially when the ingredients are not evenly
distributed.

In 1985, the term ‘hyperspectral imaging’ originated from works in remote sensing (the
observation of a target by a device without physical contact). It was also called
spectroscopic imaging °. It was used to make a direct identification of surface materials in
the form of images. Hyperspectral imaging studies began with the mapping analysis of
airborne minerals in the late 1970s and early 1980s. The invention of the CCDs (charge-
coupled device) in 1969 by George Smith and Willard Boyle was the foundation of
hyperspectral technology who made its initial development’. Progress occurred in the
development of the required electronics, hardware, computing, and software throughout
the 1980s and until the 1990s. At the beginning of the 1980s, hyperspectral imaging was
introduced with the airborne imaging spectrometer (AIS) developed by Alexander Goetz

11



Introduction

and his colleagues at NASA’s Jet Propulsion Laboratory (JPL), California Institute of
Technology, Pasadena, California®. In 1983, JPL proposed and developed the Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) to extend ground-based spectrometers
into the air on moving platforms. AVIRIS measured the first spectral images in 1987 and it
was the first imaging spectrometer to measure the solar reflected spectrum from 400 nm
to 2500 nm with 10 nm intervals’. Improvements in sensor, calibration, and data systems
were developed to introduce other multispectral and hyperspectral instruments in
ground-based and airborne systems during the next years. Although it was first developed
for remote sensing applications, hyperspectral imaging has been applied to other areas
such as agriculture'®, biology!, environmental*? and other earth scientific fields™.

Hyperspectral images can be considered to be an extension of the concept of digital
images but differently to the later, they collect full spectral information on the spatial
dimension. Digital images have a finite number of digital values, called pixels, arranged in
certain order to describe the color or grayscale information on a surface. The digital image
contains a fixed number of rows and columns of pixels. Pixels are the smallest individual
elements in an image, holding quantized values that represent the brightness of the
object™. Therefore, a digital image is an array of | rows and J columns, with | x J intensity
values, also called pixels. A pixel is an intensity value with an associated coordinate in the
image. An | x J image having K detected features (variables, wavelengths) would form a
three-way data array of size | x J x K. The | x J x K image can be represented as K slices,
where each slice is an image at a single feature. The | x J x K image can also be presented
as a two-way array of vectors. In special cases, these vectors can be shown and
interpreted as spectra.

In a hyperspectral image, each pixel has not the same single discrete value, but it may
have a wide range of values recorded by a sensor or spectroscopy instrument. Like in
ordinary spectroscopy, hyperspectral imaging also collects and processes information
from across the electromagnetic spectrum. The only difference is that hyperspectral
imaging collects the data points in an order as pixels of an image which show the spatial
information. Hyperspectral imaging provides much more detailed information on the
scene than a color camera. An ordinary color camera only acquires three different spectral
channels corresponding to the visual primary colors, red, green and blue. On the contrary,
a hyperspectral image is made up of hundreds of contiguous wavebands for each spatial
position of a target sample. Each pixel in a hyperspectral image contains the spectrum of a
specific spatial position.

12
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Two aspects characterize hyperspectral images:

e They can have many wavelengths (hundreds or thousands).

e Every pixel has a spectrum which can provide chemical information.

Nowadays, different techniques exist for acquiring hyperspectral data which depend on
the specific application. Spatial and spectral scanning were mostly used in the previously
reported studies’. Spatial scanning obtains slit spectra by projecting a strip of the scene
onto a slit and dispersing the slit image with a prism or a grating. With these line-scan
systems, the spatial dimension is collected by platform movement or scanning. Spectral
scanning is typically based on optical band-pass filters. The scene is spectrally scanned by
exchanging the filter to change the wavelength of the scanning systems in the
spectrometer'®. Apart from spatial and spectral scanning, non-scanning procedures are in
development at present. Non-scanning methods using a single 2-D sensor output produce
simultaneously spatial and spectral data. The most important benefit of snapshot
hyperspectral imaging is the higher light throughput and the shorter acquisition time. The
tremendous amount of memory needed to store the entire dataset makes the

computational effort and manufacturing cost high”' 18

Hyperspectral imaging techniques based on Raman, infrared, near infrared and
fluorescence spectroscopy are useful methods in different areas, such as polymer
research, material science, biomedical diagnostic, pharmaceutical industry, analytical
chemistry, process control and environmental analysis*® ?°. Materials or processes can be
also analyzed using multiple imaging techniques across all wavelength and time scales.
Hyperspectral imaging can also be used to gain a fundamental understanding of complex
chemical systems in industrial processes and use this knowledge to control them.
Nowadays, application of hyperspectral imaging is developing very fast, and it allows the
in situ acquisition of hyperspectral images (for example, inside the human body, or inside
high pressure chemical reactors). The ability to control complex processes in food industry
or in environmental monitoring studies will require the same techniques to those used for

imaging analysis in other fields 2123

For research, development, commercial testing, or adulteration validation, reference
methods for food or environment samples are necessary. Reference methods for food
safety and quality control analysis often have limitations, in terms of their adequacy of
implementation at the different steps of the food chain®®. In the traditional analytical
chemistry approach, sampling, sample preparation, measuring procedures, and waste

13
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disposals are necessary steps. Normally, these works include laboratory sample
pretreatment, dissolution, digestion, separation, enrichment, and other slow and
laborious steps. Traditional analytical chemistry methods have the following
disadvantages:

e They are time-consuming. Natural samples are usually mixtures and have many
complex constituents; therefore they usually need many pretreatment steps
before pure components are isolated. However there are some alternative
analytical techniques that can produce instantaneous results with good accuracy,
but they need the simultaneous application of powerful data analysis techniques *>;

e They are expensive. For example, chromatographic determinations need many
different sensors or expensive columns to analyze different constituents in one
sample. Moreover, the control at any crucial link in the process chain may require
a large number of independent analyses to be performed?® and a lot of samples for
analysis;

e They should be performed in the laboratory. Because of the laborious and fine
operations needed for sample treatment or because of the size of the analytical
instruments or because they require instrument stability, the analytical
determinations should be done in the laboratory. However in many circumstances,
measurements control and management should be on-line or in-field;

e They are not flexible and they are only useful as a single purpose (one method/one
parameter analytical tools corresponding for a particular analyte);

e They are not always respectful with the environment (toxic reagents). Usually,
sample is destroyed. Also, for example, mobile phases and solvents in
chromatography are usually toxic. They contaminate the environment and they are
harmful to the health of laboratory workers.

In recent years, the international community is paying more attention on
environmental issues and on green chemistry. Green chemistry is the design of
chemical products and processes that reduce or eliminate the use and generation of
hazardous substances®’. Analytical laboratories are essential to the implementation of
the principles of green analytical chemistry as illustrated in %’

e Elimination of reagents and solvents from the analytical laboratory.
e Reduction of the amounts of the reagents used.
e Elimination or reduction of the amount of solvents used in analytical procedures.

e Reduction of emission of vapors and gases.

14
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e Reduction of labor and energy consumption.

Hyperspectral imaging instruments

Considering the limitations of classical analytical reference methods mentioned above,
researchers have developed new analytical methods that try to avoid these disadvantages,
many of them based on spectroscopic technologies, such as fluorescence spectroscopy?,
near-infrared spectroscopy (NIR)?®, mid-infrared spectroscopy (MID)** and Raman
spectroscopy>’. Spectroscopic methods enable a much higher level and frequency of
sample analysis for quality control in industry and in real-time outdoor monitoring, leading
to an improved food safety and environment quality control system>* 3. The development
of robust and flexible spectroscopic instrumentations adapted for on-line or in-field
control of the production chain is well suited for the continuous monitoring of processes
from raw materials to finished products, and also suited for fluid continuous flow in rivers
or air®. Such systems provide the possibility for real-time analyses, and they are feasible
for large amounts of sample throughput analysis. The other advantages of spectroscopic
techniques are their ability to determine multiple parameters or analytes simultaneously,
reducing considerably the use of reagents and sample preparation steps.

Because these methods provide detailed spectral data, hyperspectral imaging instruments
can be considered an extension of classical spectrometric instruments, allowing also the
extraction of quantitative information such as the concentration or relative amounts of
material constituents. Even more, hyperspectral imaging spectrometers can also be
considered as a particular type of spectrometers, so that image-specific data analytical
issues can be addressed as well. Analyzed objects will be shown in a very different way
compared to ordinary spectroscopy techniques. Hyperspectral imaging can provide
spectral measurements of the whole surface area of the product while conventional
spectrometers only can give point measurements. Hyperspectral imaging technology
contributes to improve the quality of analysis in environmental monitoring studies and in
food processing industry. In addition, it represents a huge increase of the speed of analysis
and therefore, a drastically reduction in their costs.

The most used hyperspectral imaging instruments are based on Raman, mid-infrared,
near-infrared and fluorescence. They are briefly introduced here. The state of the art and
recent applications are also given for each one of these applications.

Raman hyperspectral imaging

Raman hyperspectral imaging was already proposed by Delhaye & Dhamelincourt in
1975%. But this technique did not become really feasible as a chemical imaging method

15
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until cooled slow-scan CCD-cameras became available. Now, the Raman microscope is one
of the most used instruments of imaging. It normally includes a standard optical
microscope, and adds an excitation laser, laser rejection filters, a spectrometer, and an
optical sensitive detector such as a charge-coupled device (CCD), or photomultiplier tube,
(PMT).

Raman imaging techniques have improved and transformed in recent years because of a
growing interest for acquiring multidimensional analytical information. Also, Raman
spectroscopy, a complementary vibrational spectroscopic technique for molecular
analyses, continues to benefit enormously from advances in laser and array detector
developments®. Raman imaging has the advantage of its high selectivity, low sensitivity to
water, and minimal sample preparation requirements.

The low sensitivity of conventional Raman techniques has led to recent advances in
nonlinear Raman microscopic methodologies. Coherent Raman scattering techniques,
which include coherent anti-Stokes Raman scattering (CARS) and stimulated Raman
scattering (SRS) microscopy, have become more prolific in recent years; therefore, the
methodologies, instrumentation, and technology involved continues evolving at present.
The inherently low scattering cross section of Raman spectroscopy, as well as its
diffraction limited lateral resolution, has been overcome by new Raman microscopy
techniques. Nonlinear methods such as coherent anti-Stokes Raman spectroscopy and
stimulated Raman spectroscopy reduce measurement times and improve resolution,
allowing for three-dimensional spectroscopic imaging. Tip-enhanced Raman spectroscopy,
offered by surface-enhanced Raman scattering, enables Raman spectroscopic imaging far
below the optical diffraction limit*’.

Yookyung Jung et al. (38) reported recently a longitudinal, real-time alternative for the in
vivo, label free imaging of sebaceous glands using Coherent Anti-Stokes Raman Scattering
(CARS) microscopy, which has been used for selectively visualize lipids>®. Anti-Stokes
Raman scattering (CARS) microscopy provides a label-free means for visualizing biological
samples, but it can suffer from a strong non-resonant background in samples that are
prepared using aldehyde-based fixatives>>.

Label-Free biomedical imaging with high sensitivity was performed by stimulated Raman
scattering microscopy (SRS) “°. A variety of biology and medical applications have been
reported, such as differentiating distributions of omega-3 fatty acids and of saturated
lipids in living cells, imaging of brain and skin tissues based on intrinsic lipid contrast, and

monitoring drug delivery through the epidermis ***.
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The ability to control the size, shape, and material of a surface has been developed in the
field of surface-enhanced Raman spectroscopy (SERS). Surface-enhanced Raman
scattering (SERS) imaging has widely applied on rapid and sensitive analysis of material

44, 45

surfaces®, phenotypical marker detection, cancer cells , organisms46, nanocubes of

I and so on. Excitation of the localized surface plasmon resonance of a

meta
nanostructured surface or nanoparticle lies at the heart of SERS. The ability to reliably
control the surface characteristics has taken SERS from an interesting surface

phenomenon to a rapidly developing analytical tool with many possible applications.

Raman can also be applied to the detection of chemical threat agents from a marked
stand-off distance®. A modern Raman technique that enables recording spectra from
layers several millimeters below the sample surface is spatially offset Raman spectroscopy
(SORS). Spatially offsets hyperspectral stand-off Raman imaging was used for explosive
detection inside containers*” *°. SORS also is a powerful new technique for the non-
invasive detection and identification of packaged products and drugs®'.

In this Thesis (Chapter 4) Raman hyperspectral imaging has been used in analysis of
chocolate ingredients to investigate the features and distribution of these constituents in
chocolate products. The details of this application will be discussed in Chapter 4 and in the
associated published paper?.

Mid-Infrared hyperspectral imaging

Mid-infrared (MIR, 3-20 um) spectroscopy is associated with most organic and inorganic
molecules absorbing MIR photons, and it provides inherent molecular selectivity. It was
already applied commercially in the early 1990s>.

Waveguide-based MIR sensing systems generally comprise four major components: 1) an
MIR radiation source, 2) waveguides for propagating the radiation and frequently also
serving as the transducer, 3) a wavelength selection device, and 4) an MIR detector. In its
most common form, an interferometer is coupled to a multichannel, liquid nitrogen-
cooled mercury cadmium telluride (MCT) detector®®. The detector in commercial imaging
spectrometers is typically a linear array (LA) or a focal plane array (FPA).

The combination of an infrared focal-plane array detector and a step-scanning Fourier
transform infrared (FT-IR) microscope has proven to be a powerful approach for obtaining
spectroscopic images with unprecedented image fidelity. Today, the most popular
configuration for IR chemical imaging is the Fourier transform infrared (FT-IR) imaging
spectrometer, which employs multiplex detection of wavelengths via interferometry.
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Today, FT-IR microscopes are designed to allow the spectra of physically small samples, or
regions of small samples, to be measured as quickly and easily as possible. Using the new
FT-IR instrument (HYPERION) of Bruker as an example
(https://www.bruker.com/products.html), the recent development of FTIR spectroscopic
imaging has enhanced our capability to examine, on a microscopic scale, the spatial
distribution components in physical, chemical and biomedical samples. Recent activity in
this emerging area has concentrated on instrument development, theoretical analyses to
provide guidelines for imaging practice, novel data processing algorithms, and on the
introduction of this technique to new application fields.

L. M. Kehlet et al. has developed a new hyperspectral imaging spectrometer in the mid-IR
spectral region which is based on nonlinear frequency up-conversion and subsequent
imaging using a standard Si-based CCD camera. A series of up-converted images are
acquired with different phase match conditions for the nonlinear frequency conversion
process. From this, a sequence of monochromatic images in the 3.2-3.4 um range are
generated™’.

Kevin Yeh et al. published fast infrared chemical imaging with a quantum cascade laser>®.
The advent of high-intensity, broadly tunable quantum cascade lasers (QCL) has now
accelerated IR imaging, but using a fundamentally different type of instrument and
approach, namely discrete frequency IR (DFIR) spectral imaging. These advances offer new
opportunities for high throughput IR chemical imaging, especially for the measurement of
cells and tissues.

In this Thesis, Infrared hyperspectral imaging has been used for the analysis of chocolate
samples and its constituents. Different from Raman hyperspectral imaging, infrared
hyperspectral imaging can provide the ingredients and distribution of milk chocolate
constituents without the undesired effect of strong interference of fluorescent
contributions. The details of this application will be discussed in Chapter 4 and published
paper>.

Near-Infrared Hyperspectral imaging

Near-infrared (NIR, 900-1700 nm) spectroscopy has been proposed after the NIR region
was discovered in 1800, revived and developed in the early 1950s and put into practice
later in the 1970s°’. NIR spectroscopy is now a very prominent major analytical technology.
In this instrument, the radiation from a broadband source of NIR radiation is passed
through a liquid crystal tunable filter (LCTF) so that a narrow region of the NIR spectrum is
isolated”®. The instruments for NIR hyperspectral imaging are more versatile and rugged
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than the corresponding instruments used to measure mid-IR and Raman spectra. The
initial imaging systems required the samples to be stationary. Newer systems (push broom)
collect images from moving samples, enabling online analysis.

The use of NIR hyperspectral imaging has been and it is still being improved extensively for
the determination of quality and safety of agricultural and food products. Other fields of
interest and research areas where NIR hyperspectral imaging is increasingly applied
include pharmaceuticals, medical applications, archaeology and forensic.

Increasing processing capacity of industrial lines raises the demand for strict quality
control and optimization of the analyzed samples and for product inspection. Rapid
quality assessment for on-line analysis of some food products has been established using
NIR based equipment *°. The potential application of NIR hyperspectral imaging in this
approach is still under investigation.

In this Thesis, in Chapter 3, the remote sensing data from AVIRIS satellite from NASA were
analyzed. Hyperspectral solar reflected ground images were measured between 400 nm
and 2500 at 10 nm intervals. Most of these wavelengths are located in the near infrared
region (Near infrared is from about 800 nm to 2500 nm). In this case near infrared
hyperspectral imaging was used for remote sensing of ground objects analysis (including
minerals, airport, and lakes).

Secondary ion mass spectrometry (SIMS)

Secondary ion mass spectrometry (SIMS) is a imaging technique for surface and thin-film
analysis with already a long history and a mature instrumental base, dating from the early
1960s. It is an analytical technique which detects ions ejected from a surface after the
surface has been bombarded with high energy ions. Bombarding ions are referred to as
primary ions or probing ions and the ions ejected from the surface are referred to as
secondary ions. These secondary ions contain analytical information about the sample and
they are detected and measured based on their mass/charge ratio®.

It is a fast analytical methodology and it has been used extensively to characterize a range
of materials including electronics, metallic, polymers and biological samples. SIMS has
been used extensively to examine a wide range of samples and it is routinely used in the
micro-electronics industry for probing the distribution of dopants in silicon®”. In materials
science area, in 1970s, there were already many reports about application of SIMS on
sputtering process of a silicon carbide surface®. Its capability has had a revolutionary
improved by development of TOF-SIMS. And still at present there are many reports
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published in SIMS materials surface analysis. A recent paper about surface
characterization of dialyzer polymer membranes using imaging TOF-SIMS and quantitative
XPS (X-ray photoelectron spectroscopy) line scans has been recently published ®.

Application of SIMS to medical and biological research is a relatively new field. SIMS can
be used in biometrical and tissue analysis, and many papers have been published about
these applications in the two last years. For example, Louise Carlred et al. reported the
spatial localization of the major component of senile plagues in Alzheimer’s disease (AD),
which were mapped in transgenic AD mouse brains using TOF-SIMS®>. SIMS imaging has
been proposed by C. Bich et al. as a tool for micrometric histology of lipids in tissues®®. N
Desbenoit et al. reported using TOF-SIMS imaging for localization and quantification of
benzalkonium chloride in eye tissue®’.

Electron paramagnetic resonance (EPR) spectroscopy imaging

Electron paramagnetic resonance (EPR) spectroscopy is a technique for studying materials
with unpaired electrons. EPR was first observed in Kazan State University by Soviet
physicist Yevgeny Zavoisky in 1944, and it was developed independently at the same
time by Brebis Bleaney at the University of Oxford®. In comparison to nuclear magnetic
resonance (NMR) spectroscopy, EPR is expected to show a higher sensitivity per unit
volume due to the higher gyromagnetic ratio of electron spins due to roughly ten times
smaller skin depth of EPR microwaves in comparison to NMR radio waves.

Although EPR is a technigue developed many years ago, recently it has been extended to
spectroscopic imaging. In chemical industry, electron paramagnetic resonance imaging has
been used for real-time monitoring of Li-ion batteries’®. This is an efficient way to locate
‘electron’-related phenomena and opens a new area in the field of battery
characterization that should enable future breakthroughs in battery research. In medical
area, P. Kuppusamy’s research has demonstrated that electron paramagnetic resonance
imaging can perform noninvasive anatomical analysis as well as functional imaging
analysis and that it provides in vivo physiological information regarding cellular
metabolism in tumor and normal tissues. It is not a popular technique in environmental or
food sample analysis yet.

Using EPRI to identifying defects on a CaF, surfaces due to a laser beam was reported in ’*.
In this work, MCR-ALS has been proposed to identify the spectral signatures of all
components present in the CaF, samples and locate the distribution maps of them in the
acquired EPR images.
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Fast detection imaging instruments based on other concepts and current progress of
them

Fluorescence spectral imaging was not applied in this Thesis, although it could have been
a good choice as an alternative technique other than Raman or Infrared techniques in
future research. Hyperspectral fluorescence imaging or fluorescence spectroscopy has not
received much attention in research until recently "> apart from kinetic analysis.
Continuous development of advanced microscopy systems provides fluorescence
spectroscopy imaging data with very high spatial-temporal resolution and multiplexing
capabilities.

During the last decade, fluorescence microscopy has evolved as a fundamental tool in
basic and applied biomedical research, due to its optical sensitivity and molecular
specificity’®. Guido Zavattini et al. have developed a hyperspectral fluorescence system for
3D in vivo optical imaging, which generates surface contour maps of animal tissues. This
system is flexible enough to allow the testing of a wide range of illumination and detection
geometries. "*. Wim F. J. Vermaas et al. have used hyperspectral fluorescence systems to
determine localization and distribution of pigments in cyanobacterial cells in vivo™. Seong
G. et al. presented a hyperspectral fluorescence imaging system with a fuzzy inference
scheme for detecting skin tumors on poultry carcasses’®. Technical developments in near-
infrared fluorescence (NIRF) imaging and tomography have enabled recent applications on
humans. Future NIRF imaging agents, which consist of bright fluorescent dyes conjugated
to disease-targeting moieties, can be used for molecular imaging and image-guided
surgery ”’.

Hyperspectral imaging techniques are developing fast; some new instrument can cope
with the problem of long data collection time. Snapshot hyperspectral imaging is a class of
hyperspectral imaging systems, which utilize a novel optical processor that provides video-
rate hyperspectral data cubes’®. These systems have no moving parts and do not operate
by scanning in either the spatial or in spectral dimension. They are capable of recording a
full three-dimensional (two spatial, one spectral) hyperspectral datacubes in each video
frame, ideal for recording data on transient events, or from unstabilized platforms’®. They
provide new real-time hyperspectral image instruments®.

Acousto-optic tunable filter (AOTF) is a novel device for spectrometers. Their electronic
tunability qualifies them with the most compelling advantages of higher wavelength scan
rate over conventional spectrometers that are mechanically tuned, and the feature of
large angular aperture makes the AOTF system particularly suitable in imaging
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applications®. New e applications of these instruments have been reported in nerve
morphometry®, tenderness assessment of meat®, skin stratum configuration, citrus fruit
decay® and some other areas.

Imaging techniques are not limited to previously mentioned Raman, Infrared, near-
infrared and fluorescence spectroscopies, but also to some other principles, such as those
given bellow:

Functional near-Infrared Spectroscopy imaging (fNIRI or fNIRSI) is a technique involving
the quantification of chromophore concentration resolved from the measurement of near
infrared (NIR) light attenuation, temporal or phasic changes. It was initially introduced by
F. Scholkmann, and it is based in the use of NIRS (near-infrared spectroscopy) for the
purpose of functional neuroimaging. Using fNIR, brain activity can be measured through
hemodynamic responses associated with neuron behavior®.

Second-order nonlinear optical imaging of chiral crystals (SONICC) is an emerging
technique for crystal imaging and characterization® SONICC images can be used to
determine the presence or absence of protein crystals through both manual inspection
and automated analysis.

Real-Time, Subwavelength Terahertz Imaging is based on the electro-optic (EO) imaging
combined with the brightness of recently developed intense THz sources. It has been
reported that permits the imaging of subwavelength-size samples without compromising
spatial resolution or acquisition time®’.

M. A. Fadel et al. have reported the extraction of pure spectral signatures and

corresponding chemical maps from electron paramagnetic resonance (EPR) imaging data
88

sets™.

Remote sensing hyperspectral imaging in environment monitoring

Remote sensing is the technique for acquisition information from an object or
phenomenon without making physical contact with the object®. In the narrow sense,
remote sensing is defined as the measurement of object properties on the earth’s surface
using data acquired from aircraft and satellites. It is necessary to rely on the propagated
signals like optical, acoustical or microwave™. The acquisition of image data uses cameras
and other sensors.
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Figure 2- 1 Illustration of remote sensing

Figure 2- 1 is an example for illustration of remote sensing. Reflected sunlight is the
common source of radiation measured by satellite or airplane. Normally, the sensor
includes photography, infrared spectroscopy or radiometers. In this Thesis, the interest is
on data obtained by hyperspectral imaging spectroscopy.

Remote sensing data provides either discrete point measurements or a profile of
measurements along a flight path. In this work, we are mostly interested in data acquired
along a two dimensional spatial grid, which is an image. Remote sensing systems, like
those installed on satellites, provide information for monitoring short-term and long-term
changes on earth, and possible impacts from human activates on a particular area®.
Sensor data provide instrument views of the physical objects by recoding electromagnetic
radiation emitted or reflected from them and surrounding landscape. Remote sensing
images can provide information about position, size, and interrelationships between
objects. By their nature, spectral signature profiles can be recognized and used for
description of the objects.

Hyperspectral remote sensing is a useful technology in many scientific and technological
fields and it has been proposed also in the environment area from years ago. Since 1960s,
multispectral imagery has been used as data source for environment observational
remote sensing from airborne and satellite systems® . Initially, only three to six spectral
bands were used in a single observation from the visible and near-infrared regions of the
spectrum. Recently, advances in sensor technology have overcome this limitation of the
data collecting systems, with the development of new hyperspectral sensor technologies.
It is now possible to apply this technique to acquire land surface information, using high
resolution spectra. Remote sensing can play a unique and essential role because of its
ability to acquire synoptic information at different time and space scales.
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The first Landsat Multispectral Scanner System (MSS) was launched in 1972%. The concept
of imaging spectroscopy originated in the 1980’s at NASA’s Jet Propulsion Laboratory,
when a revolution in remote sensing began with the introduction of the Airborne Visible
Infra-Red Imaging Spectrometer. In this Thesis, this type of remote sensing is an important
topic and it is the object for evaluation of the performance of the MCR-ALS method on

hyperspectral imaging (Chapter3 and papers ***°).

At present, remote sensing spectral information can be provided by several hyperspectral
sensors such as Hyperion, Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),
Compact Airborne Spectrographic Imager (CASI), Airborne Imaging Spectrometer for
Applications (AISA) and HyMap (from HyVista, Castle Hill, Australia).

Table 2-1 Source of remote sensing hyperspectral imaging data and their reference webpage.

Source of data Reference webpage
Specim, Spectral Imaging, Ltd http://www.specim.fi/products/aisa-airborne-
(Finland) hyperspectral-systems/aisa-series.html

National Aeronautics and Space

Administration (NASA, USA)

ITRES (Canada) http://www.itres.com/
National Aeronautics and Space

Administration (NASA, USA)

HyVista-Integrated Spectronics Pty

Ltd (Australia)

http://aviris.jpl.nasa.gov/

http://eol.gsfc.nasa.gov/Technology/Hyperion.html

http://www.hyvista.com/

Spatial resolution used in remote sensing is a critical aspect because it determines the
level of accuracy in the classification of objects on the ground by using a minimum amount
of data. Low spatial resolution can hardly discriminate objects on the ground resulting in
lower classification accuracy.

In the past half century, hyperspectral imaging has been successfully applied on remote
sensing for environmental assessment and monitoring (urban growth®, hazardous

waste”), agriculture (crop condition®, yield prediction®®, soil erosion'®), nonrenewable

resource exploration (mineralswl, oil*® natural gaslos), renewable natural resources

(wetlandsm, soils'®,  forests'®, oceansl%), meteorology(atmosphere dynamic5107,
. 105
), mapping

surveillance'®. Traditional approaches for remote sensing imaging were focusing on the

108

weather prediction (topography, land use, civil engineering), and military

discovery of images shape. The primary interest was in the spatial relationships among
features of the ground, which followed naturally from the similarity between the aerial or
satellite images and the cartographic map. The common goal was the creation of a map.
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As mentioned above, hyperspectral remote sensors acquire images across nharrow
contiguous spectral bands, mainly including the visible, near-infrared and mid-infrared
portions of the electromagnetic spectrum *°. Typically, hyperspectral sensors measure
the reflected spectrum at wavelengths between 350 and 2500 nm using 150-300

contiguous bands with 5 to 10nm bandwidths'**

. Recent scanners support even higher
spectral resolutions in the sub-nanometer range. Although hyperspectral remote sensing
has a relatively short history compared with other types of remote sensing such as aerial
photographs, hyperspectral sensors have been very effective for mapping the spatial
extent of native and non-native species across all types of communities and ecosystems'*2.
Recent advances in materials and optics have allowed the development of smaller, more
stable, accurately calibrated imaging spectrometers that can quantify properties of the
investigated land surface using absorbing and scattering characteristics.. Hyperspectral
imaging is becoming more widely available from government and commercial sources;
thus, it is increasingly feasible to use data from imaging spectroscopy for environmental

research purposes*™.

Previous studies have shown that from remote measurements, direct identification of
surface materials can be obtained. Remote sensing instruments can provide detailed
information on the mineralogy and geochemistry of the rock types comprising the Earth’s
surface. Based on that, remote sensing has been used for decades to map rocks, mineral

assemblages and weathering characteristics & **> 1%,

In environmental monitoring analysis, for example, for air protection, people require the
continuous monitoring of the emissions produced by coal or oil power plants, municipal
and hazardous waste incinerators cement plants, as well as many other industrial source
pollutions. These monitoring studies are usually performed using extractive sampling
systems coupled with spectroscopy techniques. Environmental monitoring describes the
processes, and activities taken place in the environment. Hyperspectral imaging can be
used for environment impact assessment as well as in many other circumstances of
human activates assessment.

The application of hyperspectral imaging to natural resources, vegetation and surface
water is an important field in environmental monitoring studies'*>. The spectral signatures
of vegetation are influenced by the presence of pigments (mainly chlorophyll-a,
chlorophyll-b, xanthophyll and carotenoids), and by the physical structure and water

content of leaves'®

. Hyperspectral analysis of surface water bodies (lakes, rivers and
coastal waters with riparian zones) provides information on key water quality parameters

and on its trophic state.

The enhanced capability of hyperspectral technologies in environmental monitoring using
remote sensing allows managers to take correct decisions with the necessary detail and in
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an efficient time frame. With the fast development of space borne and airborne sensors,
better hyperspectral data are more frequently and conveniently received. As a result, data
storage and proper management, and effective information extraction are becoming key
challenges to hyperspectral remote sensing science and technology. Especially, automatic
or semi-automatic information extraction is expected to be growing in hyperspectral
investigations and applications.

Some recent studies have used hyperspectral remote sensing to assess current spatial
distribution and future dispersion of invasive plants at local, regional and global scales.
With a hyperspectral sensor, many narrow bands can capture a range of absorption
features including leaf or biochemical constitutes such carotenes, water, nitrogen,
cellulose and lignin'*’. As leaves and plant species vary in the concentration of their

|118

biochemical constitutes, the reflectance spectra vary as well™™". Kate S. He et al. have

reported hyperspectral remote sensing results for detecting, mapping and predicting the

19 Herold, M. evaluated how spectral resolution of high-

spatial spread of invasive species
spatial resolution optical remote sensing data influences detailed mapping of urban land
cover. A comprehensive regional spectral library and low altitude data from the AVIRIS

were used to characterize the spectral properties of urban land cover'®.

At the Laboratory of Hydraulics of DICEA-Sapienza University of Rome, an effective
methodology for hyperspectral monitoring has been developed'®. It is based on the use
of two innovative experimental devices for acquiring hyperspectral images, one based on
the use of tunable interference filters, the other on the use of spectrometers*? **. In L. G.
Olmanson’s work, airborne hyperspectral remote sensing was applied to assess the spatial
distribution of water quality features in large rivers, the Mississippi River and its
tributaries in Minnesota. All these results show that hyperspectral imaging can be used to
distinguish and map key variables under complex conditions, particularly to separate and
map inorganic suspended sediments independently of chlorophyll levels'?3.

F Salem reported a case study about a prototype of oil spill leaks in Patuxent River in
Maryland, and the associated image analysis for detecting oil spills using hyperspectral
imagery and the effect on soil, water, wetland, a vegetation contaminated by oil spill®>. F
Salem et al. in another work, reported hyperspectral allowed precise identification of
grass stress and soil (oil contaminated wetland) damaged by oil polluted water™**.

Space borne and airborne images, are the main source for getting real-time data. In the
event of an oil spill, this information can be retrieved in short time to help authorities to
plan the quickest route to the spill and formulate an effective environmental protection
plan. That could be a way to reduce damages.
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In chapter 3 of this Thesis, remote sensing hyperspectral imaging (AVIRIS data sets from
NASA) data has been analyzed and different physical objects, such as buildings, vegetation,
soil, water, etc. were properly resolved.

Hyperspctral imaging in food analysis

More and more food species are supplied by food industry nowadays. Food can be a very
complex product for consumption. It can have a plant or an animal origin, and it consists
of carbohydrates, fats, proteins, vitamins or minerals. Assessment of food quality
parameters like meat, vegetable has always been a big concern in all processes of the food
industry because consumers are always demanding high quality of food raw materials and
products. Analysis of food products in industry is a complex task.

Food quality is an important requirement, which can usually be defined in terms of
consumer appreciation of texture and flavor, and of food safety, which includes health
implications from both compositional and microbiological properties'®>. Food quality
assurance plays an important role, because it is directly related to the consumer health. In
the food industry, the producers need to be able to guarantee the quality of the product

126 When consumers choose food, they always take care about its visual

they produce
appearance, textural patterns, geometrical features and color. Food quality assessment
can use methods like sensory analysis, nutrition analysis, bacteriological and chemical
analysis. These methods give judgments based on taste, healthiness, convenience,
appropriate packaging, environmental friendliness, and so on*?’. For example, people can
use some chemical properties for evaluation, such as water holding capacity, freshness,

content in proteins, and vitamins 128

The other important aspect to consider especially concerned by producers, distributors
and consumers is product authenticity and authentication. Food adulteration has been
practiced since thousands years ago, but it has become more sophisticated in the recent
years. Food ingredients most likely to be targets for adulteration include those which are
of expensive and/or undergo a number of processing steps before they can appear in the
market. All these frequent situations require the use of appropriate methods and
technologies for food analysis.

To analyze a particular food sample, there are different possibilities, using different
techniques, depending on the information that the analyzer wishes to obtain.
Conventional methods of food analysis rely on a subjective visual judgment and on the use

27



Introduction

of laboratory chemical tests. In addition, traditional grading routines and quality
evaluation methods are time consuming, destructive and associated with inconsistency
and variability due to human subjectivity *°. Therefore, evaluation of food quality in
recent food processing lines requires the use of new analytical instrumentation that is fast,
specific, robust, and durable enough for the harsh environments in food processing plants

130

and overcome all disadvantages of traditional methodology . This instrumentation also

has to be cost effective to reflect their competitiveness in food and agriculture markets.

Food industry is currently undergoing dramatic changes in applying the most advanced
technological innovations, and it has gained acceptance and respect in handling, quality
control and assurance, packaging and distribution. Many different methods for measuring
food quality are available, which are based on different principles, procedures or
instruments. Over the past few years, a number of methods have been developed to
measure food quality.

Analytical technigues most commonly used for food analysis are the following:

e Spectroscopic techniques (IR, NIR, Raman, UV-VIS, fluorescence): They study the
interaction between radiation and molecules. Molecular vibrations give spectral
signatures, which characterize food composition and may be considered as
fingerprints of food samples. They can be used in image analysis.

e Chromatography (GC, LC): They are applied to the detection and quantitation of
particular analytes of interest in food samples. It is based on the interaction of
analytes (in mixtures) with a stationary phase when they travel with different
speeds in a mobile phase. Chromatographic methods can be used in conjunction
with different detectors. Usually, UV absorption molecular spectroscopy (via a
diode array detector, DAD) or mass spectroscopy (MS), can be used as detectors.

e Mass spectroscopy (MS, MS/MS): Mass spectroscopy can be used not only as a
detector for Chromatography, but also it may be used efficiently for direct
detection and quantitation of elements and other constituents of food samples
and for structure analysis.

¢ Nuclear magnetic resonance (NMR): It can be applied to a wide range of liquid and
solid samples to elucidate the structure of organic molecules and constituents, and
to perform their semiquantitation in food samples. It can be used in imaging
analysis of food samples.

e Thermal Analysis: foods can be submitted to variations in temperature during
production, transport, storage, preparation or consumption. Temperature changes
cause alteration of the physical and chemical properties of the food products.
Thermal analysis is the measurement of changes with temperature in mass,
density, heat capacity and other physical properties of foods.
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e Rheology analysis: measures flow or changes in shape of food materials when a
force is applied.

In the food industry, quality evaluation and control are still performed in many
complicated ways. In the traditional way, the analysis work is tedious, laborious, costly
and time consuming. Sometimes human errors and inconsistency may happen. This is the
reason why there is a great interest to work on hyperspectral imaging systems for
evaluation of food quality. Nowadays, the analysis of agricultural products is also based on
automation or semi-automation of measurements, and therefore there is also a high
demand for application of hyperspectral imaging.

Hyperspectral imaging is a fast growing area in food analysis, which expands and improves
the capabilities of traditional spectral analysis. It has the flexibility to tackle all type of
samples, whatever their size. For example, it is able to deal with microscopic particles,
with a single kernel or with the whole sample (for example, with a fruit or with a piece of
meat) in order to study the distribution of a wide range of chemical compounds. Research
on application of hyperspectral imaging in food analysis was already starting in 1990s?.
With the fast development of imaging and computer technologies, hardware of
hyperspectral imaging applied to food industry updates at a rather rapid speed, and the
cost of hardware decreases correspondingly.
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Figure 2- 2 Scheme of a hyperspectral imaging instrument

Translation stage

29



Introduction

As it can be seen from Figure 2- 2, hyperspectral imaging system for food analysis
normally consists of the following parts: a light dispersion device and an imaging unite to
function as an eye; a decision-making component such as computer and software. The
light provided by the light source interacts with the food samples, and its environment.
Light interaction with physical and chemical features of the sample will be dispersed and
projected onto the detector.

The illumination unit provides light to the sample. This part makes a significant impact on
the performance and reliability of the system. Tungsten halogen lamps, which add
halogen elements (F, Cl, Br, 1) into quartz tubes, are widely used as illuminators in
hyperspectral imaging systems™ **2. Tungsten-halogen lamps have higher luminous
efficiency compared to normal light bulbs. Furthermore, halogen frequency can guarantee
sustained glow and long lifetime, which is four times more than normal light bulbs. In
addition, other kinds of durable lamps such as HgAr lamps or LED source have been

applied as well**.

The sensor is the most important part of the hyperspectral imaging systems, which helps
in generating a spectrum for each point on the scanned line. With the development of
sensor technology, many different types of sensors have been developed, which can
acquire images in different spatial resolution, temporal resolution and spectral resolution.

CCD (Charged Couple Device) or CMOS (Complementary metal-oxide—semiconductor) are
two widely used image sensors that have been developed rapidly in recent years. The role
of CMOS Image Sensors since their birth around the 1960s has been changing a lot. Unlike
the past, current CMOS Image Sensors are becoming competitive with regard to CCD
technology. They offer many advantages with respect to CCD, such as lower power
consumption, lower voltage operation, on-chip functionality and lower cost. Nevertheless,
they are still too noisy and less sensitive than CCDs™**.

The computers’ memory, hard disk capacity as well as the processor makes data storage,
and data processing enhanced a lot. In the near future, hyperspectral hardware, in
particular, for optical devices, will be more intelligent due to the increasing development
of computer technologies, which facilitate operational control automatic and intelligent.

Sometimes, for online monitoring, the light is transmitted through optical fibers towards a
line light reflector. Nowadays, many kinds of fiber optic sensors are developed such as
Bragg grating optical sensors'®, fiber optic Febry—Perot temperature sensors™° and
intensity modulated sensors.

Discrimination and classification for constituents detection have been the key quality
control stages in food industry’. Hyperspectral imaging has already shown a great
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capability to quantify and control quality parameters in food industry with high

precision™®’.

In fruits and vegetables, hyperspectral imaging has been successfully applied to the

138 to the estimation of

detection of contaminates, bruises and chilling injury in apples
quality parameters in strawberry®*® and cucumbers'*’. The results of these previous works
in fruits and vegetables emphasized the fact that hyperspectral imaging techniques have a
notable performance for estimating physical and chemical attributes such as firmness,
presence of bruises, dry matter, soluble solids content, pH, and sugar contents in addition
to displaying their spatial distribution'*!. This enables early sorting of products and

thereby they improved significantly quality management operations.

Meat tenderness is the primary determinant for consumer satisfaction which affects his
decision to purchase certain sort of meat. Hyperspectral imaging was applied to meat
products such as decal and tumor'*® detection in chicken carcass'®®, pork quality
classification’*®, tenderness assessment of beef'”, fish quality evaluation®, lamb

muscles*®

. Both reflectance and scattering modes have been used. Researchers should be
careful when using scattering mode. Scatter effects in the spectra resulting from physical

sample variations may pose more or less severe analytical problems™’.

There are few publications in utilizing hyperspectral imaging systems for quality
evaluation of dairy products. Commercially produced cheeses containing varying amounts
of protein, fat, and carbohydrate have been tested using a hyperspectral imaging
system™®. Similarly, Gowen et al. acquired a hyperspectral images of high and low fat
cheese slices using a pushbroom hyperspectral imaging system™*.

The various applications outlined above have shown the benefits of hyperspectral imaging
technique for sample characterization and chemical species distribution. Hyperspectral
imaging has proven to be a very valuable tool for a wide range of applications in food
analysis. It provides attractive analytical solutions to meeting consumer demands for food
quality and safety.

Right now, in most of the cases, hyperspectral imaging systems are still not directly
implemented in online systems for quality evaluation because of the long time needed for
image acquisition and subsequent data treatment. Anyway, hyperspectral imaging
technologies can be a very useful as a research tool for determining key wavelengths with
the help of chemometric methods. When only a reduced number of key wavelengths are
used, the technology can be implemented in a real-time multispectral imaging system.
These optimum wavelengths should not only contain the physical/chemical information,
but also maintain the successive decimation and classification efficiency.
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Chapter 4 of this Thesis shows the application of Raman and Infrared hyperspectral
imaging to the analysis of the constituents of commercial chocolate samples.
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2.2 Chemometric methods

This part introduces the chemometric methods used in this Thesis and their application to
the analysis of hyperspectral images.

Chemometrics was first introduced in early 1970s as computers became increasingly used

199 The international

149, 150

in analytical chemistry experiments and other scientific fields
chemometrics society was established by Svante Wold and Bruce R. Kowalski in 1974
Since then, chemometrics has been developing steadily, and now it is widely spread to
different fields of chemistry, especially analytical chemistry. According to the International
Chemometrics Society, chemometrics can be defined as the chemical discipline that uses
the theory and methods from mathematics, statistics, computer science and other related
disciplines to optimize the procedure of chemical measurement, and to extract as much as

possible chemical information from chemical data™™.

Chemometrics is used for the treatment of chemical data, for the evaluation of
instrumental signals, for the extraction of useful information, and for decision making in
analytical chemistry™2. Well-known approaches for multivariate calibration, chemical
resolution, and pattern recognition have been developed in analytical studies™.
Chemometrics now has two aspects, 1) the development of new theoretical principles and
algorithms for manipulating chemical data, and 2) the applications of the chemometrics
techniques to different disciplines of chemistry such as environmental chemistry, food
chemistry, agricultural, medicinal, or chemical engineering, and more recently to the
analytical omics (genomics, transcriptomics, metabonomics, proteomics) field etc.

