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Introduction

The Project

The main purpose of this project is to study the classical theorems on interpolation
of linear operators in order to analyse some modern results on interpolation of
multilinear operators.

Following the approach of Bennett and Sharpley [3] to the classical interpola-
tion theory of quasilinear operators, we gather all the results that will allow us to
tackle the recent developments on multilinear interpolation theory, in particular,
the result of Grafakos, Liu, Lu and Zhao [11].

Our goal is to fully understand the different real interpolation techniques pre-
sented by the previous authors, so we devote our time and efforts to give detailed,
self-contained and complete proofs of the main interpolation results.

We focus on the study of real-variable methods and we start with one of the
cornerstones of the classical interpolation theory: the Marcinkiewicz interpolation
theorem.

We continue the study with the K-method of interpolation, which it may be
regarded as a lifting of the Marcinkiewicz interpolation theorem from its classical
context in spaces of measurable functions to an abstract Banach space setting.

Finally, we study multilinear interpolation theory, exposing the proof a version
of Marcinkiewicz’s interpolation theorem for bi-sublinear operators.

Personal Conclusions

There haven’t been any remarkable issues concerning the mathematics of the
project. Most of the basic tools that we have used were studied in the Master
courses of Functional Analysis and Harmonic Analysis. This project has allowed
to acquire a deeper comprehension of the results exposed in these courses, and
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also to understand more abstract ideas in the fields of Functional and Harmonic
Analysis.

The most difficult part of the project has been to find time to work on it, since
during its development I was attending the Master courses and giving lectures as
a professor at the Faculty of Chemistry. Nevertheless, we have fulfilled our initial
goals and obtained a document that can be regarded as an introduction to the
theory of interpolation of operators.

My future plans are to continue studying multilinear operators, using this work
as a bridge between the theory of interpolation of operators and the Rubio de Fran-
cia’s extrapolation theory for multilinear operators. If I am awarded a Ph.D. grant
during the following months, I will start the development of this new enterprise
by the end of this year.
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useful critiques of this research work. Her advice and assistance in keeping my
progress on schedule have been very much appreciated.
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An Overview of Interpolation Theory

Consider a R-vector space X and a function ρ : X → R such that ∀f, g ∈ X
and ∀a ∈ R, we have that ρ(af) = |a|ρ(f), ρ(f) = 0 ⇔ f = 0 and ρ(f + g) ≤
ρ(f) +ρ(g). Then, ρ is called a norm on X. A pair (X, ρ) is called a Banach space
if X is complete with respect to ρ.

A first example of Banach spaces are the Lebesgue spaces Lp, for 1 ≤ p ≤ ∞.
Given (R, µ) a totally σ-finite measure space, Lp(X,µ) consists of all scalar-valued
measurable functions for which

‖f‖p =

(∫
R

|f |pdµ
) 1

p

<∞,

or ‖f‖∞ = ess supR |f | <∞, for the case p =∞, together with the norm ‖·‖p.

Suppose that we have two Banach spaces (X, ‖·‖X), (Y, ‖·‖Y ) and an operator
T : X → Y . We say that T is bounded if there exists a constant M > 0 such
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that ‖Tx‖Y ≤ M ‖x‖X , ∀x ∈ X. One of the main purposes of the theory of
interpolation of operators is to determine whether a given operator between two
Banach spaces is bounded or not.

The first interpolation theorem in the theory of operators for Lp spaces was
obtained by Riesz in 1926 [21], and refined by Thorin in 1939 [24]. This theorem,
known as the Riesz-Thorin convexity theorem, asserts that for 1 ≤ p0, p1, q0, q1 ≤
∞, 0 ≤ θ ≤ 1, 1/p = (1 − θ)/p0 + θ/p1, 1/q = (1 − θ)/q0 + θ/q1 and a linear
operator T ,

T : Lp0 −→ Lq0

T : Lp1 −→ Lq1

}
=⇒ T : Lp −→ Lq.

Its proof involves techniques in complex analysis. This result is an important part
of what it is known as the complex method of interpolation.