During years, chemical laboratories introduced many new instrumental analytical
techniques in all kinds of fields, in particular in many instrumental methods like those
based on spectroscopy (UV-VIS, IR, NIR, fluorescence, etc.) and those called hyphenated,
such as High Performance Liquid Chromatography with a Diode Array Detector (HPLC-

DAD)"™* Gas Chromatography combined with a Mass Spectroscopic detector(GC-MS)™>,

Gas Chromatography with an Infrared spectroscopic detector(GC-IR)**®
Liqguid Chromatography with a Mass Spectroscopic detector(HPLC-MS)
Electrophoresis with a Diode Array Detector(CE-DAD)™®

instruments can give more precise, accurate, sensitive results and allow for the qualitative

, High-Performance
157

, or Capillary
among other. These hyphenated

and quantitative determination of multiple compounds even at trace levels. All the data
produced by these instruments, like spectra, chromatograms, voltammograms, kinetic
curves, titration curves, and other type of responses can be stored as data vectors or
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matrices™’. Univariate deterministic methods cannot solve complex chemical and physical
systems that appear in nature or in the laboratory. Mathematical tools, such as
classification models, calibration models, or regression models can be applied to extract
the information that analytical signals contain and solve the problems being investigated.
Alternatively, multivariate data analysis methods can be chosen to solve these problems,
and in particular, chemometric methods should be considered for this purpose.
Chemometric methods allow for the analysis of high dimensional complex datasets
obtained from modern analytical instruments.

The use of chemometric tools in hyperspectral image analysis is crucial to take advantage
of the full experimental measurement. Hyperspectral images provide a tremendous
amount of information stored in large data sets. At each pixel of the image, there is one

%0 Hyperspectral images usually include redundant

spectrum at multiple wavelengths
information. Like for other spectroscopic methods, hyperspectral data also suffer from the
problem of multi-collinearly. The characterization of multicomponent systems by
hyperspectral imaging requires to cope with big datasets obtained in experimental
analysis'®. A typical hyperspectral imaging includes thousands of spectra, and each
spectrum can contain a large number of spectral bands. This information can vary due to
the composition, structure, position and orientation of the species. The huge amount of
data from the two directions of the sample surface and from the spectral direction poses
considerable computational challenges. To fully use the information of hyperspectral
datasets, different data analysis methods such as classification, resolution or

segmentation are needed.

In the late 1980s, chemometrics and other communities began to analyze and use
hyperspectral images on a pixel basis, taking benefit of all the work already developed in
conventional spectrometric data, and giving rise to the concept of Multivariate Image
Analysis (MIA)**. In this approach, the image cube is unfolded into a data matrix on which
multivariate exploration, regression or resolution techniques are then applied. By using
these methods to hyperspectral images, the following aspects should be considered:

e Hyperspectral image compression. It is usually necessary to reduce the
memory requirements by removing redundant information present in the
images.

e Image analysis, including classification and resolution.

e Speeding up the process of collection of hyperspectral imaging data.

e Increasing the resolution of the hyperspectral imaging.
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This thesis is mainly focused on the resolution of the pure spectra (signatures) and
distribution map of the constituents present in hyperspectral images. In addition, some
pretreatment methods are discussed to improve the results of the analysis. They are
introduced first.

Data pretreatment chemometrc methods

Data pretreatment methods usually try to reduce large baseline variations, physical effects
(like scattering), detector drifts and non-linearities, dimensionality, collinearity and noise
levels from observed spectra™®®. Usually spectra obtained by hyperspectral imaging have
the problem of noisy signatures, baseline drift, and surface scattering. Moreover,
sometimes they have the problem of having different constituents at different scales.
Many reasons can cause these problems. Different spectroscopic techniques are
influenced by different factors, for example, light scattering in NIR, or fluorescence
background in Raman spectroscopy, when samples are irradiated. Correction of optical
errors may be induced by lenses and atmospheric disturbances. Scattering effects are
often encountered when measuring diffuse reflectance objects in hyperspectral imaging.

Spectral preprocessing techniques should be considered a key step for the successful
analysis of hyperspectral data. Hyperspectral imaging preprocessing improves the visual
quality of images and makes the image analysis steps more reliable by reducing noise, and
easing the edge detection. To deal with the problems above mentioned, different
methods have been proposed for different aims.

Dead pixels and spikes

In hyperspectral images, the presences of dead/bad pixels having zero or maximum signal
values, and/or of non-informative background, can be caused by several sources. Most of
the measuring systems are based on diode array detectors or tunable filters. The
dysfunction of one of the diodes in the detector array may generate dead pixels (missing
or zero values), unexpected spectral readings (extreme values) or spiked points in one
specific wavelength. Dead pixels can distort multivariate models. Many of the routines for
multivariate data analysis (e.g. PCA) can handle a limited amount of missing values. Once
the dead pixels have been located, the best choice is replacing them by interpolation with

neighbor pixels, due to their evident connection in structure and correlation 3.

Spikes can be defined as a sudden and sharp signal rise followed by a sharp signal decline
in the spectrum intensity'®. Spikes can appear due to an abnormal behavior of the
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detector, imperfections of electronic circuits or environmental conditions, like cosmic ray
events when instruments like Charge-Coupled Device detectors (CCDs) are used for
Raman imaging'®. Approaches based on the derivatives of the signal, median and
Median-Modified Wiener Filters (MF and MMWF, respectively)®®, or Wavelet

Transforms(WT)*®> have been proposed to remove spikes.

The geometry of the samples in the acquisition of the images plays an essential role in the
selection of the Regions of Interest (ROI). Hyperspectral techniques usually acquire square
images. If the sample does not cover all the scanned area, the area left outside the sample
must be eliminated, since this area is usually composed by highly noisy spectra. By the
selection of ROI, only the desired area will be analyzed. Selecting a threshold value
obtained from the scores of a previous PCA model, background removal can be performed
as another common practice.

Baseline correction

Pre-treatments that can correct spectra for offset and changes in the baseline include de-
trending, derivatives and Asymmetric Least Square baseline correction (AsLS).

De-trending: The trend of the baseline is estimated by least squares, adjusting each
spectrum with a first or second order polynomial and then subtracting this adjusted
spectrum from the original to obtain the corrected spectrum. Higher order polynomials
can be used, but then there is the associated risk of removing relevant information.

Derivatives: First order derivatives may reduce spectral offset; additionally, the second
derivative may remove a uniform slope from the baseline.

Asymmetric least squares (AsLS): This method calculates complex baseline shapes by
adjusting two parameters: the asymmetry parameter which is related to the position of
the baseline, and the smoothness parameter related to the flexibility in the shape of the
baseline.

187 1t reduces the possible baseline

The AsLS method has been proposed by H. C. Eilers
and background contributions, especially when it changes over time. It estimates a
baseline/background contribution by minimizing the penalized least squares function

based on the Whittaker smoother %,

Assume that m spectra s3, S3,..., Sm are in column vectors, and that z, z,,..., zp, are their
corresponding baselines to be estimated. In order to fit a smooth series z to s the
following optimization is performed :
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z=arg min,{}; w;(s; — z;)% + uY;(A%z)?} Equation 2- 1
where s; is the considered spectrum,

A%z, = (2 — Z;_1) — (Zi_1 — Zj_») = Z; — 2Z;_1 + Z;_»,  Equation 2-2

Weights w; are chosen asymmetrically: w; = p if s; > z;, otherwise w; =1 —p. The
values of w should be set to 1 where s; is observed or allowed to influence z. In all other
places, the values of w were set to 0, z values are smoothly interpolated). pnis a
regularization parameter, which sets the weight of the second term and acts as roughness
penalty, the larger , the smoother z will be. Experience shows that starting from w=1 and
iterating between the two computations of w; = p if s; > z;, otherwise w; = 1 — p, leads
to a solution in about 10 iterations. With p near to zero and a rather large y, z will tend to
follow the valleys of s. In the work of analysis chocolate using Raman and Infrared
hyperspectral imaging in Chapter 4, the parameters p and p are set to 0.001 and 1x10’
respectively.

Scattering effects correction

When analyzing solid and heterogeneous samples, they may exhibit sample-to-sample
variability using spectroscopic instrumentation. These variations come from the changes
in optical path length due to physical differences between samples, due to particle size
and shape, sample packing, and sample surface. It may result in the multiplicative light
scattering effect masking the spectral variations relating to the differences between the
chemical compounds within a sample. Multiplicative scattering effects present in spectra
are commonly corrected by the following methods:

Scaling: Multiplicative effects in spectra are suppressed by dividing each spectrum by
some attribute such as its mean, median, minimum, maximum or norm.

Multiplicative Scatter Correction (MSC): The best line fitting each spectrum to a reference
spectrum is calculated, and each value in the spectrum is then adjusted by subtracting the
offset and dividing by the slope of the line of best fit; commonly, the reference spectrum
is the mean spectrum of the data set.

MSC is a general signal treatment method which has been applied for eliminating the
effect of scattering produced by physical effects, and also as a preprocessing to linearize
spectral data. Multivariate linear statistical regression methods can give better predictions
when applied to MSC corrected data. It corrects for the scatter level of a group of sample
spectra to the level of a preselected spectrum, which usually is the sample average
spectrum®®. Each spectrum is fitted to this average spectrum by least squares:
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X; =a;+ bl)_(] + € Equation 2- 3

where x; is an individual spectrum, X; the mean spectrum of the group, and
e; the residual spectrum, which ideally represents the chemical information of the
spectrum related to the specific concentration changes of the different constituents of
this particular sample. The corrected spectrum X;ysc is calculated using the fitted

constants a; and b;:

Ximsc = (Xi —a;)/b; Equation 2- 4

In this thesis, in the Chapter 4 about the analysis of chocolate samples using Raman and
Infrared hyperspectral imaging, the preselected spectrum for MSC pretreatment was the
average of the raw spectra.

Baseline drift always blurs or even swamps signals and ruin analytical results. Correct
baseline drift will help performing further data analysis. A typical baseline correction
based on linear models or on more complex mathematical functions, can be performed.
Other strategies, such as working with derivative spectra instead of with the raw spectra,
can help to eliminate instrumental variations such as offsets or linear baselines that are
unrelated to the chemical composition of the image.

170 is an extension of MSC that can be

Extended Multiplicative Signal Correction (EMSC)
used to remove additional unwanted interferences in the signal, correct for the square of
the reference spectrum or first or second order polynomial of the spectra. Therefore this
method cannot only correct the spectra for multiplicative effects but can also
simultaneously correct the baseline of the spectra and suppress the effect of know

interfering compounds. This method outperforms MSC in some cases*’*.

Standard Normal Variate (SNV): Offset and multiplicative effects are removed from each
individual spectrum by mean centering and scaling by its own standard deviation. This
method has been applied to hyperspectral imaging, and has been demonstrated to
improve performance of PLS models developed by using raw spectra and other pre-

treatments'’?.

Robust Normal Variate (RNV): Selection of a predefined percentile, and calculation of the
standard deviation of the values lower than the selected percentile have been proposed
as improvements of the SNV method to increase its robustness against extreme values

173

and to solve the closure problem™">. Selection of the proper percentile may be decided by

testing different values.

Noise to signal ratio may be increased by multiplicative correction, especially when the
spectrum is divided by a very small attribute. This can overcome benefits gained by
reduction or removal of the multiplicative effects. On the other hand, model performance
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may be unimproved if the component being modeled (response variable) is related to the
scattering of the sample.

Smoothing

In recent years, many possible methods have been designed to de-noise spectroscopic
datasets, and they can be also applied to hyperspectral images. Some of these methods
rely on smoothing procedures, whether by averaging or by fitting neighboring spectral
channels to a polynomial function, or also based on mathematical signal filtering
procedures.

Savitzky-Golay (SG) smoothing *’**”is a very popular technique, which uses convolution

arrays derived from the polynomial coefficients of least squares fit formulas *’®. The
convolution can be understood as a weighted moving average filter with weights from a
polynomial of a certain degree. Instead of simply using the averaging technique, the
Savitsky-Golay filter employs the regression fitting capacity to improve the smoothing
results. It has been used in this work to remove large noise contributions of Raman signals.

Selection of the window size of the Savitsky-Golay filter is important. When the window
size increases, the smoothing effect becomes more significant, but the signal resolution
decreases. When Savitzky-Golay smoothing is applied, the span of the moving average and
the smoothing polynomial degree has to be set.

Kramers-Kronig transformation

Infrared active photons, both longitudinal and transverse, are mostly determined from
reflection spectra in the infrared spectral range. These spectra do not reveal the photon
frequencies directly. Kramers-Kronig spectra pretreatment is a powerful tool enabling a
calculation of absorption spectra in case only reflectance spectra can be measured.

The complex reflectance spectrum is mathematically decomposed into two separate
spectra- the extinction coefficient and refractive index spectrum. The extinction
coefficient spectrum can be then used to calculate the absorption spectrum.

The real (n = refractive index) and imaginary (k = extinction) parts of the complex index of

refraction are calculated from the reflectance spectrum using the following formulas:

_ 1-R(V) . i
n(v) - 14+R(v)—24{/R(V)cos(0(V)) Equation 2- 5

_ —2,/R(v)cos(8(Vv))
k(v) = 1+R(v)-2/R(V)cos(8(v))

Equation 2- 6
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where R is the reflectance, n is wavenumber, 6 is phase shift angle of the sample.

For a given wavenumber, the phase shift is calculated using the equation:

G(Vm) _ 2vm foo In/R(V)dv

vZ-v,

Equation 2- 7

The Kramers-Kronig transform algorithm assumes that the reflectance spectra are
measured at incidence angles close to zero.

In this thesis, in the work about Raman hyperspctral imaging analysis of chocolate
constituents, Multiplicative Scatter Correction (MSC) " Y8 Asymmetric Least Squares
(AsLS) 718 and Savitzky-Golay smoothing ’® were used as signal pretreatment methods
to eliminate undesired light scattering, instrumental and background effects. In the third

Chapter, infrared hypespectral imaging used the Kramers-Kronig transform.

Chemometric data analysis methods

Bilinear method

Depending on the structure presenting data to analyze, it may apply different types of
models and chemometric methods. Bilinear chemometric methods can be used in
hyperspectral imaging data analysis. To describe the bilinear decomposition of a two way
dataset, the following expression is used:

Xijj = Z§=1 CinSnj T €jj Equation 2- 8
and the reproduction of data can be expressed in way of the matrix:

X=CST+E Equation 2- 9

where xj;represents the ij' element in the two-way dataset X (i=1, ..., ,and j=1, ..., J). Cip,
Spj, and ejjare the elements of C, STand E. N(n=1, ..., N) is the number of considered
components, (chemical species contributing to the signal); | is the number of rows (for
spectroscopic data, | is the number of samples spectra/profiles) in the data matrix X; and J
is the number of columns (for spectroscopic data, J is the number of bands) in the data
matrix X. C is the matrix describing how the contributions of the N species change in the |
different rows of the data matrix (concentration profiles). ST is the matrix describing how
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the responses of these | species change in the J columns of the data matrix (pure spectral
profiles). E is the residual matrix with the data variance unexplained by CST, like
experimental error and uncertainties.

| et 4

Figure 2- 3 Decomposition of a matrix set according to a bilinear model.

Principal component analysis (PCA), independent component analysis (ICA), multivariate
curve resolution (MCR) etc. are bilinear methods used in the analysis of hyperspectral
imaging.

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a well-known linear dimension reduction procedure
that has been proved to be optimal in the sense of the mean squared error. PCA provides
efficient abstract bilinear model decomposition to describe the variation of a data set. PCA
is a technique that condenses all the spectral information into a few number of
components (Principal Components, PC) or latent variables. Once the decomposition is
performed, each score vector can be refolded to show the relative distribution map for
each component®™. It gives an abstract decomposition of experimental data, which
maximizes the explained variance under the constraint of orthonormality of the
components. PCA decomposes the measurement matrix X into the scores T and loadings
P factor matrices, that is:

X=TPT+E Equation 2- 10

The aim of the method is to maximize the explained variance in the data with a minimum
number of components. Score and loading factor matrices represent a concise summary
of the original data that in most cases can aid in interpreting the underlying data variance
sources. The scores and loading must be interpreted together and have little meaning
alone. However, due to the applied constraints during the PCA bilinear decomposition
(orthogonality, normalization and maximum variance), score (T) and loading (PT) profiles
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are not providing the profiles of the true variance sources, but a linear combination of
them fulfilling the applied constraints. True variance source profiles for instance do not
fulfill the requirement of orthogonality and they are overlapped, and in many chemical
and physical systems profiles should be non-negative.

In this thesis, PCA is used as a data compression noise filtering method and to investigate
the number of variance sources, as a first step of the other image resolution methods.
Scores and loadings obtained by PCA facilitate also the interpretation of the behavior and
description of the sources of data variance, but it does resolve adequately their true
natural profiles.

Although PCA is a widely used approach for feature extraction and data reduction, PCA
suffers from high computational cost, large memory requirement and low efficacy in
dealing with large dimensional datasets such as Hyperspectral Imaging (HSI). J. Zabalza et
al. proposed Folded-PCA for improved feature extraction and data reduction with
hyperspectral imaging*®.

In Chapter 6, bilinear methods of image resolution were assessed, and the comparison
between MCR-ALS, PCA, and other related methods were shown.

Independent Component Analysis (ICA)

Independent component analysis (ICA) is a statistical method for finding underlying
factors or components from multivariate data, which can be proposed to solve the blind

183 ICA is used to find a mathematical transformation of the

source separation problem
data into a linear combination of statistically independent components. The difference of
ICA to other methods, is that it looks for components that are both statistically
independent and non-Gaussian'®*. Bilinear decomposition ICA constraints are more severe
than PCA constraints, since statistical independence is a stronger condition than the linear
independence (orthogonality constraints) assumed by PCA (Orthogonality is a special case

of linear independence)*®.

ICA assumes that the data is a linear combination of non-Gaussian, mutually independent
latent variables in an unknown mixing matrix. ICA reveals hidden independent sources and
their relative contributions. The aim of ICA is the decomposition of multivariate signals
into statistically independent component contributions with minimum loss of information.
Given a set of observations represented by a data matrix X (I,J), having | measurement
vectors, the ICA bilinear model can be written as following:

X=AS+E Equation 2- 11
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where S (N,J)is the N dimensional vector of independent sources and A (I,N) is the
unknown basis matrix. E(l,J) is the error matrix. Then, ICA searches for the linear
transformation of the data W, such that the projected variables:

WX =S Equation 2- 12

are as independent as possible. It has been shown that the model is completely identical if
the sources are statistically independent and at least N-1 of them are non-Gaussian. If the
sources are Gaussian, the ICA transformation can be estimated up to an orthogonal
transformation. Estimation of mixing and un-mixing matrices can be done maximizing
diverse objective functions, among the non gaussianity of the sources and the likelihood
of the sample.

Principal Component Analysis (PCA), Independent Component Analysis (ICA) can be
considered to share the same overall objective: the decomposition of a data matrix into a
reduced number of components.

ICA is an increasingly popular method to resolve complex data sets, like hyperspectral
image data, into component signatures (spectra) and their distribution maps.
Unfortunately, the pre-requisite of statistical independence severely limits the application
of ICA. W. Windig and M. R. Keenan proposed a pre-processing method to extend the use
of ICA. For a certain class of data, increasing the sparsity of a data set, increases the
independence of the components, and thus enables the successful application of ICA. The
sparsity can be increased by simply adding zeros to the data set or by applying a Haar-
wavelet transform*®®.

In Chapter 6 comparisons between ICA and other methods like PCA or MCR-ALS (below)
are shown for some specific cases.

Vertex Component Analysis (VCA)

VCA (Vertex Component Analysis) is an unsupervised method based on the geometry of a
convex data set which considers that the pure image constituents are located at the
vertices of a simplex. It is a method that is well known in remote sensing area for
endmember (pure component) extraction. For example, in a mixture defined by three
constituents, the simplex boundaries built by VCA are a triangle, whose vertices
correspond to the estimations of the pure constituents or endmembers. VCA assumes that,
for every constituent, exists one or more pixels in the image where only this constituent
exists (pure pixels). If this condition is fulfilled, VCA will find these vertex pixels and
therefore the corresponding pure components. To find out these pure pixels and the
spectral signatures associated to them, VCA iteratively projects the data onto a direction
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which is orthogonal to the subspace spanned by the endmembers already estimated. The
new endmember signatures are located at the extreme of the new projection. This
iteration procedure goes on until all the endmember signatures are estimated. A more
detailed description of the method can be found in*®’.

Minimum Volume Simplex Analysis (MVSA)

MVSA (Minimum Volume Simplex Analysis), also considers that the underlying mixing
model is bilinear, i.e. that the mixed hyperspectral vectors are a linear combination of the
signatures (spectra) of pure components. MVSA is a method that finds the pure
components (end members) in hyperspectral image by fitting a minimum volume simplex
to the hyperspectral data, under some constraint such as for every pixel no less than zero
(non-negativity constraint) abundance fractions and of sum is equal to one (closure).
MVSA does not use a least squares approach, but a Sequential Quadratic Programming
(5QP) method, based on a quasi-Newton non-linear optimization procedure under linear
constraints. In order to prevent local minima and to achieve a faster speed, VCA is usually
applied as the initial step to provide an inflated version of the initial simplex'®. More
details about the MVSA can be seen in references and the original paper **°.

Geometrical-based data analysis approaches are based into two main categories, Pure
Pixel (PP) or Minimum Volume (MV). Pixel Purity Index (PP1)**® ! |terative Error Analysis
(IEA) %%, Vertex Component Analysis (VCA) and Simplex Growing Algorithm (SGA)'*® are
pure pixel based algorithms. The Minimum Volume Simplex Analysis (MVSA)'®°, the
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Minimum Volume Enclosing Simplex (MVES)™™" and the Simplex ldentification via variable

)*%* are minimum volume approaches which fit

Splitting And Augmented Lagrangian (SISAL
a minimum volume simplex to the hyperspectral data. In this thesis, VCA and MVSA
methods were compared with MCR-ALS for the resolution of remote sensing

hyperspectral images in Chapter 3.

Other recently developed image resolution methods

When considering the problem of hyperspectral image resolution, most of the literature in
the image processing areas relies on the widely used Linear Mixing Model (LMM).
However, this model may be not valid and other nonlinear models can be considered.
When there are strong multi-scattering effects or intimate interactions, several significant
contributions have been proposed to overcome the limitations of linear model.
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Altmann, Y. etc. have reported a Bayesian algorithm to estimate the parameters involved

% This group also

in the model yielding an unsupervised nonlinear unmixing algorithm
studied a linear Radial Basis Function Network (RBFN) for unmixing hyperspectral
images'®’. They proposed to estimate the model abundances using a linear combination of
radial basis functions whose weights are estimated using training samples. Yoann Altmann
et al. reported a nonlinear method using Gaussian processes. The first step is using the
Bayesian estimation of the abundance vectors for all the image pixels and the use of a
nonlinear function to relate the abundance vectors to the experimental observations. The
pure components (endmembers) are subsequently estimated using a Gaussian process

%8 Jie Chen etc. formulated a new kernel-based paradigm that relies on the

regression
assumption that the mixing mechanism can be described by a linear mixture of pure
component (endmember) spectra, with additive nonlinear fluctuations defined in Hilbert

space'®”.
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Multivariate Curve Resolution Alternating Least Squares (MCR-ALS)

Multivariate Curve Resolution (MCR) has been chosen in this thesis as the main strategy
for the resolution of hyperspectral images. MCR is defined as a group of techniques, which
help to resolve mixtures by determining the number of constituents, their response
profiles (spectra), and their estimated concentrations, when no prior information is
available about the nature and composition of them?®.

The basic theory of MCR is that the bilinear model is valid for the investigated
spectroscopic system (i.e. the extended multicomponent multiwavelength Lambert Beer’s
law). For a mixture with component i= 1,2,...,N,:

D=CST=3N,¢sT Equation 2- 13

Here N is the number of absorbing components coexisting in the system, and the ¢; and s;
(i=1, 2,..., N) are the pure concentration profiles and spectra respectively. The problem to
be solved is from the measurements matrix D, we need to determine:

e The number of absorbing chemical components is N;
e The spectrum of each chemical component s;(i=1, 2,..., N);
e The concentration profile of each chemical component ¢;(i=1, 2,..., N).

MCR methods are widespread and powerful methodologies for the analysis and modeling
of multivariate data in many different application fields. MCR methods have been
successfully used to analyze data coming from UV-vis spectroscopy’®, infrared
spectroscopy’®, chromatography?®®, mass spectroscopy®®*, nuclear magnetic resonance®®,
hyperspectral imaging?®, voltammetry®”’, microarray®®, LC-MS metabolomics®®®. MCR is
at present well developed both from a theoretical and the applied point of view, and it is
still expanding its range of applications.

The wide applicability of MCR can be related to the versatility of the design and
implementation of data-specific constraints. The adequate formulation and application of
different constraints based on the chemical and physical features of the component
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profiles (spectra and concentration when analyzing hyperspectral imaging data) to be
resolved are the reason of its success.

MCR-ALS has developed very fast during the last years. An updated version of the
graphical user-friendly interface related to the Multivariate Curve Resolution-Alternating
Least Squares (MCR-ALS) algorithm has been published®™°. It includes recently published
advances of this algorithm, including the implementation of additional constraints, such as
kinetic hard-modeling and calibration, as well as constraints linked to model structure for
multiset and multi-way data analysis, and the possibility to use fully or partially multilinear
models to describe the data set.

Recently, the performance and validation of the extension of MCR-ALS with the
guadrilinear constraint in the analysis of noisy datasets was studied. Results suggested
that MCR-ALS with the quadrilinear constraint can be used efficiently for the analysis of

211 A Non-Linear Multivariate Curve

four-way quadrilinear environmental datasets
Resolution Alternating Least Squares (NL-MCR-ALS) method has been proposed and
applied for the calibration of spectral data that includes the so-called saturated peaks,
which are flattened because of samples with ultrahigh absorbance. In spite of serious
violations of the Lambert—Beer law, the NL-MCR-ALS prediction results were quite
satisfactory, and the accuracy achieved is better than using other competing methods**%.
In another example, the photodegradation of carbofuran deposited on TiO, film under UV
light exposure was analyzed using a Hard—Soft Multivariate Curve Resolution-Alternating

Least Squares (HS-MCR-ALS)*.

MCR-ALS can be extended to the analysis of multi-set data (via column- and row-wise
augmented data matrices), and application of multilinear/multiset constraints to profiles
to be resolved. MCR-ALS has been used rather extensively also to the analysis of
environmental monitoring data tables, for example, to explore the possible interaction
between O; and NOy, pollution patterns*. MCR-ALS has been also applied to the
resolution of concentration and spectral profiles of the azo-dyes photodegradation
15 M.J. Culzoni et al.

have developed a liquid chromatographic method with fast scan fluorimetric detection

reactions by UV—visible-DAD and *H-NMR spectroscopy data fusion

with MCR-ALS in the simultaneous determination of five marker pteridines in urine
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samples®™. Keshav Kumar et al. have shown that the synchronous fluorescence spectra of

the mixture constituents at various wavelength offsets using Total Synchronous

Fluorescence Spectroscopy (TSFS) data set can be extracted using MCR-ALS*".

Although second- and higher order data sets are the natural type of data to be analyzed
with MCR-ALS, recently this method has been also extended for the analysis of first-order
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data using a correlation constraint 2*%. In this case, MCR-ALS can be used for first-order
multivariate calibration, and the estimations of analyte concentration are correct.

MCR-ALS has been recently applied to the identification of the different paramagnetic
centers from complex mixtures of them analyzed by Electron Paramagnetic Resonance
(EPR) spectroscopy 2*°. In another study, the analytical data obtained from a
chronoamperometric experiment for the analysis of a weak host—guest complexation
system was also analyzed by MCR-ALS. The data matrices collected at different potentials
were simultaneously analyzed by MCR-ALS to recover the thermodynamic parameters

(e.g., stoichiometric ratio and formation constant) of cyclodextrin—dopamine complex*%°.

MCR-ALS has been applied in biology, food and medicine industry in recent years. MCR-
ALS has been proposed to investigate biological pathways in metabolic networks. By using
this method, different constraints can be included in the model, and the same source of
variability can be present in different pathways, which is reasonable from a biological
standpoint®®’. Silvia Grassi et al. have used MCR-ALS to model milk lactic acid
fermentation processes. MCR-ALS applied to FT-NIR spectroscopy can be used as a control
system which can also be implemented in-line, as a reliable management method for
fermentation process monitoring and to estimate coagulation profiles, no matter what are
222 Maha A Hegazy et al. have used MCR-

ALS to estimate and quantify spectrally overlapped Vitamin B;, Vitamin Bg, benfotiamine
222,223

the operative conditions adopted for the process

and diclofenac sodium quaternary mixtures

Based on the previous experience and advantages of the MCR-ALS method, in this Thesis,
this method has been extended to the resolution of hyperspectral imaging data sets. The
goal of multivariate image analysis is to identify and estimate the distribution of the
chemical constituents on the scanned sample. Hyperspectral imaging systems coupled to
MCR-ALS have already been already applied for the resolution of different type of

problems > 224,
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Figure 2- 4 Bilinear matrix decomposition of a hyperspectral image using the MCR-ALS method. Resolution
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of spectra (signatures) and of 2D image concentrations of the pure components.

In hyperspectral imaging, the measured spectroscopic intensity data in matrix D (x, y, A) is
a function of two variables: pixel position x, y, and spectral wavelength A. The pixel spectra
are organized as a data matrix D, which is decomposed into two factor matrices, C and ST,
containing the profiles related to the pure component contributions in the image,
according to the expression:

D=CST+E Equation 2- 14

where Cis the concentration matrix giving the composition of the different resolved
components at every pixel (at the position (x, y)) and S (A) the spectral intensity of these
components at wavelength A. Imaging spectral data can be obtained from different
techniques, such as Raman, Infrared, Near Infrared, fluorescence, among other. The same
principles can be applied for all of them.

In MCR-ALS, the resolution is accomplished using an Alternating Least Squares (ALS)
algorithm, which is initialized using an initial estimation of the spectral or concentration
profiles for each intervening species. When it is applied to hyperspectral images resolution,
MCR-ALS works following the next basic steps:

49



Introduction

(1) Determination of the number of constituents in the raw image (D).

(2) Generation of initial estimates (ST) based of the selection of the purest pixel spectra
(SIMPLISMA).

(3) Given D and ST, calculation of C under constraints.

(4) Given D and C, calculation of ST, under constraints.

(5) Reproduction of D from the product of C and ST.

(6) Go to step 3 until convergence is achieved.

(7) Recovering spectral information from S" and identification of image constituents.

(8) Recovering spatial information from refolded C matrix, and mapping of the image
constituents.

The number of image constituents can be either known beforehand based on the
knowledge of the samples analyzed, or be determined by PCA or SVD on the whole image.
The alternating optimization should always start by using the original preprocessed
measurement, D, and an initial guess of either the Cor the STmatrices. Typically, in
images, the initial estimate is a ST matrix formed by pixel spectra picked up from the
image according to previous knowledge (from pixels in areas of interest) or as a result of
applying chemometric tools for purest pixel selection, such as SIMPLISMA (Simple-to-use

Interactive Self-modeling Mixture Analysis) 22°.

During the iterative optimization process (steps 4 and 5), the unconstrained least-squares
solution for the concentration profiles can be calculated by the following equation:

C = D(ST)*, under constraints Equation 2- 15

where (ST)* is the pseudoinverse of the spectral matrix ST, and it is equal to [S(STS)™1]
when ST is full rank. The new estimation of the C matrix can be then used to recalculate
by lest squares a new estimation of the ST matrix:

ST = C*D, under constraints Equation 2- 16

where C* is the pseudoinverse of C, C* = (CTC)~1CT when Cis full rank. Each of these
two equations, are solved under constraints. Constraints are defined as chemical or
mathematical properties that should hold the resolved profiles. For example, constraints
like non-negativity which is based on chemical or physical assumptions on the data can be
applied during the iteration®®. Similarly, constraints like local rank for selectivity
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constraints which are not necessary in relation to the chemistry or the physics of the
system but related to mathematical properties can be applied. Constraints are used to
have profiles with shapes that are physically meaningful and to approximate the solutions
to the true ones (see below). The proper application of constraints is the more important
aspect in the application of the MCR-ALS method (see below for a more detailed
description of constraints).

At each iteration step, a new estimation of the C and ST matrices is obtained and used as
a new estimation for the next iteration. Thus the alternating least squares process
continues until convergence is reached (There is no significant variation among the fitting
results nor profiles in consecutive cycles.). If the applied constraints are fulfilled by the
data, the final solutions are close or equal to the real solution. In order to avoid scale
indeterminacies during the ALS optimization, usually it is necessary to apply normalization
either to C or to ST profiles. In this thesis, usually, the pure spectra of the resolved

22 . .
>. Equal vector length / area normalizations are

components have been normalized
selected in this Thesis for hyperspectral imaging resolution (Loadings S are divided by the
square root of the sum of the squares of all the elements of the considered spectra profile,
so that all components have the same spectral contribution, and the quantitative

information is contained in C matrix).
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Figure 2- 5 Processes of MCR-ALS for experimental data resolution

C and STare optimized iteratively using an Alternating Least Squares (ALS) algorithm until
convergence is reached. External application of constraints during ALS iterations of the has
some advantages: it has the flexibility to cope with many kinds of data structures and
chemical problems and the ability to accommodate external information in the resolution
process. Both soft and hard constraints can be applied during the ALS optimization
process.

Constraints are essential to drive the iterative resolution process to chemically meaningful
solutions and to decrease the rotational ambiguity inherent to the multivariate curve
resolution results (see below). The following constraints can be considered:

Non-negativity constraints: Non-negativity concentration constraint is a general constraint
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used in curve resolution methods.””’. Physical concentrations can only be positive or zero

(C=0), and in many spectroscopies, for example Raman, Infrared applied in this Thesis,
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spectral values also can be only positive or zero (ST>0). In all the cases of this Thesis, non-
negativity concentration constraints and non-negativity spectra constraints have been
applied for hyperspectral imaging resolution. There are different ways to apply this
constraint, such as, direct replacement of negative vales to zero, or using more rigorous
iterative methods based on non-negative least squares (eg. Non-negative Least Squares,
(NNLS)**®, and Fast Non-Negative Least Squares (FNNLS)**°). In this Thesis, FNNLS have
been applied for non-negative constraint.

Unimodality constraints: In a wide variety of situations, concentration profiles have a
unimodal shape, for example they only have a maximum. This is the case for instance for
chromatographic elution profiles. In contrast, spectral profiles are usually not unimodal in
the general case. Some other types of instrumental signals may also be unimodal, as in
electrochemistry. Whenever the shape of the profiles is unimodal, unimodality is a useful
additional constraint. In this case, the algorithm intends to avoid the formation of
secondary maxima. First the highest maximum is detected and then all the departures
from the unimodal condition are constrained, discarding left and right maxima. This
constraint is not suitable for the cases of hyperspectral imaging resolution in this thesis.
See reference®*°for more detailed descriptions of the unimodality constraint.

Closure constraints: This case is frequently encountered for instance in reaction-based
systems, where a mass balance equation is obeyed by the concentration profiles of the
species present in the system. With this constraint, the sum of the concentrations or
fractions of all of the species involved in the reaction or mixture (the suitable elements in
each row of the C matrix) is forced to be equal to a constant value (the total concentration
or fractions) at each stage in the reaction or in the mixture. The closure constraint is an
example of an equality constraint. This constraint is not suitable for the cases of
hyperspectral imaging resolution in this Thesis. See reference’**for more detailed
descriptions of the closure constraint.

Selectivity/local rank constraints

Selectivity/local rank constraints use the information related to the presence or absence
of certain components in particular pixels. Selectivity and local rank constraints are among
the most powerful constraints to decrease rotational ambiguities (see below) in curve
resolution studies®".

The rank of a data matrix is equal to the number of linearly independent rows or

columns®3?

of the considered data matrix. Assuming concentration profiles and spectra to
be linearly independent and noiseless, the rank of the data equals the number of pure
components. This number can be estimated from Singular Value Decomposition (SVD) as

the number of singular values which are larger than a threshold value associated to noise
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contributions. In general, it is practical to define a ‘chemical rank’ counting only the
number of singular values that are greater than a cut-off determined by the noise level.
This implies that only major sources of variance are considered, those related with the
physical phenomena under study, for instance the number of chemical species in a
chemical reaction or the number of eluted components in a chromatographic separation.

When analyzing a complex chemical imaging system, the ‘chemical rank’ evaluated by SVD
equals to the number of chemical component in the sample?*. Local rank detects the rank
in a small area of the image. From chemical local rank information, it is possible to infer
the presence or absence of particular constituents in the image®**. Local rank constraints
use this rank information for improve the MCR resolution results.

Local rank analysis methods have been used in the study of evolving processes, where the
concentration profiles of the different components evolve smoothly and, often following a
sequential pattern®®. Using gradually growing size windows, imitating the stepwise
progress of a process, the evolution of the number of significant components indicates the
number of different components emerging and decaying. In sequential processes, the
proper use of this information can provide concentration windows. For example, it can
indicate where a particular component is present, and give approximate concentration
profiles for the different components. Evolving Factor Analysis (EFA)**® was the principal
method used for local rank analysis of chemically evolving processes. Modified versions of
this method were oriented to confirm the sequential evolution of components in
unknown processes, to improve the setting of concentration windows and to overcome
problems linked to the analysis of rank-deficient processes.

Local rank analysis methods are based on the use of fixed size moving windows covering
the whole data set. The results obtained by the application of local rank analysis methods
inform about the local complexity of the data set. They give information about how many
components overlap in the different data set regions enclosed by the selected windows.
They can be used to locate selective regions in the data set, i.e., windows with only one
component, which are critical to achieve resolution without ambiguities **’.

To adapt these methods to the hyperspectral imaging data structures, a modified FSMW-
EFA methodology was developed, called Fixed Size Image Window—Evolving Factor
Analysis (FSIW-EFA)**(See figure 2-6). It has been adapted to the structure of image
datasets with spatial information and it provides the information to be used as MCR-ALS
constraints. Hyperspectral imaging scans material surface pixel by pixel, covering the
whole surface of the object. Local rank maps describe the pixels where local rank
constraints can be potentially applied. The absence of a particular component can be used
as a constraint in pixels where the chemical rank is lower than the total number of
compounds in the image. From a rank analysis of the appropriate data windows
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(submatrices) it is possible to find out the number of components (constituents) present
in the corresponding pixel.

SVD SVD
Pixel area Pixel area
(1,1) (n, n)

Figure 2- 6 How fixed size moving windows are used to detect local ranks

Identification of the compounds absent in these pixels requires the use of additional
information. For example, comparison of the pixel spectrum with known pure spectra,
when available or with the purest selected spectra of the image.

In Chapter 3, when analyzing remote sensing image datasets, USGS spectral library was
used for spectral identification. Also, if available, the spectra from external samples or for
reference spectra can be used during the image resolution. In Chapter 4, an example of
application of local rank constraints is shown for chocolate analysis. In food industry, it is
usual to have some previous knowledge about the possible chemical constituents of food
products and it is relatively easy to have their pure spectra.

MCR-ALS applied to the simultaneous analysis of multiple data matrices

MCR-ALS can be extended to the analysis of multiset and multiway data structures. A
single data matrix can be row-wise, column-wise, or row and column-wise augmented to
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form a multiset data structure when other matrices have either the same variables are in

their rows, in their columns, or in both. In these cases they can be appended in the

appropriate direction (see Figure 2- 7)**%.
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Figure 2- 7 Extension of the MCR model to multiset data analysis arranged in augmented data matrices. a)
MCR-ALS of a row-wise augmented data matrix, b) MCR-ALS of a column-wise augmented data matrix, c)
MCR-ALS of a column- and row-wise augmented data matrix.

To have a new meaningful data structure, all individual data matrices (slices) in this type of
data set should share some information with the other appended matrices; otherwise it
does not make any sense to build such a new data arrangement. Different ways of
building row-wise, column-wise, and column- and row-wise augmented matrices are
shown in Figure 2- 7.

Different data augmentation arrangements are possible and they may be written in a
more concise way. For instance, in the work of Chapter 4, experimental data of chocolate
samples and reference data share the same pure spectra, and column-wise augmented
matrices were used (where reference spectra of pure component were added at the
bottom of the experiment data matrix to use selectivity constraints). Column-wise
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augmented matrices, X,,5, may be written (in MATLAB notation, The Mathworks, Inc.”*)

as [Xy; X5; X3; ...; X{], where the semicolon ;" notation is used to indicate that the
different data matrices Xy, i = 1, ...,1, are column-wise appended, one on top of each other,
keeping the same number of columns. In this data arrangement, the different data
matrices are supposed to share their column vector space. Row-wise augmented data
matrices are written as [X,, X;, X3, ..., Xj], j = 1, ...,J where the semicolon *," notation is
used to indicate that the different data matrices are set one beside the other. These
different matrices are supposed to share their row vector (concentration) space. When
Raman, Infrared, Near Infrared or other hyperspectral imaging analyzed a similar sample

with similar pixel locations, row-wise augmented matrices can be proposed.

Column- and row-wise augmented data matrix augmentation also can be proposed in case
of the different individual data matrices share their row- and column- spaces. Bilinear
modelling applied to these systems are shown in Figure 2- 7c and in Equation 2- 17:

X1 X2 Xg3 Xy [Cl] E;; E;p Egz Ey
[X21 X2z Xp3 Xo| |Gz Ez1 Ex Ep Eo|
|Xs1 Xs2 Xsz .. Xg|= C;J[SI Sz Si - Sj|+|Es Es Esz .. Ey
lxu X Xp Xy G En Ep Ep EIIj

= caugs;fug + Eaug Equation 2- 17

In Equation 2- 17, a row-wise augmented spectral matrix [SI, s;, ST, ..., S]T] is obtained to
describe the different spectra in the different individual data matrices (i.e., different
spectroscopies), and a column-wise augmented concentration matrix [C;; C,; Cs3; ...;C{] is
obtained to describe the concentration changes in the different individual data matrices.
The X|; matrices in this data arrangement are assumed to share their two vector spaces,
column or row space. Thus, X; matrices, i.e., matrices with identical index |, share their
row (concentration) space, whereas X; matrices, i.e., matrices with identical index J, share

the column (spectral) space.

The first outstanding advantage of this data matrix augmentation is that the good features
for resolution presented by one or some of the included data matrices will have a positive
effect on the resolution of the most complex ones. For instance, introducing selectivity or
favorable local rank conditions into this type of data sets is generally easy and possible by
appending matrices coming from simpler processes or by appending data matrices from
the pure response of one or few of the analytes (like standard sample of sucrose, lactose,
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butter and whey which were used in the work introduce in chapter 4) present in a much
more complex mixture data matrix.

MCR-ALS applied to multiway data using multilinear models

Multivariate Curve Resolution (MCR) methods can be extended also to the analysis of
multi-way data. According to Sanchez and Kowalski, the analytical data generated by
instrumental techniques can be classified as follows: zero-order data (e.g. a univariate or
single data per analyte), first-order data (e.g. a data vector per sample), second order data

)?*°. Correspondingly, zero-, first- and second-order

(e.g. a data matrix per sample
calibration methods have been developed for extracting chemical information from each
type of data. The trilinear/PARAFAC ***model are gaining widespread acceptance among
the analytical chemistry area. A range of analytical instrumentation is available that
enables high dimensionality data to be resolved and explained. Chemometric techniques
for treating second order data are well developed at present. The second order methods
have the so-called “second-order advantage”. For example, they can predict the
concentration of the analysts of interest even in the presence of unknown interferes. This
also enables several analytes to be determined simultaneously. MCR has been extended
to the study of second order data arranged in three-way data cubes **2. As stated before,
MCR is based on the bilinear decomposition given by Equation 2- 17. Although MCR-ALS
was initially designed for the analysis of individual and augmented two-way data matrices
under the assumption of a bilinear model, MCR-ALS was extended very soon to the
investigation of three-way data with the trilinearity which forces the fulfillment of the
trilinear model also. Analysis of a three-way data set using a trilinear model generates
three sets of component profiles with equal number of components in the three modes.

In the multiway data analysis field, the more stablished method of analysis is PARAFAC.
PARAFAC is a generalization of PCA to higher order/multiway data arrays. Three-way data
analyzed by PARAFAC are characterized by several sets of variables that are measured in a
crossed fashion and arranged in a data cube. Chemical examples of three-way data are for
instance Emission Excitation Matrix (EEM) fluorescence spectra for analysis DOM in
several samples (see Figure2-8) river Ter (Details in Chapter 6).
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v

Xk

Figure 2-8 Decomposition of the data cube of EEM data for DOM analysis giving the profiles corresponding
to three data directions using a trilinear model.

PARAFAC decomposes the data cube in three factor matrices described the three data
modes/way/directions **. In the case of EEM dataset X is a data cube | xJxK, where K is
the number of the samples, and | and J are the number of wavenumbers of the emission
and excitation spectra. The trilinear model used by PARAFAC can be expressed for each

data slice of the cube, Xy as:
Xy = CZ, ST + Ey Equation 2- 18

where every/slice data matrix, Xy, is decomposed C(I,N), S(J,N), and Z,(N,N). Cis the
matrix of loadings in the first mode/way/direction and S Tis the matrix of loadings in the
second mode/way/direction. And the factor matrix Z; of loadings in the third direction or
mode is a diagonal matrix giving the relative amounts of every component in each
considered data matrix Xy. Ex is the residual term for slice Xj.

As described by the matrix notation in Equation 2-18, Z, changes for the different
matrices Xy. C and S T matrices are the same (unique, invariant) in all simultaneously
analyzed matrices X.

This is a strong constraint that enforces trilinear decompositions to give unique solutions
for the three-factor matrices (apart from scale and trivial permutation rotation
ambiguities), and avoids the presence of rotational ambiguities associated with lower
structured bilinear models.
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The trilinear model can also be in an element-wise way as:
Xjjk = le\ll=1 CinSjnZkn + €ijk Equation 2- 19

where xj;crepresents the ijkth element in the three-way dataset it means the measured
data (i=1, ..., |, j=1, ..., J, and k=1, ..., K), N is the number of components (rank) common
to the three modes (n=1, ..., N),

Cin, Zxn and Sy, are the elements in C(I, N), Z(K,N) and S(J,N) (as shown in Figure 2-9)used
to obtain the x;jx element. e;j is the residual term (part of the data not explained by the

model).
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Figure 2-9 Decomposition of a three-way data set according to a trilinear model. (a) Expressed as
decomposition in loading matrices and (b) expressed as the sum of pure component triads.

The data cube X can be also written as the sum of the individual contributions of the N
components (Figure 2- 9). Each component is defined by a trio of profiles, ¢,, Z, and s,
corresponding to the three data directions. The estimated models of PARAFAC are
compact in a mathematical sense and rather simple to interpret. In PARAFAC rotation
problem is solved without the ambiguities associated to bilinear models (see below).
PARAFAC provides unique solutions; when the inner structure of the data set matches
perfectly the underlying model the solution provided by PARAFAC is the correct one (the
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true one). In Chapter 6, PARAFAC is compared with MCR-ALS with the trilinearity
constraint that is described immediately below.

In MCR-ALS, the trilinear model described above can be implemented as a constraint
during ALS for each resolved component separately. This is achieved algorithmically by a
constraint during the ALS optimization and it has been described in detail elsewhere®*.
The trilinear constraint forces profiles of the same component in the different data
matrices for a particular direction to be the same (to have the same shape) and only

change in scale/intensity.
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Figure 2- 10 Implementation of the trilinear constraint in the MCR-ALS (see text for details of the procedure).

The first step in the MCR-ALS method is the determination of the number of components.
Next, as shown in Figure 2- 10, initial estimates of C,,, and ST as the following steps:

1 First it is needed to reshape the three-way date set X as a two-way one X,,;¢, leave ST
as the spectral from which will obtain the pure spectral as the initial data for the iteration

calculation of ALS.

2 Estimation of the purest (more different) spectra from the raw data set (SIMPLISMA)*%.
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3 Given D,y and initial ST estimation of C,ug under non-negative and trilinearity
constraints (trilinearity is introduced below). C,,4 = Daug(ST)Jr , (S is the
pseudoinverse of the spectral matrix ST, and it is equal to [S(STS)™1] when ST is full rank.
The new estimation of the C,,; matrix can be then used to recalculate by lest squares a

new estimation of the ST matrix:

4 Given D¢ and Cy,g estimation of ST under non-negative and normalization constraints.

ST — C;ugD, under constraints, where C;ug is the pseudoinverse of Caug, C;ug =
-1

(ClugCaug) Chug When Cqyg is full rank.

5 Reproduction of D,,g from Cy,g and ST,

6 Back to step 3, until convergence is achieved. To end the optimization process,
maximum numbers of iterations and the convergence criterion have been set.

7 Decompose C,,g inZ and C.

In Figure 2- 10, when the trilinear constraint is applied, the concentration profiles of the
same component in the different sub matrices Cy in C,,q are forced to have the same
shape during iterations of the ALS optimization. To do this, in step 3, a one-component
concentration profile matrix, Cy; is built with | rows (number of rows of each data
matrix) and K columns (number of matrices simultaneously analyzed). For a full trilinear
model, every component has a Cy; , matrix (n=1, ..., N), which is approximated by their
related one-component bilinear decomposition (using for instance PCA or singular value
decomposition (SVD)). cis the one column vector, which contains the common (average)
concentration profile of the component n in the different sub matrices in C,,4, and zlisa
row vector with the relative amounts of this concentration profile. Cy, = cz”(See figure
2-10). After this, the full concentration C,,g augmented matrix is rebuilt and updated by

replacing their initial profiles by the Cy , profiles, obtained from the different individual.

At the end of the MCR-ALS optimization, only the recovered spectral information in ST can
be straight forwardly matched with one of the three PARAFAC modes. The matrix Cy,q
contains implicitly the information related to matrices C and Z in the other two PARAFAC
modes. MCR-ALS has complete freedom in the correspondence of profiles among
different components and modes, in different way than PARAFAC. It models also
situations where two or more components have common profiles in one of the modes, in
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what is called interaction models or situations where one component should be

described with more than one profile in one of the modes.

In the work of using EEM to analysis DOM in water system, MCR-ALS method with the
trilinearity constraint is proposed. More details are explained in Chapter 6.
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Uncertainties in MCR results

Bilinear model decompositions differ in the way how the data decomposition is performed.
PCA and ICA apply very strong constraints which produce unique solutions, but their
solutions may not have direct physical meaning. MCR methods use softer constraints but
with more physical meaning, like non-negativity, unimodality, closure or local rank and
selectivity (see previous section 2.2). These constraints are following the known physical
and chemical (natural) features of the profiles of the constituents of the analyzed samples.

29 However profiles recovered by MCR methods may be affected by intensity (or scale )

and rotation ambiguities®*> 2*°.

MCR model of Equation 2- 20 can also be written as:
D = CTT ST = Cc*s*T Equation 2- 20
where T stands for any transformation matrix and:
C*=CTand S*T = T18T Equation 2- 21

This is the mathematical formulation of the rotational ambiguity, which means that the
same lack of fit can be obtained in the description of the data set D using different sets of
profiles (C* and S*T), shaped differently from the true ones (C and ST).

Another source of ambiguity different from the rotation ambiguity is the scale/intensity
ambiguity, which can be expressed as:

D=Y", (kl ci) (kisT) Equation 2- 22

The resolved profiles (c;, s;) for each pure component can present profiles with the same
shape but with one of them k; times smaller and the other k; times larger than expected,
without changing the final result. This is the reason why in MCR, if no additional scale
information (like mass balance or closure), a normalization constraint is usually applied to
one of the two set of profiles of every component, either to the concentration (like
closure) or to the spectra (normalization to equal length/area/intensity)

The extent of rotation ambiguities in MCR results can be significantly decreased or even
suppressed by the use of constraints. The more constrained a system is, the fewer the
number of possible solutions (profile combinations) can fulfill the required data patterns
with the same fit. The use of constraints forces results to be closer to the true profiles and
fit optimally the data set D (only constraints that are fulfilled by the data should be
applied). The presence of rotation ambiguities in MCR results has been compelled
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somewhat the wide spread use of MCR methods. Recently there have been some

246-250 .
. Since

attempts to evaluate the extent of rotation ambiguities in MCR solutions
rotation ambiguity is component and profile-dependent and, within the same data set, we
may find components or profiles with low ambiguity and others that have it in a larger
extent. Due to the presence of rotation ambiguities, instead of unique solutions, a range
of feasible solutions that fit the data giving the same data-fitting values and fulfill the
same applied set of constraints can be obtained in all resolution methods. In these cases,
there is no one better solution than others, because they are undistinguishable
considering the previous knowledge of the system. MCR results from hyperspectral image

analysis can show the presence of rotation and intensity ambiguities.

Calculation of Rotation ambiguities and Area of Feasible Solutions (AFS)

Lawton and Sylvestre proposed a first algorithm for determining the AFS of two-
component systems under non-negative constraints in spectra and concentration profiles

227 1n 1985 Borgen et al.”*! developed an analytical solution of the feasible

in early 1980s
ranges of the pure component spectra from mixture spectra and extended it for three-
component systems using a tangent and simplex rotation algorithms. Low dimensional
representation of this continuum of solutions is also called the Area of Feasible Solutions

(AFS)ZSZ, 253

Henry and Kim proposed a procedure to calculate the outer boundary of the region of
feasible solutions by using linear programming methods and determine all its vertices.
These methods require the use of non-negativity and other physical constraints, to restrict
feasible solutions to single points (unique solutions) and not to regions (non-unique
solutions)®*. Leger and Wentzell developed a dynamic Monte Carlo SMCR (Self Modelling

d*>* which seeks to define the boundaries of feasible pure

Curve Resolution) metho
component profiles. The algorithm employs a directed Monte Carlo approach to search
for valid solutions with high efficiency. The parameters for the search (direction, step size)
are set through bootstrap estimates of the geometry of the solution space. However this

method suffers from large instabilities in the calculations.

Rajké and Istvan®*® revised Borgen’s study. They considered that the normalized feasible
solutions are embraced in a (N-1)-dimensional simplex (N is the number of components)
with the vertices being the N-normalized pure profiles. Computational geometry tools
were used instead of the linear programming tools used to draw Borgen plots of three-
component systems. The Borgen plot (BP) method used for these calculations is based on
SVD/PCA and it is highly sensitive to noise.
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H. Abdollahi, M. Maeder and R. Tauler have proposed a systematic grid search method for
all feasible solutions and the results have been displayed in appropriate mesh and contour
plots which reveal their boundaries®®. In 2013, A. Golshan, M. Maeder and H. Abdollahi
have developed the method using the simplex volume of feasible solutions for
determination and visualization of rotational ambiguity of four-components mixture”’.

Recently, Sawall et al. suggested a fast and accurate algorithm to find AFS in two and
three-component systems using the inflation of polygons as a searching method 2*%. This
procedure starts with an initial triangle located in a topologically connected subset of the
AFS, and an automatic extrusion algorithm is then used to form a sequence of growing
polygons that approximate the AFS from the interior. For a three-component system (s =
3), the AFS is a two-dimensional geometric region. For a numerical computation of the AFS
two methods have been developed: the triangle boundary-enclosure scheme and the
polygon inflation method. FAC-PACK is a MATLAB toolbox for the computation of non-
negative multi-component factorizations and for the numerical approximation of the Area
of Feasible Solutions (AFS) using the inflation polygon algorithm®?®. Effective tools
included in FAC-PACK are the reduction of the AFS by a factor-locking approach and the
use of the complementarity (duality) theory. This software comes with a Graphical User
Interface (GUI) in MATLAB. The software implements the polygon inflation algorithm and
the generalized Borgen plots. Non-negative Matrix Factorization (NMF) is used as the
starting point for the polygon inflation algorithm in FAC-PACK. It supplies two or three
points within the AFS depending on the number of components of the system. From these
points an initial polygon can be constructed, which is a first approximation of the AFS. The
initial polygon is inflated to the AFS by means of an adaptive algorithm. This algorithm
allows computing all three segments of an AFS separately.

MCR-BANDS

Gemperline® presented years ago an alternative method which can be applied to any
multivariate data set, irrespective of the level of overlap and of the number of
components. This method is the basis of the MCR-BANDS method used in this Thesis for
the evaluation of the extent of the rotation ambiguities. MCR-BANDS method has been
proposed by R. Tauler >*° and it estimates the extent of rotation ambiguities producing a
range of feasible solutions based on a fast maximization and minimization of the relative
signal component contribution of each component (SCCF). MCR-BANDs method has no
limitation to a number of components and uses the same constraints as those applied to
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find the MCR solution. It gives a simple evaluation of the extent of rotation ambiguity
from the difference of the value of the optimization function giving maximum and
minimum values.

MCR-BANDS evaluates for each component the minimum and maximum the relative

2% This method can be used to evaluate the extent of

signal contribution function (SCCF)
rotation ambiguities associate to a particular MCR solution and under a set of constraints.
The method is based on the maximization and minimization of the signal component

contribution function, SCCF, which is defined for component n as:

Equation 2- 23

SCCF,, is a scalar value between 0 and 1, which gives the relative signal contribution of a
certain component in relation to the whole signal due to the mixture of N components
(n=1...N). Cand ST are as defined above; ¢, and s,, are the nth column and row of C
and S matrices respectively. || || is the Frobenious norm ||CST|| gives the signal
contribution of all the components present in the whole image and ||c,s|| only the
contribution of component n 2*°.

For every component, SCCF is maximized and minimized under the set of considered
constraints and equal data fitting. When the maximum and minimum values of SCCF of
a particular component N are practically equal, it means that for this component there
is practically no ambiguity remaining. On the contrary when this difference is large and
close to one (SCCF is scaled between 0 and 1), then there is a large amount of
ambiguity. See references®*® for more details about how this procedure is implemented
and works. MCR-BANDS performs the minimization and maximization of SCCF using a
general sequential quadratic programming procedure to solve the non-linear

optimization of SCCF under non-linear constraints 2% 2°% 260

. The amount of ambiguity
resting for a particular solution can be evaluated from the differences between the

maximum and minimum values of the SCCF function®®°.

The general idea of MCR-BANDS is finding the boundary of SCCF function that provides the
maximum and the minimum relative contribution of the considered component signal to
the overall signal measured. The maximum and minimum boundaries of this function
should correspond to profiles that fulfill the constraints and should reproduce the data set
with the optimal fit. This approach is valid for data sets with unlimited number of
components. The following equations can be written:
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— T — -1 ¢T _ T — -1 T —
D= Cinicsinic - CinichinTminSinic - Cmin,nsmin,n - Cinichax,nT max,n Sinic -

CrnaxnSmaxn Equation 2- 24

It is clear that if no constraints are considered, there is an infinite number of possible
solutions of Equation 2- 24 for any non-singular matrix T. It is usually possible to reduce
considerably this infinite number of possible solutions by means of constraints derived
from the physical nature and previous knowledge of the problem under study.

The boundaries will be related to specific rotation matrices T for every component n,
which are called Ty 4 and Ty n. Consider a particular set of solutions fulfilling the
constraints defined by the problem, C;,;. and Siq;lic. Feasible solutions Cju;. and SiTnic can
be initially postulated or found using the MCR-ALS under a set of preselected constraints.
The maximum band boundaries C,,x , (for the concentration profiles) and SrTnax,n (for the
spectral profiles) and the minimum band boundaries Cy,;, , (for the concentration profiles)
and Sgﬁn'n (for the spectral profiles) can be defined by the Equation 2- 24. The goal of the
method described here is to find a way to calculate these values of Ty .4y and Tiyinn
which define the maximum and minimum boundaries of the SCCF function which define
feasible solutions of the component profiles under a set of constraints defined for a
particular data set.

MCR-BANDS has been applied to the evaluation of the extent of rotation ambiguities
associated to MCR-ALS solutions obtained in the analysis of hyperspectral images (see
Chapters 5 of this Thesis). In the general case of the analysis of complex multi-component
hyperspectral images with soft constraints like non-negativity, unique solutions are not
guarantee and rotation ambiguities may be present. Because of these ambiguities, a set of
feasible solutions, fulfilling the applied constraints (e.g. non-negativity constraints) fitting
equally well the analyzed data are possible.

MCR-BANDS code can be downloaded from the http://www.mcrals.info/
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Introduction

In this chapter, different simulated datasets and other data sets (free AVIRIS, Airborne
Visible/Infrared Imaging Spectrometer data sets) from NASA (The National Aeronautics
and Space Administration) were analyzed by means of MCR-ALS.

The simulated data sets were prepared using pure spectra (signatures) from USGS (The
U.S. Geological Survey) library. This spectra library includes samples of minerals, rocks,
soils, physically reconstructed, as well as mathematically computed mixture spectra, and
spectra from plants, vegetation communities, microorganisms, and man-made materials.
The spectra collected from this dataset were assembled in this Thesis with the purpose of
simulating the use of spectral features from remote sensing detection of these and similar

materials®®’.

AVIRIS is a proven instrument in the realm of Earth Remote Sensing. It is a unique optical
sensor that delivers calibrated images of the upwelling spectral radiance in 224 contiguous
spectral channels (bands) with wavelengths from 400 to 2500 nanometers. AVIRIS has
been installed on four aircraft platforms: NASA's ER-2 jet, Twin Otter International's
turboprop, Scaled Composites' Proteus, and NASA's WB-57. The ER-2 jet flies at
approximately 20 km above sea level, at about 730 km/hr. The Twin Otter aircraft flies are
acquired at 4 km above ground level at 130 km/hr. AVIRIS has flown North America,
Europe, portions of South America, and Argentina. The dataset we used in this Thesis was
obtained by NASA's ER-2 jet.

The main objective of the AVIRIS project is to identify, measure, and monitor constituents
of the Earth's surface and atmosphere based on molecular absorption and particle
scattering signatures. Research with AVIRIS data is predominantly focused on
understanding processes related to the global environmental and climate change.

The first dataset we have used from AVIRIS is a hyperspectral image of the geographical
region of Cuprite, Nevada, USA, obtained in 1997%%2
to a 614 x 512 pixels sub-image. The Cuprite area is an arid area with a small amount of

. In this case, the analysis was limited

vegetation cover, and it has an excellent rock exposure, comprising alteration zones
characterized by the occurrence of key indicator minerals. In this area, the use of
hyperspectral remote sensing of minerals is well documented. Many minerals can be
identified from airborne images, and their correlation with the presence of valuable
minerals has been established. NASA has catalogued several of the possible minerals
present in this area, as well as their spectral signatures. This spectroscopic image has been
widely used for remote sensing experiments and for development and application of
imaging data analysis methods. Goetz and Srivastava (1985) were the first to use
hyperspectral data for mineral mapping at Cuprite®®.
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Dataset 2 is extracted from the hyperspectral image of a naval airport in San Diego,
California, collected by AVIRIS sensor. In this case, the analysis was limited to a 200 x 200
pixels sub-image. This image has 195 useful spectral bands.

Dataset 3 was acquired over Moffett Field, CA, in 1997 by the AVIRIS sensor. In this case,
the analysis was limited to a 400 x 400 pixels sub-image, and this image has 199 useful
spectral bands. The investigated area is mainly composed of water, building, soil, and
vegetation.

Methods for analyzing hyperspectral data were discussed in Chapter 2 of this Thesis (see
Chapter 2, section 2.2). Many methods have been proposed for remote sensing
hyperspectral imaging, such as the Pixel Purity Index (PPI) %, the Vertex Component
Analysis (VCA) ***, the Minimum Volume Simplex Analysis (MVSA) ¥ | and others®®>, We
propose in this Thesis the use of MCR-ALS for the resolution of remote sensing

hyperspectral imaging datasets.

The way MCR-ALS has been used to resolve hyperspectral imaging data obtained from
remote sensing was described in Chapter 2 of this Thesis. Two research papers have been
written in the frame of this Thesis describing the application of Multivariate Curve
Resolution Alternating Least Squares (MCR-ALS) to remote sensing hyperspectral imaging,
emphasizing the use of local rank-based spatial information and of constraints for the
improvement of remote sensing hyperspectral imaging resolution. Remote sensing has its
own characteristics and differences compared to ordinary hyperspectral imaging.
Normally, in remote sensing hyperspectral imaging is possible to find out some purest
pixels that can be used for the application of local rank constraint. In this work, a new
procedure based on the use of correlation coefficients with known reference spectra was
proposed to detect pure pixels. Details about how local rank constraints are applied have
been described in the Part 2 of this Thesis and and in the methods section of the two
papers:

The two published papers of this chapter are:

Paper 1: Zhang, X.; Tauler, R., Application of multivariate curve resolution alternating least
squares (MCR-ALS) to remote sensing hyperspectral imaging. Analytica chimica acta. 2013,
762, 25-38.

Paper 2: Zhang, X.; Juan, A.; Tauler, R., Local rank-based spatial information for
improvement of remote sensing hyperspectral imaging resolution. Submitted to Talanta.
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MVSA of rotation ambiguity still present in the solutions obtained by this and other resolution methods (like
VCA VCA or MV5A) can still be large and it should be evaluated with care, trying to reduce its effects by
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selecting the more appropriate constraints. Only in this way it is possible to increase the reliability of the
solutions provided by these methods and decrease the uncertainties associated to their use,
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1. Introduction

Hyperspectral imaging is a breakthrough in remote sensing
technology [ 1], which can be obtained by Raman, infrared and flu-
orescence spectroscopies [2], and it is a useful methodology that
can be applied for analytical purposes to agriculture [3], biology [4],
environmental [5] and other earth science fields [6]. It has emerged
as a very important field in recent years [7]. Remote sensing is the
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acquisition of information about an object or phenomenon, without
making physical contact with the object. In modern usage, the term
generally refers to the use of aerial sensor technologies to detect
and classify objects on Earth. Remote sensing hyperspectral imag-
ing is a combination of both technologies, hyperspectral imaging
and remote sensing, which provides spectral and spatial analyti-
cal information about a particular geographical area. Based on the
resolved pure spectra of the constituents of the image and on their
constituents distributions, additional information can be derived,
such as the possible identification of these constituents from avail-
able libraries and their relative quantitation within the image. One
of the implications of remote sensing hyperspectral imaging is that
at every pixel of the measured image, a mixture of several spectral
signatures of different materials is generally present. Resolution
of the hyperspectral image is required to extract these signatures
(pure spectra) and to figure out how is the distribution of the cor-
responding image constituents.

Hyperspectral remote sensing includes large data sets generally
composed of about 100-200 spectral bands of relatively narrow
bandwidths for about 5-10nm. Hyperspectral images are repre-
sented in the form of data cubes. The spatial information is collected
in the X-Y plane, and the spectral information is represented in
the Z-direction. The analysis of these multidimensional datasets
requires sensitive detectors, fast computers, and large data stor-
age capacities, potentially exceeding hundreds of megabytes. PCA
(principal component analysis) [8] allows processing spectroscopic
image datasets by reducing their dimensions without a significan-
tive loss of relevant information. PCA is a useful tool to estimate the
number of more significantive components (constituents) of the
image and to remove noise and non-informative parts of it. How-
ever, because of the maximum variance criterion and of applied
orthogonal constraints, PCA do not provide the true signatures
(spectra) and relative concentration profiles of the image con-
stituents directly.

The concept of endmember has been proposed, to refer to
the pure constituent spectra present in the image pixels. Diverse
mathematical methods based on convex geometry and subspace
projection like the PPI (Pixel Purity Index) [9], N-FINDR (N-finder)
[10], and VCA (Vertex Component Analysis) [11] methods have
been proposed and applied. PPI projects the vector of pixels on
unit vectors selected at random directions, and counts for the num-
ber of times the value of each projected pixel reaches an extreme
value (this extreme value either can be a maximum or a minimum
projected value). The endmembers are identified as those pixels
with the highest scores. The N-FINDR method is based on the fact
that in N spectral dimensions, the N-volume contained by a sim-
plex formed by the purest pixels is larger than any other volume
formed from any other combination of pixels. It begins with an
initial simplex composed by a set of random pixels, then itera-
tively the simplex volume is increased inside the data set until
the simplex with the smallest volume containing all data pixels
is found. VCA projects the data to the identified orthogonal sub-
space in an interactive way, and finds the endmembers by repeated
iteration. The endmember are at the vertices of the simplex. In all
cases, these methods find the most likely pure pixels by an approxi-
mate method, but they do not estimate the smallest simplex (or the
convex hull) directly. All these methods are based on the assump-
tion that pure pixels do exist in the measured dataset, which of
course may not be the general case for most of the natural systems
and situations. More recently MVSA (minimum volume simplex
analysis) [12] which is based on geometrical image analysis [13]
and AMEE (Automated Morphological Endmember Extraction) [ 14]
which is based on morphological image analysis have been reported
too. The MVSA method has been proposed to cope with the situ-
ation where no pure pixel exists in the measured image. It is also
based on the concept of the minimum simplex volume estimation,

unmixing the image by fitting a minimum volume simplex to
the data, constraining the abundance fractions to be positive and
belong to the most probable simplex. It is a fast method, but, in
its present implementation, it does not guarantee non-negative
spectra, which would not have physical nor chemical sense.

Multivariate Curve Resolution Alternating Least Squares (MCR-
ALS) has been proposed and extensively used to resolve multiple
pure responses and concentrations of the components present
in unknown mixtures [15]. It has been applied to analyze
multicomponent chemical systems like chemical reactions [16],
industrial processes [17], chromatographic coelution problems
[18], spectroscopic mixtures [19], environmental monitoring data
[20], and it can be applied to many other type of mixture analy-
sis cases. MCR-ALS has been reported also to be a useful method
for the resolution and segmentation of hyperspectral biomedical
and other type of hyperspectral imaging [21-25]. In MCR-ALS, the
measured analytical signals are assumed to follow a generalized
bilinear additive model (like the extension of Beer's law in absorp-
tion spectroscopy [26]). The contribution of each component to
the measured signal depends on its concentration and on its own
spectral sensitivity response (pure spectrum). MCR-ALS can also be
applied to obtain quantitative information and it provides physical
and chemical meaningful solutions. This is accomplished because
in MCR-ALS, any type of constraints can be easily applied to the
sought solutions, like non-negativity [27,28], unimodality [29,30],
local rank [31,32], and trilinearity [29,33].

In this work, three different spectrsocopic images have been
analyzed to test the MCR-ALS method and to compare its results
with those obtained by VCA and MVSA methods. Two of these
images are simulated data sets and the third one is an experimental
remote sensing hyperspectral airborne image from the Cuprite area
in Nevada (USA). Finally, the MCR-BANDS method [34] is applied
to evaluate the amount of rotation ambiguity associated to the
image resolved pure spectra and concentration profiles under the
constraints imposed during their estimation,

2. Methods
2.1. MCR-ALS method

The MCR-ALS method is used to decompose the hyperspectral
image into the signatures or pure spectra of the image constituents
and into their concentration (relative amounts) on the image
(distribution map). MCR-ALS is based on a bilinear model which
assumes that the observed spectra are a linear combination of the
spectra of the pure components in the system [21,26]. This model
can be written in matrix form as:

D=CS'+E (1)

where D is the reshaped image data matrix. C is the matrix of the
relative amounts or concentrations, ST is the pure spectra. E is the
matrix associated to noise or experimental error.

In hyperspectral imaging using visible/infrared spectroscopies,
the intensity or absorption of the radiation in every pixel should
not be negative and neither should be negative the concentrations
of the different constituents of the image (physical constraints).
Thus, during the alternating least squares procedure previously
described, non-negative constraints are applied on both, on the
pure spectra and on the image concentrations. Moreover, to avoid
scale indeterminacies and stabilize the ALS iterative optimization,
spectra matrix ST is normalized. Instead of spectra normalization,
an alternative possible constraint to be used to scale adequately
the obtained solutions is a mass balance or closure condition on
C matrix, i.e., that concentrations or relative amounts of the con-
stituents on the pixels sum equal to a constant value. This is for
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Fig. 1. Bilinear matrix decompasition of a hyperspectral image using the MCR-ALS method. Resolution of spectra (signatures) and of 2D image concentrations of the pure
components. In the left bottom corner, the raw USGS Airborne Visible Infrared Imaging Spectrometer (AVIRIS) remote sensing spectroscopic image experimental data set
[42] analyzed in this work. Spectroscopic image obtained. In the right bottom corner, 2D image concentrations for one of the components resolved by MCR-ALS,

instance one of the constraints used by the MVSA method (see
below). At the end of the ALS optimization procedure, the finally
obtained C matrix can be reshaped again as shown in Fig. 1, to
recover the 2D image (distribution map) of the concentrations (rel-
ative amounts) of every component at every pixel of the image
plane.

Concentration profiles from hyperspectral images are signifi-
cantly different from those get usually in chemical process analysis
which tend to show continuous smooth shapes. Usually used con-
straints, like unimodality, closure or hard-modeling resulted not
to be adequate in specrtroscopic imaging. On the other hand, the
use of local rank constraints [29,35] can be extremely helpful to
improve the reliability of MCR-ALS solutions. When local rank con-
straints are applied, the chemical rank (equal to mathematical rank
in absence noise) of a small number of contiguous pixel windows
is estimated and used to improve resolution. From local rank infor-
mation, it is possible to infer where in the image the possible
constituents are or are not present. Fixed Size Moving Window
Evolving Factor Analysis can be applied for this purpose [35], to
detect in which pixel a particular component is present or is miss-
ing. In this work, however, the different image constituents have
very similar, quasi collinear, spectra profiles or signatures, being
therefore very difficult to detect and find out what pixels can have
a particular component missed.

To evaluate the quality of the data fitting finally achieved after
application of the MCR-ALS procedure, the percentage of lack of fit
(lof) (Eq. (2)) and the percentage of explained variance (R?) (Eq. (3))
are calculated according to the two following equations:

lof (%)=100 x (2)
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where dj; is the element of the hyperspectral image data matrix D,
and &.-J- is the corresponding element of this data matrix recalculated
by ALS, D. This lack of fit value gives a measure of the fit quality
in relative terms with the same units as the measured data, and
comparable with experimental relative error estimations.

For the explained variances, R? is calculated as:

M)

2
where e;; are the elements of the E matrix and dj; are the elements
of the raw data set D.

Additionally, the correlation (r?) between a particular resolved
profile and the true profile (in simulations the true profiles are
known) and the vector angles between them can be evaluated using
Egs. (4) and (5),

R2—100x(1— 3)

2
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T
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_ 180 xy"
Angle = —; X arccos (m) (5)

where X is the vector of resolved profiles and y is the vector of true
profiles.

All these parameters can be also easily calculated for the solu-
tions obtained by the other methods tested in this work, like VCA
and MVSA (see below).

MCR-ALS algorithm code and GUI for MATLAB (The Mathworks
Inc., MA, USA) is freely available from the home page of MCR at
http://www.mcrals.info/.
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2.2. VCA method

VCA is an unsupervised method based on the geometry of a
convex data set which considers that the pure image constituents
are located at the vertices of a simplex. For example, in a mix-
ture defined by three constituents, the simplex boundaries are a
triangle, whose vertices correspond to the pure constituents or
endmembers. VCA assumes that, for every constituent, exists one
or more pixels in the image where only this constituent exists
(pure pixels). To find out these pure pixels and the spectral sig-
natures associated to them, VCA iteratively projects the dataontoa
direction which is orthogonal to the subspace spanned by the end-
members already estimated. The new endmember signatures are
located at the extreme of the new projection. This iteration proce-
dure goes on until all the endemember signatures are estimated. A
more detailed description of the method can be found in [11].

2.3. MVSA method

MVSA also considers that the underlying mixing model is linear,
i.e., that the mixed hyperspectral vectors are a linear combination
of the signatures (spectra) of the pure components. MVSA resolves
the hyperstectral image by fitting a minimum volume simplex to
the hyperspectral data, under constraints (for every pixel) of no
less than zero abundance fractions and sum equal to one [12]. Dif-
ferently to MCR-ALS, MVSA does not use a least squares approach,
but a sequential quadratic programming (SQP) method, based on
a quasi-Newton non-linear optimization procedure under linear
constraints. In order to prevent local minima and to achieve a faster
speed, VCA is usually applied as initial step to provide an inflated
version of the initial simplex [12]. More details about the MVSA can
be seen in Refs. [12,13].

MVSA and VCA MATLAB codes can be downloaded from:
http://www.lx.it.pt/~bioucas/code.htm.

2.4. MCR-BANDS method

In the general case of complex multi-component hyperspectral
images, solving Eq. (1) under a set of constraints like non-negativity,
does not guarantee unique solutions, nor, that the achieved solu-
tions are the true correct ones. Solutions obtained by all bilinear
modeling methods like MCR-ALS (but also by MVSA or VCA) are
often not the true correct ones because of the presence of rota-
tional and intensity ambiguities, which are ubiquitously present
in all factor analysis bilinear decompositions of data matrices.
Because of these ambiguities, a set of feasible solutions, fulfill-
ing the applied constraints (e.g., non-negativity constraints) fitting
equally well the analyzed data are possible. In these cases, there
is no better solution than others, because they are undistinguish-
able considering the previous knowledge of the system. The true
solution is one among all the solutions fitting the data the same
and fulfilling also the applied constraints. For instance, starting
with different initial estimations in MCR-ALS (when only non-
negativity constraints are applied) can give different final solutions,
all equivalent from a data fitting point of view and fulfilling the
applied constraints. Some methods like MVSA, when applied to the
same data set converge always to the same final unique solution,
but this does not guarantee that this solution be the true phys-
ical one, and as it will be shown in the results section, it may
even happen that this final solution is not feasible because it does
not fulfill the known constraints of the system, like spectra non-
negativity. In order to evaluate the extent of rotation ambiguities
associated to a particular MCR solution, the MCR-BANDS procedure
has been proposed [34]. This method can be used to evaluate the
extent of rotation ambiguities associate to a particular MCR solu-
tion and under a set of constraints. In this paper it is applied to

evaluate the extent of rotation ambiguities associated to MCR-ALS
solutions, and as extension, also to VCA and MVSA solutions. The
method is based on the maximization and minimization of the sig-
nal component contribution function, SCCF, which is defined for
component n as:

_ lleastll

SCCFy = (6)
T

SCCF,, is a scalar value between 0 and 1, which gives the relative
signal contribution of a certain component in relation to the whole
signal due to the mixture of N components (n=1, ..., N). C and ST
are as defined above; ¢, and s, are the nth column and row of C
and S matrices respectively. || || is the Frobenious norm ||CST|| gives
the signal contribution of all the components present in the whole
image and Hl‘nsgll only the contribution of component n [36]. For
every component, SSCF is maximized and minimized under the set
of considered constraints and equal data fitting. When the max-
imum and minimum values of SSCF of a particular component n
are practically equal, it means that for this component there is
practically no ambiguity remaining. On the contrary when this dif-
ference is large and close to one (SCCF is scaled between 0 and 1),
then there is a large amount of ambiguity. See Ref. [34] for more
details about how this procedure is implemented and works. MCR-
BANDS performs the minimization and maximization of SCCF using
a general sequential quadratic programming procedure to solve
the non-linear optimization of SCCF under non-linear constraints
[34,36,37]. The amount of ambiguity resting for a particular solu-
tion can be evaluated from the differences between the maximum
and minimum values of the SCCF function [36].

As said above, the MCR-BANDS method allows for the estima-
tion of the amount of rotation ambiguity associated to a particular
MCR solution under a particular set of constraints. In the case of
spectroscopic images, non-negativity, spectra normalization and
local rank constraints can be usually applied. Local rank constraint
can be applied to one or more components, and in the extreme
case to all the components of the investigated system. Local rank
constraints depend on the previously information or estimation
about those pixels where one or more components are absent or are
present. Assessing for the extent of the feasible solutions region in
the analysis and resolution of hyperspectral images, as in any other
general mixture analysis problems, is a mathematically ill-posed
problem which requires the use of state of the art non-linear opti-
mization with non-linear constraints techniques [38] such as the
one proposed in the MCR-BANDS procedure which requires the use
fmincon MATLAB function of the Optimization Toolbox of MATLAB,
(The Mathwaorks Inc., MA, USA).

MCR-BANDS  code can be
http:/fwww.mcrals.info/.

downloaded from the

3. Data

In this work, to evaluate the use of MCR-ALS, VCA and MVSA in
the resolution of remote sensing hyperspectral imaging, two sim-
ulated datasets and one real airborne spectroscopic image dataset
have been used. Simulated datasets included two examples, with
different type of pixel relative amounts of the constituents (con-
centrations), one following a Dirichlet distribution and another one
showing regular patterns between adjacent pixels.

3.1. Simulated spectroscopic image in data set 1

First simulated data set consists of a mixture of three spectral
signatures with 224 bands extracted from the 1997 USGS Digital
Spectral Library [39,40]. The whole data set includes 2000 pix-
els, where the concentration of each component in each pixel was
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obtained following a Dirichlet distribution (see below). The whole
size of the data set is 2000 pixels and 224 wavelengths, (D matrix
has dimensions 2000 x 224). The spectroscopic image of this sim-
ulated dataset was built according to the bilinear model given in
Eq. (1), where D is the spectroscopic image dataset; S is the three
pure spectral signatures matrix from the spectral library. C (con-
centration matrix), is generated first using the gamma I random
function (gamarnd MATLAB m function)), and then the following
equation:

[15, en)

- r (ELM’)’

where C is concentration matrix.

The simulated data using this equations have a random pattern
and they did not have any pure pixel, i.e., more than one constituent
is present in all pixels, with abundance fractions (relative amounts
or concentrations) not larger than 0.8, The sum of these abundance
fractions was constant for all pixels and equal to one. This data
image is very well suited to compare results and performances of
MCR-ALS and MVSA methods, since data concentrations do agree
with MVSA applied constraints.

Homocedastic noise, N, (of zero-mean and constant variance
equal to 0.01%) was added to simulated data, In the way this image
was created, there were some pixels for one of the components
at low concentrations. For instance for component 1, component 2
and component 3 there were some pixels where these components
were at very low concentration values. In these pixels one of the
image constituents can be considered to be absent. This information
can be used to decrease rotation ambiguities when is implemented
as a constraint in MCR-ALS and MCR-BANDS methods.

o=(ey,...,0k) (7)

3.2. Simulated spectroscopic image 2 in data set 2

The second data set simulates a hyperspectral image with areg-
ular pattern distribution of three different chemical components.
The three spectral signatures (ST) were extracted from the 1997
USGS Digital Spectral Library. The dataset has 33 x 33 pixelsand the
spectra have 224 wavenumbers. This image shows different scenes
for each component with a certain shape (see Fig. 3). Eq. (1) is used
to calculate the data matrix, D, having the spectroscopic image for
data set 2; concentrations, C, or relative amounts of the constituents
in adjacent pixels follow a certain trend which made the image
more natural. These concentrations follow the relationship given
in the equations:

sin fxﬁ +.V.-2j
G=—v Y 8)

2

2
X2 +yd
2
Cy = xe™ A (9)
—x2_
G = xe VI (10)

where x and y values were generated using the meshgrid MATLAB
function. They give the regular positions of the pixels in the two
directions of the x-y image plane. In Appendix A, MATLAB codes
for generation of the concentration matrix, C, of the 3 components
are given. In the way this image was created, there were some
pixels with local rank properties. For component 1, component 2
and component 3, there were pixels where only the concentration
of one of the three constituents was at high concentrations, and
the other two remaining were at much lower concentration. This
information can be used to eliminate rotation ambiguities when is
implemented as a constraint in MCR-ALS and MCR-BANDS meth-
ods. As in previous example, experimental noise was added to the

data (white Gaussian noise with zero-mean and constant variance
equal to 0.01%).

3.3. Experimental remote sensing spectroscopic image data set 3

Additionally, resolution and quantification of a real experimen-
tal hyperspectral image was also performed using the three tested
methods, MCR-ALS, MVSA and VCA. This is a hyperspectral image of
the geographical region of Cuprite, Nevada, USA, obtained in 1997
[41].1t has a 17 m per pixel footprint with 224 spectral bands over
the 400-2500 nm vis-NIR spectral region. The whole size of the
datasetis614 x 512 x 224, These images were obtained by the Air-
borne Visible Infrared Imaging Spectrometer (AVIRIS) [42], AVIRIS,
on NASA's ER-2 jet aircraft platform. It has approximately 10 nm
spectral resolution and 20 m spatial resolution. The Cuprite area is
an arid area with a small amount of vegetation cover, and it has an
excellent rock exposure, comprising alteration zones characterized
by the occurrence of key indicator minerals. In this area, the use
of hyperspectral remote sensing of minerals is well documented.
Many minerals can be identified from airborne images, and their
relation to the presence of valuable minerals has been established.
NASA has cataloged several of the possible minerals present in this
area as well as their spectral signatures. This spectroscopic image
has been widely used for remote sensing experiments and methods.
This image is shown in the right corner of Fig. 1.

4. Results
4.1. Simulated spectroscopic image in data set 1

Before analyzing this data set with MCR-ALS, initial estimates
of the three spectral signatures were first obtained by SIMPLISMA.
SVD confirmed the presence of 3 components, since three larger
singular values were clearly distinguished from the rest which were
explaining data noise. Non-negativity constraints were applied to
both spectra and concentration profiles of the pure components,
and pure spectra were normalized.

MCR-ALS resolved spectra were compared with those used for
the data simulation. In Fig. 2 above, the comparison of MCR-ALS,
MVSA, VCA resolved spectra obtained in the analysis of the simu-
lated data set 1 are compared with the true spectra used for the
simulation (from USGS reference library). Blue lines are true pro-
files, red lines are MCR-ALS resolved spectra, black lines are MVSA
resolved spectra, green lines are VCA resolved spectra. In order to
perform such a comparison, spectra resolved by MVSA and VCA
were renormalized in the same way as for MCR-ALS, to have their
Frobenius norm equal to one. This is necessary due to the fact that
MVSA and VCA do not apply such normalization as a constraint
(total sum equal to one of the abundance fractions is used instead).
As it was explained above, in this particular case, the simulated
data set 1 was built according to this closure condition. In Fig. 2a-c,
results for the first, second and third component are given respec-
tively. For the first component, MVSA resolved spectra (black lines)
were the closest to the true ones (blue lines), MCR-ALS spectra (red
lines) were also very similar and VCA (green lines) gave mixed spec-
tral bands. For the second and third, the same situation is observed.
In Table 1, the comparison between the results (for both, spectra
and concentration profiles) obtained by the three different methods
(MCR-ALS, VCA and MVSA) is expressed numerically using correla-
tion coefficients, (r2) and angle values, between true and resolved
pure spectra and concentration profiles. MVSA gave the closest to
one 12 values and the smaller angles for the three components.
MCR-ALS gave also very good results and results of VCA were the
worst ones. VCA results were the less accurate because there were
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Fig. 2. (Upper part) Comparison between the spectra used for the data simulation (blue, from USGS reference library), with those obtained by MCR-ALS (red), MVSA (black)
and VCA (green) in the analysis of the simulated data set 1 for the first (a}, second (b), and third (c) image constituents. (Bottom part) Comparison between the spectra used
for the data simulation (blue, from USGS reference library), with those obtained by MCR-ALS (red), MVSA (black) and VCA (green) in the analysis of the simulated data set 1
for the first (d), second (e), and third (f) image constituents. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the

article.)

no pure signatures or spectra (there were no pixels with a single
component) in this simulated dataset.

In Table 2 model fitting results expressed as lack of fit (lof) and
explained variance (R?) values (Egs. (2) and (3)) are given for the
whole model including the three resolved components, by MCR-
ALS, MVSA and VCA. MCR-ALS and MVSA lack of fit for the full model
were in both cases of only 0.99%, which are significantly lower (bet-
ter) than the lack of fit value for VCA, which was 4.43%. In terms of
explained data variances, R2, the three methods gave more similar
results (MCR-ALS and MVSA explained 99.99% of the data variance
and VCA 99.8%). Explained variances by the individual components
given in Table 2 are rather high for the three components and they

sum more than when they were considered together in the full
model (up to 148%), which reflects the extremely high overlapped
variance among them. From all these results, it is concluded that the
results obtained by MVSA and MCR-ALS in the analysis of data set
1 were rather similar and close to the true ones. Small differences
observed between solutions obtained by MCR-ALS and MVSA com-
pared to true ones are due to possible rotation ambiguities when
only non-negativity constraints were applied. MVSA and MCR-ALS
solutions are equivalent from data fitting point of view (lof of 0.99%
inTable 2) and they both fulfill the known constraints of the system
(non-negativity). See below in the MCR-BANDS section, a deeper
discussion about rotation ambiguities and how to decrease them.
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Table 1

31

Correlation coefficients (2, Eq. (4)) and angles (Eq. (5)) between true profiles and component profiles obtained by MCR-ALS, MVSA and VCA in the analysis of the two

simulated data sets.