Consider the averaging operator A defined on L1(0, 1) by

(Af)(t) =
1

t

∫ t

0

f(s)ds, 0 < t < 1.

It follows from the first Hardy’s inequality (see Lemma 1.1.11) that A : Lp(0, 1)→
Lp(0, 1) is a bounded linear operator for 1 < p < ∞. If we wish to establish this
result by appealing to the Riesz-Thorin convexity theorem, we would first need to
verify that A is bounded on L∞(0, 1) and on L1(0, 1). The L∞-boundedness follows
from the definition of A. The problem is that A is not bounded on L1, as may be
seen by considering a decreasing function of the form f(s) = s−1(log s)−2 near the
origin and observing that Af fails to be integrable there. Thus, the Riesz-Thorin
convexity theorem does not apply.

The desired interpolation can still be accomplished, but by a quite different
technique introduced by J. Marcinkiewicz in 1939 [18]. The Marcinkiewicz in-
terpolation theorem is best formulated in the larger context of a two-parameter
family of spaces, the Lorentz Lp,q-spaces, for 0 < p, q ≤ ∞. Given (R, µ) a totally
σ-finite measure space, Lp,q(X,µ) consists of all scalar-valued measurable functions
for which

‖f‖p,q =

(∫ ∞
0

(t1/pf ∗(t))q
dt

t

)1/q

<∞,

or ‖f‖p,∞ = sup0<t<∞(t1/pf ∗(t)) <∞, for the case q =∞, where

f ∗(t) = inf{λ ≥ 0 : µ{x ∈ R : |f(x)| > λ} ≤ t}, ∀t ≥ 0.

The Marcinkiewicz interpolation theorem (see Theorem 1.2.36) asserts that for
1 ≤ p0 < p1 < ∞, 1 ≤ q0 6= q1, r ≤ ∞, 0 < θ < 1, 1/p = (1 − θ)/p0 + θ/p1,
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1/q = (1− θ)/q0 + θ/q1 and a quasilinear operator T ,

T : Lp0,1 −→ Lq0,∞

T : Lp1,1 −→ Lq1,∞

}
=⇒ T : Lp,r −→ Lq,r,

and if p1 =∞,

T : Lp0,1 −→ Lq0,∞

T : L∞ −→ Lq1

}
=⇒ T : Lp,r −→ Lq,r.

This result is an important part of what it is known as the real method of inter-
polation.

Returning to the example of the averaging operator A, we have that A : L1 →
L1,∞ is bounded (since it is bounded from above by the Hardy-Littlewood maximal
operator [3, Ch. 3]) and A : L∞ → L∞ is bounded, so by the Marcinkiewicz
interpolation theorem, we conclude that A : Lp → Lp is bounded, for 1 < p ≤ ∞.

The theorems of Riesz-Thorin and Marcinkiewicz and other generalisations per-
tain to the Lebesgue spaces, the Lorentz spaces and other spaces closely related to
them [3, Ch. 4]. The development of general interpolation theorems for families of
abstract Banach spaces begun in 1958, and the works of Peetre played an essential
role [20]. The proof of the Marcinkiewicz interpolation theorem is based on an
idea of decomposition of a function in two pieces. This idea was generalised by
Peetre, giving rise to the concept of the K-functional, which plays a central role
in modern interpolation theory.

A pair (X0, X1) of Banach spaces X0 and X1 is called a compatible couple if
there is some Hausdorff topological vector space X in which each of X0 and X1

is continuously embedded. For such a couple, the Peetre K-functional is defined
for each f ∈ X0 +X1 and t > 0 by

K(f, t;X0, X1) = inf
f=f0+f1

{‖f0‖X0
+ t ‖f1‖X1

, fj ∈ Xj, j = 0, 1}.