Spectra® Concentration”
MCR-ALS MVSA VCA MCR-ALS MVSA VCA
Data set 1
2 0.9970 0.9998 0.9810 0.9905 0.9999 0.9783
0.9997 0.9999 0.9975 0.9920 0.9999 0.9944
0.9988 0.9999 0.9955 0.9942 0.9999 0.9255
Angle 4.40 0.87 11.18 7.90 0.39 11.96
1.37 0.81 4.07 7.25 0.39 6.05
284 0.10 5.47 6.15 0.68 2226
Data set 2
r# 0.9999 0.9997 1.0000 0.9910 0.9999 1.0000
0.9882 0.9810 0.9958 0.9906 0.9967 0.9936
0.9845 ~0.9998 0.9925 0.9083 0.1781 0.5932
Angle 0.63 1.40 0.36 7.69 0.69 0.06
8.81 11.19 5.25 7.86 4.68 6.50
10.09 178.74 7.04 2473 79.74 53.62

+ Spectra profiles used for data simulation were obtained from USGS reference library [41].
b Concentration profiles used for data simulation were obtained using Eqs. (7)-(10) (simulated data sets 1 and 2) and the MALAB codes given in Appendix A (simulated

data set 2).

4.2. Simulated spectroscopic image in data set 2

MCR-ALS was applied to this second data set using non-negative
and spectra normalization constraints as in the previous case. In
Fig. 2 bottom, spectra profiles resolved by MCR-ALS, MVSA and VCA
are given, and compared with the true spectra profiles used for the
data stimulation, Red lines are MCR-ALS profiles, black lines are
MVSA profiles and green lines are VCA ones. According to lower
part of Table 1, first component was properly resolved by MCR-
ALS, MVSA and VCA, with r2 values very close to one in the three
cases. VCA, in this case, got an excellent recovery of this spectrum,
because there were pixels near to pure for this component in the
raw dataset, For the second component, resolved spectra by all of
the three methods showed some distortion [43]. The three meth-
ods mixed some of the bands from the other components. This is a
consequence of the presence of rotation ambiguity not solved when
only non-negativity constraints were applied (see Section 2.4) and
of the absence of pure pixels. For the third component, it is worth
to pay attention that MVSA failed and gave a wrong spectrum pro-
file with a similar symmetrical shape to the true profile, but with
unreasonably negative values. The optimization problem solved by
MVSA minimized the simplex volume giving negative values for the
spectrum of this component. In its current implementation, MVSA
method could not apply non-negative constraints to spectra pro-
files and therefore the solution can give negative values, which has
no physical meaning. Although MVSA provides a unique solution
to the mixture analysis problem, this does not guarantee that this
solution is the true one and in fact, in some circumstances, like this
one, the solutions provided by MVSA are not feasible because they
do not fulfill the non-negativity constraints of the system. The rea-
son why negative spectra are produced by MVSA is due to the fact
that data set 2 does not conform to the closure (sum to one) con-
straint implemented in this method. Whereas the total amounts of
the constituents in different pixels were the same in data set 1, in
data set 2, these total amounts were changing from pixel to pixel,

with very different total spectra intensities. Therefore, whereas the
equal sum to one constraint implemented by MVSA to all pixels is
right for data set 1, it is not right for data set 2 and the recovered
spectra will be distorted in this case, giving negative values.

This is in clear contrast to MCR-ALS solutions, in which the
solutions are always feasible solutions for the applied constraints,
although they are not unique and they may depend on initial esti-
mates in case of high rotation ambiguity. Closure constraints were
not applied in MCR-ALS simply because this is not general case
for spectroscopic images. The fact that MCR-ALS solutions are not
unique should not be considered a limitation of this method but
of the insufficient applied constraints to provide uniqueness to the
bilinear decomposition given in Eq. (1). When MCR-ALS solutions
are unique (rotation ambiguity totally removed), they would then
correspond to the true one. The amount of rotation ambiguity still
present in MCR-ALS solutions can be checked using an independent
method like the MCR-BANDS method (see below). The art of MCR-
ALS is therefore, to choose the appropriate constraints to restrict
the number of possible solutions.

MVSA and VCA methods did not estimate the relative concentra-
tions of each component at every pixel (concentrations). Possible
known information about the concentrations, like local rank or
selectivity is therefore not used explicitly and it cannot be used as a
constraint during the profiles optimization. Relative concentrations
should be then obtained in a separate step at the end of the opti-
mization by an ordinary least squares method, for instance using
the equation, C=D(ST)*, where (87)* is the pseudoinverse [44] of
the estimated spectral pure signatures of the components. Again,
this calculation can produce negative values for the estimated C
concentrations unless a non-negative least squares method is used
[45]. In contrast, in MCR-ALS, both C and ST profiles, are alterna-
tive obtained under the required constraints by projection in the
two subspaces of the raw data matrix D, column and row and sub-
spaces and using non-negative least squares projections [45]. For
the first component in this data set 2, and according to r? and angle

I;(_l"t:LS, MVSA, VCA data fitting results for the analysis of the two simulated data sets.
Data set 1 Data set 2
MCR-ALS MVSA VCA MCR-ALS MVSA VCA
Full model lof* 0.99 0.99 443 0.16 0.75 0.61
Full model R?® 99.99 99.99 99.8 99.99 99.99 99.99

* Percentage of lack of fit (laf, Eq. (2)) considering only one single component and the three components (full model) together.
b Percentage of explained variances (R?, Eq. (3)) considering only one single component and the three components (full model) together.
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values, either MCR-ALS, MVSA or VCA provided accurate estima-
tions of the pure component spectra and concentrations (see lower
partofTable 1). For the second component, MVSA and VCA 2 values
were a little better (closer to one) than those of MCR-ALS, probably
in agreement with the existence of pure pixels for this component
as discussed above. For the third component however, the situa-
tion resulted to be completely different especially for MVSA, as a
consequence as said before, of the negative spectra values present
in its spectrum, giving a negative r2 value and a large angle (higher
than 90°). See also the values for the corresponding wrong values
for the concentration profile calculated for this third component
resolved by MVSA. Table 2 illustrates that for this data set 2, the
three methods gave very similar explained variances and lack of
fit values for the full model considering simultaneously the three
image constituents. Since the resolved profiles showed appreciable
differences (lower part of Fig. 2 and of Table 1), this confirms again
the presence of rotation ambiguities in the solutions (see below in
Section 2.4). As for data example 1, the variances explained by the
individual constituents were high and overlapped since their sum
highly exceeded 100%.

In the simulated data set 2, adjacent pixels had common pat-
terns, as it may happen in real spectroscopic images from natural
systems in many circumstances. In this example, relative concen-
trations of a constituent were higher at the center of a particular
region of the image and then they decreased smoothly at the edges
of this region. In Fig. 3, the 2D reconstructed images of the con-
centration values at a pixel level in the x-y plane (distribution
maps) resolved using the three methods, MCR-ALS, MVSA and VCA,
are compared separately and to the true 2D simulated images for
each of the three image constituents. Relative concentrations for
the first resolved pure component (Fig. 3, left side), resulted to
be almost perfect using any of the three tested methods. For the
second component (Fig. 3, center), the shape of the MCR-ALS recon-
structed image did not changed much either. The color of the image
obtained was only a little different in the red part, with slightly
higher intensity values for this component than for the true one
(possible rotation ambiguity). On the other side, second component
concentrations calculated for MVSA and VCA gave some negative
image values in the deep blue region. This was much more severe
and worse for the third component obtained by any of these two
methods (Fig. 3, right side). As a consequence of this, the rela-
tive image intensities obtained for these two (second and third)
components by MVSA and VCA were highly distorted and wrong
compared to the true ones (Fig. 3, upper part). MCR-ALS provided
in all cases, much better and reasonable reconstructed 2D images
of the three pure component concentrations for this data set. It is
concluded therefore that MCR-ALS provided more accurate estima-
tions of pure spectra and concentrations than MVSA and VCA in the
analysis of this second data set.

4.3. Results of experimental data set

In the lower left corner of Fig. 1, the original raw remote sensing
spectroscopic image was shown. As mentioned before, MCR-ALS
method requires an initial estimation of the number of components
present in the data matrix D and an initial estimation of one of the
two factor matrices, C or ST. As a preliminary estimation of the
number of components, PCA indicated the possible presence of up
to 4-5 constituents on the analyzed spectroscopic image. Initial
spectra estimates were then obtained from the measured spectra
in the ‘purest’ pixels, using the same procedure as in SIMPLISMA
[46]. After that, MCR-ALS optimization was carried out under non-
negativity constraints in spectra and concentration profiles, and
resolved spectra were normalized.

Fig. 4a—e shows the comparison between the pure spectra
(signatures) resolved by MCR-ALS (red), and those resolved by

MVSA (black), VCA (green) and also with reference (blue) best
matching USGS library spectra for the four resolved components
giving a larger contribution to the total data variance. With five
components, the total explained variances (R? value in Eq. (3))
were already very high (99.98%). Table 3 shows the correlation
coefficients, 2, between MCR-ALS pure spectra and the corre-
sponding spectra from the USGS library. As it can be seen in this
table, these values were close to one. Individual constituents were
postulated to be Alunite, Andradite, Montmorillonite, Nontronite
and Kaolinite, which individually explain data variances of 27.19%,
38.58%, 7.72%, 16.59% and 6.10% respectively. The major spectral
bands agree well with those from the spectral library, although rel-
ative intensities showed some differences. In Table 3,12 (correlation
coefficients) values between MCR-ALS resolved pure spectra and
reference library ones for Andradite, Montmorillonite and Nontron-
ite were very close to 1 and their angles between them were rather
small, proving that they match with the proposed ones rather well.
For Kaolinite and Alunite, correlation values were not so good, with
r2 values of 0.9414 and 0.9296 respectively. Their inclusion in the
proposed model of five components did not have much effect on
the final resolution and fit of the experimental dataset, and their
presence is therefore more questionable. The relative concentra-
tion contributions of Montmorillonite and Kaolinite resulted to be
rather low, therefore they are closer to the contribution of the back-
ground signal level, and they should not be as reliable as the other
major ones. In previous works from the literature [11,47], a larger
number of spectra signatures (endmembers) were proposed for this
image, explaining low variances in many circumstances. Including
atoo large number of image constituents or endmembers can pro-
duce unstable and inaccurate models and model over fitting. As
shown also in Fig. 4, VCA and MVSA spectra for the last two compo-
nents, four and five, resulted to be rather different to those obtained
by MCR-ALS. Comparing them with those from the spectral library,
gave other possible candidates. However, again, MVSA spectra esti-
mates produced negative values of these two minor components,
and they were again unfeasible.

In Fig. 5, 2D images of the relative concentrations of the five
components at each pixel in the x-y plane estimated by MCR-ALS
are given. To better illustrate the relative contributions of the dif-
ferent components, the same intensity scales have been used for
all resolved components. The first constituent assigned as Andra-
dite (Fig. 5a), is present a wide area of the image and in the right
part has a higher concentration. The second constituent is Alunite
(Fig. 5e), and it is located in the right side of the image. The third
constituent is Montmorillonite (Fig. 5c). The fourth constituent is
assigned to Kadinite, it is at the right side of the image too, and
it does not contain Alunite (Fig. 5d). The fifth constituent is Non-
tonite, which is encountered mainly in the lower part of the image
(show in Fig. 5e). Kadinite is at lower concentration than Alunite
and Nontonite.

From the 2D image contribution of the different components,
conclusions about the mineral distribution over the investigated
geographical area can be drawn. It is first concluded that Alunite
mineral is concentrated in the more east part of the studied area,
together with Kaolinite, whichis also in the same area, being almost
complementary to each other. Previous results of Clard and Swayze
[48,49] for the location of these two components in the same image
were similar to ours, although the contribution ratios of these two
components were a little different. Our results also showed that
Andradite can be distributed in a wide area of the geographical
area under investigation and that it has higher concentrations at
the northeast part of it, with a contribution higher than for the other
constituents (see relative scales and colors in the different images of
Fig.5). Whereas Clard and Swayze did not conclude the same about
the possible presence of Andardite in their paper, Chan et al. on the
other hand, did obtain a similar result [47], with a similar relative
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Fig. 3. 2D reconstructed images of the concentration values at a pixel level in the x-y plane resolved using the three methods. True (a), MCR-ALS (b}, MVSA (c) and VCA (d)
concentrations for each of the three image constituents.

Table 3
Correlation coefficients (2, Eq. (4)) and angles (Eq. (5)) between USGS library spectra and those obtained by MCR-ALS, VCA and MVSA in the analysis of the experimental
data set,
Andradite Alunite Montmorillonite Kaolinite Nontronite
MCR-ALS
r? 0.9974 0.9414 0.9739 0.9296 0.9932
Angle 4.09 19.70 13.11 2163 6.69
MVSA
r 0.9669 Not matching 0.8786 0.8709 0.9882
Angle 14.78 Not matching 28,53 2944 8.82
VCA
r 0.989 Not matching 0.9909 0.9969 0.9933
Angle 849 Not matching 71.75 448 6.63
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Fig. 4. Comparison between library spectra (blue, from USGS reference library), with those obtained by MCR-ALS (red), MVSA (black) and VCA (green) in the analysis of the
experimental data set. Proposed image constituents are: (a) Andradite, (b) Alunite, (c) Montmorillonite, (d) Kaolinite, and (e) Nontronite, (For interpretation of the references

to color in this figure legend, the reader is referred to the web version of the article.)

concentration distribution over the investigated area. Montmoril-
lonite would be concentrated in almost the same area as Alunite and
Kaolinite but with a rather lower concentration and only in some
pixels is at a little bit larger concentrations. Nontronite distributes
mostly in the southwest part of the geographical area under study,
and also in a particular spot in the northwest part, where it has a
relatively high concentration. The present and distribution of these
two components are in agreement with those obtained by Clard and
Swayze [48,49]. In the analysis of the spectroscopic image under
study in this work, most of the previous studies have concentrated
on the resolution of the chemical contributions to the measured
signal and compared the resolved spectra profiles to the refer-
ence USGS spectral library [47,50]. In the case of remote sensing
hyperspectral imaging, the presence of light scattering and other
physical contributions can be important and should be considered

[51,52]. However, in the particular case of data set 3 obtained from
Cuprite, Nevada of USA, the investigated region is an arid area with
a very small amount of vegetation cover and nearly no water con-
tributions, and only soil and rock minerals should be the major
spectral variance sources. Therefore, physical contributions to the
spectroscopic signal should be small.

4.4. MCR-BANDS results

MCR-BANDS results are shown in Table 4. SCCF values for MCR-
ALS, VCA and MVSA solutions are given in this table. In all performed
analysis, on simulated and experimental datasets, when only non-
negativity constraints (apart from spectra normalization) were
used, maximum and minimum SCCF values differed considerably
and their differences were rather large. This shows the presence of
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Fig. 5. 2D reconstructed images of the concentration values at a pixel level in the x-y plane resolved using MCR-ALS for the proposed image constituents: (a) Andradite, (b)

Alunite, (¢) Montmorillonite, (d) Kaolinite, and (e) Nontronite.

a considerably amount of rotation ambiguity in the solutions, even
after the application of these constraints. On the other hand, actual
SCCF values for MCR-ALS, are within the range of maximum and
minimum the max and min SCCF values obtained by MCR-BANDS
with non-negative and normalization constraints. In Table 4, SSCF
values are evaluated considering the ambiguity associated to

MCR-ALS resolved profiles. SCCF values for the true profiles (also
showninTable 4) in the case of the simulated data sets were similar
to the ones of MCR-ALS. In the first simulated data set, MVSA SCCF
values are excellent and coincide with the true ones. This is a con-
sequence of the matching conditions of this data set for an optimal
application of the MVSA method, specially because of the simulated
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Table 4
Signal component contribution function (Eq. (6)) SSCF obtained by MCR-ALS, VCA, MVSA and MCR BANDS [34,36] maximum and minimum values.
MAX SCCF MAX SCCF® MAX SCCF MCR VCA MVSA True SCCF MIN SCCF* MIN SCCF" MIN SCCF*
Dataset 1
1st component 0.62 0.52 0.52 0.52 0.58 0.48 048 0.52 0.17 0.15
2nd component 0.64 0.50 0.30 0.30 037 0.26 027 030 0.16 0.14
3rd component 0.64 0.39 0.39 0.39 046 0.48 0.47 039 044 0.24
Dataset 2
15t component 0.84 0.64 0.64 0.64 0.70 0.73 0.69 0.64 0.60 0.02
2nd component 0.61 0.28 0.28 0.28 0.38 0.41 0.18 0.28 0.27 0.08
3rd component 0.62 031 0.25 0.25 0.09 0.07 0.25 0.25 0.25 0.05
Experiment dataset
1st component 0.69 - - 0.09 0.28 0.25 - - - 0.04
2nd component 0.66 - - 0.32 0.30 0.19 - - - 0.12
3rd component 0.67 - - 042 0.56 0.19 - - - 0.08
4th component 072 - - 0.21 024 0.41 - - - 0.05
5th component 0.57 - - 0.09 0.50 0.46 - - - 0.09

* Using only spectra and concentration non-negativity and spectra normalization constraints,

& Using the same constraints as in 1 plus local rank constraint for the first component.

© Using the same constraints as in 1 plus local rank constraint for the all three components,

concentration profiles following a random Dirichlet distribution
which is exactly the assumption about relative abundances in the
development of the MVSA method.

In Table 4, SCCF values are also given for cases where informa-
tion about local rank is available. For instance, for simulated data
sets 1 and 2, SCCF values are given for the cases where local rank
information is available for one or for all three components. In the
first case, pixels where the first component is known to be at low
concentrations were forced to fulfill this condition. In case only
one constituent is present in one or more pixels, the pure spec-
trum or spectral signature of this constituent is totally determined
(apart from noise) and there should not be rotation ambiguity for
its spectrum profile. As it is deduced from the results shown in
the table, differences between min and max SCCF values become
smaller, being both closer to the ones obtained by MCR-ALS and to
the true ones. In case of using such a constraint for all the compo-
nents, i.e., setting concentration values of these three components
very low in some pixels and allowing for full selectivity of every
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component, differences in extreme SCCF max and min values can
become negligible and profiles coincide with the true ones and with
those obtained by MCR-ALS. In these cases rotation ambiguities are
eliminated and MCR-ALS solutions are unique and equal to the true
one.

In Fig. 6, MCR-ALS resolved spectra together with maximum
and minimum SCCF spectra for every component in the simula-
tion of experimental data sets 1 and 2 are given. Again, it is clear
that when only non-negativity and normalization constraints are
applied, a wide set of possible pure spectra can be obtained for the
same spectroscopic image, with the same data fit. This means that
in all these cases, to get better, less ambiguous and more reliable
estimates will require the use of local rank and selectivity infor-
mation about the system. From Fig. 6, MCR-ALS (with SIMPLISMA
initialization), and also VCA and MVSA, tend to choose a solution
which is close to one of the two SCCF extreme values, This is proba-
bly due to the fact that these boundaries corresponds to the spectra
in pure (or nearly pure component) pixels. Maximum or minimum
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Fig. 6. MCR-BANDS spectra profiles obtained for every component in the analysis of simulated data set 1 (a) and data set 2 (b). In blue, max and min SCCF profiles and in
dashed red MCR-ALS/[true profiles, (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)
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SCCF MCR-BANDS solutions are similar or equal to these spectra
(signatures) obtained at the purest pixels. If in these pixels only
one component is present (selectivity), then its spectrum is one
SCCF extreme value and also will be one of the solutions provided
by the different methods, MCR-ALS, MVSA and VCA. A deeper study
of this fact is needed and some work is pursued in this direction.

Insimulated data set 1, when local rank constraints were applied
to all of the components, unique profiles were obtained which was
alittle different to the true one. This is probably due to the fact that
pixels constrained according to local information were not totally
pure ones and other components were still present at low concen-
trations. In simulated data set 2, the first component has a very low
concentration, close to zero, and as a consequence of this, a prac-
tically unique profile, very similar to the true one was obtained.
These results confirm that when there is total selectivity in a pixel
(only one component present) or, what is the same, when all the
other components have a very low concentration in these pixels,
the spectra profiles resolved by MCR-ALS will be close to the true
ones, even if MCR-BANDS indicate that there is still ambiguity. A
unique result will be obtained if the constraint applied on all com-
ponents, and this is a situation like MVSA. Only when all of those
constraints do agree with the real situation, the unique true result
is obtained.

The experimental dataset is a rather complex data set. Most of
the components present in the image have similar chemical groups
and their spectra profiles are highly collinear. Due to the large size
of the image and computer limitations, MCR-BANDS could only
be applied to a reduced section of the experimental dataset (one
every eight pixels). The SCCF values of MCR-ALS results were cor-
rectly between the maximum and minimum MCR-BANDS values
(see Table 3). These maximum and minimum SCCF values for the
five components resulted to be rather different, for example, the
maximum and minimum SCCF values for the first component are
between 0.04 and 0.70 (from a range between 0 and 1). Therefore
results of MCR-BANDS confirmed that in this case there is still a
large amount of ambiguity in the spectra profiles resolved by MCR-
ALS. Finding regions of reduced local rank and implementing them
as a constraint during MCR-ALS and MCR-BANDS will reduce con-
siderably the presence of rotation ambiguities.

Moreover, concentration changes in hyperspectral image at
different pixels are not continuous, like in evolving chemical pro-
cesses. In evolving chemical processes is relatively easy to get and
applied the local rank information from evolving factor analysis
methods [53]. However, in the case of the hyperspectral images
investigated in this work, this local rank information is rather dif-
ficult to find out and discover if some pixels have one or more
components absent. Further work is also planned in this direction,
to develop new local rank detection techniques to allow local for
the identification of image pixels where certain components are
absent.

5. Conclusions

In this work, MCR-ALS has been shown to be a powerful tool
for the resolution of hyperspectral imaging on their constituents.
Results obtained by MCR-ALS are in general similar to those
obtained by MVSA and VCA methods, except for the cases where
the later produce spectra and concentration profiles with nega-
tive values, which are not feasible from a physical point of view
and according to the desired constraints of the sought solutions. In
the three studies reported here in this work, MCR-BANDS results
suggest that the extent of rotation ambiguity associated to the
MCR-ALS resolved profiles can be rather high and that the cor-
rect solutions can only be guaranteed if additional constraints are
applied, such as those providing information about the local rank
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properties of the image, i.e,, about the presence or absence of the
different components in the image pixels. Only in this way, the
reliability and quality assessment of the proposed solutions can be
better guaranteed. If this is not possible, the extent of remaining
rotation ambiguities can be reported using a method like the MCR-
BANDS method proposed in this work.

Appendix A. Simulation of concentration values for
simulated data set 1

First component:

[X,Y]=meshgrid(-8:.5:8);
R=sqrt(X.2+Y.2)+eps;

Cl=sin(R)./R;
surf{C1,'DisplayName’,'C1");figure(gcf)
C1=C1+0.2173;

C1=C1*100;

Second component:

[X,Y]=meshgrid(-2:.1:2);
R=X.*exp(-X.2-Y.2);
surf(R,'DisplayName’,'R"); figure(gcf)
C2=R(4:36,4:36);

min(min(C2))

(2=C2+0.4289;

C2=C2%10;

Third component:

[X,Y]=meshgrid(-2:.1:2);
C3=X.*exp(0.5(-X.2-Y.2));
surf(C3,'DisplayName’,'C3"); figure(gcf)
(3=C3(4:36,4:36);

(3=C3+0.6089,

C3=C3710;

X and Y give the coordinates of the pixels in the two axes of the
2Dimage, C1,C2and C3 are the concentrations of three components
respectively.
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Abstract:

This paper shows the effect of using local rank and selectivity constraints based on spatial
information of spectroscopic images to increase the performance of Multivariate Curve Resolution
(MCR) methods and to decrease the ambiguity of final results. Fixed Size Image Window-Evolving
Factor Analysis (FSIW-EFA) is applied to discover which pixels are more suitable for the application
of local rank constraints. An automated method to help in setting appropriate threshold values for
the application of FSIW-EFA, based on global and local use of Singular Value Decomposition (SVD)
is proposed. Additional use of correlation coefficients between selected reference spectra and
pixel spectra of the image is shown to provide an alternative way for the application of the
selectivity constraint in spectroscopic images for the first time. This alternative method resulted to
be satisfactory when pure pixels exist.

Keywords: MCR, local rank constraints, rotation ambiguity, hyperspectral imaging, remote sensing
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1 Introduction

Multivariate curve resolution (MCR) methods have many advantages for the analysis of remote
sensing hyperspectral images and have been already applied in this field[1-4]. MCR methods can
recover pure spectral (related to chemical features) and spatial (related to the physical shape or
distribution map) information about the spectroscopic image constituents[5, 6]. MCR methods are
based on a bilinear model. Hyperspectral images are usually a mixture of multiple spectra
constituents and their resolution under particular constraints, like non-negativity, does not
guarantee unique solutions because of rotation ambiguities inherent to bilinear model
decompositions[7]. This implies that apart from the sought solutions under the required
constraints, other solutions are possible by linear combination of them.

In remote sensing studies, distribution maps of the image constituents resolved by MCR are
important information to recover because they may include information about mineral location,
forest distribution, air pollution sources and other environmental elements. Chemical
characterization of image constituents by remote sensing hyperspectral imaging can be considered
at global and local scales. In remote sensing hyperspectral images, experimental data are
represented in the form of a data cube, in which the spatial information is given in the X-Y
directions and the spectral information is given in Z direction. MCR-ALS (multivariate curve
resolution- alternating least squares) is applied to the unfolded image dataset sized (XxY, Z),
where X and Y are the number of pixels in the X and Y directions and Z the number of spectral
channels. Detecting the details about the distribution of chemical constituents over the scanned
surface in remote sensing hyperspectral imaging gives information about the features of the

investigated objects.

The chemical rank (equal to the mathematical rank in the absence of noise, i.e. the number of
image constituent distinct to noise in the tested area of the image) can be estimated in windows
formed by a small number of contiguous pixels and this information can be used afterwards to
improve the resolution of the constituents of an image. Local rank constraints have been proposed
to use this information gathered from the local rank analyses of a moving window along the image
surface. This information helps to know which constituents (chemical species) are present or
absent in a certain pixel area.[8-11]. Local rank information may include regions of total selectivity
where pure spectral information allows the identification of single particular constituents and also
includes information about regions where some particular constituents are absent in some pixels.
To detect and to locate these regions can be of great help to enhance the resolution and to
improve the reliability of the resolution process. The local rank information can also help to
describe the properties of remote sensing images, making the image sharper, and making the
objects of the image be seen more clearly. Local rank information may be very useful to describe
appropriately the presence and properties of the different objects on the image of the scanned
surface. Local rank information can be used as a constraint in MCR methods to reduce rotation
ambiguity significantly and to obtain unique resolution results in some particular cases. As it has
been shown in previous works[12, 13], methods based on Evolving Factor Analysis (EFA[14]) can
be applied for this purpose and have been adapted to hyperspectral image specificities.
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Since in most of remote sensing systems, image constituents use to have very similar, quasi
collinear spectra profiles or signatures, it can be rather difficult to estimate the local rank and to
find out how many components each pixel has and which pixels can have a particular component
present or absent. FSIW-EFA (Fixed Size Image Window-Evolving Factor Analysis) is applied to
figure out which pixels are available in the remote sensing hyperspectral images for the
application of local rank constraints and to improve MCR-ALS resolution[12, 15]. In this work, the
use of local rank-based spatial information is shown to improve the resolution of remote sensing
hyperspectral images. Suggestions are proposed to set adequate threshold values to improve the
accuracy of the estimations of local rank in local pixel areas. The proposed FSIW-EFA method is
then tested on one specially prepared simulated spectroscopic image dataset and on two real
remote sensing spectroscopic images. A new method based on the calculation of correlation
coefficients between selected reference spectra and pixel spectra of the image is proposed to help
in the detection of selective pixels and to encode this information as a constraint. .

2 Methods and Data sets
2.1 Method

In previous papers, the application of MCR-ALS using local rank constraints[5, 12, 16] was already
introduced. In this paper, the method is extended for remote sensing hyperspectral imaging
resolution. The application of local rank constraints needs developing first a local rank map to
decide which pixels have low complexity, i.e., a rank lower than the total number of constituents
in the image, and, therefore, can be potentially constrained. Thus, before starting the ALS
constrained optimization steps[17], raw remote sensing image data are submitted to Fixed Size
Image Window-Evolving Factor Analysis[12] to look for pixels where local rank information can be
applied. The details of this procedure are shown in the following section.

2.1.1 Obtaining Image local rank Information

FSIW-EFA (Fixed Size Image Window-Evolving Factor Analysis) is a method for local rank analysis
which was designed to take into account the spatial structure of images[12]. It performs multiple
local singular value decompositions (SVD) moving small windows along the full spatial surface of
the raw image data set. These small windows comprise each particular pixel and a limited number
of neighboring pixels. The number of pixels in every moving window should exceed (at least in one
unit) the total number of possible components in the whole image dataset, which can be initially
estimated from SVD of the whole image data.

Remote sensing hyperspectral imaging always has considerable amounts of noise. SVD can be used
to estimate the levels of noise. The first step of FSIW-EFA is using SVD to explore the spatial
structure of the image. When n components are chosen for resolution, the first n components are
considered to explain enough information of the raw data. The rest of components have lower
singular values and are considered to describe mostly noise contributions.
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From the singular values obtained in the local rank analyses, a figure can be derived (local rank
map) that has the same spatial structure as the raw image. Values on each pixel in the figure
represent the number of overlapping contributions to the signal in this position. A threshold value
is initially set to mark the limit between signal and noise singular values. Pixels that have higher
singular values than the threshold value will be considered to have useful information about the
chemical constituents (not noise), and pixels with singular values lower than this threshold value
will be considered to contain only noise. In pixels with chemical information, the number of
singular values higher than the threshold indicates the number of overlapping signal contributions
in that pixel area. There are different ways to set threshold values and to obtain complete and
partial image local rank maps of the image. When only one threshold value is set, a complete local
rank map is obtained giving local information about the whole image complexity, including
information about how many constituents overlap in each pixel area. Partial local rank maps are
derived using a threshold band instead of a threshold value. The threshold band marks the lowest
and highest boundaries for sensible threshold values. The only pixels shown in the partial local
rank map are those whose rank is invariant within the threshold boundaries.

Selection of adequate threshold band values is critical for the calculation of the partial local rank
map. When the threshold values are not proper, subsequent steps linked to set local rank
constraints will mislead the model and produce worse instead of better image resolutions.
Although visual inspection of suitably displayed singular value plots can generally provide
adequate threshold values®, a proposal for automatic threshold band selection is given in this
work. Thus, if resolution requires n components, the minimum threshold boundary can be set as
equal to the maximum singular value of n+1™ component obtained from all SVD local rank
analyses. The maximum threshold boundary adopted will be the maximum singular value of the n™
component from all local rank analyses performed along the pixel areas of the image surface. Note
that if a value higher than this one was chosen for the maximum threshold boundary, there could
not be any pixel having a number of overlapping components equal to n, which could conflict with
the global SVD results. This is a restrictive, but practical threshold band to use to set local rank
constraint since values with invariant rank value among lower and higher threshold boundaries
can only be those having a rank lower than the total number of components of the system.

Local rank maps show one rank value per pixel of the image. Absent constituents in a particular
pixel can be identified using the correlation coefficient between the raw pixel spectrum and
preselected reference spectra, i.e. obtained from databases, from purest pixels by SIMPLISMA [18],
or from a preliminary MCR analysis of the image® . In this paper the latter option was chosen.
Those components with the lowest correlation coefficients with the pixel spectrum are the ones
likely to be absent in this pixel.

Pixels where some of the image components are absent can be used for the application of local
rank constraints. In practice, however, it may be difficult to detect which components are absent
in a particular pixel, especially when the samples for analysis are complex mixtures or when they
have many components with very similar spectra (signature). FSIW-EFA[12] needs to be used in
this situation.
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Moreover, when the image for analysis has pure pixels (selective), a different and simple strategy
based on the use of correlation coefficients for selective pixel detection can be proposed.
Correlation coefficients can be used to describe the similarity between raw measured spectra at
each pixel and known pure spectra. When the correlation coefficient is equal or very close to 1, it
means that on that particular pixel a single component is dominant and the other components are
absent at very low contributions. It is possible then to use this information for selectivity
constraint. When this strategy is applied to look for pure pixels, it is necessary first to have
reference spectra for some of the components. In remote sensing hyperspectral imaging, this is
usually difficult. In these situations, spectra obtained from purest pixels by purest variable
selection methods such as SIMPLISMA [18] or from a preliminary MCR analysis of the image using
only non-negativity constraints can be used for this purpose, although then, they will not
correspond to pure signatures (spectra) of chemical constituents, but to unknown mixtures of
them. Therefore in these situations, MCR results will have this limitation and they should be
interpreted accordingly.

2.1.2 MCR steps for image resolution

In this work, the multivariate curve resolution alternating least squares (MCR-ALS) method[17]
was applied to resolve remote sensing hyperspectral images. MCR-ALS is proposed to get the pure
spectra (signatures) and distribution maps of the chemical constituents of spectroscopic images[5,
19]. MCR-ALS is based on a bilinear model (see Equation 1 below), which assumes that the
observed spectra are a linear combination of the spectra of the pure components of the
investigated system([17].

D=CST+E Equation 1

Here D contains the spectra of the raw remote sensing images, which are unfolded in a data
matrix (from the raw data cube), S' has the pure spectra of the image constituents and C contains
their related concentration profiles on the scanned image pixels. C matrix can be refolded to give
the 2D distribution maps of the contributions in relative amounts of every component at every
pixel on the image surface.

In the general case, MCR solutions are not unique and they have a certain amount of ambiguity.
Although the application of Multivariate Curve Resolution methods does not require any previous
knowledge, the incorporation of any preliminary information, either chemical or mathematical,
previously obtained from the exploratory analysis of the spectroscopic data can influence
positively the resolution of the image and decrease mathematical rotation ambiguities. During the
ALS optimization process, the inclusion of information can be achieved by the application of
constraints, which encode mathematical or chemical properties that pure component profiles
should obey. MCR-ALS optimization requires giving initial estimates of either §' or C profiles in
Equation 1. Typically, spectral estimates can be provided from pure variable detection methods[17,
20]. For hyperspectral images, the most applied constraints are non-negativity in the
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concentration (C) and spectral (") profiles. Local rank and selectivity constraints are applied to the
pixels in C and are an efficient way to reduce rotation ambiguities in MCR-ALS results[8, 10, 21].

The application of local rank constraints in hyperspectral imaging resolution has aspects different
to those present in other spectroscopic situations. Global chemical rank (the total number of
distinguishable chemical constituents in the hyperspectral image) is initially estimated by SVD,
which provides an efficient model to describe the data variance. In order to apply local rank
constraints, local rank information should be provided (see method section 2.1.1). In the local rank
map, pixels where a single component is present can be used to implement the selectivity
constraint. Pixels with some absent constituents can also be constrained with local rank
constraints. In spectroscopic remote sensing, only pixels with very well defined information in
terms of rank estimation and identification of absent components will be constrained.

In this work, the MCR-BANDS method was applied to evaluate the effect of the application of local
rank constraints on the extent of rotation ambiguities associated with MCR-ALS results. For this
purpose a dataset specially prepared is used. Details of the MCR-BANDS method can be found
elsewhere [7]. MCR-BANDS method is based on the maximization and minimization of the signal
component contribution function, SCCF, which is defined for a particular component as:

SCCF, = lcasal Equation 2
lles™|

SCCF is a scalar value between 0 and 1, which gives the relative signal contribution of a certain n
component in relation to the whole signal due to the mixture of all components. This function is
maximized and minimized for all the possible linear combinations of the MCR solutions under the
same constraints applied in the MCR-ALS analyses. All these solutions will fit equally well the data
and obey the constraints used during their estimation, but they will be different. More details are
given elsewhere [7, 22]. When maximum and minimum SCCF values are coincident for a particular
component, it means that there is no rotation ambiguity associated with its resolution.

MCR-ALS and MCRBANDS algorithm code and GUI for MATLAB (The MathWorks Inc.,
MA, US) is freely available from the home page of MCR at http://www.mcrals.info/.

2.2 Data

In this work, the use of local rank constraints on MCR-ALS in the resolution of remote sensing
hyperspectral imaging is performed using one dataset specially prepared for this purpose and two
real spectroscopic image datasets.

2.2.1 Simulated spectroscopic image data set 1

Figure 1a and 1b shows the distribution maps and spectral signatures of diverse complexity used
to generate the simulated hyperspectral image. The resulting dataset has 21x21 pixels and the
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spectra have 224 wavenumbers. This data set gives the data matrix D, which was huilt using a
bilinear model (Equation 1) using spectral signatures (S') extracted from the 1997 USGS Digital
spectral Library of minerals [23]. This library includes reflectance spectra on minerals, vegetation,
and miscellaneous stuff and their spectra are used as references for material identification in
remote sensing images. Concentration C, giving the relative amounts of image constituents in
adjacent pixels was created using the set of distribution maps simulating scenarios of different
spatial complexity shown in Figure 1b. As said above, the image data were reconstructed
according to bilinear model using equation 1, where E is the noise added to the data which was
calculated according to a white Gaussian noise distribution with zero-mean and constant standard
deviation equal to 1% of maximum signal intensity (homoscedastic noise).

B 1]

Figure 1. Analysis of dataset 1 a) Pure spectra of simulated dataset 1. b) Simulated distribution maps. ¢)
Local rank map of dataset 1 obtained by FSIW-EFA. d) Selective pixels from the image of dataset 1 selected
by the correlation coefficient method. e) Pixels where a certain component is absent from the image of
dataset 1, selected by the FSIW-EFA method, suitable for the application of local rank constraints during
MCR-ALS analysis.
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2.2.2 Experimental remote sensing spectroscopic image datasets 2 and 3

To illustrate the use of local rank constraints in the analysis of experimental remote sensing
imaging, hyperspectral data from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
were used. AVIRIS measures the solar reflected spectrum from 400 to 2500 nm through 224
contiguous spectral channels at 10-nm intervals across the spectrum[24] were used. Two scenes of
the free standard datasets were downloaded from the AVIRIS website
(http://aviris.jpl.nasa.gov/data/index.html). Experiment dataset 2 is extracted from the
hyperspectral image of a naval airport in San Diego, California, collected by AVIRIS (Airborne
Visible and Infrared Imaging Spectrometer) sensor. In this case the analysis was limited to a 200 x
200 pixels sub-image. This image has 195 useful spectral bands. Experiment dataset 3 was
acquired over Moffett Field, CA, in 1997 by the AVIRIS Spectrometer. In this case the analysis was
limited to a 400 x 400 pixels sub-image and this image has 199 useful spectral bands. The
investigated area is mainly composed of water, building, soil, and vegetation.

3 Results

3.1 MCR-ALS of a simulated hyperspectral dataset (dataset 1)

The dataset 1 is used to illustrate and validate the application of local rank constraints in MCR-ALS
method. Since the noise level added to this dataset is relatively low (1%), it will be relatively easy
to detect the presence of the different constituents in the image pixels. As mentioned above, this
data set contains three constituents that were mixed in the simulated image. Non-negativity on
both spectral and concentration directions and normalization on spectral direction were used as
constraint for image resolution. MCR-ALS results were compared for this dataset with and without
local rank constraints.

Local rank constraints can be set using the correlation coefficient method (to look for selective
pixels) or by the method based on FSIW-EFA results (for both selectivity and local rank conditions).
For an easy assessment of the results obtained by these two methods, the distribution maps of the
components are shown (Figure 1b) and a local rank map of the image (Figure 1c) and The local
rank map reproduced well the true overlapping pattern of the different components in the image
and it allows for the proper application of local rank constraints. In the red-brown image section
three components were overlapping, in the yellow section two components were estimated, in
the cyan section only one component is estimated (selectivity region), and in the dark blue section
of the image no component was detected (only noise region).

Since pure pixels (pixels having mostly only one single constituent apart from noise) exist in the
image, they can be used as a constraint if their position in the image is previously detected. This
situation can be encountered in geology, food, pharmacy, environment, etc. where image regions
with pure pixels can be present. In simulated dataset 1, there were some pixels where only one
component appeared. Detection of these pure pixels was performed checking for the correlation
coefficients between possible known pure spectra (signatures obtained from MCR results with
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only non-negativity constraints) and the spectra measured at each pixel. Those pixels with highest
correlation coefficients can be used for the application of selectivity constraints. In Figure 1d,
pixels with high correlation coefficient, close to 1, between pixel spectrum and reference pure
spectrum, are illustrated as red points. These pixels are considered to have a single component.
Therefore, the contribution of the other components on these pixels can be set to 0 (or better to a
very small number) and use them for the application of the selectivity constraint during the ALS
optimization. When selectivity constraints were used for these single component pixels, the least
squares optimization converged faster, for example, in the dataset 1, resolution with and without
the application of the local rank constraint needed 16 and 46 ALS iterations respectively.
Comparison with the left figure shows that pixels picked up by the correlation coefficient method
were mostly the same as those in the cyan regions of the local rank map obtained by FSIW-EFA,

where only one component was detected.

For a better illustration of the procedure for pixel selection and appropriate application of local
rank constraints, FSIW-EFA results are also given and compared with those obtained using the
correlation procedure previously mentioned. For the application of the local rank constraint there
should be a pixel with one or more components absent in the hyperspectral image. Figure 1c gives
the FSIW-EFA estimated local rank map of the image. Figure 1e shows that the results from FSIW-
EFA for the application of the local rank constraint were correctly estimated (note that in this
figure, red dots mean absence of the related compound in Figure 1b in the marked pixel and,
therefore, local rank constraints would set a 0, or very small value, for these components in the
adequate pixels).

Both methods, the one based on the correlation coefficients and the one based on FSIW-EFA
method resulted to be complementarily useful to find out selective pixel image regions, where a
single chemical constituent is present at significant contributions. Equally important information,
detected by FSIW-EFA, is to know the image regions where a particular component is absent, since
this information can also be used as a local rank constraint during MCR-ALS. As a consequence of
this, more accurate pure spectra and contribution profiles were obtained (Figure 2).
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Figure 2. Extent of rotation ambiguities estimated by the MCR-BANDS method in the MCR-ALS analysis of
dataset 1, with and without application of local rank constraints. Upper plots represent maps from
maximum SCCF boundary, resolved MCR-ALS maps and maps from minimum SCCF boundary. Lower plots

display the related spectra for the maximum and minimum values of SCCF (in blue), and the resolved
spectrum obtained in the MCR-ALS solution (in red). (1) MCRBANDSax. (2) MCR-ALS with non-negativity
constraint and spectra normalization. (3) MCR-ALS with non-negativity ,local rank constraint and spectra
normalization. (4) MCRBANDSy,. (5) MCR-ALS with non-negativity constraint and spectra normalization. (6)
MCR-ALS with non-negativity ,local rank constraint and spectra normalization.
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Results shown in Figure 2 include also the evaluation of the extent of rotation ambiguities
obtained by MCR-BANDS in the case of the analysis of dataset 1. MCR-BANDS results for the case
of only considering non-negativity and normalization constraints are shown. MCR-ALS and MCR-
BANDS results with the application of local rank constraints are given. Results are given separately
for every component. In the upper part, subfigures show, distribution maps for the maximum
signal component contribution function (SCCF) optimized by MCR-BANDS, for the solution
obtained by MCR-ALS (with and without local rank constraint) and for minimum of SCCF,
respectively. In the lower part, the corresponding spectra for the maximum and minimum values
of SCCF are also given in blue, whereas the red line is the resolved spectrum obtained in the MCR-
ALS solution. When local rank constraints were not applied (upper line), resolution results were
still ambiguous, with a large amount of rotation ambiguity (although the recovered MCR-ALS
solution looks similar to the simulated maps and spectra). In contrast, in Figure (lower line), MCR-
ALS solution and both MCR-BANDS solutions at maximum and minimum of SCCF are coincident,
showing that rotation ambiguities were practically eliminated when local rank constraints were
applied and solutions were unique.

3.2 MCR-ALS of the hyperspectral image of the San Diego airport (dataset 2)

For dataset 2 from the image of the airport in San Diego, California, a small region was chosen
from the raw image (Figure 3a) to focus on the area where airplanes were located. Results with
and without local rank constraints were compared.

Figure 3. Google earth images. a) Photography (NOT spectroscopic image) of San Diego airport, California,
USA (latitude:32.707, longtitude:-117.206) corresponding to dataset 2. b) Photography of Moffet field,
California, USA. (latitude:37.576, longtitude:-122.202) corresponding to dataset 3.

Similarly to the previous analysis of dataset 1, in the analysis of remote sensing dataset 2, MCR-
ALS was first used with only non-negativity and normalization constraints. Based on SVD, three
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components were chosen for initial MCR-ALS analysis. Correlation coefficients were obtained by
comparison of the pure spectra resolved by MCR-ALS (MCR with only non-negativity and
normalization constraints in the first step) with spectra in each pixel of the raw image. Pixels with
high correlation coefficients were chosen to build a masking local rank matrix to be used as a
constraint (Figure 4al). In Figure 4al, areas with only the first component are shown in red (It was
difficult to find clear selective regions for other components by the correlation coefficient method
and, therefore, these components were not considered). In the selective pixels for the first
component, contributions of the second and third component were set to very low values as local
rank constraints, trying to improve the resolution of the image.

e A LG

Figure 4. MCR-ALS analysis of dataset 2, San Diego (California, USA) airport spectroscopic image. al) Pixels
selected by the correlation coefficient method a2) Partial local rank map obtained by the FSIW-EFA method.
b) Pure spectra (signatures) and constituent distribution maps estimated by MCR-ALS with non-negativity
constraints. ¢) Pure spectra (signatures) and constituent distribution maps estimated by MCR-ALS with non-
negativity and local rank constraint.

FSIW-EFA was also applied to estimate the local rank map of the image. Considering the difficulties
in the estimation of an appropriate threshold value, the partial local rank alternative method (see
Method section) was applied. First maximum and minimum threshold values should be found. In
this case, the minimum threshold value was chosen as the maximum singular value of 4" singular
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value in all SVD local rank analyses. This contributes to remove the effect of noise, as it was
mentioned in method session. The maximum threshold value used the maximum singular value of
the 3" component in all SVD local rank analyses (see section 2.1.1 When FSIW-EFA was applied to
this image, a partial local rank map (see method section) was obtained (Figure 4a2). In Figure 4al,
pure pixels corresponding to component 1 are given. They are recognized as rank one pixels in
Figure 4a2. Boundary regions among different kinds of elements appear in yellow, showing the
presence of two components overlapping. Dark blue zones in this case are pixels for which the
rank is not well defined and that would not be constrained according to the normal FSIW-EFA
procedure.

Pure spectra (signatures) resolved by the MCR-ALS method explained the most characteristic
bands for the three resolved components. First, second and third MCR-ALS components
corresponded to image constituents such as green plants (or vegetation), hard ground (including
parking apron) and metallic materials (roofs, and more importantly, the airplanes). From the
image of the airport, airplane signature has some similar patterns to the hard soil ground one.
Hard ground materials in the airport have normally some kinds of concrete, it is reasonable that
these materials give a certain level of contribution like metallic signatures of the airplanes

Folded distribution maps of the three components resolved by MCR give their corresponding
images. Figures 4b and 4c show the results obtained by MCR-ALS without and with the application
of local rank constraints, respectively. Intense red colors mean that in this image region the
corresponding components have very high contributions, and dark blue means that they are at low
contributions.

Figures 4c show that, after the application of selectivity constraint to the first component, many
objects become generally better defined. This is the case for the vegetation in the first component,
the plane shadow in the second component or for the plan and the shape of the roof in the third
component. From Google maps[25], the position of this air station was obtained, and its
corresponding image was downloaded. Distribution of the different image components did agree
with results obtained from MCR-ALS on the corresponding hyperspectral image.

3.3 MCR-ALS of the hyperspectral image of the Moffet field (dataset 3)

MCR-ALS analysis of the hyperspectral image obtained over Moffett Field, CA, in 1997 was also
used to test the use of the correlation coefficient method for application of the local rank
constraints. The area chosen in this case includes green plants in water and fields, hard soil ground,
buildings and a big lake. Pixels with higher correlation coefficient were chosen to build a mask data
matrix for the application of local rank constraints (Figure 5a). Figure6a illustrated the area where
only one image constituent (corresponding to the second MCR-ALS component) was detected. In
this image region, pixels contributions of the 1™, 3™ and 4™ components were set to a very low
value in these pixels. No clear selective pixels were obtained for other components and, therefore,
selectivity was not applied.
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Figure 5. MCR-ALS analysis of dataset 3, Moffet field (California, USA) spectroscopic image. a) Pixels selected
by the correlation coefficient method. b) Pure spectra (signatures) and constituent distribution maps
estimated by MCR-ALS with non-negativity constraints. c) Pure spectra (signatures) and constituent
distribution maps estimated by MCR-ALS with non-negativity and local rank constraint.

Pure spectra resolved by MCR-ALS explained most characteristic bands for the four major image
constituents. Resolved pure spectra and distribution maps of the % o g and image
constituents were considered to be green plants in water, soil, hard ground (or building) and water
respectively. Comparing Figures 5c and 5d shows that MCR applied with local rank constraint show
clearer image details in the water areas, in the building areas and in the soil fields. From Google
maps, the position of this geographical area was obtained, and its corresponding image was
downloaded. Compared to the image from Google maps (Figure 3b), distribution of the different
components did agree with results obtained from MCR-ALS of the corresponding hyperspectral
image. Remarkably, resolution results obtained for each component by MCR-ALS from this
hyperspectral image give a very detailed description and details of the contribution distribution of
the different image constituents, which is therefore one of the main advantages of this type of
analysis, apart from the resolution also of the pure spectra (signatures) of these constituents,
which can be extremely useful for their identification.

MCR-BANDS optimized the maximum and minimum of the signal component contribution function
(SCCF) for MCR results with non-negativity and, selectivity constraints of data2 and data3. In these
two cases, rotation ambiguities were practically eliminated when local rank constraints were
applied and solutions were unique.
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4 Conclusions

Appropriate use of local rank and selectivity constraints can improve significantly the quality of the
pure spectra (signatures) and of the constituent distribution maps resolved by the MCR-ALS
analysis of hyperspectral images in remote sensing studies. As a conclusion, the application of the
FSIW-EFA method should be preferred for the general situation where only one or more
components are absent in certain pixels. It doesn’t matter whether there is complete selectivity
{only one component) or not. Eigenvalues obtained from SVD can be used to set threshold values
and to get the information about local rank will be applied during the ALS resolution of the remote
sensing hyperspectral image. In contrast, the correlation coefficient method proposed in this work
is a very convenient and efficient way to look for pixels where only one component exists. These
pixels can be then used advantageously for a simpler application of selectivity constraints.

In the analysis of hyperspectral images obtained from the San Diego airport and the Moffet field,
MCR-ALS results showed clearly the presence of the different objects of the image, like the
airplanes, the green plant areas, lakes, the hard ground field and other related objects. By
appropriate use of local rank constraints, objects in the rebuilt image were defined more sharply
{and more easily recognized).
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Discussion

The first paper®®

shows how MCR-ALS allowed the resolution of pure spectra and
concentration distribution of the constituents present in the analyzed remote sensing
hyperspectral imaging simulated datasets and in the remote sensing datasets obtained

from NASA, AVIRIS (Airborne Visible/Infrared Imaging Spectrometer).

Effective use of remote sensor data requires the analysis and interpretation of the
acquired data and interprets the recovered information to address practical problems,
such as the position of landfills or searching for mineral deposits. Different objects are
discriminated according their spectra resolved by MCR-ALS.

In this Thesis, MVSA and VCA endmember (pure component) methods were compared
with MCR-ALS in the analysis of hyperspectral remote sensing data. Table 1 in paper 2
shows how similar are the component true profiles and MCR-ALS, MVSA and VCA resolved
profiles, in the analysis of two different simulated data sets. Table 4 in paper *° gives the
signal component contribution function SCCF obtained by MCR-ALS, VCA, MVSA and MCR-
BANDS (maximum and minimum values) methods. These results showed that MVSA and
VCA are not as good as MCR-ALS for hyperspectral imaging resolution. MVSA produced
negative spectra values in some circumstances, which are not physically meaningful,
whereas MCR-ALS with non-negative constraints always obtained results with a clear
chemical and physical meaning.

MCR-BANDS method has been proposed to ascertain the extent of rotation ambiguity
associated to MCR-ALS resolved spectra profiles. In the situation of remote sensing
hyperspectral imaging, since the data have high level of noise, and some constituents are
highly collinear (overlapped), the extent of rotation ambiguity of MCR-ALS (or of any other
MCR method) resolved profiles can be rather high.

Local rank information can be used as a constraint in MCR-ALS methods to reduce rotation
ambiguity significantly and to obtain unique resolution results in some particular cases

266 9% 'From the resolved results for the airport of

(see Chapter 2 section 2.2 and papers
San Diego dataset, and for the Moffett Field (California) data set, shown in the other
paper of this chapter **, it is concluded that appropriate use of local rank and of selectivity
constraints can improve significantly the quality of the pure spectra (signatures) and of the
constituent distribution maps resolved by MCR-ALS in the analysis of hyperspectral

remote sensing images

To apply local rank constraints in MCR-ALS, the FSIW-EFA method (see Paper **, and
Chapter 2 of section 2.2) is preferred for the general situation, when one or more
components are absent in certain pixels. It doesn’t matter whether there is complete
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selectivity (only one component) or not. When FSIW-EFA is applied singular values
obtained from SVD are used to set the threshold values for local rank analysis. This
information have been used during the ALS resolution of the hyperspectral images in the
work of this chapter®.

In contrast, the correlation coefficient method ** can be proposed as a as an alternative
and efficient way to look for pixels where only a single constituent or component exists.
These pixels can then be used advantageously for the application of selectivity constraints
(pixels with only one component present).

For the analysis of Cuprite, Nevada dataset (the first dataset analyzed in this chapter and
paper”®’), several individual constituents were preliminary identified as Alunite, Andradite,

Montmorillonite, Nontronite and Kaolinite. In previous studies *** 2% 269

, apart from VCA
and MVSA methods mentioned in this chapter and the paper’’, the Automated
Morphological Endmember Extraction (AMEE) method, the Minimum Volume Enclosing
Simplex (MVES) method and the Simplex Identification via variable Splitting and
augmented Lagrangian (SISAL) method, were also applied by the people working on
remote sensing to the analysis of this similar dataset in previously published papers.
Mainly, these methods were used to obtain the pure spectra (endmembers, signatures) of
the different objects or constituents present in the image. In contrast, the application of
MCR-ALS provided both, the resolution of the pure spectra (signatures) and the estimation
of the concentration distribution maps at the same time. This information can be used
supplementary to take decisions about mineral distribution in mining studies.
Independent Component Analysis (ICA) also has been used for the resolution on

hyperspectral imaging of exactly the same geographical area 2’°

(see Chapter 2 Section 2.2
for the description of this method). In the paper?®’, it is shown that ICA can provide
unique results but that they may not be the true solutions. In contrast, using local rank
constraints in MCR is a way to provide unique resolutions which are coincident with the
true physically meaningful ones. In Chapter 5 a more detailed comparison between ICA

and MCR is given.

The second experimental data set example (hyperspectral images from San Diego,
California and Moffett Field, CA, in 1997) resulted easier to analyze because it was
possible to find pixels with some components absent and suitable for the application of
local rank constraints during MCR-ALS. In the analysis of hyperspectral images obtained
from the San Diego airport and of the Moffet field, MCR-ALS results showed clearly the
presence of different objects in the image, like airplanes, green plant areas, lakes, hard
ground field and other related objects. By appropriate use of local rank constraints,
objects in the rebuilt images were defined more sharply (and more easily recognized).
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In other studies 2’* %’

Anomaly detection (AD) or target detection (TD) were applied to
hyperspectral imaging data analysis of the airport in San Diego, California (the second
dataset used in this chapter and paper®). Their results could identify the presence of
airplanes in the airport directly. K.C. Tiwari etc. compared different methods with ICA for
the detection of these airplane targets. These models performed differently depending on

the spectral variability®”?

. Inverse Euclidean distance based super-resolution mapping
method was reported to make better detection of those airplanes®’®. From the results
obtained by us in the application of MCR-ALS to the same hyperspectral images, airplanes
could be detected successfully from the resolved distribution map. Other objects with
very similar signatures to those of the airplane were also located in the distribution map

obtained by MCR-ALS.

Physical objects, such as buildings, vegetation, soil, water, etc.(Moffett Field, CA dataset in
this chapter and paper®) studied in paper ** are usually investigated in remote sensing
applications such as geology, forestry, soil science, geography, and urban planning?”.
Resolution of distribution maps involves to locate where these particular objects are, and
to identify the spectral features of them. For example, rivers, geologic structures and
vegetation may be mapped for environmental applications. Airports, troop convoys or
missile sites are for special interest for military purposes. The analysis of the objects
located at a surface of the ground can be examined from the MCR-ALS resolved
distribution maps. This technique would allow taking decisions from the detailed

information contained in these images.
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Chapter 4

Application of hyperspectral imaging
combined with chemometrics on food
analysis
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Introduction

Spectroscopic analysis alone cannot provide information about the spatial distribution of
food constituents. Hyperspectral imaging integrates spectroscopic and imaging techniques,
providing both spectral and spatial information simultaneously to cope with the increasing
demand for safe foods. Hyperspectral imaging techniques are also applied for visual
evaluation of food quality®.

The use of hyperspectral imaging technique is increasing owing to its high speed,
simplicity and safety, as well as its capacity to measure multiple attributes simultaneously
without the need of slow sample preparation. NIR, IR and Raman hyperspectral imaging
are the most successful techniques used in food industry. They enable the qualitative and
guantitative assessment of chemical and physical features.

PCA, Neural network classification, fuzzy logic, or SIMCA chemometric methods have been
applied for food sample classification and analysis using hyperspectral imaging data’®.
These methods can provide information about texture, color, shape, or size features of
food samples. More details of chemometric methods applied in hyperspectral imaging can
be found in Chapter 2 of this Thesis.

In this Thesis, we propose the use of Multivariate Curve Resolution Alternating Least
Squares (MCR-ALS) for the hyperspectral imaging analysis of chocolate samples as a case
study of food analysis, and to recover the spectra of its constituents and their
corresponding distribution maps on the analyzed chocolate samples.

Chocolate is a well appreciated food which is made of a complex emulsion of different
constituents. It is a semi-solid suspension of fine solid particles containing sugar, butter
and cocoa®”’. Primary chocolate categories are dark, milk and white. They differ in the

78 Different kinds of chocolate have

content of cocoa solid, milk fat and cocoa butter
varying proportions of carbohydrates, fat and proteins. Chocolate manufacturing

processes differ due to variation in national consumer preferences and company practices.

The flavor of a piece of chocolate can be affected by the type and amount of ingredients
present, as well as by the processing techniques used®’. In processing ordinary chocolate,
it is conventional to grind a mixture of chocolate liquor and sugar to the desired degree of
fineness using ordinary roll refiners, thereafter, to incorporate the desired amount of
cocoa butter. The chocolate mixture and cocoa butter is then placed in a suitable device
capable of agitating or working the mixture. Because of the need of continued agitation
which usually involves further grinding, the sugar and skim milk solids become completely
coated with fat*®.
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Particle size distribution and ingredient composition influence perception of primary taste

and oral volatiles release of chocolate?®" 2%

. Research?’® also supports that differences in
the flavor of milk chocolate tend to arise from processing changes rather than from
differences in ingredients. Highly skilled chocolate manufacturers are able to manipulate

flavors in the chocolate?”

. The use of hyperspectral imaging to analyze the particulars of
chocolate constituents can help to monitor the quality of chocolate, and it can reveal the

existing relation between chocolate taste and product processing.

The applicability of Raman micro-spectroscopy mapping (imaging) to the analysis of both
white and milk chocolate samples was reported in reference®®. In this report, they failed
to analyze milk chocolate because of the strong fluorescence signal from cocoa solids.
Infrared hyperspectral imaging has lower spatial resolution than Raman but it does not
suffer from the effect of fluorescence, and it has faster scanning speeds because it does
not require so much focus at the sample surface. Moreover, infrared hyperspectral
imaging has many common features to Raman, which also can be used for spatial and
spectral information detection.

For Raman spectra acquisition, a HORIBA JobinYvon Raman microscope (HORIBA, Ltd.) was
used using a 532 nm radiation laser. For Infrared spectra acquisition and high-resolution
mapping, the Nicolet iN10 MX Infrared Imaging Microscope with MCT (Mercury cadmium
telluride) detector was used. The instruments used in the experimental determinations

are shown in Figure 4-1.

Figure 4-1 Hyperspectral image collection instruments used in the experimental analysis of chocolate
samples

Hyperspectral imaging instruments for research are developing very fast. For example,
Bruker Corporation developed a new Raman system: SENTERRA Dispersive Raman
Microscope, which can scan at multiple wavelengths, (1064 nm, 785 nm, 633 nm, 532 nm
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and 488 nm), with high confocal depth profiling performance. It has an open architecture
version for the study of large size samples (e.g. in art works) with high lateral resolution
for the investigation of living cells, etc. All of these features have been improved a lot in
comparison with the instrument we have applied in the experimental work of this Thesis.
Collecting the dataset of the same sample with similar pixel numbers needed 24 hours
with the old instruments, while the new instruments only need about 30min. For FT-IR,
Bruker Corporation has also developed two new series of instruments, named LUMOS and
HYPERION. LUMOS is a fully automated stand-alone FT-IR microscope. HYPERION is an
instrument with highest measuring sensitivity and better spatial resolution. Now, these
instruments can only work at laboratory for research. But it is no doubt that in the near
future more hyperspectral instruments will be developed suitable for online and inline
industry applications.

To develop the analysis of chocolate samples using hyperspectral imaging, Raman and
Infrared hyperspectral imaging were used combined with MCR-ALS method. The following
research paper has been written and published on Applied Spectroscopy.

The published paper in this chapter

Zhang, X.; Juan, A.; Tauler, R., Multivariate Curve Resolution applied to hyperspectral
imaging analysis of chocolate samples. Applied Spectroscopy. 2015, 69(8).
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Multivariate Curve Resolution applied to hyperspectral imaging
analysis of chocolate samples

Xin Zhang %, Anna de Juan %, RomaTauler”

YIDAEA -CSIC, Jordi Girona 18-26, Barcelona 08034, Spain
2Chemometrics group, Department of Analytical Chemistry, University of Barcelona, Barcelona 08028,
Spain
Abstract:

This paper shows the application of Raman and Infrared hyperspectral imaging combined with
Multivariate Curve Resolution (MCR) to the analysis of the constituents of commercial
chocolate samples. The combination of different spectral data pretreatment methods allowed
decreasing the high fluorescent Raman signal contribution of whey in the investigated
chocolate samples. Using equality constraints during MCR analysis, estimations of the pure
spectra of the chocolate sample constituents were improved, as well as their relative
contributions and their spatial distribution on the analyzed samples. In addition, unknown
constituents could be also resolved. White chocolate constituents resolved from Raman
hyperspectral image indicate that at macro scale, sucrose, lactose, fat and whey constituents
were intermixed in particles. Infrared hyperspectral imaging did not suffer from fluorescence
and could be applied for white and milk chocolate. As a conclusion of this study, micro-
hyperspectral imaging coupled to the MCR method is confirmed to be an appropriate tool for
the direct analysis of the constituents of chocolate samples, and by extension, it is proposed
for the analysis of other mixture constituents in commercial food samples.

Keywords: Raman, Infrared, Hyperspectral image, MCR-ALS, chocolate, chemometric
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Introduction

The application of hyperspectal imaging is important in the simultaneous analysis of multiple
constituents in complex food, pharmaceutical, agricultural1 and environment samples2 from
different origin. For example, it has been applied in the homogenous analysis of food samples 3
or pharmaceutical tablets®. In addition, it represents a huge increase of the speed of
experimental measurements and analyses, and therefore it represents a significant reduction
of analysis cost. Hyperspectral images result from spectroscopic readings of hundreds of
contiguous spectral channels at each spatial position (pixel) of the target sample under study.
Each pixel in a hyperspectral image contains one multichannel (multi-wavelength) spectrum of
the specific location. In the analysis of a sample, hyperspectral imaging provides a data block
with three dimensions, two spatial dimensions (x and y) and one spectral dimension (A) (see
Figure 1). Hyperspectral imaging has been shown to be a very suitable approach for the
qualitative and quantitative analysis of complex food products (like chocolate) where
different ingredients can be mixed with different heterogeneity levels and particle sizes®.

Raman hyperspectral has been traditionally used for the analysis of the constituents of food
and agriculture products. However, it is mostly only used for single spectral measurements at
fixed locations of unaltered samples® or for measurement of average constituent after samples
mixing and dissolution. Using this spectroscopic method, the configuration and relative
amounts of carbon double bonds (C = C) of sample constituents, the nature and amount of
proteins and carbohydrates, and the chemical composition of many food products can be
investigated directly’. Moreover, Raman hyperspectral imaging has a very good spatial
resolution, like near field Raman imaging which can reach nanoscale resolution in some
particular cases®'®. Although, in the past, Raman imaging was considered to be a slow
technology, recently, with the advent of new detection strategies, hyperspectral images
acquisition speed has increased significantly'* 3. Most probably, in the near future, acquisition
speed of Raman images will be suitable for process analysis in industry and its use will be
standardized. When hyperspectral imaging is applied to research and development (R & D)
activities, for instance in food analysis or medicine, online speed is unnecessary, and the
present Raman market equipment’s technique already meet analytical requirements. Infrared
hyperspectral imaging has many common features to Raman, it does not suffer from the effect
of fluorescence, and it has lower spatial resolution and has faster scanning speeds than Raman
because it does not require so much focus on the sample surface. Although at present,
infrared hyperspectral imaging has good resolution properties, it suffers from the interference
signal from water. Infrared hyperspectral imaging needs an appropriate strategy to cope with
this problem.

Due to the huge size and complexity of the spectral data obtained by hyperspectral imaging,
chemometric methods, and in particular Multivariate Curve Resolution methods, are a good
choice to extract information about the nature, amount and location of food constituents in
samples from the information included in the raw measured images. MCR-ALS (Multivariate
Curve Resolution Alternative Least Square) is a resolution method oriented to recover the
underlying concentration profiles (which can be folded back into spatial distribution maps), as
well as the pure spectra profiles (signatures) of the constituents of the analyzed samples (see

2
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Figure 1). To perform the resolution of the concentration and spectra profiles, MCR-ALS solves
a bilinear model under constraints based on known chemical and mathematical properties of
the profiles to be resolved™. Hyperspectral imaging systems coupled to MCR-ALS have already

been applied for the resolution of different type of problems using hyperspectral images™ °.

In the general case, results of MCR analysis are not unique and they can have an unknown
amount of ambiguity?’. In food industry, usually, the pure spectra of one or more components

. 8,19
can be known from databases or experimentally'® "

. In these cases, the use of this information
as a constraint during MCR can help to decrease or remove the amount of MCR inherent

ambiguity.

In this work, chocolate samples were chosen as a case study because like many other food and
agriculture products, they are a complex multiphase mixture of particulate matter (sugar,
cocoa and certain milk components) and of continuous phases (cocoa butter, milk fat and
emulsifiers). Chocolate is a common product in food industry, whose analysis is time
consuming and tedious. During chocolate manufacturing, refining and coaching, properties
such as particle size, suspension consistency and viscosity give specific textural and sensory
qualities to the final product *°. Control of the size of fat particle size distribution can affect the
rheological and textural properties of chocolate, and it can also have impact of fat content in
chocolate, whose absorption in consumers body may have health effects”. Using
hyperspectral imaging, detection of constituent particles in chocolate and estimation of their
size can be obtained and used for chocolate quality control. By extension, Raman
hyperspectral imaging combined with data analysis chemometric methods is proposed in this
work for other food and agriculture products analysis.

Hyperspectral imaging often faces the problem of nosy signals, baseline drifts, or sample
surface scattering, and sometimes it also has the problem of different components at different
scales. Data pretreatment usually reduces the contribution of large baseline variations,
dimensionality reduction, spectral collineartiy and high noise levels of the experimental
spectra. This initial spectral data pretreatment is a key step for the successful analysis of
hyperspectral data.

In this work, the MCR-ALS chemoemtric method was used to resolve the contributions and
spatial distributions of the different constituents in samples of white and milk chocolate.
Reference spectra of sucrose, lactose, butter and whey were available, which allowed the
possibility to validate the results, and also the possibility to use them for the implementation
of selectivity/local rank information as equality constraints and for further resolution
improvement of the different chocolate constituents %, Finally, infrared hyperspectral imaging
was also applied and the results compared with those obtained by Raman hyperspectral
imaging.

Experimental

Materials
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White and milk chocolate samples were collected from supermarket. For comparison, both
Raman and Infrared hyperspectral imaging techniques were applied on the same block sample
of chocolate (of the same packet).

All reagents are reference materials, sucrose (57903, Sigma-Aldrich), lactose (PHR1025, Sigma-
Aldrich), Butter (BCR-519, LGC STANDARS) and whey powder (IRMM-801, LGC STANDARS.
Butter and whey were certified reference material from Institute for reference materials and
measurements, European Commission Joint Research Centre (ECJRC).

Experimental Method

HORIBA JobinYvon Raman microscope (HORIBA, Ltd.) was used for Raman spectra acquisition
using 532 nm radiation laser. High-resolution mapping was carried out over a surface area of
41x41 um. 41 points per line and 41 lines per image were recorded. The instrument resolution
is 1 pm. Spectra were recorded every 0.2 s per point and had a spectral resolution of 1.6 cm™
in the spectral range of 1890-219 cm™. Laser power was 15 mW.

The Nicolet iN10 MX Infrared Imaging Microscope with MCT (Mercury cadmium telluride)
detector was used for Infrared spectra acquisition and high-resolution mapping over a surface
area of 300x300 um, 30 points per line and 30 lines per image. The instrument resolution is 10
pm. The spectral range was from 4000 cm™ to 675 cm ™, the spectral resolution was 4 cm™, for
every pixel average spectrum of 8 scans was considered, Acquisition of every spectrum at each
pixel of the image took 1s. And an internal background was used as a reference. NIR spectral
data were recorded using Thermo Scientific™ OMNIC™ Picta™ Software.

Individual Raman and Infrared pure spectra of sucrose, lactose, butter and whey, were
obtained in the similar situation as the chocolate samples.

Data Analysis
Data Pretreatment
Data Pretreatment for Raman hyperspectral imaging

25, 26 and

were applied to eliminate undesired light scattering,

Multiplicative Scatter Correction (MSC) ** . Asymmetric Least Squares (AsLS)
Savitzky-Golay smoothing methods ¥’

instrumental and background effects.

MSC is a general signal treatment method which has been applied for eliminating the effect of
scattering physical effects, and also as a preprocessing method to linearize spectral data, in
such a way that better predictions are obtained when applied to MSC corrected data. It
corrects the scatter level for a group of samples spectra to the level of a preselected spectrum,
which usually is the sample average spectrum *%. In this work, the preselected spectrum was
the average spectrum of the raw spectra. This kind of correction is particularly suited when the
baseline caused by scattering among samples is similar in shape and differs only in slope and
offset, although it can also improve the measured signal in cases of more irregular baselines.
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AsLS is another pretreatment method proposed by P. C. Eilers 2, which reduces the possible
baseline and background contributions, especially when they are irregularly shaped, lower in
frequency than the useful signal (as it happens when comparing fluorescence contribution and
spectroscopic features in a Raman spectrum) and pixel-to-pixel variations may occur. It
estimates a baseline/background contribution by minimizing a penalized least squares function
based on the Whittaker smoother *°. In this work, the Whittaker smoother parameters p and u
were set to 0.001 and 1x10’, respectively; this choice is always data set-dependent.

Savitzky-Golay (SG) is a very popular smoothing technique, which uses convolution arrays
derived from the polynomial coefficients of least-squares fitting formulas?’. The convolution
can be understood as a weighted moving average filter with a weighting polynomial of a
certain degree. It is used in this work, to remove the larger noise contributions of Raman
signals. In this paper, Savitzky-Golay smoothing filter window width and smoothing polynomial
degree were 5 points width and third polynomial degree respectively.

Data Pretreatment of Infrared hyperspectral images

Infrared active photons, both longitudinal and transverse, are mostly determined from
reflectance spectra in the infrared spectral range. These spectra do not reveal photon
frequencies directly®. It is a powerful tool enabling a calculation of absorption spectra in case
only reflectance spectra can be measured.

The complex reflectance spectrum is mathematically decomposed into two separate spectra-
extinction coefficient and refractive index spectrum. The extinction coefficient spectrum can
be then used to calculate the absorption spectrumal.

The real (n = refractive index) and imaginary (k = extinction) parts of the complex index of

refraction are calculated from the reflectance spectrum using the following formulas:

_ 1-R(v) .
n(v) - 1+R(v)—-2,/R(v)cos(B(v)) Equation 1
_ -2/R(v)cos(B(v)) .
k(V) - 1+R(v)—2y R(v)cos(8(v)) Equation 2
where R is the reflectance, n is wavenumber, 0 is phase shift angle of the sample.
For a given wavenumber, the phase shift is calculated using the equation:
_ 2Up In,/R(v)dv .
o(v,) = - N g Equation 3

The Kramers-Kronig transform algorithm assumes that the reflectance spectra are measured at
incidence angles close to zero.*%.

In this work, Kramers-Kronig transformation has been implemented as initial standard spectral
data preprocessing using appropriate software (Thermo Scientific™ OMNIC™ Picta™ Software,
from Thermo Fisher Scientific Inc.).

Resolution of Raman and Infrared hyperspectral images from chocolate samples

MCR-ALS method has been used to decompose the 2D chocolate Raman and Infrared
hyperspectral images into the contributions (distribution map) and pure spectra (or
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signatures) of the image constituents. MCR-ALS is based on a simple bilinear model which
assumes that the constituents of the analyzed sample weighted according to their relative
concentrations are expressed by the simple matrix equation as:

D=CS'+E Equation 4

where D (n,m) is the unfolded data matrix coming from the 2D image see Figure 1, of
dimensions n (equal to x x y) pixels by m wavenumbers. The n rows of this matrix contain
the experimentally measured spectra for every pixel of the spectroscopic image. C (n,n.) is
the matrix of the relative amounts or concentrations of the n. components in the n pixels,
S' (n,m) is the pure spectra (signatures) matrix associated with these n, components
present in the image at m wavenumbers. E (n,m) is the matrix associated with noise or
experimental error (variance not explained by the n, resolved components).

2 4 A

Figure 1. Scheme of MCR-ALS analysis of a Raman hyperspectral image. Resolution of the pure spectra
(signatures) of the image constituents and of their 2D image distribution (mapping). The known
reference spectra of sucrose (red), lactose (green), butter (purple) and whey (orange) were added at the
bottom of the unfolded data matrix.

MCR-ALS working steps have been already described in detail in previous works ****, Figure 1

illustrates how MCR-ALS was used for the resolution of the Raman hyperspectral images
analyzed in this work.
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The first step is to unfold the 3D data cube (x x y x A) as a 2D data matrix (n x m, where n = x x
y, m = A) ready for MCR-ALS analysis. Since the information provided in the two spatial
directions is of the same type, the data should be modelled by a bilinear model. In addition, in
a second step of the data analysis, some or all of the known reference spectra of sucrose,
lactose, butter and whey can also be considered and added at the bottom of the unfolded data
matrix ((n+4) x m). This last step has the aim of taking into account the possibility of using this
prior information available and, consequently, improving MCR-ALS resolution by reduction of
possible rotation ambiguities 7 in the resolved profiles. In food chemistry, this situation is
rather common, and reference spectra (spectral signatures) of some of but not all of the
chemical constituents of the analyzed food samples are possibly known. In this work, since
chocolate is a rather well characterized material, and their main components, like sucrose,
lactose, have well known spectra from libraries or from the analysis of samples only containing
them at similar experimental conditions ”**?°, they can be used to improve MCR-ALS results.
Experimental spectra of sucrose, lactose, butter and whey were obtained experimentally in
this work using the same Raman and FT-IR spectroscopic systems used for the analysis of
chocolate samples.

The first steps before proceeding to the ALS optimization of € and S are the estimation of the
number of components in D and the generation of initial estimates of C and S'. The number of
components can be initially estimated by methods, such as Singular Value Decomposition
(SVD). For hyperspectral images, spectral initial estimates were obtained from the selection of
purest (more dissimilar) spectra of the raw hyperspectral image data set D*.

MCR-ALS was applied using non-negativity constraints to concentration and pure spectra
profiles of the image constituents®” ®, To avoid scale indeterminacies and stabilize the ALS
iterative optimization, spectral profiles in matrix S' were also normalized to unit length.

Optionally, during ALS optimization, equality constraints were also tested in the concentration
profiles to fix some specific values to zero ***. This was applied for some of the spectra
included in the analysis which correspond to the experimentally measured reference spectra
of the constituents of chocolate (like sucrose, lactose, butter and whey). These spectra were
appended to the image data matrix (see Figure 1), and only the concentration of them is
allowed to be different to zero during the ALS optimization (zero concentration equality or
selectivity constraint).

The detailed procedure describing how to apply this zero concentration equality constraint in
MCR-ALS is displayed in Figure 1. The experimental reference spectra of the chocolate
constituents are appended at the bottom of the D image data matrix. The csel masking
concentration matrix variable is defined, with the same rows and columns as the C matrix. All
matrix elements of csel with unknown concentration values are marked with the MATLAB
notation ‘NaN’ (not a number), and those elements where the concentration of one or more
components is known, will contain this known value. For instance for the case of the added
reference spectrum of sucrose, the corresponding values of the concentrations of the other
components are set to zero and only in the sucrose position in the csel matrix appears the
symbol NaN. It is important to mention that equality constraints applied in this way are an
efficient way to provide the estimation of the reference spectra during the optimization, and

7
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that this approach is better than if reference spectra are fixed in the ST matrix during ALS. This
approach gives more flexibility for the optimal least squares final estimation of the
corresponding pure spectra and its possible adaptation to small spectral changes in in
chocolate samples compared to reference spectra.

The quality of MCR-ALS data fitting is evaluated by the percentage of lack of fit (lof)
(Equation 5) and the percentage of explained variance (R?) (Equation 6) calculated
according to the two following equations:

-

(o-4)

lof(%) =100x " ,
2.4,
ij

Equation 5
2e;
R*=100x|1- 2 ,
24

u Equation 6

Where dj is the element of the hyperspectral image data matrix D, and dﬁ is the

corresponding element of this data matrix recalculated by the ALS model, D = CS". Lacks of
fit values give a measure of the fit quality in relative terms with the same units as the
measured data, and comparable with experimental relative error estimations. e; are the
elements of the E matrix and d; are the elements of the raw data set D.

Additionally, when reference spectra are available, the agreement between them and a
particular resolved profile can be calculated using the correlation (r?) coefficient and the

vector angle between them, using Equations 7 and 8,

2 _ _xy" .
= — Equation 7
Iyl quatio
angle = 180 « arccos [il Equation 8
ge== Iyl q

where x is the vector of resolved profiles and y is the vector of reference spectra vectors.

MCR-ALS algorithm code and its GUI for MATLAB (The Mathworks Inc., MA, US) is freely
available from the home page of MCR at http://www.mcrals.info/.

Results:
MCR-ALS resolution of Raman hyperspectral images

In Raman hyperspectral images, milk chocolate signal was totally dominated by fluorescence,
therefore only white chocolate results will be discussed in this section.
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Results using different pretreatment methods on raw Raman spectra are given in Figure 2. In
Figure 2a, raw (untreated) Raman spectra on chocolate image pixels are shown. High irregular
baseline and noise contributions are observed in them. In Figure 2b, MSC (Multiplicative
Scatter Correction, **?*) processed Raman spectra have much lower scatter contributions. In
Figure 2c, previous MSC spectra were additionally processed using the AsLS procedure ***, to
correct their fluorescent background contribution. Although the fluorescent contribution was
removed satisfactorily, the results still show noisy patterns. To diminish this noisy patterns, the
Savitzky-Golay smoothing procedure ** was applied to previously MSC-AsLS pretreated spectra,
and instrumental and environmental noise contributions were significantly removed (Figure
2d).

(a) (b)

0 |

Figure 2. (a) Raw Raman spectra of a chocolate sample. Spectra after (b) MSC. (c) MSC + AsLS and (d)
MSC + AsLS + Savizky-Golay pretreatment.

Tables 1 and 2 summarize MCR-ALS results with and without signal pretreatment (MSC +
AsLS + Savitzky-Golay smoothing). In Table 1, explained variances and lack of fit values for
the different MCR-ALS tested models are given. MCR-ALS results gave good data fitting
results (Table 1) in both cases (untreated and pretreated spectra). Contributions of sucrose,
lactose and butter were higher after signal pretreatment but, in contrast, the contribution
of whey was significantly lower. This decrease of whey contribution is due to the fact that
the resolved spectrum of this compound in the raw images included a high fluorescence
contribution and this was significantly removed after signal pretreatment with the AsLS
pretreatment method. Indeed, after signal pretreatment, whey resolved spectrum had a
lower baseline contribution and showed more characteristic and meaningful bands. As a
consequence of this whey signal contribution decrease, relative amounts of sucrose, lactose
and butter increased in the results obtained with pretreated data.
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Table 2 gives also the comparison between MCR-ALS resolved spectra and the
corresponding reference spectra of sucrose, lactose, butter and whey. Correlation
coefficients (r?, Equation 7) and angles (Equation 8) between MCR-ALS resolved spectra and
reference spectra are given for different combinations of data pretreatment methods (like
MSC, AsLS and SG), and for different combination of constraints (non-negativity and
equality). Best recovery values are underlined in this Table. MCR-ALS resolved spectra from
chocolate sample constituents from data without and with signal pretreatments (with MSC,
AsLS and Savitzky-Golay smoothing together) are given in the upper part and lower parts of
Figure 3, respectively. Red lines are the MCR-ALS resolved pure spectra and blue lines are
the reference spectra.

al bl cl dl el

R S
Araans s sponram i s sgmrn

Figure 3. Pure spectra of the image constituents and their 2D image distribution resolved by MCR-ALS
with (lower part) and without (upper part) any signal pretreatment. Reference and MCR-ALS resolved
spectra are given in red and blue lines respectively. (a) sucrose, (b) lactose, (c) butter, (d) whey and (e) a
fifth unknown resolved component.

As it is seen from Tables 1 and 2 and in Figure 3, application of the different signal
pretreatment methods could remove a significant amount of the fluorescence contribution
from the Raman signal. The high contribution shown in Figure 3i1 was removed as shown in
Figure 3i2. The agreement between reference and resolved spectra was considered very
satisfactory in all cases.

10
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Equality/selectivity constraints'” were also applied during MCR-ALS analysis in two different
ways (see description of how this was applied in section 2.3.1). First, they were applied to
three of the components (sucrose, lactose and butter) and then they were also applied to
all four known components (sucrose, lactose, butter and whey). Since the reference
spectrum of whey had a very high fluorescence contribution, it was difficult to distinguish
its characteristic spectral bands. When equality constraints were applied (information
about reference spectra was given by using csel mask concentration matrix, see method
section 2.3.1), resolution of the pure spectra of the constituents was better than when the
equality constraints were not applied (see Tables 1 and 2). Results obtained with equality
constraints applied to either three or four components gave some small differences but
they did not change significantly*.

MCR-ALS resolution of the spatial distribution of chocolate constituents on Raman
hyperspectral images

Figure 3 also shows the MCR-ALS resolved spatial distributions (maps) of the different
chocolate constituents on the resolved Raman hyperspectral image. Butter (Figures 3h1 and 3h)
is rather uniformly distributed over the whole sample image. Distributions of sucrose (Figures
3f1 and 3f2), of lactose (Figures 3g1 and 3g2), and of an unknown contribution (Figures 3j1 and
3j2), were mostly clustered heterogeneously in separate particles over the whole image.
Spatial distribution of sucrose, of lactose and of the fifth additional component on the image
showed more or less similar particle sizes. Whey in contrast, has more uniformly distribution
than these sugars, and it has smaller particle sizes. Butter and whey are distributed in an
interweave net of both (thicker for butter and thinner for whey), and wrapped around the
other components.

The four reference spectra suffered from fluorescence contributions at different levels.
Sucrose, lactose and butter have a low level of fluorescence contribution. Comparing the
results before and after spectra pretreatment, resolved distribution maps of sucrose, lactose
and butter were almost equal except for a small change in their relative contribution.

With no data pretreatment, reference and resolved spectra of whey showed always high levels
of fluorescence and it was difficult to find its characteristic spectral bands. Spatial distribution
of the whey contribution requires further discussion. Figure 3il gives the relative spatial
distribution map of whey component when no pretreatment was applied. Due to the high
fluorescence contribution of this component, it appears at high amount in the left side of this
Figure, just at the beginning of the hyperspectral image scanning. This fluorescence
contribution caused a significant baseline which hided completely the information about the
other spectral bands and image constituents. After the appropriate data pretreatment
(especially using background/baseline correction by the AslLS method), fluorescence
disappeared considerably (Figures 3d2 and 3i2) and the other chemical image constituents
could be better resolved.

Before and after data pretreatment, MCR-ALS resolved spectra, and the related distribution
maps of sugar and butter did not suffer from the fluorescence contribution. As a conclusion, if
the aim of the work is to resolve sugars and butter fat constituents in chocolate samples, and

11
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the estimation of the distribution map of whey is not important, MCR-ALS can be applied
directly to raw data, without losing relevant information and without the need of spending
long time in the application and validation of signal pretreatment methods. On the other hand,
when the estimation of whey contribution is important, then fluorescence contribution should
be removed by application of signal pretreatment methods such as MSC, and Savizky-Golay
smoothing, and specially AsLS. This will allow for a good distribution map of this component at
a pixel level in the image (Figure 3i2) and to improve the resolution of its spectra too.

More impartant band frequencies can be deduced form the finally MCR-ALS resolved Raman
spectra, which can be used then for their assignment to specific chemical groups. For instance,
the fifth unknown component resolved by MCR has Raman bands at 843 cm™ (C-C), 916 cm™
(CO), 1121-1131 cm™ (COH) and 1461 cm™ (CHO). When compared to library spectra, this
spectrum resulted to be rather similar to the Raman spectra of glucose as defined in a previous
report .

Resolution of Infrared hyperspectral images by MCR-ALS

Differently to Raman imaging, infrared hyperspectral imaging does not suffer the impact of
fluorescence and can obtain information from both milk and white chocolate.

Spectra of chocolate constituents on Infrared spectral images resolved by MCR-ALS

MCR-ALS resolved four components in white chocolate samples. Kramers-Kronig processing
was applied during dataset exportation (Figure 4) after spectra acquisition (Thermo Scientific™
OMNIC™ Picta™ software). Table 3 gives the correlation coefficients and angles between
reference spectra profiles and spectra profiles resolved by MCR-ALS. MCR-ALS fitting results
are also given in the table. In all cases, either selectivity constraints were applied or not, the
obtained MCR models were satisfactory. The use of selectivity constraints always improved
spectral recoveries. For comparison, Table 3 also gives the results with pretreatment (MSC +'
AsLS + Savitzky-Golay smoothing). In the case of the infrared dataset, spectra pretreatment
removed baseline but it also removed some chemical information from the raw dataset. Lack
of fit (lof) increased a little amount after data pretreatment. Resolved spectra of sucrose fitted
better its reference spectrum but lactose fitted worse. Therefore, in this case MSC +* AsLS +
Savitzky-Golay smoothing pretreatments were not applied in the case of infrared hyperspectral
imaging.

Figure 4. (a) Raw infrared spectra of a chocolate sample. (b) Spectra after Kramers-Kronig pretreatment.

12
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MCR-ALS resolved spectrum for component 1 was compared with sucrose and lactose
reference spectra. Since sucrose and lactose pure FT-IR spectra are very similar, MCR-ALS had
an inherent difficulty distinguishing them, and their contributions were resolved in the same
component. An additional forth unknown spectrum was resolved by MCR-ALS which may
correspond to another component of chocolate, like cocoa. MCR-ALS resolved spectra in milk
and white chocolate were very similar. The only different spectrum was the unknown fourth
component preliminary assigned to cocoa.

Spatial distribution of chocolate constituents on Infrared spectral images resolved by MCR-
ALS

Figure 5 also shows the MCR-ALS resolved distribution map of the different components in
white chocolate and milk chocolate analyzed samples by FT-IR. Sugars were mixed with butter
fat in the constituent particles. Milk chocolate sample had less contribution of sugars and fat
and more of the forth component. When the figures are directly looked, all the constituents
showed similar distribution patterns in milk and white chocolate samples. Comparing the
results of the MCR-ALS analysis of FT-IR and Raman hyperspectral images, it is clear that the
former did not provide as much resolution as Raman imaging and it could not show as many
details of the particles shape. Using a better resolution infrared hyperspectral imaging
instrument, distribution maps of both constituents white and milk chocolate could be obtained.

(a) (b) (©) (d)

P
-
-

White chocolate

Milk chocolate

Figure 5. Pure spectra of the image constituents and their 2D image distribution of white (upper) and
milk (lower) samples resolved by MCR-ALS. Normalized reference spectra of sucrose, butter and whey
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are shown in blue, lactose is shown in green, and normalized MCR-ALS resolved spectra are given in red.
(a) sugar (sucrose and/or lactose), (b) butter, (c), whey and (d) a forth unknown resolved component.

Conclusions

In this work, Raman and FT-IR hyperspectroscopic imaging combined with MCR-ALS with non-
negativity and equality constraints have properly identified and resolved the main constituents
of commercial white chocolate samples and mapped their spatial distribution on the analyzed
images. Sucrose, lactose, fat, whey and an additional unknown constituent were resolved by
MCR-ALS. This unknown constituent resulted to have a Raman spectrum very similar to
glucose. Application of image data pretreatment methods such as Multiplicative Scatter
Correction (MSC), Asymmetric Least Squares (AsLS) and Savitzky-Golay (SG) smoothing
reduced significantly the presence of strong fluorescence background in Raman spectra, and
resolved whey characteristic bands. From the distribution of the different constituents on the
image, butter and whey were spread on the image in way of interweave (thicker in butter and
thinner in whey), and wrapped around sugar particles. The other three constituents were
heterogeneously distributed in separate particulates.

Application of infrared hyperspectral imaging was not affected by the strong fluorescence of
some chocolate constituents, and it could be applied to the analysis of white and milk
chocolate.

Results achieved in this work are representative of the possibilities offered by hyperspectral
imaging analysis of food samples, and confirmed the potential use of the MCR-ALS as a
complementary tool method for this type of analysis. Other similar fields of application of this
combination of methods (hyperspectral imaging and MCR-ALS) include the analysis of other
material surfaces, agriculture products as well as biological tissues in medicine.
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Table 1 MCR-ALS results in the analysis of a white chocolate sample using Raman hyperspectral imaging data

Constraints Sucrose’ Lactose’ Butter® Whey' Comp5®  Lof (lack of fit)% R*(%)*
Non-negativity 13.79 10.45 22,75 34,90 11.52 1.04 99.99
Non-negativity
Raw Data +equality constrainton 3 13.65 10.78 20.59 35.11 11.68 1.08 99.99
components
No
Pretreatment L
Non-negativity
+equality constraint on 4 13.63 10.02 22.92 36.28 11.62 1.51 99.98
components
Non-negativity 14.03 14.14 34.16 12.95 13.12 6.67 99.56
Pretreated data Non-negativity
+equality constraint on 3 15.38 1041 35.70 13.10 13.04 7.56 99.43
(MSC+AsLs+ components
+Savitky Golay)
Non-negativity
15.38 1041 35.70 13.10 13.04 7.56 99.43

+equality constraint on 4

components

! percentage of explained variance (R’) considering only this component.
? percentage of explained variance (R’) considering only the fifth unknown resolved component.
* MCR-ALS lack of fit (lof) considering the five components (full model) together.

* MCR-ALS percentage of explained variances (R) considering the five components (full model) together.
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Table 2 Correlation coefficients (r?, Equation 7) and angles (Equation 8) between the resolved spectra by MCR-ALS (full model) and the reference spectra in

the analysis of the Raman hyperspectral image of the white chocolate sample

Applied Constraints’ Sucrose Lactose Butter Whey
Non-negativity r“langle’)  0.9590(16.46) 0.9255(22.26)  0.9698(14.12) 0.9989(2.65)
Non-negativity +
Raw data + equality constraints on r’langle) 0.9596(16.33) 0.9220(22.78) 0.9687(14.38) 0.9990(2.61)
No pretreatment 3 components
Non-negativity +
+ equality constraints on rlangle) 0.9709(13.85) 0.9220(22.78) 0.9680(14.54) 0.9991(2.57)
4 components
Non-negativity rilangle)  9.3612(20.59) 0.6701(47.93)  0.8972(26.21)  0.9814(11.08)
Non-negativity
Pretreatment +equality constraint on rifangle)  0.9606(16.13) 0.8431(32.43)  0.8042(25.29) 0.9582(16.63)
(MSC+AsLs+ 3 components
+Savitky Golay) Non-negativity
+equality constraint on rlangle) 0.9497(18.25) 0.9910(7.71) 0.9006(25.77)  0.9739(13.12)

4 components

* MCR-ALS constraints

?Correlation coefficients (r*) between MCR-ALS resolved and reference spectra of pure components.
? Angles between MCR-ALS resolved and reference spectra of pure components
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Table 3 Correlation coefficients (r’, Equation 7) and angles (Equation 8) between the resolved spectra by MCR-ALS (full model) and the reference spectra in

the analysis of the Infrared hyperspectral image of the white and milk chocolate samples

Applied Sugar lof (lack of
c°“zz"i"“l Sucrose Lactose utter Whey ffﬂd% R
Non-negativity | r*’(angle’)  0.9584(17.16)  0.9580(17.26)  0.9834(10.40)  0.8260{34.30) 4.41 99.81
White Mon-negativity
Chocolate +equality rlangle)  09820(10.90)  0.9811(11.51)  0.9834(10.44)  0.8260(34.29) 5.55 99.72
No constraints
pretreatment Non-negativity | rlangle)  0.9534(17.57)  0.9594(16.38)  0.9864(9.45)  0.9175(23.44) 4.45 99.80
Milk Non-negativity
chocolate +equality r*(angle) 0.9703(13.99) 0.9733(13.27) 0.9868(9.32) 0.8548(31.26) 4.65 99.78
constraints
MNon-negativity r*(angle) 0.9572(16.83) 0.8038(36.51) 0.9820 (10.90) 0.8260(34.29) 8.61 99.06
White Non-negativity
Chocolate +equality rlangle)  0.9998(0.1700)  0.9011(21.67)  0.9819(10.91)  0.8260(34.29) 10.46 98.90
With constraints
pretreatment Mon-negativity | rlangle)  0.9692(14.27)  0.8051(36.37)  0.9820(10.90)  0.8260(34.29) 5.64 99.70
Milk Non-negativity
chocolate +equality flangle)  0.9803(10.99)  0.9699(14.66)  0.9819(10.91)  0.8260(34.31) 5.76 99.67
constraints

* MCR-ALS constraints

?Carrelation coefficients (r’) between MCR-ALS resolved and reference spectra of pure components.

3 Angles between MCR-ALS resolved and reference spectra of pure components

* MCR-ALS lack of fit {lof) considering the four components (full model) together.

* MCR-ALS percentage of explained variances (R) considering the four components (full model) together.
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Discussion

In this chapter, the application of Raman and infrared hyperspectral imaging combined
with MCR-ALS chemometric data analysis is shown in the analysis of chocolate
constituents as a case of study. In contrast to the applications of hyperspectral remote
sensing in previous chapter, the hyperspectral imaging analysis of food samples, like the
chocolate, has the advantage of having easily available reference spectra of the sample
constituents, obtained either by independent experiments in the laboratory or from
libraries of reference spectra. On the other side, food samples can have different
constituents with very similar chemical structure and spectra, which makes more
challenging their resolution and identification.

Reviews of hyperspectral imaging applied to food analysis are given in references *’® %

285 and in the Chapter 2 of this Thesis. In these previous review papers, chemometric
methods have been applied to the area of hyperspectral image analysis, mainly for
regression (linear and non-linear) and classification (supervised or unsupervised) purposes.
MCR-ALS is a powerful chemometrics method which was already applied for hyperspectral
imaging resolution more than ten years ago. However, it is not a popular method in the
food hyperspectral imaging analysis filed. The analysis of chocolate samples from this
chapter is a good example of application of MCR-ALS for food analysis.

In this chapter, different pretreatment methods such as Multiplicative Scatter Correction
(MSC), Asymmetric Least Squares (AsLS) and Savitzky-Golay data smoothing have been
used. In the Chapter 2 of this Thesis, these methods were described. Hyperspectral
imaging analysis can be performed at ambient conditions, without requiring special
sample preparation. Chemical organic molecules can produce strong fluorescence signals
when Raman is used. Infrared spectroscopic technique can be applied instead when
Raman suffers from fluorescence and there is a high risk of sample heating form the laser.
Spectral preprocessing data pretreatment techniques are a key step for the successful
analysis of hyperspectral data sets.

In the case of chocolate analysis of this work, the use of data pretreatment methods such
as MSC, AsLS and Savitzky-Golay smoothing methods, either separately or in combination,
can facilitate the extraction of chemical information contained from the analyzed
spectroscopic image data. Specifically, the undesired strong impact of fluorescence on
Raman spectra can be removed significantly.

The results of this work show that using non-negativity and local rank constraints, MCR
could resolve appropriately most of the chocolate constituents of white chocolate such as
sucrose, lactose, butter and whey from Raman hyperspectral imaging data. Concentration
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distribution maps of these constituents were displayed separately. Compared to Raman,
infrared hyperspectral images did not suffer from the effect of fluorescence, and the
application of the Kramers-Kronig transformation data pretreatment was enough in this
case, to facilitate the extraction of the chemical information contained in the analyzed
images. Constituents of milk chocolate could be well resolved by infrared hyperspectral
imaging technique, in contrast to what was happening with Raman hyperspectral imaging
technique.

Resolved spectra of sucrose, lactose, butter and whey were compared with reference
spectra obtained experimentally. Correlation coefficients between reference and
extracted spectra were satisfactory. Physical composition of chocolate constituents could
be displayed adequately. Homogeneity of chocolate samples could be validated too (see

in paper).

Results obtained in this work show that hyperspectral imaging technique can be an
efficient way for chocolate quality control, and that it also can be used for chocolate
product research and development. The surface topography, fat crystallization are
possible obtained by using resolved concentration distribution map of Raman
hyperspectral image or the improved IR hyperspectral image mentioned in Chapter 4
section 4.1 (Bruker’s new IR instruments have better pixel size resolution and faster data
collection capability). These parameters have a relation with texture and color of the
products®®®. Other hyperspectral imaging analysis of important ingredients (like
polyphenols, cocoa butter and alternative fats) can be tried in the future for the chocolate
product quality monitor.

In the paper®® of this chapter, the micro-scope imaging instrument used for the
measurements had pixel resolution in um scale which provides more details of the
constituent and reaction information in the food samples

Raman or infrared hyperspectral imaging techniques combined with MCR-ALS as proposed
in this Thesis can be extended to homogeneity analysis of other type samples in
pharmaceutical tablets®®’, powders, or suspensions, which is important for to

pharmaceutical process monitoring and quality control?.
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Chapter 5

Measuring and comparing the resolution
performance and the extend of rotation
ambiguities in bilinear modelling methods
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Measuring and comparing the resolution performance and the extend of rotation ambiguities in
bilinear modelling methods

Introduction

Different bilinear methods have been widely applied for hyperspectral image analysis,

289

apart from MCR-ALS, such as Independent Component Analysis (ICA)*™", Principal

Component Analysis (PCA)?>, and Minimum Volume Simplex Analysis (MVSA)*. The
theories of these methods have been introduced in Chapter 2. In this chapter (Paper 2%).
These methods are compared using Mutual Information (MI), Amari Index (Al) and lack of
fit (lof) parameters. This comparison can help to understand the performance of these
bilinear models when different constraints are applied.

In Chapter 3 and Chapter 4, hyperspectral imaging resolution results have be shown to

have associated a certain amount of rotation ambiguity **®

when only non-negativity
constraints (apart from spectra normalization) were used. MCR-BANDS method was
applied to evaluate the extension of rotation ambiguity in the results obtained by MCR-
ALS. Apart from MCR-BANDS, methods that attempt to calculate the whole Area of
Feasible Solutions (AFS) can also be used for evaluate the effect of rotation ambiguities,

and different algorithm have been proposed??” 2°% 25 256,290

The gridding search method was proposed by Rajko and Abdollahi. A. Golshan, et al. have
developed an AFS method using a simplex grid search of the area of feasible solutions
which allows the visualization of rotational ambiguity in mixtures of up to four-

com ponent5249’ 257.

Rajké and Istvan®>® used computational geometry tools instead of the linear programming
tools used to draw Borgen plots of three-component systems. They considered that the
normalized feasible solutions are embraced in a (N-1)-dimensional simplex (N is the
number of components) with the vertices being the N-normalized pure profiles.

R. Tauler developed the MCR-BANDS method >*° based on a previous idea of P.Gemperline
104" for the calculation of the extension of rotation ambiguities, based on the fast
maximization and minimization of a function defined by the relative Signal Component

Contribution (SCCF) of each component 2% %>,

Recently, Sawall et al. proposed algorithm to find AFS in two and three-component

systems using the inflation of polygons as a searching method 2*®

. This procedure starts
with an initial triangle located in a topologically connected subset of the AFS, and an
automatic extrusion algorithm is then used to form a sequence of growing polygons that
approximate the AFS from the interior. FAC-PACK is a MATLAB toolbox developed by
Sawall et al. for the computation of non-negative multi-component factorizations and for

the numerical approximation of the Area of Feasible Solutions (AFS) using the inflation
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polygon algorithm?2. In this chapter(Paper **’), the results of MCR-BANDS and of FAC-
PACK method are compared.

Figure 5-1. Profiles used for Simulation of reaction and chromatographic data systems with two, three, and
four components. (a-i) are the concentration profiles, and (j-I) are the pure spectra.

Reaction and chromatographic type of data systems with two, three, and four
%7) For the first data
(Figure 5-1a) set, concentration profiles were obtained from a simple first order kinetic

components were simulated for the purposed of this Chapter (Paper

chemical reaction or process: X=Y, with two components and spectra profiles (Figure 5-
1j). For the second data set, the elution profiles (Figure 5-1b) and component spectra
(Figure 5-1k) of three co-eluting components in a single HPLC-DAD chromatographic run
are used. For the third data set, elution profiles (Figure 5-1c) from a signal HPLC-DAD run
with four co-eluting components are used. Component spectra for them are given (Figure
5-1l).

Datasets 4-8 LC are elution profiles with different overlap (coelution) from two
component systems. They have the same component spectra (Figure 5-1j), whereas the
extent of chromatographic resolution decreased. The peak overlap increased makes the
system more challenging for curve resolution (Figureld, e, f, g, and h).

136



Measuring and comparing the resolution performance and the extend of rotation ambiguities in
bilinear modelling methods

In the last dataset, three random concentration profiles were considered for the data
simulation (Figure 5-1i). Spectra of the components for this simulate dataset are given in
Figure 5-1k.

The paper in this chapter

X. Zhang, R. Tauler. Measuring and comparing the resolution performance and the extend
of rotation ambiguities in bilinear modelling methods. 2015.
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Abstract:

Bilinear models are often used in the analysis of datasets from spectroscopy and
chromatography. Whenever bilinear soft modelling approaches are applied, rotation
ambiguities are ubiquitously present and they should be considered. In this work, results
obtained by the application of different methods like Independent Component Analysis (ICA),
Principal Component Analysis (PCA), and Minimum Volume Simplex Analysis (MVSA) are
compared with those obtained by Multivariate Curve Resolution (MCR). In order to do this
comparison, Mutual Information (MI), Amari index (Al) and lack of fit (lof) parameters are
used for the evaluation of the different methods, and the corresponding areas or regions of
feasible solutions (AFS) and their boundaries are investigated in each case. The results
obtained by the MCR-BANDS method in the calculation of the extension of rotation
ambiguities are discussed and compared with those obtained by the FAC-PACK method,
which has been recently proposed for the estimation of the whole range of feasible

solutions.

Key words: Rotation ambiguity, MCR, MCR-BANDS, AFS, bilinear, FAC-PACK
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1 Introduction:

Chemometric methods provide powerful tools to analyze multi- and megavariate data from
modern analytical instruments. Some of these chemometric methods, in particular
Multivariate Curve Resolution (MCR) methods, have been proposed for the resolution of
chemical data obtained from chromatography [1], spectroscopy [2], nuclear magnetic
resonance[3], hyperspectral imaging[4], voltammetry[5], omics microarray[6] and LC-MS
[7]data, among others [8, 9] etc. MCR methods are a group of methods based on the
fulfillment of a bilinear model which attempt the extraction of the true underlying sources of
chemical variation using a minimum amount of prior assumptions about the process under
investigation. For the analysis of complex multi-component mixture systems, they offer the
possibility of resolution, identification and also quantification [10] of the different
components present in an unknown mixture, without needing their previous chemical and

physical separation.

MCR chemometric methods have their intrinsic drawbacks, especially that they cannot
assure encountering a unique solution to explain the measured experimental variation in the
data, and that a range of feasible solutions may be obtained by their application. Ambiguities
appear because different linear combination of the component profiles fulfilling the
constraints of the system fit equally well the data[11]. Unfortunately, the presence of
rotation ambiguities and of non-unique solutions decreases the reliability of MCR methods
and makes their assessment more difficult. The only way to reduce the extent of rotation
ambiguities and to obtain solutions closer to true ones is by the application of additional
constraints (soft or hard) which imply using more knowledge about the data system, or also

moving from bilinear modeling to multilinear modeling [12].

Bilinear modeling methods like Minimum Volume Simplex Analysis (MVSA), Independent
Component Analysis (ICA), Principal Component Analysis (PCA) and Multivariate Curve
Resolution-Function Minimization (MCR-FMIN) have already been a compared in
previously published papers [13, 14]. MVSA initially was developed for satellite imaging
individual component (endmember) resolution, and more recently it has been also proposed
in analytical chemistry[15]. PCA considers the information between the different
components to be orthogonal or linearly uncorrelated[16]. ICA assumes that the
components are mutually statistically independent[17]. These assumptions are statistically
different (the latter is more restricted than the first), and therefore the results are different.
In particular, ICA and PCA can be used for different purposes like data preprocessing,
exploration, classification, regression and resolution. All these methods have been proposed
for analytical chemistry purposes, and some authors have investigated whether one method
is better than the other. Different from these approaches, based on statistical assumptions,
Multivariate Curve Resolution methods, especially those based in Alternating Least Squares
(MCR-ALS), use more natural and physically and chemically meaningful assumptions by
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means of constraints, like non-negativity, unimodality, closure, selectivity, or local rank, and
by means of other constraints related to the data structure (like trilineartiy, or multilinearity)
and find an optimum solution from a least squares fitting convergence criterium [18].
MCR-FMIN have been also proposed as a different way for multivariate curve resolution and
it is based on non-linear optimization algorithms using non-linear constraints [19].
MCR-FMIN use PCA scores and loadings to define the subspace of MCR solutions and rotates
them to fulfill the constraints of the system. Therefore it is also interesting to compare their
solutions with those obtained by PCA and MCR-ALS.

In order to evaluate the effect of rotation ambiguities associated to a particular MCR solution
and to measure its extent, Lawton and Sylvestre [20]already proposed a first algorithm for
determining the area of feasible solutions (AFS) in two-component systems under the
assumption of non-negative spectra and concentration profiles. Borgen et al. [21] extended
Lawton and Sylvestre method to three component systems and proposed a linear
programming optimization method to calculate the permitted ranges of pure component
spectra using tangent and simplex rotation algorithms. Rajko and Istvan[22] revised Borgen’s
study and used computational geometry tools, to draw Borgen plots of three-component
systems. Leger and Wentzell developed a dynamic Monte Carlo SMCR method[23] which
seeks to define the boundaries of allowable pure component profiles. For the calculation of
the whole range of feasible solutions, a systematic grid search method based on
species-based Particle Swarm Optimization have been proposed for three-component
systems by H. Abdollahi et al [24, 25]. A. Golshan et al. have also developed a method that
finds the simplex volume containing all feasible solutions and facilitate the determination

and visualization of rotational ambiguities of four-components mixture[25].

R. Tauler developed the MCR-BANDS method [26] based on a previous idea of P. Gemperline
[27], for the calculation of the extension of rotation ambiguities, based on the fast
maximization and minimization of a function defined by the relative Signal Component
Contribution (SCCF) of each component [11, 23]. This method has no limitation for the
number of components and it uses the same constraints as those applied to find out the
MCR solution. It gives a simple evaluation of the extent of rotation ambiguity from the
difference between the maximum and minimum values of the SCCF function. Recently,
Sawall et al. suggested a fast accurate algorithm to find the AFS for two and
three-component systems based on the use of a polygon inflation algorithms.[28]. FAC-PACK,
is an interactive MATLAB toolbox for the computation of non-negative multi-component
factorizations and for the numerical approximation of the area of feasible solutions using the
inflation polygon algorithm([28].

In this work, FAC-PACK results are compared to those obtained by MCR-BANDS, and with the
solutions obtained by different bilinear model methods such as PCA, ICA, MVSA, MCR-FMIN
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and MCR-ALS. The aim of this work is to get a deeper understanding of MCR methods and
evaluate their performance under different constraints. In addition, the extension of rotation
ambiguities associated to MCR solutions is investigated by the MCR-BANDS and FAC-PACK
methods. The comparison of results obtained by these two methods can help to evaluate the

reliability of their results and to get a deeper understanding of their principles.

2 Theory

The second-order bilinear data generally can be decomposed by bilinear model based

methods according to Equation (1).

D=CST+E=D"+E Equation 1

where D (l,J) is the experimental data matrix corresponding to a bilinear system with |
different samples and J different variables., C (I,N) is the contributions of the N components
in each sample, § (J,N) is the pure response matrix of the N components, E (l,J)is the
matrix associated to noise or experimental error. Giving the data matrix D, the aim of

bilinear model is to determine the two factor matrices C and S.

The concept of rotation ambiguities is explained using the following reasoning. For any
non-singular matrix T (N,N) the identity matrix I = T~'T can be inserted into Equation 1

as the following equations:
D*= CT'TST = Cpern STewy Equation 2
where
Cpew = CT" ! and ST, =TST Equation 3

According to Equation 3, any rotation of factor matrices, C and ST, using a non-singular T
matrix, will produce a new valid solution of the bilinear model. Therefore, in absence of

enough constraint, an infinite number of rotations and solutions are possible.

Principal Component Analysis (PCA)

PCA provides a mathematical and very efficient way to solve the bilinear model and perform
the matrix decomposition given in Equation 1. PCA decomposes the measurement matrix D
into the scores Cpcs .and loadings Spcy orthogonal factor matrices, and a reduced
number of components are selected which explain maximum data variance. The aim of the
method is to maximize the explained variance in the data with a minimum number of
components. Due to the applied constraints during the PCA bilinear decomposition

(orthogonality of scores and loadings, normalization of loadings and maximum variance),
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score and loading profiles do not resemble in general the true variance sources, but a linear
combination of them fulfilling the applied constraints. True variance source profiles do not
fulfill for instance the requirement of orthogonality and they are overlapped, and in many

chemical and physical systems profiles should be non-negative.

Independent Component Analysis (ICA)

The aim of ICA is the decomposition of the measured multivariate signals into statistically
independent component contributions with a minimum loss of information. ICA assumes
that the mixing vectors in C are linearly independent and that the components in § are
mutually statistically independent, as well as independent of noise components. This goal is

equivalent to finding an unmixing matrix W that satisfies:
wX = ST Equation 4
where § is the estimation of the S. The main task of ICA is to find out the unmixing matrix

W based on the principle that the output ST as independent as possible. Thus, this task
turns into an optimization problem under the constraints of independency, which is generally
reflected by non-gaussian profiles. MF-ICA algorithm [29] applied in this work apply

non-negativity constraints to the signals.

Minimum Volume Simplex Analysis (MVSA) method:

MVSA also considers that the underlying mixing model is bilinear, i.e. that the measured
spectral vectors are a linear combination of signatures (spectra) of pure components. MVSA
is a method that finds the pure components (end members) by fitting the data to a minimum
volume simplex, under some constraints, such as having for every pixel no less than zero
abundance fractions (non-negativity constraint) and that their sum should be equal to one
(closure). The MVSA method starts with an estimate of the purest spectra profiles, obtained
by the Vertex Component Analysis (VCA)[30] method, which is a pure variable detection
method based in an iterative algorithm. MVSA does not use a least squares approach, but a
sequential quadratic programming (SQP) method, based on a quasi-Newton non-linear
optimization procedure under linear constraints[31]. MVSA method provides estimations of
the pure spectra S of the system. Concentration profiles C should be calculated by least

squares subsequently.

Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS)

MCR-ALS solves Equation 1 iteratively using an ALS algorithm, which optimally fits the

experimental data matrix D, and resolves the ‘true’ pure response profiles, in concentration
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C and pure spectra ST matrices. This optimization is carried out for a proposed number of
components using initial estimates of either C or ST. These initial estimates of C or ST
can be extracted using procedures for purest variables selection, such as SIMPLISMA[32].
During the ALS optimization, several constraints can be applied to model the shapes of C or
ST profiles such as non-negativity, unimodality, normalization and selectivity (local rank).
Convergence is achieved when in two consecutive iterative cycles, relative differences in
standard deviations of the residuals between the experimental and calculated ALS data are
less than a previously selected threshold value. The use of constraints or of any other
previously known property about the nature of the component profiles can decrease
ambiguity significantly and in some case eliminate it totally. More details about MCR-ALS can
be foundin [27, 33].

Multivariate Curve Resolution-objective Function Minimization (MCR-FMIN)

MCR-FMIN is based on the minimization of an objective function defined directly from the
non-fulfilment of constraints and being always in the subspace spanned by PCA solutions. In
other words, an appropriate rotation of the PCA solutions is performed searching for

physically meaningful solutions (like non-negative). The function can be defined as:

f(T) = cnorm(T) + Cnon—ncg(T) + Cunimod (T) + Cios(T) + Cequa (T) + - Equation 5

where f(T) is the objective scalar function to be minimized and Cnorm(T), Cnon-neg(T),
Cunimod (T), Celos(T), Cequa(T) are scalar functions for the normalization, non-negativity,
unimoality, closure, and equality constraints. In this work only non-negativity and
normalization constraints were used. The goal of the optimization is then to find a T
rotation matrix that minimizes f(T). Function f(T) can be minimized using different
optimization methods. In this work, quasi-Newton non-linear optimization method with a

cubic interpolation line search was used. See reference [19]for more details.

MCR-BANDS: Calculation of the extend of rotation ambiguities

In order to evaluate the extent of rotation ambiguities associated to a particular MCR
solution under a set of constraints, the MCR-BANDS procedure has been proposed[11]. In
this paper it is applied to evaluate the extent of rotation ambiguities associated to MCR-ALS
solutions, and as extension, also to those obtained by MCR-FMIN, PCA, ICA, and MVSA
methods previously explained. In addition, MCR-BAND results are compared to those
obtained by the FAC-PACK method (see below). MCR-BANDS method is based on the

maximization and minimization of the signal component contribution function, SCCF, which
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is defined for component n as:

Equation 6

SCCF, is a scalar value between 0 and 1, which gives the relative signal contribution of a
certain component in relation to the whole signal due to the mixture of N components
(n=1..N). C and ST are as defined above; ¢, and s, are the n™ column and row of C
and S matrices respectively. |||l is the Frobenious norm ||CST|| gives the signal
contribution of all the components present in the whole image and ”cnsg” only the
contribution of component n[26]. For every component, SCCF is maximized and minimized
under the set of considered constraints and with equal data fitting. When the maximum and
minimum values of SCCF of a particular component n are practically equal, it means that for
this component, there is practically no ambiguity remaining. On the contrary when this
difference is large and close to one (SCCF values are scaled between 0 and 1), then there is a
large amount of ambiguity. See references[11] for more details about how this procedure is
implemented and works. MCR-BANDS performs the minimization and maximization of SCCF
values using a general sequential quadratic programming procedure to solve the non-linear

optimization of SCCF under non-linear constraints [11, 26, 34].

FAC-PACK: Evaluation of the Area of Feasible Solutions (AFS)

The area of feasible solutions (AFS) is a subset of the two dimensional plane consisting of all
pairs of solutions which represent non-negative spectra (case of the spectral AFS) or
non-negative concentration profiles (case of the concentration AFS). In FAC-PACK toolbox for
MATLAB, AFS is computed using a polygon inflation algorithm and its more recent
implementation, the inverse polygon inflation algorithm. The polygon inflation method
approximates the border of each AFS segment by a sequence of growing polygons from the
interior of each AFS. An adaptive strategy for the edge selection keeps the computational
costs down and guarantees a controlled quality of the boundary approximation. AFS gives
different separated subsets obtained for the number of components of the system. Each
subset is a segment in the visible figure. The idea of the polygon inflation algorithm[35] is to
approximate the boundary of each segment of the AFS by a sequence of adaptively refined
polygons. Starting with an initial triangle whose vertices are located on the boundary of an
AFS segment, all the edges are subdivided and the new vertices are moved to the boundary
of the AFS. Up to now it has only be shown for systems that have equal or less than three

components.

144



Measuring and comparing the resolution performance and the extend of rotation ambiguities in
bilinear modelling methods

Mutual Information (Ml) evaluation

To estimate the degree of independence between component profiles, Mutual Information
(MI) values are used. MI values are defined as proposed in previous works as a natural
measure of the mutual independence between two variables[36]. MI between two variables
can be expressed using the Joint Probability density function p(x;,x;) and the Marginal

probability density function p(x;) and p(x;).

p(x1,%2)

E ion7
p(x1)p(x2) quation

1(x1,%2) = dx, dx2p(xs, X2)log |

Krasakov et al. have proposed an efficient method or estimating MI values. More details

about this algorithm are available[37].

Concentration profiles recovery evaluation using Amari index

To estimate the reliability of the results obtained by the different methods applied here,
concentration profiles were compared to the correct ones (if available) using the Amari
index[13]. It shows the reliability between the compared concentration profiles, and it is

defined as follows:

pP= ﬁz?flﬂ( Ll + | ) -1 Equation 8

maxg|pix] = maxg|py;|

where p;; = (f*C)ij, C are the true concentration profiles and C*are the pseudoinverse

of calculated ones using the considered method. The Amari index is equal to zero when the
true and estimated concentration profiles differ only in scaling or permutation of the
components (in presence of only permutation and intensity ambiguities). Amari index values
become lager when resolved profiles differ from the true ones and rotation ambiguities are

present. Low Amari index values are desirable.

Data fitting: calculation of lack of fit values

Lack of fit values are defined form the difference between input data D values and their
reproduced values obtained using a particular method. To evaluate the quality of the data
fitting finally achieved after application of the bilinear models, the percentages of lack of fit

(lof) are calculated according to the following equations:
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ij(dy—dy)”

lof(%) = 100 x

Equation 9

where dj; are the elements of the data matrix D, and ai]- are the corresponding
elements recalculated by the considered method, D. Lack of fit value give a measure of
the fit quality in relative terms with the same units as the measured data, which can be

compared with experimental relative error estimations if known.

3 Datasets

In this work similar synthetic datasets to those described in previous work [13] are used.
Both reaction and chromatographic type of profiles of two, three, and four components were
used for the purposed of this work. The different sets of concentration and spectra profiles

used as examples are given in Figure 1.

Figure 1. Profiles used for the simulation of the different reaction and chromatographic data systems
investigated in this work, with two, three, and four components. a, b, ¢, d, e, f, g and i are the

concentration profiles, and j, k and | are the pure spectra.

Pure spectra were normalized to unit area and relative concentration profiles were always

scaled between 0 and 1 in all the cases. In this way results obtained by the different methods
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were more comparable. For Data set 1 (Figure 1a) concentration profiles were obtained from
a simple first order kinetic chemical reaction, X=Y, with two components and with the
spectra profiles 1 and 2 (Figure 1j).

Dataset 2 was obtained using elution profiles from a three component HPLC-DAD coeluting

system (Figure 1b) and their corresponding pure spectra (Figure 1k)

For dataset 3, elution profiles (Figure 1c) from a single HPLC-DAD run with four co-eluting

components were used. Component spectra for them are given in Figure 11.

Datasets 4-8 were describe LC elution profiles of a two component system with different

overlapping levels (Figure 1d, e, f, g, h) and same component spectra (Figure 1 j).

In dataset 9, three random concentration profiles were considered (Figure 1i) with pure
spectra given in Figure 1k.

Software

All calculations were performed in MATLAB R2013a (Mathworks Inc., Natick, MA, USA) for

windows.

MF-ICA[29] methods were obtained from the ICA MATLAB toolbox V3 (ICA Toolbox
Homepage (http://isp.imm.dtu.dk/toolbox/ica). MVSA MATLAB codes were downloaded
from: http://www.lx.it.pt/~bioucas/code.htm. MCR-ALS and MCR-BANDS algorithm code and
GUI for MATLAB is freely available from the home page of MCR at http://www.mcrals.info/.
FAC-PACK GUI for MATLAB is freely available from webpage
http://www.math.uni-rostock.de/FAC-PACK/.

4 Results and discussion

Figure 2 shows concentration and spectral profiles resolved by the different bilinear methods
applied in this work (MCR-ALS, ICA, MCR-FMIN, PCA, MVSA and SCCF f.i, and fuacvalues of
MCR-BANDS). All profiles obtained by MCR-ALS, ICA and SCCF fni, and funa. values of
MCR-BANDS fulfilled non-negativity constraints. PCA used orthogonality constraints instead
of non-negative constraints, and therefore negative values were encountered in both
concentration and spectral profiles. MVSA method provided non-negative pure spectra too.
However concentration profiles obtained by least squares from them had also negative

values. MCR-FMIN gave small negative values, very near to zero (not visible in the Figure).
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Figure 2. Concentration and spectral profiles resolved by the different bilinear methods applied in this
work (MCR-ALS, ICA, MCR-FMIN, PCA, MVSA and profile corresponding to f, and fi,., of MCR-BANDS)
in the resolution of data set 2 (concentration profiles b and spectra profiles k in Figure 1). Figure (1), (2)
and (3) correspond to the first, second and third resolved component profiles: True ("*, blue),
MCR-FMIN ('+, green), ICA (*4&’, yellow), MCR-ALS ("-, black), MVSA (“— —, purple), PCA (*- -, cyan),
MCR-BANDS (—, red).

Table 1 shows MI values of all spectra profiles, as well as the Amari index (Al) for all
concentration profiles and the lack of fit values obtained for the different tested methods
(MCR-ALS, ICA, PCA, MCR-FMIN and MVSA) in the analysis of all datasets previously
described.

Lack of fit values of the different tested methods were rather similar in general, except in the
analysis of the more complex systems. Solutions obtained by the different methods were
rather equivalent from a mathematical point of view and they were feasible, differing among
them because of the presence of unresolved rotation ambiguities for the considered

constraints.

PCA and MCR-FMIN solutions gave similar lack of fit values, because MCR-FMIN solutions are
obtained by rotation of initial PCA loadings, during the optimization. PCA and MCR-FMIN
gave the lowest lack of fit values, because of the tendency of these two methods to slightly
over fit the raw data (some noise is embedded in the PCA solutions). This is in agreement
with the general over fitting tendency of most bilinear model-based methods, which may

incorporate some noise in the resolved parameters.
When the number of components is increased (from data sets 1 to 3), the values of Ml for all
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resolved spectra profiles were increasing. This means that the components become less
independent. The lower the MI values are, the higher independence between the resolved
profiles is present. Ml values obtained for MF-ICA-resolved spectra should be lower (more
independent) than those from obtained by the other methods. But this was not always the
case and they were higher than those from FMIN, from PCA loadings and from true spectra
profiles. This should be related again to the application of non-negativity constraints in

MF-ICA compared to orthogonality constraints in PCA.

MCR-ALS and MCR-FMIN gave low values of the Amari index compared to the same values
for ICA in some cases, which means that they recovered better the concentration profiles
than MF-ICA. Results of Table 1 also show that, although the values of Ml for PCA were lower
than those for ICA, in many cases (bold numbers in Table 1), the Amari indices for PCA were
always much worse than those for ICA and MCR, meaning that the profiles recovered by PCA
were always more different to the true ones. This is obviously due to orthogonality
constraints in PCA which produced negative values in the finally recovered profiles, which
obviously were not present in true profiles and therefore produced worse Amari index

values.

From datasets 4 to 8, overlapping of concentration profiles increased. Values of Ml for
resolved spectra profiles and of the Amari index for elution profiles of datasets 4-8 increased
significantly when coelution also increased (less independent spectra profiles were obtained
and worse recovery of the elution profiles was achieved). This means that, when
concentration profiles were strongly overlapped, as in these cases, the only use of
non-negativity constraints does not guarantee the correct recovery of the true profiles,
because of the presence of rotational ambiguities. Interestingly Ml values for ICA resulted to
be lower than those from MCR. This is probably due to the MF-ICA non-negativity constraints
implementation on both concentration and spectral profiles, making MF-ICA less efficient to
achieve the independence condition of the sought profiles. Increasing overlapping of elution
profiles affected the independence (measured by MI values) and the quality (measured by
Amari Index values) of the resolved spectra profiles. Amari indices for PCA were clearly

worse than those for ICA and MCR.

Ml and of Amari index values show that independence and orthogonality constraints are not
adequate for the appropriate resolution of pure components profiles in general in the MCR
context. Highly independent or orthogonal profiles make them to differ as much as possible.
However in the real situation, this condition is not fulfilled in general, profiles are neither
highly independent nor orthogonal, and they may be strongly overlapped. ICA and PCA
obtain good mathematical models with unique solutions, but these solutions may be rather

different to the true ones.
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Evaluation of the extension of rotation ambiguities in MCR and other methods

MCR solutions have in general a certain degree of ambiguity, and this can be evaluated by
methods like MCR-BANDS. MCR-BANDS is based on the optimization of the function SCCF
defined by the relative signal contribution of every component in relation to all the other
components in the mixture (see Equation 2). In this work, relative signal contributions of all
the components measured by SCCF using the different investigated methods such as

MCR-ALS, MVSA, PCA, ICA and MCR-FMIN are evaluated and compared.

Dataset 2 (a three component system, see dataset section) was selected to study in more
detail the rotation ambiguity problem. Table 2 gives SCCF values for MCR-ALS, PCA, MVSA,
MCR-FMIN, ICA, and SCCF, f., and f.,. solutions, calculated by MCR-BANDS under

non-negativity constraints, for this three component system.

SCCF fucrats, fica, and frrye values were all located within MCR-BANDS SCCF f,,;, and f.,,.x range,
and all of them provided non-negative profiles and fitted the data equally well. In contrast,
SCCF fpca values, and some of the SCCF fusa, fucr-min Values, resulted to be outside of the
range between SCCF fnin and frax. PCA profiles were as expected to be orthogonal and they
had consequently negative values, and therefore they were out of the MCR-BANDS
(non-negative) feasible range. MVSA method provided only solutions for the pure spectra
but not for concentration profiles, which should be estimated by an additional least squares,
and they were then always giving negative values, meaning that they did not fulfill the
non-negativity requirement for the concentration profiles As a consequence, they were also
out of the MCR-BANDS range. MCR-FMIN had the problem of embedded noise from initial
profiles estimated by PCA, which prevented having feasible non-negative solutions. Although
these MCR-FMIN results were near to the true profiles and had low MI and low Amari

indexes, their SCCF fucr-min Values were out of range of SCCF f,i, and .

In this work, the FAC-PACK method was used to calculate and display geometrically the full
range of all feasible solutions, i.e. the area of feasible solutions, called AFS, using the polygon
inflation algorithm. This method provides similar results to the Borgen plot method
proposed by Rajko [22] and to the gridding search method proposed by Rajko and Abdollahi
[38], but its application is simpler and it is currently available (as open source application) for
two- and three- component systems, under non-negative constraints. In the case of the three
components system studied in this work, the AFS obtained by FAC-PACK by means of the
polygon inflation algorithm are shown in Figure 3. AFS are displayed as polygons for both
concentration (Figure 3 (1a)-(7a)) and spectral solutions (Figure 3 (1b)-(7b)). The FAC-PACK
calculated set of polygons are composed of three isolated and topologically connected
subsets corresponding to the three components of the analyzed system. Marked points in
the Figure were projected for the profiles previously obtained by the different bilinear
methods tested in this work (MCR-ALS, ICA, MCR-FMIN, PCA, MVSA, and SCCF f., and fpax
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defined profiles from MCR-BANDS). As it is shown in Figure 3, MCR-BANDS profiles were
always located in the border of FAC-PACK polygons, and the location of MCR-ALS, ICA and
MCR-BANDS SCCF f i, and f.., solutions are all located inside the AFS calculated by FAC-PACK,
whereas the location of some of the solutions provided by FMIN, PCA, MVSA solutions are
located outside the AFS. Interestingly, SCCF f;, and f., of MCR-BANDS solutions projected
on this figure were usually located on one of the corners/edges of the borders (marked in
blue circles) of the AFS except for one of the profiles (see point M in Figure 3) marked by a

red circle and a red arrow in Figure 3.
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Figure 3. AFS obtained by the FAC-PACK method in the analysis of data set 2. Polygons in each plot are
projected area of the feasible solutions for each component calculated by FAC-PACK. Marked points
(using ‘*) in the figure were obtained from the projection of the profiles resolved by the different
bilinear methods applied in this work (MCR-ALS, ICA, MCR-FMIN, PCA, MVSA and profile
corresponding to f.;, and f.,, of MCR-BANDS). The area in blue tetragon means the area of polygon
from FAC-PACK which is not between the points projected by profiles corresponding to f.,;, and f.., of
MCR-BANDS. Point M (marked by a red circle and a red arrow) is the only point of SCCF f;, and f., of
MCR-BANDS solution projected which not located on a corner/edge of the borders of the AFS in this
Figure. The other related points projected by SCCF f,;, and f,., of MCR-BANDS solutions which located
on corners/edge were marked in blue circles). Point N is the representative point in the lower corner

of the polygon (marked by a purple circle) in the region located away from the point M.
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To further study the relationship existing between MCR-BANDS solutions and FAC-PACK
feasible solutions AFS, SCCF values were evaluated in the region located away from the point
M in Figure 3 (shown as a blue rectangle). For instance, the feasible solution located at
point N (away from M and in the lower corner of the polygon marked by the purple circle in
Figure 3-(1b)) gave spectra and concentration profiles shown as red lines in Figures 4-(2) (3)
and (4). Figure 4—(1) shows the locations of these projected profiles of the three components
defined by point N using the FAC-PACK method. Locations corresponding to concentration
profiles are marked as ‘o’ and locations corresponding to spectra profiles are marked as <.
Figures 4 (2), (3) and (4) shows the corresponding concentration and spectral profiles of
solutions at point N together with concentration and spectra profiles calculated for f;, and

fmax SCCF values of MCR-BANDS.
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Figure 4. Locations projected from profiles marked by point N on the polygon of dataset 2 (Locations
corresponding to concentration were marked as ‘o’ in (1a) and spectra profiles were marked as ‘x’ in
(1b)). Figure (2), (3) and (4) are comparison between profiles obtained for f,,, and f., solutions of
MCR-BANDS and profiles of the three components in the analysis of data set 2 at the location marked

by point N

Table 3 gives SCCF values, f, for MCR-BANDS maximum and minimum solutions (f., and fa),

as well as for the 'TRUE' and MCR-ALS solutions with non-negativity constraints, and, more
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interestingly, for the feasible solutions located at point N previously described (Figure 4). It
should be remarked that MCR-BANDS SCCF f;, and f,., values calculated either using TRUE
or MCR-ALS initials with non-negativity constraints were very similar to those obtained using
initials from the point located at N in Figure 4. SCCF fpyioe n Values for the three components
were all located between the range of f.;, and f.. obtained by MCR-BANDS. This is an
important result which confirms that SCCF values of the profiles in the quadrilateral blue
area of Figure 3, away from point M, are also between the ranges of MCR-BANDS results.
Therefore, results from MCR-BANDS and from FAC-PACK are confirmed to be in agreement,

in spite of being based incompletely different approaches.

As previously shown in paper of Hamid and Tauler[24], for a two-way data system, it is
possible to define AFS graphical boundaries in two dimensions to illustrate the whole set of
feasible solutions. However, for higher dimensional systems (three and more components), it
is not possible to illustrate graphically the whole set of feasible solutions using only the two
profiles defined by SCCF f,, and f,.x MCR-BANDS values. Since feasible solutions projections
change from a line to a plane, a volume or even a more complex graphical display is needed
to delimit all AFS plots. MCR-BANDS is not intended to be a method to providing visually the
boundaries of the AFS, but to give an estimation of the extent of rotation ambiguity
associated to a particular MCR solution. Further work is perused to confirm general ways to
assess the reliability of MCR solutions, and in particular of the extent rotation ambiguities

associated to them.

Conclusions

Bilinear modelling based methods, like MCR-ALS, MCR-FMIN, ICA, PCA, or MVSA (all of them
tested in this work) are appropriate methods for multivariate curve resolution. But not all of
them perform in the same way. When they are applied to two-way data and appropriate
local rank/selectivity conditions are not present in the data, there is no way in general to
know if they provide the true solution when they are applied under similar constraints.
Different resolution methods will give one of the equivalent feasible solutions for the

problem under study.

Results obtained from all these methods show that, a range of feasible solutions describe
and fit the data equally well, while fulfilling the bilinear model and constraints.It is not
possible therefore to say that one method is better than another one. All of them might be
considered as an alternative tool for the resolution of mixed spectroscopic pure signals
(sighatures) on certain cases. However, implementation of physical constraints, such as
non-negativity and others in resolved spectra and concentration profiles is more flexible,
powerful and reliable in MCR methods like MCR-ALS than in other.
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The MCR-BANDS method gives an estimation of the extension of rotation ambiguities and
therefore of the ranges of feasible solutions. Whereas methods like FAC-PACK provide a
geometrical display of all feasible solutions. Interestingly, the extension of rotation
ambiguities estimated by the MCR-BANDS method and the AFS calculated by a method like

FAC-PACK are in agreement and concordant.
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Table 1. Mutual information (MI) values for spectra, Amari Index (Al} values for the resolved concentration profile, and lof values for reconstructed data
sets using MCR-ALS, PCA, MVSA, MCR-FMIN, ICA methods.

Data lof(s)’ Mutual Information” Amari index”

et TRUE  MCR-ALS PCA MVEA  MCR-FMIN ICA TRUE  MCR-ALS PCA  MVSA  MCR-FMIN ICA MCR-ALS PCA  MVSA  MCR-FMIN ICA
1 0.308 0.298 0.298 0.298 0.298 0.298 0578 0,922 0414 1045 0.326 0923 0.207 0565 0294 0.197 0.220
2 0.544 0.533 0.499 0.524 0.499 0513 2.3%0 2373 2443 2814 2.205 2.404 0.101 0542 0.286 0.389 0.076
3 0.494 0.471 0.463  0.528 0.463 0.465 4419 4.335 4032 4334 3.683 4.018 0.280 0392 0131 0.31% 0.129
4 0.578 0.568 0.568 0.685 0.568 0.568 0.578 0.575 0412 0408 0.169 0.311 0.178 0.547 0407 0.318 0.157
5 0.583 0.572 0571 0725 0.571 0572 0.578 0.579 0412 0408 0.271 0.374 0.114 0548 0411 0.229 0129
[ 0685 0673 0671 1.596 0.671 0672 0578 0,714 0414 0429 0.339 0579 D.0ES 0583 D426 0,339 0.002
7 0.814 0.802 0.798  3.780 0.798 0.801 0.578 1.001 0.415 0407 0.557 0.823 0.264 0.597  0.340 0.083 0.297
B 0838 0.826 0.822 1898 0.822 0826 0578 2.156 0416 D436 0.416 0.620 0.704 0,599 D436 0.599 0.391
9 0475 0.462 0.461 40348 0.461 0466 2.3%0 2.563 2405 2464 2.253 2433 0.080 0480 0351 0.137 0.237

* lof values calculated according to Eguation 9.
® Mutual Information (M) values calculated according to Equation 8.
© Amari index values calculated according to Equation 7.
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Table 2. Relative signal component contribution function values [SCCF), ', obtained by MCR-BANDS, for datasets 2.

Data set Component Frrue fracn.ais foca Favsa Faacr.rram fica - fomin
1 1 0.651 0.566 0.992 0.551 0.641 0.621 0.675 0.301
2 0.469 0.621 0,123 0.684 0.486 0.565 0.816 0.451
2 1 0.409 0.596 0.982 0.536 0.433 0.511 0.728 0.298
2 0.489 0.371 0.186 0.358 0.120 0.367 0.371 0.189
3 0.328 0.267 0.041 0.803 0.666 0.356 0.620 0.185
3 1 0.369 0.197 0.944 0.451 0.408 0.474 0.571 0.143
2 0.226 0.658 0.313 0.673 0.328 0.470 0.661 0.391
3 0.659 0.400 0.097 0.462 0.405 0.281 0.503 0.300
4 0.421 0.376 0.049 0.293 0.312 0.236 0.433 0.145
4 1 0.625 0.624 0.958 0.958 0.674 0.500 0.624 0.458
2 0.721 0.779 0.287 0.287 0.573 0.774 0.779 0.636
5 1 0.621 0.622 0.959 0.959 0.793 0.649 0.665 0.454
2 0.776 0.775 0.283 0.283 0.463 0.630 0.811 0.601
G 1 0.652 0.601 0.987 0.987 0.549 0.650 0.656 0.381
2 0.521 0.607 0.163 0.164 0.653 0.523 0.770 0.513
7 1 0.594 0.704 0.998 1.001 0.553 0.711 0.810 0.331
2 0.475 0.385 0.684 0.088 0.518 0.361 0.763 0.257
8 1 0.582 0.736 1.000 1.000 1.000 0.910 0.829 0.349
2 0.465 0.323 0.017 0.004 0.017 0.110 0.669 0.205
9 1 0.327 0.344 0.991 0623 0.459 0.430 0.722 0.258
2 0.426 0.520 0,114 6.182 0.309 0.417 0.554 0.271
3 0.440 0.326 0.071 5.195 0.425 0.330 0.564 0.232

* SCCF f value calculated for MCR-ALS, PCA, MVSA, MCR-FMIN, ICA, and maximum and minimum values of SCCF, fin and fuay, using MCR-BANDS
according to Equation 6.
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Table 3. Relative signal component contribution function values (SCCF), f, for different profiles resolved from dataset 2.

b f
Component' fPodnl_N fmcn nlsc fmurd fmax_MClte fmln_MCFl

rmax_poll!! Ng fmin_poim Nh fma.c_IFII.II:I fmln_IFlL.lEJ
1 0.1835 0.2675 0.3283 0.3701 0.1814 0.3401 0.1780 0.3402 0.1780
2 0.4853 0.3701 0.4894 0.7359 0.2855 0.6821 0.3058 0.7399 0.3057
3 0.5831 0.5955 0.4088 0.6197 0.1423 0.6201 0.1603 0.6201 0.1586

? Component number

® SCCF values of profiles corresponding to point N (example feasible solution in Figure 3 and 4

“SCCF values of MCR-ALS solutions with non-negativity constraint.

¥ SCCF values of pure component spectra used for simulation of the dataset.

¢ Maximum SCCF values obtained using MCR-BANDS from MCR resolved profiles.

f Minimum SCCF values obtained using MCR-BANDS from MCR resolved profiles

¥ Maximum SCCF values obtained using MCR-BANDS from point N corresponding profiles.

f‘ Minimum SCCF values obtained using MCR-BANDS from point N corresponding profiles.

' Maximum SCCF values obtained using MCR-BANDS from pure component spectra used for simulation of the dataset.
! Minimum SCCF values obtained using MCR-BANDS from pure component spectra used for simulation of the dataset.
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Discussion

Results of Mutual Information (MI) and of Amari Index (Al) showed that resolved results
with independence and orthogonality constraints usually do not match the profiles of the
pure component in the experiment. Profiles independence or orthogonality makes the
profiles of the components to differ as much as possible, but this does not mean that they
correspond to the true profiles causing the observed data variance. In the real situation,
especially in the analysis of hyperspectral imaging of this Thesis, independence or
orthogonality conditions are not fulfilled by spectra profiles in general. Pure component
spectral in the hyperspectral imaging are neither independent nor orthogonal, and they
may be overlapped. ICA and PCA obtain good mathematical models, but these models are
different form the true ones. MVSA method provided the better estimations of the pure
spectra (endmembers) of the hyperspectral imaging. However concentration profiles are
obtained by least squares post processing when using MVSA. And this operation was
always giving negative values for them, which will make results non-realistic. Closure (sum
to 1) constraint in MVSA is not an adequate constraint for the estimation of
concentrations (distribution maps) since they do not match the true situation of
hyperspectral imaging.

Bilinear models evaluated in this chapter can be applied as preprocessing, exploration,
classification, regression and resolution tools. All of them can be considered as an
alternative tool for the analysis of mixed signals on certain cases. However,
implementation of physical constraints, such as non-negativity in resolved spectra and
concentration profiles is more flexible and reliable in MCR methods like in MCR-ALS. This
is also the reason why MCR-ALS is a more adequate method for hyperspectral imaging
analysis.

MCR-BANDS delivers an approximation to the extension of rotation ambiguity. AFS
represent all feasible solutions geometrically and can be depicted by a method like FAC-
PACK. The results of this chapter (Paper %*’) have shown that the extension of rotation
ambiguity calculated by MCR-BANDS and the AFS calculated by a method like FAC-PACK
are concordant. This is an important conclusion for future work and applications of the
different methods evaluating the rotation ambiguity extension.
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Introduction

Dissolved Organic Matter (DOM) analysis in surface waters

River flows include all the material flowing through the river, not only water, but also
sediments, nutrients, organic debris and biomass. These flows are a key aspect in
monitoring studies for the environmental quality assessment of the flowing area near to

the river.”!

They have strong seasonal patterns and display strong changes due to natural
droughts. River water quality assessment is usually based on the comparison of measured
values of particular physicochemical parameters with threshold values defined in national

or international directives®*>.

In the surface water systems, the dissolved organic matter (DOM) is a key parameter
which is formed by a mixture of aromatic and aliphatic hydrocarbon structures with
different attached functional groups. These functional groups have different structures
with a wide range of molecular weights?*®. In the past, DOM in surface water systems has
been considered an important element for water quality assessment. lts composition
varies in time and space depending on the proximity to the sources and on the exposure

294

to degradation processes™ . In natural environments, concentration and composition

changes of DOM have a potential effect on the health of ecosystems through processes

like light attenuation, nutrient availability, and contamination transportzgs.

As the chemical nature of DOM defines its optical properties, optical measurements have
2% The two major DOM
components that have been found to fluoresce are humic materials (giving blue

been applied for tracing its variability in natural waters

fluorescence) and protein fractions (giving UV fluorescence). The most common
fluorescent peaks identified in natural water included humic and fulvic-like matter with
fluorescence patterns called as fluorescence A (237-260/400-500 nm) and C (300-
370/400-500 nm), and protein-like material fluorescence centers, such as fluoreophores T
(225-237/340-381 nm and 275/340 nm)and B (225-237/390-321 and 275-310 nm).*%" ?%
They are respectively written as UVA, UVC, UVT and UVB for short. Additionally, there are
moleculars with fluorescence patterns called UVD (soil fulvic acid, 390/509 nm), UVE (soil
fulvic acid, (455/521 nm)), UVM (marine humic-like, (312/380-420 nm)) in natural
environments %%,

Excitation Emission Matrix (EEM) fluorescence combined with chemometric methods for
DOM analysis and water quality assessment
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It is difficult to trace changes in the structure of DOM in natural water systems because of
the complexity and non-conservative behavior of the composition of DOM in natural

environments %% 3%,

Molecular fluorescence spectroscopy is a particularly useful technique for the study of the
chemical properties of fluorescent molecules. It is a highly sensitive analytical technique,
allowing nondestructive direct measurements at natural environmental concentrations .
Molecular fluorescence is a very sensitive technique for the analysis of the chemical
environment of fluorophors®®, like those present in DOM. The excitation—emission matrix

(EEM) of fluorescence generates multidimensional data structures suitable for this type of
analysis. The utilization of EEM fluorescence can be used in the characterization of the

properties and reactivity of DOM. EEM allows DOM analysis and monitoring in surface
303

waters and other natural systems™". In the next Figure, EEM experimental measures of

DOM in river water are shown.

Figure 6- 1 EEM data matrix structure of the water samples obtained from Ter River.

In this Thesis the basic EEM data matrix structure for the analysis of one single water
sample was composed by 76 rows (76 excitation bands) and 76 columns (76 emission
bands), giving a data matrix, D (76, 76), which contains the fluorescence spectra of the
considered water sample. Excitation and emission spectra of the compounds studied in
individual samples can be arranged in data tables or data matrices. In this study only the
fraction of the raw EEM that did not contain scattering bands (from 227-450nm, avoiding
the region between 200 and 225nm) was selected.

As said before EEM spectra can be arranged in a data cube or three-way, three-mode data
structure. Totally 122 water samples were collected at 62 stations along the Sau Reservoir
system and its tributary, the Ter River. When the EEM data of 122 samples were
considered, then a new data structure was obtained which can be arranged in a long
column-wise data matrix D,,4 (122x76, 76) which can be arranged by setting individual
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data matrices from every sample, one on the top of the other and keeping the emission
wavelength axis in common.

Chemometric analysis of data sets obtained in large environmental monitoring studies of
natural fresh water systems by EEM fluorescence spectra (such as those shown in previous
Figure 6-1) provide a powerful and convenient way to investigate DOM source

contributions of the investigated watersheds***>%.

Appropriate three-way chemometric data analysis methods, including so-called second-
order calibration methods and those based on trilinear modeling %°° have been proposed
for the analysis of EEM datasets. The high analytical potential of EEM coupled to
chemometric methods has long ago been recognized. Due to the intrinsic structure of EEM
data, the Parallel Factor Analysis (PARAFAC) method "1 hased on the trilinear model is
adequate and it can be successfully apply for their decomposition. PARAFAC decomposes
directly the three-way data set or data cube into components using and alternative least
squares method. In Chapter 2, these methods were described.

Alternatively the Multivariate Curve Resolution Alternating Least Squares (MCR-ALS),
method can be used also for the analysis of three-way data fulfilling the premises of the

trilinear model °®. MCR-ALS was used in this Thesis to analyze the EEM dataset (paper®®).

The bilinear decomposition of the data matrix D,,g can be described by the following
equation:

Daug = Skx—cSgm + E Equation 6- 1

where Sgp, (76,n) is the matrix of excitation spectra (n is the number of considered
bilinear components contributing to the observed fluorescence signal), Sgx (Excitation
Profiles) and C (Contribution Profiles) are mixed in the augmented Sgy_c matrix (122x76,
n), and E is the residual matrix describing the variance not explained by the bilinear model

(SEx—CSEm)-

When the trilinear model 3% 3% holds, every individual data matrix, Dy, is decomposed by
the following equation

Dy = Sg,C,SE, +E Equation 6- 2

where k refers to slice k and Cy is a diagonal concentration matrix referring to the relative
amounts of the components in slice/matrix k. Sg, and SEm matrices are the same for all
Dy simultaneously analyzed. Only the new Cy diagonal matrix of dimensions (n, n),
changes from sample to sample and it gives in its diagonal the relative spectral
contributions of the n components to the fluorescence signal of sample matrix k.
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Alternating Least Squares optimization of both Sgy_c, estimation of Sg,, is performed
iteratively under non-negative, trilinearity and normalization constraints until
convergence is achieved. According to Figure 6-2, when trilinearity constraint is applied
during the ALS optimization, Sgx_c is first decomposed by SVD for each component. Only
the first singular value is considered in this decomposition. For this component, the shape
of its excitation spectrum will be exactly the same for all the considered samples and that
it only will change its relative intensity. After this decomposition, the full Sgx_¢ is rebuilt
and updated for the next ALS iteration. Apart from forcing the shape of the excitation
spectrum of the considered component to be the same for all different samples, this
procedure captures the relative intensity variation of this component, which is stored in a
contribution or concentration C matrix (loading of the third mode), giving therefore the
relative contribution of this component in the different samples. Sg, (Excitation spectra)
and C (Contribution Profiles) inSgyx_c matrices are finally obtained, together with Sg,,
(emission spectra) matrix obtained directly during the ALS procedure (Equation 6-2).
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Figure 6-2 Decomposition of the three way excitation—emission fluorescence data set using the trilinearity
constraint during the Alternating Least Squares optimization in MCR-ALS.
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Compared to PARAFAC, the main advantage of MCR-ALS is that the trilinearity constraint
can be applied independently on each component, in contrast to PARAFAC where all
resolved components should fulfill the sought trilinear condition.

The dataset investigated in this work

The study area investigated in this work was the middle Ter River flow, which supplied 55%
of the raw water for drinking purposes to Barcelona city and its surroundings. With a 3010
km? surface basin and 208 km long, it originates in the middle of the Catalan more oriental
range of the Pyrenees (at 2400 m high) and it passes through Girona city, and leads to the

Mediterranean Sea31°, see Figure 6-3 311

and Figure 6-4(From google map). Most of the Ter
river basin is characterized by a medium population density; Girona and Vic are the most
populous cities. In terms of the use of the river water, 53% of the total water is assigned
to agricultural irrigation and golf courses, 24% to domestic use, and the rest is for

312 This river receives the direct impact of

industrial (17%) and livestock farmer (7%) use
some metallurgic, pulp mill, textile and tannery industries 33 As a result in the river have
found alkylphenols, alkylphenol ethoxylates, aliphatic and aromatic hydrocarbons, fatty
acids, plasticizers, alkylbenzenes and pesticides, the discharge of urban and industrial

waters, and of agricultural runoff 314,
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Figure 6- 3 The location of Ter River basin in Catalunya, Spain.

Main source and transformation processes of the DOM in Ter river system were
characterized and located, in middle course of Ter river (which is a rather populated
area)is described, several kilometers before entering its main reservoirs in Susqueda and
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Sau (see Figure 6-4), during its travel throughout the lentic ambient until reaching these
two dams. Results obtained in this study support the hypothesis that the different
fractions of DOM are differentially processed along the river-reservoir system>’.
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Figure 6- 4 The upper part is the terrain map of Ter river basins and the lower part is the main reservoirs in
Susqueda and Sau (The figure was obtained from online Google map).
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1. Introduction

Dissolved Organic Matter (DOM) consists of a complex mixture
of organic molecules that vary greatly in molecular weight, like
polysaccharide, polypeptide proteins, and fulvic acids (Leenheer
and Croué, 2003; Stedmon and Markager, 2005a). In a fresh water
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0045-6535/© 2014 Elsevier Ltd. All rights reserved.

system, organic carbon processing is impacted by downstream ex-
port, and biogeochemical transformations. In rivers, lakes, and
man-made reservoirs, DOM sources are usually categorized as allo-
chthonous and autochthonous, material derived from outside the
ecosystem and biota within the system respectively. Organic mat-
ter obtained from a water system of tributaries can be effectively
related with the carbon and oxygen cycling in a receiving lake or
man-made reservoir. Moreover, accumulation of microbial bio-
mass and activity in the riverine section of reservoirs make this
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section important in terms of allochthonous organic matter pro-
cessing (Weissenberger et al., 2010). Reservoir ecosystems are
open systems, and reservoir dynamics are influenced by river in-
flows (Imberger and Ivey, 1993). The relative high water load in
reservoirs defines these systems as important sites for organic car-
bon processing at local and global scales also (Weissenberger et al.,
2010).

To trace the dissolved organic matter, fluorescence measure-
ments have been proposed to characterize and trace DOM dynam-
ics (Coble et al., 1990; Coble, 1996; Zsolnay et al., 1999; Yan et al.,
2000; Stedmon and Markager, 2005b). Excitation Emission Matrix
(EEM) spectroscopy produces fluorescence (emission) spectra at
many different excitation wavelengths providing an overall view
of different features existing within the selected spectral range(Co-
ble, 1996; Her et al.,, 2003; Yamashita and Tanoue, 2003). EEM data
are usually assumed to conform adequately to a three-way trilin-
ear model system, which can be resolved in excitation and emis-
sion spectra and the corresponding relative concentrations of the
fluorescent components present in the analyzed samples.

As the chemical nature of DOM defines its optical properties,
optical measurements have been applied for tracing its variability
in natural waters (Stedmon and Markager, 2001). The optically ac-
tive fraction of DOM is called colored dissolved organic matter
(CDOM) and it can be used as a tracer for the dynamics and char-
acteristics of the total DOM pool. CDOM can also give fluorescence
when excited by light in the UV and blue VIS region of the spec-
trum. The two major DOM components that have been described
to fluoresce are humic material (giving blue fluorescence) and pro-
tein fractions (giving UV fluorescence). The most commonly found
fluorescent bands identified in natural water included, humic and
fulvic-like material fluorescence centers, as fluorophores A and C,
and protein-like material fluorescence centers as fluorophores T
and B (Lochmueller and Saavedra, 1986: Coble, 1996) It has been
proposed that the combination of EEM data and chemometrics
data analysis methods can provide a very powerful tool in the
assessment of DOM dynamics (Yamashita et al., 2008) in fresh
water systems. The PARAFAC (Bro, 1997) method has already been
effectively used in the analysis and modeling of multi-way data
systems to extract both qualitative and quantitative information
from three way EEM data systems. Multivariate Curve Resolution
Alternating Least Squares, MCR-ALS (Jaumot et al., 2005) is another
chemometrics method that has been proposed as a powerful data
processing technique for the analysis of experimental data ar-
ranged in multiway and multi-set data. MCR-ALS decomposes a
data matrix using a bilinear model which produces two factor
matrices of reduced sizes, which provide interpretable information
in physical and chemical terms about the investigated system.
MCR-ALS method has been extended to the analysis of three way
and multi-way data sets (Brown et al., 2009). When applied to
three-way data as in EEM spectroscopy, results obtained by
MCR-ALS with the trilinearity constraint give similar results than
other trilinear methods like PARAFAC (Tauler et al.,, 1995a; Alier
etal., 2011).

This paper investigates the potential use of MCR-ALS method
with the trilinarity constraint for the resolution of main DOM
source from EEM monitoring data in a complex fresh water system
and the results obtained are compared with those also obtained by
PARAFAC. The investigated system consisted in multiple water
samples collected along the Ter River-Sau Reservoir system in
Catalonia (Northwest Spain, Fig. 1), which is a river-reservoir sys-
tem located in a watershed under strong human impact. The con-
stituents of DOM resolved by the proposed chemometric data
analysis methods in this study are discussed in terms of the possi-
ble chemical organic matter constituents responsible of the excita-
tion and emission spectra and of their distribution along the river
section under study and their impact.

2. Methods
2.1. Samples

2.1.1. Samples collection and DOM experimental determination

Water samples were collected at 62 stations along the Sau Res-
ervoir system and its tributary, the Ter River (see Fig. 1), starting at
straight-line distance of 9 km upstream from the reservoir until
down the Sau dam. Water sampling was approximately every
400 m along the river-reservoir system. It is a canyon-shaped res-
ervoir area, in which mostly one single tributary (Ter river) is
responsible for most part of the total river flow. Most part of the
total inflow has only this single tributary, which facilitates the
investigation of the established chemical gradients. The exact posi-
tions of sampling stations have been recorded with a global posi-
tioning system (GPS). Samples were collected within two days in
October 2009. During this time, the river water enters with an
insertion depth very close to half the maximum depth of the reser-
voir conforming a layer of water to contrasting physical and chem-
ical proprieties which are discernible with simple in situ measures
(water temperature, conductivity, and dissolved oxygen). From
stations 23-62 (see map in Fig. 1), one sample from the river layer
was samples, and one surface sample was also collected every two
stations. Along the Ter River, there are two towns (Manlleu and
Roda de Ter, see map in Fig. 1) located upstream from the reservoir
system and that pour their organic pollutants into the river system,
and two waste water treatment plants (Vic WWTP and Roda de Ter
WWTP in the map) which affect also the organic matter content of
the investigated water system and analyzed samples. The whole
area is a highly humanized watershed and it is therefore, a good
example to investigate relationships between natural DOM and
anthropogenic DOM sources in a river-reservoir system.

In addition, in order to compare and validate results obtained
from the analysis of excitation/emission data by MCR-ALS and
PARAFAC, DOC concentration values of every analyzed sample
were experimentally determined in the laboratory by combustion
in a Shimadzu TOC-5000 Analyzer after filtration through a pre-
combusted GF/F filter and acidification to remove inorganic car-
bon. These values are given in Fig. 1.

2.1.2. Excitation emission fluorimetric determinations

EEM spectra were recorded in a Hitachi F-7000 fluorescence
spectrophotometer. Spectra were collected using a Rhodamine B
solution (Wako Pure Chemical Industries, Ltd.) and the light dif-
fuser and filter set. Bandwidths for excitation and emission were
set at 5 nm, and both excitation and emission were in the spectral
range of 200-600 nm, at 3 nm increments. Scanning speed was at
12,000 nm min ' and power at 700 V. EEM spectra were corrected
for inner filter effects with the corresponding absorbance spectra
and converted to Raman Units (RU) using the area under the
Mili-Q water Raman scatter peak at excitation 350 nm. Raman
scatter was removed subtracting the EEM spectrum for Mili-Q
water, while Rayleigh scatter effects were removed using a 3D
interpolation approach Kowalczulk et al., 2005.

2.2. Chemometric methods

The basic excitation-emission matrix (EEM) data structure for
the analysis of one single water sample was composed by 76 rows
(76 excitation wavelengths) and 76 columns (76 emission wave-
lengths), D (76, 76), which contains the fluorescence spectra of
the considered water sample. In this study only the fraction of
EEM data which did not contain scatter bands (from 227 to
450 nm) was selected and the region between 200 and 225 nm
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Fig. 1. Mapping, location and DOC concentrations of the different sampling sites of the Ter river-Sau reservoir system.

was eliminated. The bilinear decomposition of the data matrix D
can be described by the following equation:

D = S Sp, + E (1)

where Sgm (76, nc) is the matrix of excitation spectra (nc is the num-
ber of considered bilinear components contributing to the observed
fluorescence signal) and Sgy (76, nc) is the matrix of emission spec-
tra, and E is the residual matrix describing the variance not ex-
plained by the bilinear model (SmSTB‘). The unique bilinear
decomposition of matrix D into Sgx and Sgm is not assured if only
one sample is analyzed (analysis of a single data matrix). However
when multiple samples of the same system are simultaneously ana-
lyzed and the trilinear model is applied, both emission and excita-
tion spectra (Sgx and Sgm) can be recovered univocally (Tauler
et al., 1995).

When the EEM data of 122 samples are considered, a new data
matrix Daug (122 x 76, 76) can be arranged column-wise, i.e. by
setting individual data matrices from every sample one on the
top of the other and keeping the emission wavelength axis in
common.

Dy
Dz

DWE: :[D]ZD}Z...:D[:.,.D'[R] {2)

D
D122
where the symbol *;" is used to indicate the column-wise matrix
augmentation (matrix concatenation in MATLAB notation).

When the trilinear model (de Juan et al, 1998; de Juan and

Tauler, 2001) holds, every individual data matrix, D;, is decom-
posed by the following equation:

D; = SexCiShyy + Eaug (E)]

where Sg, and Sf,, matrices are the same for all D; simultaneously
analyzed. Only the new C; diagonal matrix of dimensions (nc, nc),
changes from sample to sample and it gives in its diagonal the rel-
ative spectral contributions of the nc components to the fluores-
cence signal of sample matrix i. The trilinear model and
constraint is indeed fulfilled by fluorescence data, since excitation
and emission spectra of the same chemical component should be
the same whatever is the sample analyzed where is present. This
important property of EEM data is very advantageous to give unique
solutions of Eq. (3) for all simultaneously analyzed D; matrices. In
this work, MCR-ALS has been adapted to the simultaneous analysis
of the D; EEM data matrices measured for all 122 monitoring sam-
ples. The trilinear condition is achieved in MCR-ALS algorithmically
during the ALS optimization and it has been described elsewhere
(Tauler et al., 1998) and summarized in Fig. 2. The data set is first
arranged in a column-wise augmented data matrix where the emis-
sion mode is the common mode of augmentation of all individual
excitation-emission data matrices, one per analyzed river sample.
Then the number of components is estimated, and initial estimates
of S{,ﬂl are obtained using the purest rows of the augmented data
matrix. Alternating Least Squares optimization of both Sgy.c, and
St is performed iteratively under non-negative, trilinearity and
normalization constraints until convergence is achieved.

Sex (Excitation Profiles) and C (Contribution Profiles) are mixed
in the augmented Sgx.c matrix. In Fig. 2, it is shown how these two
matrices of Sg, and C profiles can be finally recovered using the
procedure used also for the implementation of the trilinear con-
straint in MCR-ALS. According to Fig. 2, when trilinearity constraint
is applied during the ALS optimization, Sgx-c is first decomposed by
SVD for each component. Only the first singular value is considered
in this decomposition, implying that for this component, the shape
of its excitation spectrum is exactly the same for all the considered
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Fig. 2. Decomposition of the three way excitation-emission fluorescence data set using the trilinearity constraint during the Alternating Least Squares optimization in MCR-

ALS.

samples and that it will only change its relative intensity according
to concentration of this component. After this decomposition, the
full Sgx-c is rebuilt and updated for the next ALS iteration. There-
fore, apart from forcing the shape of the excitation spectrum of
the considered component to be the same for all different samples,
this procedure captures the relative intensity variation of this com-
ponent, which is stored in a contribution or concentration C matrix
(loading of the third mode), giving the relative contribution of this
component in the different samples.

The parallel factor analysis (PARAFAC) is based on the trilinear
model and it decomposes directly the three-way data set or data
cube into components using an alternative least squares method
(Bro, 1997). In PARAFAC, it is also possible to use several con-
straints such as non-negativity to excitation, emission and concen-
tration profiles. Core consistency diagnostic (CORCONDIA) is
applied to estimate the number of components and to check for
the appropriateness of the proposed model. PARAFAC can be con-
sidered a constrained version of the more general method Tucker3
with a super-identity core matrix. The core consistency diagnostic
indicates how well the model is in concern with the distribution of
superdiagonal and off-superdiagonal elements of the Tucker3 core.
If the PARAFAC model is correct, then it is expected that superdiag-
onal elements will be close to one and the off-diagonal elements
close to zero. More details can be found from literature (Bro and
Kiers, 2003). The core consistency diagnostic (CORCONDIA) is de-
fined as:

(4)

F F F 2
—t
CORCONDIA = 100 x ('l = Ed. 129..12}. 1(3def def) )

F F ~F
S Lo Xpaliy

where ggr is the calculated element of the core using the PARAFAC
model, defined by dimensions (d x e x f); t4s the element of a bin-
ary array with zeros in all elements and ones in the superdiagonal

(the expected Tucker3 core) and F is the number of factors in the
model.

To evaluate the quality of the results achieved by the applica-
tion of MCR-ALS and PARAFAC the percentage of lack of fit (ALS
lof) and the percentage of explained variance (R?) were calculated
according to the following equations:

lof (%) = 100 x

where dj; is the element of the experimental data matrix D, and du
is the corresponding element calculated by ALS. The lack of fit gives
a measure of the fit quality in relative terms with the same units as
the measured data, and comparable with experimental relative er-
ror estimations.

>6

i
>4
ij

where e;; are the elements of the E matrix and dj; are the elements
of the raw data set D.

MCR-ALS algorithm code of user-friendly GUI for MATLAB (The
Mathworks Inc., MA, US) (2013) is available from the home page of
MCR at http://www.mcrals.info/. PARAFAC analysis has been per-
formed using the version implemented in PLS-toolbox (v.5.8).

Component contribution profiles (matrices C;) resolved by
MCR-ALS can be plotted on maps obtained by Coogle Maps
(2012) and Mapping Toolbox?*? under MATLAB computer and
visualization environment. Using GPS values of river and reser-
voir water samples recorded during the monitoring campaign,
the map of the fresh water system was obtained from Google

RP=100x [1-

(6)
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map as a figure file (in tiff format). Contributions (matrices C;) of
three different MCR-ALS resolved components were then plotted
on the map according to their intensity and GPS value. Different
components have different contributions which were plotted in
the appropriated position of the map with a size proportional
to the value. Color of the spots is also related to their intensity
values, green means a high intensity value and red means a
low intensity value.

3. Results and discussion

3.1. MCR-ALS and PARAFAC resolution of main DOM contribution
sources over the investigated region using EMM spectral data

Experimental EEM data of dimensions 122 x 76 x 76, corre-
sponding to the analysis of the whole set of 122 water river/res-
ervoir samples (at 76 excitation and 76 emission wavelengths)
was analyzed with MCR-ALS and PARAFAC methods. SVD (single
value decomposition) of the corresponding column- and row-
wise augmented data matrices gave rather similar results for
the first 6 components, with singular values equal to 117.34,
19.76, 7.17, 3.84, 2.51, 1.75 in the first case and 117.22, 20.67,
7.29, 2,93, 2.20, 1.33 in the second case. These results already
indicate that the trilinear model assumption (de Juan and Tauler,
2001) is well justified at least for the first three compo-
nents(Tauler et al., 1995).

In Fig. 3, pure emission and excitation fluorescence spectra re-
solved by MCR-ALS (red) with the trilinearity constraint and PARA-
FAC (blue) are given for different number of components (from
three to six components). When only 3 components were consid-
ered MCR-ALS and PARAFAC recovered emission and excitation
profiles were compared. When 4 components were considered,
the two sets of emission and excitation spectra and the contribu-
tion profiles resolved by MCR-ALS and PARAFAC were also rather
similar, except for the fourth component. When even more compo-
nents were proposed, the trilinear model did not produce consis-
tent results and the results obtained by both methods, MCR-ALS
and PARAFAC resulted to be rather different. Table 1 shows the
comparison of the fitting results obtained by MCR-ALS and PARA-
FAC when 3, 4, 5 and 6 components were considered. When 5 com-
ponents were chosen, the shapes of the emission spectra obtained
for the third and fifth components were significantly different for
the two methods. Although data fitting values measured by R?
and lof (Table 1) obtained by the two methods were similar, re-
solved profiles obtained by both methods resulted to be rather dif-
ferent and results were less stable. This is even more obvious,
when 6 components were considered and results can be then con-
sidered to be unstable and inconsistent. Choosing a too large num-
ber of components allowed explaining more data variance, as
shown in Table 1 in lof values, but experimental noise can be then
propagated and mixed with resolved profiles giving results that
were not reliable nor stable anymore.

Core consistency diagnostic is also a good way to check for mul-
tilinear data structure and data complexity. In this work, core con-
sistencies of PARAFAC model with 3 components was 86.4%. This
means that when 3 components were chosen, the trilinear model
was rather accurate. When 4, 5 and 6 components were chosen,
core consistency values are —10.8%, —65.0%, and —2824.6% respec-
tively. When negative values appeared, PARAFAC model results are
unstable, and too much noise is probably included in the model
(over fitting). From all these results, it is concluded that the more
reliable model would be the one considering only three compo-
nents. Selection of additional number of components is not safe en-
ough from available data and the interpretation of the resolved
components can be considered rather speculative.

3.2. EEM spectral properties and distribution of the main resolved
DOM sources

Either excitation or emission spectra (Fig. 3) resolved by PARA-
FAC or by MCR-ALS (with the trilinear constraint) revealed the
main fluorescence characteristics of DOM fluorophores present in
the investigated fresh water system.

In the left part of Fig. 4, concentration changes of the three ma-
jor possible DOM sources resolved by MCR-ALS are shown along
the section of Ter river map (obtained from Google Maps applica-
tion (2012)). The 62 sampling river stations investigated in this
work were properly georeferenced and their latitude and longitude
position marked on the river map. The three component profiles
were plotted for the first component in Fig. 4a; for the second com-
ponent in Fig. 4b; and for the third component in Fig. 4c. Contribu-
tions of each component were displayed on the map by circles
whose areas were proportional to their intensity value, i.e. larger
circles mean higher contributions and the opposite for smaller cir-
cles and lower contributions. Right part of Fig. 4 shows the corre-
sponding lines describing the contribution changes calculated as
explained in the method section for each of these three MCR-ALS
resolved components. Blue lines indicate contribution profiles
from samples obtained from middle depth river water samples
and red lines indicate contribution profiles obtained from surface
river waters samples.

The results obtained by MCR agree well with those previously
reported in the literature for similar DOM sources. First MCR-ALS
resolved component was similar to the one found in previous stud-
ies (Coble et al., 1998; Sharma and Schulman, 1999; Moran et al.,
2000; Stedmon and Markager, 2001). Second and third MCR-ALS
resolved components were also similar to those found in previous
studies (Coble, 1996) (Mopper and Schultz, 1993; Determann et al.,
1994, Coble, 1996; Determann et al., 1996; Yamashita and Tanoue,
2003).

Next, detailed description of possible chemical structures of the
three MCR-ALS resolved components and of their concentration
distribution details are given.

3.2.1. First resolved DOM contribution

The first MCR-ALS resolved component explains 39.19% of the
experimental variance and it shows two excitation band maxima,
one at 355 nm and another at wavelengths below 240 nm, with a
broad emission band near 460 nm. These spectral values are char-
acteristic of the so called UVC type of humic matter fraction, as it
has been previously reported by Stedmon and Markager (2001).
At these wavelengths, low molecular weight aromatic organic mat-
ter is considered to be the main responsible of the observed spec-
tral features, dominating the fluorescence of wastewater DOM.
Deep waters and waters with greater terrestrial input have a great-
er potential for photo degradation than surface waters (Hudson
et al.,, 2007). Humic matters like UVC are found to be more likely
to be degrade (Moran et al.,, 2000). The fact that this component
shows emission and excitation at longer wavelength (460 nm)
than the other two components suggests that it contains more con-
jugated fluorescent aromatic molecules (Sharma and Schulman,
1999). Excitation at long wavelengths suggests that the chemical
functional groups responsible for this fluorescence (fluorophores)
are aromatic in nature or that they contain multiple overlapped
unsaturated functional groups (Coble et al., 1998). Furthermore,
similarities are observed between these resolved fluorescence
spectra and those from hydroxy-, methoxy-, or naphthol chemical
groups (Senesi, 1990). In summary, this resolved component is
likely to represent the high molecular weight fraction derived from
soluble terrestrial humic matter, i.e. soluble DOM fulvic acids
present in most of natural water environments (Stedmon and
Markager, 2005b).
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Fig. 3. MCR-ALS (red) and PARAFAC (blue) resolved emission (5{,,) and excitation (Sgx-¢) pure spectra profiles for different number of components. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article,)

Distribution of this first UVC component (Fig. 4) has a maxi- ium size population (more than 20,000 persons) and some indus-
mum contribution at the 5th station, and then a decrease of it in trial activity, does not produce a significant degradation of the
the next three stations. All these stations are down river flow, close water quality. From this point going down along the river, UVC in-
to Manlleu town (see Fig. 4), a village which although has a med- creases their relative contribution, with humic acid fluorophore
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Table 1
Individual explained variances (R*) by MCR-ALS with trilinearity constrain and by PARAFAC when different number of components were considered.

3 Components 4 Components

5 Components 6 Components

MCR-ALS PARAFAC MCR-ALS PARAFAC MCR-ALS PARAFAC MCR-ALS PARAFAC
Component 1 em 60.6 625 64.0 685 57.2 63.2 62.4 79.7
ex 632 60.9 59.1 53.1 67.3 60.1 61.1 36.5
Component 2 em 68.6 66.1 715 716 771 74.6 76.6 76.3
ex 529 56.3 48.9 48.7 40.6 44.3 41.4 41.8
Component 3 em 848 864 88.1 84.2 88.8 86.8 87.6 87.1
ex 28.1 253 224 29.1 21.1 247 23.2 241
Component 4 em 93.4 88.1 91.8 93.2 91.6 91.3
ex 128 224 15.7 132 16.1 16.6
Component 5 em 95.2 93.6 94.9 94.1
ex 9.4 12.5 10.0 11.5
Component 6 em 97.9 80.1
ex 4.1 358
lof* 6.4 6.0 5.7 5.1 4.9 4.3 5.0 3.9
R 99.6 99.6 99.7 99.7 99.8 99.8 99.8 99.9

* Percentage of lack of fit (lof) considering all components (full model) together.

b percentage of explained variances (R?) considering all components (full model) together.
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Fig. 4. Mapping of contributions of the three main components resolved by MCR-ALS on the fresh water system under study. Fmax is the sum of the fluorescence maximum

score for each component

groups increasing their presence too. From station 8th down, the
contributions of this component increases sharply, until reaching
their maximum at 17th station, where a WWTP (Roda de Ter) is lo-
cated. Indeed, after the 18th station, the contribution of UVC has
some little fluctuations. Only at the place near to Sau Dam there
are some peaks which are affected by a new river tributary (Riera
major).

3.2.2. Second resolved DOM contribution

A second MCR-ALS resolved component explains 33.73% of the
total experimental data variance and it shows two excitation band
maxima, one at 310 and another below 240 nm, with an emission
very broad band with its maximum at 395 nm. These features are
characteristic to those observed for the so called UVA fluorescence
(see Stedmon et al., 2003). Its presence is attributed to the decom-
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position of organic matter generated within the river stream It can
be associated to fulvic acid fluorophone groups present in most of
natural environments (Stedmon and Markager, 2005a), Hydroxy-
benzoic, and salicylic choromophore are considered to be good
maodels for this component (Senesi, 1990).

The contribution trend of UVA is very similar to UVC. The differ-
ent part is that it goes up slowly after 40th station and that a new
relative maximum contribution appears at the 44th station. The
reason for this might be explained because at the 40th station, a
tributary river (Riera de Sant Marti) inflows into the Ter river,
and it introduces a new amount of organic matter into the river,
increasing the contribution of UVA which reach their peak maxi-
mum at this station.

3.2.3. Third resolved DOM contribution

Fluorescence properties of the third MCR-ALS resolved compo-
nent explained a lower amount of experimental data variance, only
12.27%, and it shows so called UVT spectral characteristics (Coble,
1996), with excitation bands around 280 nm and a single emission
spectral band centered at 355 nm. These spectral properties resem-
ble these of protein-like (tryptophan-like) fraction sources which
induce fluorescence in different aquatic environments (Mopper
and Schultz, 1993; Coble, 1996; Yamashita and Tanoue, 2003). It
is from anthropogenic origin and it is also correlated to organic
matter from industrial effluents and from untreated sewage. This
type of chemical groups (protein and tryptophan-like) are pro-
duced by biological activity in surface waters derived from autoch-
thonous DOM processes (Determann et al., 1994; Determann et al.,
1996).

The contribution of UVT (see Fig. 4c) reflects a different DOM
source which can be related mostly to organic matter caused by
human (population) activities. Its contribution drops down slowly
form the 1th station to the 8th station, and then it grows up shar-
ply after the 8th station, i.e. with the increasing population activity
(in Manlleu town). After this point, an increase of this contribution
takes place when the river goes across this town and it decreases
then significantly after the river flows out of the town. From sta-
tions 19-23, this contribution keeps being rather high (close to
Roda de Ter WWTP). After station 24th, the rather slow water flow-
ing makes this UVT contribution to have enough time for settle-
ment and/or degradation and it decreases rapidly until station
41th. At stations 43th and 44th, the tributary river (Riera de Sant
Marti) produced new changes in the contribution profile of this
DOM source with a second peak maximum. And at station 48th
this contribution reaches a new minimum which does not change
then until station 55, where a new increase is produced as a conse-
quence of a new river tributary (Riera del Bala). From these results,
it may be concluded, that the DOM source explained by UVT is re-
lated mostly with human-activity, which has a variable contribu-
tion along the investigated water system.

3.2.4. Correlation of MCR-ALS resolved DOM contributions with
independent experimental DOM total concentrations

The relative contributions calculated from MCR-ALS resolved
profiles were compared with known values of DOC concentrations
in every sample (obtained by the method introduced in 2.1.1). Cor-
relation coefficients between 1st (UVC), 2nd (UVA), 3rd (UVT),
1st +2nd, and 1st+2nd + 3rd components were 0.79, 0.75, 0.23,
0.77 and 0.69 respectively. By F-test (Jamshidian et al., 2007), p val-
ues of these correlations were below 0.05, except for the 3rd com-
ponent where a p value of 0.073 was obtained. By t-test
(McDonald, 2009), these p values were also lower than 0.05 except
for 3rd component with a p value of 0.079. Therefore, it is con-
cluded that 1st and 2nd MCR-ALS resolved components correlate
well with DOM, whereas 3rd component not. The explanation of
this is because, as mentioned before, UVC and UVA resolved com-

ponents are linked to humic-likes substances, stemming from the
chemical and biological activity of microorganisms, whereas UVT
is considered to be organic matter of anthropogenic origin, (Gone
et al., 2009). These two type of matters did not show similar trends
in the river system. Compared to UVC and UVA, UVT is at a lower
concentrations, and it did not have significant effect on total DOC
concentrations, although it provided different spectroscopic trends
compared to natural (non-anthropogenic) DOC. So UVC and UVA
showed a significant correlation with the DOC analyzed by DOC
analyzer, whereas UVT did not.

In summary, fluorescence properties of the three main DOM
components found in this study do agree with those encountered
in previous studies on other freshwater and wastewater environ-
mental studies (Coble, 1996; Chen et al., 2003; Cumberland and
Baker, 2007), and also correlates well with independently experi-
mentally estimated DOM concentration values. Resolved excitation
and emission spectra showed characteristic patterns which corre-
spond to organic chemical groups like hydroxy-benzoic (like in sal-
icylic acid), B-naphthol, aromatic nitrogen rings, tryptophan, amino
acid and proteins.

4. Conclusions

Large environmental monitoring studies of natural fresh water
systems by excitation-emission matrix fluorescence spectra pro-
vide a powerful and convenient way to investigate DOM source
contributions in watersheds. In this work three major DOM fluo-
rescence contributions were resolved including a first fluorescence
source assigned to a UVC humic type of fraction, a second fluores-
cence source assigned to a UVA humic/fulvic type of fraction, and a
third fluorescence source assigned to a mixed UVT, protein-, and
tryptophan-like type of fraction. Ortho hydroxy-benzoic (like in
salicylic acid), p-naphthol, aromatic nitrogen rings, tryptophan
and amino acid peptide groups present in freshwaters DOM are
the responsible of the fluorescence properties of the investigated
river system. Resolved geographical distribution of these three dif-
ferent DOM sources over the investigated area, are discussed,
showing increasing and decreasing relative contributions accord-
ing to different factors like river flow, DOM natural sources origin,
human activities in the area and population in put sources. Relative
contributions of the different resolved DOM sources correlate well
with independent experimentally estimated DOM concentrations.
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Discussion

DOM sources have different fluorophore groups which can be identified and characterized.
in this Thesis, Parallel Factor Analysis (PARAFAC) and Multivariate Curve Resolution
Alternating Least Squares (MCR-ALS) have been satisfactory applied to the EEM data
obtained from the Ter River-Reservoir system. The results obtained in this work can be
useful for establishing analytical methodologies protocols for DOM monitoring in surface
water systems.

According to PARAFAC and MCR-ALS results, three major DOM fluorescence sources (UVC,
UVA, and UVT) were resolved. The first fluorescence source consisted of UVC humic
derived group type of DOM fraction. Humic substances (HS) are natural macromolecular,
heterogeneous substances with a high degree of polydispersity. They occur ubiquitously in
soil, aquatic environment and certain sediments. They are known to contain similar
functional groups i.e. C=C, COOH, OH, OCHjs, C=0, NH or NH,, arrangements such as redox
quinone-semiquinone-hydroquinone, charge-transfer planar complexes etc.>*”.

The second fluorescence source consisted of UVA humic/fulvic type of DOM fraction. Its
presence is associated with organic matter generated within the stream by decomposition
of organic matter. It can be considered to fulvic acid fluorophone groups present in all

environments>6.

And the third fluorescence source consisted of mixed contributions of UVT protein-like
type of fraction, with tryptophan-groups. The agreement between the results (wavelength
of UVC, UVA, and UVT) obtained in this work with those previously obtained in other
studies (introduced in the first section of this chapter) confirmed the identification of
different DOM sources.

Moreover their distribution over the monitoring area under study was also estimated. The
concentration distributions have been illustrated on the map using MATLAB mapping
toolbox (MATLAB R2013a. The MathWorks, Inc.). When the MCR-ALS resolved
contributions are examined, it is observed that UVC and UVT contributions describe the
increase of DOM concentrations at Manlleu (large town), Roda de Ter (WWTP) and Riera
de Sant Marti (tributary river). After these three locations and along the river flow, DOM
concentrations revealed by UVA showed a gradual decreasing trend. The main difference
of UVA to the others is that after the station 23 (where river flows slower from this station
than upstream), it decreased sharply and should be related mostly to organic matter
caused by human (population) impact.

Hydroxy-benzoic acids (like in salicylic acid), B-naphthol, aromatic nitrogen rings,
tryptophan, amino acids and proteins can be present in DOM of the fresh water systems
and are responsible of most of the fluorescence properties investigated in this work. Main
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trends of the organic matter processes taking place along the fresh water system were

described in detail in the results section of paper®”’.

The results of this work show that EEM fluorescence spectra provide a powerful and
convenient way to investigate DOM source contributions in watersheds. Major DOM
source contributions in watershed can be obtained by means of EEM fluorescence spectra
combined with chemometric methods, such as MCR-ALS with the trilinearity constraint or
PARAFAC. Increasing and decreasing relative contributions of DOM in river can be related
with factors like river flow, DOM natural sources origin, human activities in the area and
population input sources along the river. MCR-ALS with the trilinear constraint is an
effective way to characterize and resolve DOM sources in natural fresh water systems
from EEM data.

179



Distribution of Dissolved Organic Matter in freshwaters using Excitation Emission fluorescence and
Multivariate Curve Resolution

180



Chapter 7

Conclusion

181



182



Conclusions

Conclusions of the application of chemometric methods

1) The results obtained in this Thesis show that MCR-ALS method can be successfully used
for hyperspectral image resolution purposes. The spectra signatures of the pure
constituents present in hyperspectral images and their concentration distribution at a
pixel level can be estimated. Constituents identification can be performed using the
resolved pure spectra signatures and comparing them to reference spectra from spectral
libraries or from experimental spectra of reference samples.

2) Application of image data pretreatment methods such as Multiplicative Scatter
Correction (MSC), Asymmetric Least Squares (AsLS) and Savitzky-Golay (SG) smoothing
reduce significantly the presence of strong fluorescence background in Raman
hyperspectral images. In contrast, infrared hyperspectral imaging is not affected by
fluorescence. Kramers-Kronig transform enables to calculate absorption spectra in case
only reflectance spectra can be measured for infrared spectra.

3) The extent of rotation ambiguity associated to MCR-ALS and other resolution methods
(like VCA (Vertex Component Analysis) or MVSA (Minimum Volume Simplex Analysis)) can
be rather high when they are applied for hyperspectral image resolution with high noise.
The correct resolution of hyperspectral images can only be guaranteed if additional
constraints are applied, such as those providing information about the local rank
properties of the image, i.e. about the presence or absence of the different constituents
(components) in the image pixels. Only in this way it is possible to increase the reliability
of the solutions provided by MCR methods and decrease the uncertainties associated to
them. Appropriate use of local rank and selectivity constraints can improve significantly
the quality of the pure spectra (signatures) and of the constituent distribution maps
resolved by MCR-ALS analysis of hyperspectral images in remote sensing studies.

4) Use of correlation coefficients between selected spectra and image pixel spectra is
shown to provide an alternative way for the application of the selectivity constraint in
hyperspectral images for the first time. This alternative method resulted to be satisfactory
when pure pixels exist.

5) MCR-BANDS method can be used to get estimations of the extension of rotation
ambiguities in MCR resolved results. The Area of Feasible Solutions (AFS) represents
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feasible solutions geometrically. The range of rotation ambiguity calculated by MCR-
BANDS and AFS are in agreement.

6) MCR-ALS with the trilinearity constraint is an effective way to characterize and resolve
Excitation-Emission Matrix fluorescence spectra (EEM). Georeferenced mapping using
MATLAB is an adequate method to visualize graphically and geographical distribution
maps of the constituents resolved by MCR-ALS analysis of environmental monitoring data
sets using fluorescence EEM data.

Conclusions from environmental and food samples analysis using hyperspectral imaging
and Multivariate Curve Resolution methods

1) In the analysis of remote sensing NIR hyperspectral images obtained from the region of
Cuprite in Nevada, in the San Diego airport and in the Moffet field in California, MCR-ALS
results showed clearly the presence of multiple objects such as airplanes, green plant
areas, lakes, hard ground field and other related objects in the image. Decisions can be
taken from the detailed information (distribution maps) contained in these images after
examining them by MCR-ALS.

2) Micro-hyperspectral imaging coupled to MCR-ALS is confirmed to be an appropriate
tool for the direct analysis of the constituents of chocolate samples, and by extension, it is
proposed for the analysis of other mixture constituents in commercial food samples.
Results achieved in this work are representative of the possibilities offered by
hyperspectral imaging analysis of food samples, and confirmed the potential use of the
MCR-ALS as a complementary tool method for this type of analysis. Application of this
combination of methods (hyperspectral imaging and MCR-ALS) can be proposed for
testing samples from other similar fields including the analysis of material surfaces,
agriculture products as well as biological tissue analysis in medicine.

3) Environmental monitoring studies of natural fresh water systems by Excitation-Emission
Matrix (EEM) fluorescence spectra provide a powerful and convenient way to investigate
Dissolved Organic Matter (DOM) source contributions in watersheds. Major DOM
fluorescence sources were resolved, and assigned to UVC humic type of fraction, UVA
humic/fulvic type of fraction, UVT, protein-like, and tryptophan-like type of fraction.
Resolved geographical distribution of these three different DOM sources over the
investigated area showed increasing and decreasing relative contributions of these
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sources according to different factors like river flow, DOM natural sources origin, human
activities in the area and population in input sources.
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Resumen

El analisis de imagenes hiperespectrales esta relativamente avanzado dentro del analisis
de alimentos y de medio ambiente. Las imagenes hiperespectrales permiten obtener un
conocimiento preciso y fiable sobre la composicién quimica y la distribucién de los
componentes quimicos en la superficie de una muestra a investigar. Los resultados del
analisis de imagenes hiperespectrales pueden utilizarse para adquirir una comprensién
fundamental de los sistemas quimicos complejos en investigacién y desarrollo, con
repercusiones comerciales, como métodos de validacién de la adulteracidon en el analisis
de alimentos y derivados, y en el andlisis de los procesos industriales y de su control. El
analisis de los datos de imdgenes hiperespectrales son un gran reto debido a su tamafio y
complejidad. En esta Tesis se propone el desarrollo y utilizacion de métodos
guimiométricos que permitan revelar la informaciéon contenida en las imdgenes
espectrales analizadas tanto como sea posible.

Esta Tesis trata de la resolucién de datos de imagenes hiperespectrales utilizando
métodos quimiométricos, en particular mediante el uso de métodos de pretratamiento de
datos y utilizando métodos de resolucidon multivariante de curvas (MCR). La principal
contribucion de la presente Tesis es el estudio y la aplicacion del método MCR-ALS
(resoluciéon multivariante de curvas mediante minimos cuadrados alternados) para la
resolucion de imagenes hiperespectrales, adquiridas mediante técnicas de teledeteccion
(en el aire o en el espacio, transmitidas a la Tierra mediante instrumentos de observacién)
y mediante técnicas de micro-espectroscopia. Especificamente, en el trabajo de esta Tesis,
se explora la combinacion de los métodos quimiométricos y de los métodos de andlisis de
imagenes hiperespectrales, para la resolucién de los espectros (firmas) y de los mapas de
distribucion de los componentes quimicos de la muestra. El objetivo final de este estudio
es mejorar el analisis y la interpretacion de los datos de imagenes hiperespectrales
mediante el aprovechamiento de diferentes herramientas quimiométricas poderosas. La
deteccién del rango local y las propiedades de selectividad que describen la informacién
espacial de los componentes presentes en las imagenes espectroscopicas se puede utilizar
como restriccién para aumentar significativamente el rendimiento del método MCR,
disminuyendo las incertidumbres asociadas a las ambigliedades rotacionales. Se han
comparado diferentes métodos de resolucidn, tales como MCR-ALS, ICA (Andlisis de
Componentes Independientes), MVSA (Minimo Volumen Simplex Analisis), PCA (Analisis
de Componentes Principales), y MCR-FMIN. Los métodos MCR-BANDS y FAC-PACK se han
utilizado para la evaluacion de la extension de las ambigliedades rotacionales existentes
en los resultados después de la aplicacion de estos métodos de resolucién multivariante.
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En esta Tesis se han analizado diversos conjuntos de datos compuestos por varias
imagenes hiperespectrales proporcionadas por instrumentos estdndar tales como el
espectrémetro de imdgenes hiperespectrales en el visible y en el infrarrojo AVIRIS de la
NASA, y diversos espectrémetros de imagenes hiperespectrales Raman y infrarrojo de
laboratorio. La eficacia del procedimiento MCR-ALS se ilustra proporcionando
comparaciones exhaustivas con otros métodos de resolucién de mezclas espectrales a
partir de conjuntos de datos hiperespectrales simulados y reales.
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Objetivos generales de la Tesis

El objetivo principal de esta Tesis ha sido el desarrollo y la aplicacion de métodos
guimiométricas para el analisis de imagenes hiperespectrales obtenidos a partir de
técnicas de teledeteccion o de micro-espectroscopia de muestras de medio ambiente y de
alimentos. Se han estudiado en detalle diferentes conjuntos de datos simulados vy
experimentales, obtenidos bien a partir de repositorios de datos de teledeteccién publicos,
o a partir de medidas experimentales. Se han analizado y caracterizado diferentes
conjuntos de datos simulados y experimentales obtenidos a partir de repositorios de
datos de teledeteccidn publicos y a partir de mediciones experimentales.

Especialmente importante ha sido la extensién y aplicacion del método de MCR-ALS para
la resolucién de datos de imdagenes hiperespectrales obtenidas mediante teledeteccién,
con el objetivo de obtener los espectros y mapas de distribucion de los constituyentes de
las imdagenes analizadas.

Objetivos en el analisis de imagenes hiperespectrales

e Aplicar el método MCR-ALS al analisis de imdagenes hiperespectrales a partir de
conjuntos de datos simulados y de conjuntos de datos experimentales, que
incluyen imagenes obtenidas a partir de procedimientos de teledeteccién del
medio ambiente, y de imagenes obtenidas a partir de microespectroscopia de
alimentos de muestras comerciales de chocolate. También se realiza la
aplicacién el método MCR-ALS al analisis fluorimétrico de muestras de aguas
superficiales del rio Ter y de sus embalses en su curso medio (embalses de Sau y
Susqueda). En todos estos casos, se propone la aplicacion del método MCR-ALS
para la resolucion de los espectros de los componentes de las mezclas
analizadas, para su caracterizacién y estimaciéon de sus correspondientes
contribuciones y mapas de distribucién.

e Aplicar el método MCR-ALS a las imdagenes hiperespectrales obtenidas por
teledeteccion, para resolver os diferentes objetos presentes en las imagenes
estudiadas, tales como lagos, suelos, vegetacidon, edificios, etc., y la
determinacién de su ubicacidn en la imagen estudiada.
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e Aplicar el método MCR-ALS al analisis hiperespectral de los componentes del
chocolate para su resolucién a nivel micro segun su tamafio de particula,
aspecto importante relacionado con el control de la calidad del producto en el
caso de estudio de alimentos.

e Aplicar el método MCR-ALS al analisis de los datos de fluorescencia para el
seguimiento de las fuentes de materia organica (DOM) en el rio Ter para la
resolucién de sus diferentes contribuciones, sus niveles de concentracién, su
distribucion geografica y la relacion que existen entre ellas y la actividad
humana a lo largo del cauce del rio y de sus embalses.

Objetivos de los andlisis quimiométricso

e Desarrollar y aplicacar el método MCR-ALS para el andlisis de datos de imagenes
hiperespectrales, para obtener los espectros puros y la distribucion de los
constituyentes de las imagenes.

e Adaptar el método de MCR-ALS con las restricciones de selectividad/rango
locales para la mejora de los resultados de resolucién. Utilizacién del
procedimiento FSIW-EFA y del método del coeficiente de correlacién para la
aplicacién de la restriccién de selectividad en imagenes espectroscdpicas.

e Aplicar los métodos de pretratamiento espectral para reducir la influencia de la
dispersion (scattering) de luz en NIR, de la fluorescencia de fondo en la
espectroscopia Raman cuando se irradia la muestra, y de la presencia de
contribuciones de ruido de fondo y de cambios de su contribucion (linea base).

e Aplicar el método MCR-ALS al andlisis simultaneo de conjuntos multiples de
datos, dispuestos en matrices aumentadas o en estructuras multidireccionles
(multiway), y aplicacidn de la restriccién asociada a modelos trilineales.

e Discutir y comparar las diferentes formas de calcular la extensidn de las
ambigliedades rotacionales de los métodos MCR, como las que se proponen en
los procedimiento MCR-BANDS y FAC-PACK, que permiten la evaluacién de la
calidad de los resultados obtenidos por MCR-ALS.
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Estructura de la Tesis

Esta Tesis se presenta en dos grandes apartados. En la primera parte introductoria se
incluye la descripcion de las técnicas de andlisis de imagenes hiperespectrales, su
aplicacién en diferentes dreas, y los métodos quimiométricos utilizados para su aalisis. En
la segunda parte se presentan los resultados y su discusion de los resultados, en la que se
incluyen los articulos cientificos publicados a lo largo dela Tesis y las referencias
bibliograficas consideradas. Estas dos grandes partes de la Tesis se subdividen en siete
capitulos que describen a continuacién de forma concisa.

e En el primer capitulo se presentan los objetivos de la Tesis. Ademas, se
describe su estructura y se relaciona con el trabajo cientifico de este informe.

e En el segundo capitulo, se revisan las técnicas de imagenes hiperespectrales
mas recientes, su introduccién, antecedentes y su aplicacion en medio
ambiente y en el drea del andlisis de alimentos. Se introduce la parte tedrica
de los métodos quimiométricos aplicados al andlisis de imagenes
hiperespectrales.

e En el tercer capitulo, se muestra la aplicacién de los métodos de MCR-ALS a
imagenes obtenidas por teledeteccion hiperespectral. Se describen los datos
generados utilizando espectros de la biblioteca de la USGS y de datos de
teledeteccion publica (AVIRIS, Airborne Visible / Infrared Imaging
Spectrometer) de la NASA. Se muestra también el efecto del uso de las
restricciones de rango local y de selectividad basadas en la informacion
espacial de los componentes presentes en las imagenes espectroscopicas, para
asi aumentar el rendimiento de los métodos MCR y disminuir su ambigliedad.

e En el capitulo cuarto, se muestra la aplicacién de la espectroscopia Raman y
infrarroja de imagenes hiperespectrales combinadas con los métodos de
pretratamiento y de resolucion multivariante de curvas (MCR) con la
restriccion de selectividad para el andlisis de los constituyentes de las
muestras de chocolate comerciales estudiadas.

e En el quinto capitulo, se comparan diversos métodos quimiométricas de
resolucion que utilizan modelos bilineales de descripcion de los datos. Se
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discuten y comparan diversas formas de calcular la extensién de las
ambigliedades de rotacion.

En el Capitulo sexto, se aplica el procedimiento MCR-ALS con la restriccion de
trilinealidad y se propone su utilizacion para datos de fluorescencia de
excitacién-emisién para el analisis de la materia orgdnica disuelta (DOM) en
sistemas naturales de agua dulce, y los resultados obtenidos se comparan con
los obtenidos con PARAFAC.

En el capitulo séptimo se presentan las conclusiones de esta Tesis.
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Introduccion

La utilizacion de las espectroscopia de imagenes representa un gran avance para la
tecnologia de teledeteccion®'’, que incluyen la utilizacién de las espectroscopias Raman,
infrarroja y de fluorescencia'®. Representa una metodologia Gtil que puede aplicarse con
fines analiticos en la agriculturalo, la biologl'an, los estudios ambientales *2, las ciencias de
la tierra y en otros campos®®. Se ha convertido en una disciplina muy importante en los
Gltimos afios™.

El andlisis de imagenes hiperespectrales proporciona grandes conjuntos de datos en
general, integrados en 100 a 200 bandas espectrales con anchuras de banda
relativamente estrechas, de aproximadamente entre 5 y 10 nm. Las imdgenes
hiperespectrales se pueden representar en forma de cubos de datos. La informacion
espacial se recoge en el plano X-Y, y la informacidn espectral se representa en la direccién
Z. El andlisis de estos conjuntos de datos multidimensionales requiere ordenadores
rapidos y grandes capacidades de almacenamiento, superiores a cientos de megabytes.

Para la investigacion, desarrollo, utilizacién comercial, validacién, y comprobacién de
adulteracién, son necesarios métodos de referencia adecuados. Existen métodos de
referencia para la seguridad alimentaria, pero el anadlisis y el control de calidad tienen a
menudo limitaciones, debido a su adecuacidén a las diferentes etapas de la cadena
alimentaria. Las diversas aplicaciones desarrolladas han demostrado claramente los
beneficios de la utilizacion de la técnica de imagenes hiperespectrales para la
caracterizacion de muestras y para la investigacion de la distribucién de las especies
quimicas presentes en las imagenes analizadas. El analisis de imagenes hiperespectrales
ha demostrado ser una herramienta muy valiosa para una amplia gama de aplicaciones en
el analisis de alimentos y en estudios de medio ambiente. La mayor capacidad de las
tecnologias hiperespectrales en el seguimiento ambiental utilizando técnicas de
teledeteccion permite a los gestores ambientales tomar decisiones correctas con el
detalle necesario y en un marco de tiempo eficiente. Proporciona soluciones analiticas
atractivas para satisfacer las demandas de los consumidores en relacion a la calidad y
inocuidad de los alimentos.

Debido al enorme tamafio y complejidad de los datos espectrales obtenidos en el andlisis
de imagenes hiperespectrales, los métodos quimiométricos son una buena opcioén para
extraer la informacidn acerca de la naturaleza, cantidad y ubicacién de los componentes
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en las muestras a partir del andlisis de las imagenes medidas. El Analisis de Componentes
Principales (PCA) 3'° permite el procesamiento de conjuntos de datos de imagenes
espectroscopicas y la reduccién de sus dimensiones sin una pérdida significativa de la
informacidn. Sin embargo, debido al criterio de méxima varianza y de las restricciones
ortogonales aplicadas, PCA no proporcionan directamente las espectros puros
(verdaderos) ni los perfiles de concentracidn relativos de los constituyentes de imagen.
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Figure 8-1. Descomposicion de la matriz bilineal de una imagen hiperespectral utilizando el método de MCR-

ALS. Resolucidn de los espectros (firmas) y de las concentraciones de imagen 2D de los componentes puros.

El método de resolucién multivariante de curvas mediante minimos cuadrados alternados
(MCR-ALS) ha sido propuesto y utilizado ampliamente para resolver las respuestas
instrumentales y concentraciones de los componentes presentes en mezclas

desconocidas®®

. Se ha aplicado para analizar sistemas quimicos multicomponentes tales
como reacciones quimicasm, procesos industriales®*?, problemas de coelucidn
cromatogréfica323, mezclas espectroscépicas324, datos de seguimiento ambiental®®, y se
puede aplicar a muchos otros tipos de casos y datos de analisis de mezclas. MCR-ALS ha
sido propuesto también como método util para la resolucién y segmentacién de imagenes

hiperespectrales biomédicas y para otros tipos de imagenes hiperespectrales326'330. E

n
MCR-ALS, se supoine que las medidas (sefales) analiticas siguen un modelo bilineal

aditivo generalizado (tal como el de la extension de la Ley de Lamber Beer en la
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espectroscopia de absorcion®' para analisis multicomponente a multiples longitudes de
ona). La contribucién de cada componente a la sefial medida depende de su concentracion
y de su propia sensibilidad espectral (espectro puro). MCR-ALS también se puede aplicar
para obtener informacién cuantitativa y proporciona soluciones con significado fisico y
guimico (Figura 8-1). Esto se consigue logra porque en MCR-ALS, las restricciones que se
aplican se cumplen de forma natural en las soluciones que se buscan, como son por

229, 332 333, 334 335, 336
d d’-> 7, R VAN P

ejemplo la no negativida , la unimodalida

trilinealidad®** 3%,

el rango loca

Sin embargo, aunque las soluciones MCR tienen un significado mdas fisico y una
interpretaciéon mas facil que los obtenidos por PCA, no son soluciones Unicas en general, y
tienen un cierto grado de ambigliedad. La ambigliedad mas critica y dificil de evitar es la
ambigliedad de rotacién o rotacional. En este caso, un conjunto de soluciones diferentes
(y combinaciones lineales de las mismas), se ajusta a los datos experimentales igualmente
bien. Por lo tanto estas soluciones serdn equivalentes desde un punto de vista
matematico aunque seran completamente diferentes desde un punto de vista fisico. Una
manera para reducir este tipo de ambigliedad es por medio de la aplicacién de mads
restricciones a las soluciones, pero esto debe realizarse manteniendo la plausibilidad fisica
de las soluciones.

Ademds de las restricciones naturales, las estrategias mas poderosas para evitar la
presencia de las ambigliedades rotacionales en los métodos de MCR son el uso de la
informacidn del rango local y de la selectivad, la extensidn MCR para el analisis simultaneo
de multiples conjuntos de datos y de datos multidireccionales, el uso de modelos basados
en principios fisico-quimicos (determinista). Usando apropiadamente estas estrategias, se
consigue la obtencién de soluciones Unicas como se ha demostrado en diversos trabajos
anteriores.

Entre todas estas posibilidades, el uso de la restricciéon de tri-linealidad en el analisis
simultdneo de multiples conjuntos de datos es la mejor opcién para el analisis de
conjuntos de datos que cumplen con este tipo de modelo. Se estudia también a
continuacién la obtencidon de las mismas soluciones a partir del método PARAFAC.

Cuando se reconoce que las soluciones MCR pueden tener un cierto grado de ambigliedad,
la pregunta es cdmo se puede evaluar este grado de ambigliedad. Diferentes métodos han
sido propuestos en la literatura para su evaluacidn, incluyendo el desarrollo de métodos
para el calculo de los limites de las denominadas bandas posibles o factibles y de sus areas
de existencia (area of feasible solutions, AFS).
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Con el fin de evaluar la presencia de las ambigliedades de rotacidon asociados a una
solucién MCR particular y para medir sus efectos, se han propuesto diferentes métodos en

los papeles®*® 27%°,
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Resumenes

Aplicacion de MCR-ALS en imagenes hiperespectrales teledeteccion

La teledeteccién es la adquisicion de informacién acerca de un objeto o fenémeno, sin
hacer contacto fisico con el objeto. En su uso moderno, el término generalmente se
refiere a la utilizacion de tecnologias de sensores para detectar y clasificar objetos sobre
determinadas areas o regiones de la Tierra. La deteccidn remota mediante imdagenes
hiperespectrales es una combinacién de ambas tecnologias, las imagenes hiperespectrales
y la teledeteccion, que proporciona informacion analitica espectral y espacial sobre los
objetos presentes en una zona geografica determinada (Figura 8-2). Sobre la base de los
espectros puros resueltos de los constituyentes de la imagen y de su distribucién sobre la
imagen, se puede obtener informacién adicional como la posible identificacién de estos
componentes a partir de las bases de espectros en bibliotecas, y su cuantificacion relativa
dentro de la imagen. Una de los aspectos de las imagenes hiperespectrales teledeteccidon
es que en cada pixel medido de la imagen, generalmente se encuentran presentes una
mezcla de varios componentes espectrales. La resolucion de la imagen hiperespectral
requiere extraer los espectros puros de estos componentes y averiguar cédmo se

distribuyen los componentes correspondientes en la imagen.

4,
=
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!

Figure 8- 2 llustracion de la teledeteccion

La aplicacién del método de MCR-ALS se demuestra en dos imagenes espectroscépicas de
teledeteccion generadas por simulacién y de una imagen obtenida a partir del
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espectrometro de teledeteccidon de imagenes hiperespectrales en el infrarrojo AVIRIS de la
NASA. Por aplicacién de MCR-ALS, se estiman los espectros puros de los componentes
presentes en la imagen y su distribuciéon a nivel de pixel de la imagen. Los resultados
obtenidos por MCR-ALS se comparan con los obtenidos por otros métodos utilizados con
frecuencia en el estudio de imagenes obtenidas por espectroscopia infrarroja de
teledeteccion como son VCA y MVSA.

En el caso del andlisis de los datos experimentales, los espectros puros resueltos se
compararon con espectros de referencia de la biblioteca del USGS para su identificacién.
En todos los casos, también se evaluaron los resultados sobre la posible presencia de
ambigliedades rotacionales utilizando el método de MCR-BANDS.

Los resultados obtenidos confirmaron que el método de MCR-ALS puede ser utilizado con
éxito para fines de resolucion de imagenes hiperespectrales de teledeteccion. Sin
embargo, la presencia de ambigliedad rotacional en las soluciones obtenidas por los
diferentes métodos de resolucién (como VCA o MVSA) puede ser en algunos casos grande
y debe ser evaluados con cuidado, tratando de reducir sus efectos mediante la seleccion
de las restricciones mas apropiadas. SAlo de esta manera es posible aumentar la fiabilidad
de las soluciones aportadas por estos métodos y disminuir las incertidumbres asociadas a
Su uso.

Los dos articulos publicados en el presente capitulo son:

Zhang, X.; Tauler, R., Application of multivariate curve resolution alternating least squares
(MCR-ALS) to remote sensing hyperspectral imaging. Analytica chimica acta. 2013, 762,
25-38.

Zhang, X.; Juan, A.; Tauler, R., Local rank-based spatial information for improvement of
remote sensing hyperspectral imaging resolution. Submitted to Talanta.
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Aplicacion de imagenes hiperespectrales combinado con quimiometria en el analisis de
alimentos

El chocolate es un producto comun en la industria alimentaria, cuyo andlisis es lento y
tedioso. Durante el fabricacion de chocolate, refinacidn y coaching, propiedades como el
tamafio de las particulas, la consistencia y la viscosidad de la suspension, dan la textura
especifica y las cualidades sensoriales del producto final. El control de la distribucion de
las particulas de grasa (y su tamafio de particula) puede afectar a las propiedades
reoldgicas y a la textura del chocolate, y también puede tener un impacto en el contenido
final de grasa en el chocolate, cuya absorcion en el cuerpo de los consumidores puede
tener efectos sobre su salud.

La deteccion de las particulas constituyentes del chocolate y la estimacidon de su tamano
puede obtenerse a partir de las imdgenes hiperespectrales, y utilizarse para el control de

la calidad chocolate.

LabRAM HA,

Figura 8-3 Instrumentos para recoleccidén de imagenes hiperespectrales utilizados en el analisis experimental
de muestras de chocolate (HORIBA JobinYvon Raman microscope (HORIBA, Ltd.), Nicolet iN10 MX Infrared

Imaging Microscope)

En este capitulo se muestra la aplicacién de las hiperespectroscopias Raman e infrarroja
(Figura 8-3) combinadas con el método de resolucién multivariante de curvas (MCR) en el
analisis de los constituyentes de muestras de chocolate comerciales. La combinacion de
diferentes métodos de pretratamiento datos espectrales ha permitido la disminucion de la
contribucion fluorescente elevada de la sefial Raman en las muestras de chocolate
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investigados. A partir del uso de las restricciones de igualdad (tales como de rango local y
de selectividad) durante el analisis de MCR, se mejoraron apreciablemente las
estimaciones de los espectros puros de los constituyentes de la muestra de chocolate, asi
como sus contribuciones relativas y su distribucién espacial en las muestras analizadas.
Ademads, componentes desconocidos de la muestra podian ser también resueltos. La
distribucién de los constituyentes del chocolate blanco resueltos a partir de imagenes
hiperespectrales Raman indican que a escala macro, la sacarosa, la lactosa, la grasay son
constituyentes que fueron mezclados en forma de particulas.

Las omagenes hiperespectrales infrarrojas no sufren de fluorescencia y se podian utilizar
para el analisis de muestras de chocolate blanco y de chocolate con leche. Como
conclusién de este estudio, las imagenes micro-hiperespectrales analizadas con el método
de MCR se confirman como una herramienta adecuada para el andlisis directo de los
constituyentes de muestras de chocolate y, por extension, se propone el analisis de otros
componentes de mezclas de alimenatos en productos comerciales.

El articulo publicado en el presente capitulo es:

Zhang, X.; Juan, A.; Tauler, R., Multivariate Curve Resolution applied to hyperspectral
imaging analysis of chocolate samples. Applied Spectroscopy. 2015, 69(8).
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Medir y comparar el rendimiento de resolucién y la extension de las ambigiiedades de
rotacion en los métodos de modelado bilineales

Los métodos basados en modelos bilineales se utilizan frecuentemente en el analisis de
conjuntos de datos de espectroscopia y de cromatografia. Cuando se aplican estos
métodos de modelizacién bilineales, las ambigliedades rotacionales se encuentran
presentes y deben ser consideradas. En este trabajo, se examinan los resultados
obtenidos por la aplicacién de diferentes métodos, tales como el analisis de componentes
independientes (Independent Component Analysis, ICA), el analisis de componentes
principales (PCA), y el Minimum Volum Simplex Analysis (MVSA), y se comparan con los
obtenidos por el método de resolucidon multivariante de curvas (MCR). Con el fin de hacer
esta comparacion, se utilizan diversos pardmetros tales como el que mide la informacién
mutua (Mutual Information, Ml) el indice de Amari (Al) y el de falta de ajuste (lack of fit,
lof) para la evaluacion de los rsultados obtenidos por los diferentes métodos. Las areas o
regiones de soluciones posibles (AFS) y sus limites son evaluados por diferentes métodos
gue investigan el problema ambigliedad rotacional a partir de diferentes conceptos. Los
resultados obtenidos por el método de MCR-BANDS en el calculo de la extension de las
ambigliedades rotacionales se analizan y se comparan con los recientemente propuestos
para la estimacién de toda la gama de soluciones posibles y para la definicién del drea de
soluciones posibles (AFS).

Los métodos basados en modelos de descomposicidn bilineal, como por ejemplo, MCR-
ALS, MCR-FMIN, ICA, PCA, o MVSA (todos ellos utilizados en este trabajo) son métodos
adecuados para la resolucién multivariante de curvas. Pero no todos ellos realizan la
descomposicidon de la misma manera. Cuando estos métodos se aplican a datos en dos
direcciones (two-way) y no existen condiciones de resolucién unica (por ejemplo de rango
local o de selectividad), no hay forma en general de saber si estos métodos proporcionan
la solucién verdadera. Diferentes métodos de resolucién dardn una de las soluciones
posibles equivalentes para el problema en estudio.

Los resultados obtenidos a partir de todos estos métodos muestran que es posible
obtener un rango de soluciones posibles que pueden describir y ajustar los datos
igualmente bien, sin dejar de cumplir el modelo bilineal y las restricciones del sistema
estudiado. No es posible por lo tanto decir que un método es mejor que otro a partir de
los resultados obtenidos por los diferentes métodos. Todos ellos pueden ser considerados
como una herramienta alternativa para la resolucién de las sefiales espectroscdpicas
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(espectros puros) en ciertos casos. Sin embargo, la aplicacidén de restricciones fisicas como
son la no-negatividad en los perfiles espectrales y de concentracidn es mas flexible y fiable
en métodos de MCR como el MCR-ALS.

El método MCR-BANDS ofrece una primera aproximacién al calculo de la regién o area de
todas las soluciones MCR posibles, AFS. La representacién geométrica de todas las
soluciones posibles puede realizarse a partir de métodos como FAC-PACK ara un numero
limitado de componentes. Es interesante remarcar que la extensidon de las ambigiiedades
rotacionales calculada por el método MCR-BANDS y las regiones AFS calculados por un
método como FAC-PACK son concordantes.

El articulo en el presente capitulo es:

X. Zhang, R. Tauler. Measuring and comparing the resolution performance and the extend
of rotation ambiguities in bilinear modelling methods. Submitted to Journal of
Chemometrics.
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Distribucién de materia orgdanica disuelta en las aguas dulces utilizando fluorescencia de
excitacién emisién y Multivariante Curve Resolucién

Se propone el método la resolucién multivariante de curvas mediante minimos cuadrados
alternados (MCR-ALS) con la restriccion de trilinealidad para el andlisis de los datos de
excitacion-emision de fluorescencia causados por la materia organica disuelta (DOM) en
los sistemas naturales de agua dulce (Figura 8-4 i Figura 8-5), y los resultados obtenidos se
comparan con los obtenidos con PARAFAC.

Figure 8- 4 La parte superior es el mapa de la cuenca del rio Ter y la parte inferior corresponde a los

principales embalses de Susqueda y Sau (La figura se obtuvo de mapa de Google).
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Los efectos del diferente nimero de componentes vy las limitaciones sobre la estabilidad
de los modelos propuestos se comparan. Se demuestra que MCR-ALS es una manera
eficaz para caracterizar y resolver las fuentes de DOM en los sistemas naturales de agua
dulce a partir de datos de EEM, con buena correlacidn con los valores de concentracion de
DOM medidos experimentalmente.

FRANCIA [
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(Setcases)
GIRONA Figueres
Qlot
Colomers
CUENCA
Marilleu Crsalse DEL TER
de Susqueda
Girona
Vie Embalse

Embalse
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10 km

Figure 8- 5 La ubicacién de la cuenca del rio Ter en Catalunya, Espafia.

La utilidad de mapas (mapping) georeferenciados de MATLAB se utiliza para ilustrar la
distribucion geografica de las contribuciones DOM resueltos. Los espectros resueltos por
MCR-ALS se utilizan para reconocer los grupos quimicos correspondientes a las posibles
fuentes de DOM. Las relaciones entre las actividades humanas y la situacion ambiental del
sistema fluvial se discuten a partir de estas posibles fuentes de DOM.

El articulo publicado en el presente capitulo es:

ZHANG, Xin., Marcé, R., Armengol, J., & Tauler, R. Distribution of dissolved organic matter
in freshwaters using excitation emission fluorescence and Multivariate Curve Resolution.
Chemosphere, 2014, 111, 120-128
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Conclusiones

Conclusiones de la aplicacion de métodos quimiométricas

1) Los resultados obtenidos en esta Tesis muestran que el método de MCR-ALS puede ser
utilizado con éxito para fines de resolucién de imagenes hiperespectrales. Los espectros
puros de los constituyentes presentes en las imagenes hiperespectrales y la distribucion
de sus concentraciones a nivel de pixel pueden estimarse.

2) La aplicacién de los métodos de pretratamiento de datos de imagenes como por
ejemplo el método Multiplicative Scater Correction (MSC), el método Assymetric Least
Squares (AsLS) y el método de suavizacion Savitzky-Golay (SG), reduce significativamente
la presencia de algunos inconvenientes como son la fuerte fluorescencia de fondo en las
imagenes hiperespectrales Raman. En contraste, las imagenes hiperespectrales de
infrarrojos no se ven afectadas por la fluorescencia. El método de transformacién de
Kramers-Kronig permite calcular los espectros de absorcidn en caso de que solamente se
puedan medir los espectros de reflectancia infrarroja.

3) El grado de ambigliedad rotacional asociada al procedimiento MCR-ALS y a otros
métodos de resolucidén (como VCA (Vertex Component Analysis) o MVSA (Minimal Volum
Simplex Analysis) puede ser bastante alta cuando se aplican a la resolucién de imagenes
hiperespectrales que tienen un elevado grado de ruido experimental. La resolucion
correcta de las imagenes hiperespectrales sélo puede garantizarse si se aplican
restricciones adicionales, tales como las que proporcionan informacién sobre el rango
local de las imdagenes, es decir sobre la presencia o ausencia de los diferentes
constituyentes (componentes) en los pixeles de la imagen. Sélo de esta manera es posible
aumentar la fiabilidad de las soluciones proporcionadas por los métodos MCR y disminuir
las incertidumbres asociadas a ellos. El uso apropiado del rango local y de la informacién
de selectividad puede mejorar significativamente la calidad de los espectros puros (firmas)
y de los mapas de distribucidén de los constituyentes resueltos por el analisis MCR-ALS de
imagenes hiperespectrales en los estudios de teledeteccién.
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4) Se muestra por primera vez el uso de los coeficientes de correlacidon entre espectros
seleccionados y los espectros de pixeles de las imagenes para proporcionar una forma
alternativa para la aplicacion de la restriccion de selectividad en imdgenes
hiperespectrales. Este método alternativo resultd ser satisfactorio cuando existen pixeles
puros.

5) El método Area of Feasible Solutions (AFS) representa geométricamente el conjunto de
soluciones posibles. La extension de la ambigiedad rotacional calculada por MCR-BANDS y
por AFS estan de acuerdo.

6) MCR-ALS con la restriccion de trilinealidad es una manera eficaz para caracterizar y
resolver los componentes fluorescentes de mezclas a partir de datos de matriz de
Excitacion-Emision (EEM). El procedimiento de Mapping georeferenciado utilizando
MATLAB es un método de visualizacién muy util para describir de forma concisa la
distribucion geografica de las fuentes de materia orgdnica disuelta (DOM) a partir de los
resultados MCR-ALS aplicados a datos EEM.

Conclusiones de analisis de muestras de alimentos y ambiental utilizando imagenes
hiperespectrales y los métodos de Multivariante Curve Resolucion

1) En el analisis de imagenes hiperespectrales obtenidas a partir de procedimientos de
teledeteccion procedentes de la region de Cuprita en Nevada, del aeropuerto de San
Diego y del campo Moffet en California, los resultados MCR-ALS muestran claramente la
presencia de varios objetos como aviones, zonas de plantas verdes, lagos, campos de
tierra dura y otros objetos relacionados con la imagen. El examen de los resultados
obtenidos a partir del analisis MCR-ALS de datos de teledeteccion de imdgenes
hiperespectrales sobre mapas de distribucién permite la toma de decisiones.

2) El acoplamiento del andlisis micro-hiperespectral de imagenes y del analisis MCR-ALS se
confirma ser un instrumento adecuado para el andlisis directo de los constituyentes de
muestras de chocolate, y, por extension, se propone también para el analisis de otros
componentes de mezclas en muestras de alimentos comerciales. Los resultados obtenidos
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en este trabajo son representativos de las posibilidades que ofrece el analisis de imagenes
hiperespectrales de muestras de alimentos, y ha confirmado el uso potencial del
procedimiento MCR-ALS como herramienta complementaria para este tipo de andlisis. La
aplicacién de esta combinacion de métodos (de andlisis de imagenes hiperespectrales y de
analisis MCR-ALS) se puede proponer para el andlisis de muestras en otros campos
similares, incluyendo el andlisis de superficies de materiales, de productos de la
agricultura, asi como el andlisis de tejidos bioldgicos en medicina.

3) Los espectros de fluorescencia (EEM) proporciona una forma poderosa y conveniente
para la investigacion de las fuentes de materia organica disuelta (DOM) en las cuencas
hidrograficas. Las fuentes de materia orgdnica disuelta (DOM) fluorescente resueltas y
asignadas son la fracciéon UVC humica, la fraccion UVA humica/fulvica, la fraccion UVT, y la
fraccidn de proteinas y triptéfano. La distribucion geografica resuelta de estas tres fuentes
DOM diferentes a lo largo del area investigada en este trabajo (cuenca del rio Ter),
muestra aumentos y disminuciones de las contribuciones relativas de DOM de fuentes
naturales de acuerdo con diferentes factores tales como el flujo del rio, las actividades
humanas en la zona y su poblacidn.
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