We can define new Banach spaces, denoted by (X0, X1)θ,q, for 0 < θ < 1,
1 ≤ q <∞ or 0 ≤ θ ≤ 1, q =∞, consisting of all f in X0 +X1 for which

‖f‖θ,q =

(∫ ∞
0

(t−θK(f, t;X0, X1))q
dt

t

)1/q

<∞,

for 0 < θ < 1, 1 ≤ q, or ‖f‖θ,∞ = sup0<t<∞ t
−θK(f, t;X0, X1) < ∞, for 0 ≤ θ ≤

1, q =∞.
In this abstract setting, we have the following general interpolation result (see

Theorem 2.4.7). For (X0, X1) and (Y0, Y1) compatible couples, and 0 < θ0 < θ1 <
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1, 0 ≤ ψ0 6= ψ1 ≤ 1, 0 < θ < 1, (θ′, ψ′) = (1 − θ)(θ0, ψ0) + θ(θ1, ψ1), 1 ≤ q ≤ ∞,
(X0, X1)θj ,1 ↪→ Xθj ↪→ (X0, X1)θj ,∞, (Y0, Y1)ψj ,1 ↪→ Y ψj ↪→ (Y0, Y1)ψj ,∞ and T a
linear operator, we have that

T : Xθ0 −→ Y ψ0

T : Xθ1 −→ Y ψ1

}
=⇒ T : (X0, X1)θ′,q −→ (Y0, Y1)ψ′,q.

The previous results involve operators in one variable, but we can think of
operators of several variables which are linear in each of them. Consider, for
example, the following operator, known as the bilinear Hilbert transform:

H(f1, f2)(x) = lim
ε→0+

∫
|t|≥ε

f1(x− t)f2(x+ t)
dt

t
,

for fj ∈ Lpj(R), j = 1, 2, with 1 < p1, p2 ≤ ∞ and 1/p = 1/p1 + 1/p2.

In 1999, Lacey and Thiele proved that H : Lp1×Lp2 → Lp is bounded, provided
that 2/3 < p < ∞ [15]. In particular, this resolves in the affirmative Calderón’s
conjecture that H is bounded from L2×L2 into L1 [7]. However, the boundedness
into Lp for 1/2 < p ≤ 2/3 remains open as of this writing. This kind of problems
motivated the development of a multilinear version of the theory of interpolation
of operators.

In the literature we can find several multilinear interpolation theorems. In 1964,
Lions and Peetre proved an interpolation theorem for bilinear operators defined
over spaces (X0, X1)θ,q [16].

In 1969, Strichartz proved a bilinear version of the Marcinkiewicz interpolation
theorem for Lebesgue spaces Lp(X,µ) for arbitrary totally σ-finite measure spaces
(X,µ) [23].

In 1978, Zafran generalized the work of Lions and Peetre and proved an inter-
polation theorem for multilinear operators defined over spaces (X0, X1)θ,q [25].

In 2001, Grafakos and Kalton proved an extension of the classical Marcin-
kiewicz interpolation theorem to the multilinear setting and for Lorentz spaces
Lp,q over the measure space (R+,m), where m denotes the Lebesgue measure [10].

In 2012, Grafakos, Liu, Lu and Zhao, proved a multilinear extension of the
Marcinkiewicz interpolation theorem for Lorentz spaces Lp,q over general measure
spaces [11].

Structure of the Chapters

The chapters are organized as follows:
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In Chapter 1 we recall the definition of Banach space and present the Lebesgue
spaces Lp. For these spaces, we state the Hölder’s inequality and use it to prove
the Hardy’s inequalities.

We continue with the definitions of the distribution function and the decreasing
rearrangement, and the review of some of their properties. With this tools, we
define the Lorentz spaces Lp,q and prove some results concerning their structure.

We expose some notions concerning operators. We present the definitions of
quasilinear, strong type, weak type and restricted weak type operators, and we
study the Calderón operator and some of its properties.

In the last part of this chapter, we state and prove the Marcinkiewicz inter-
polation theorem for quasilinear operators on Lorentz spaces, the corresponding
corollary for Lebesgue spaces and some degenerate cases.

In Chapter 2 we start working with abstract Banach spaces and operators de-
fined on them. We present the Peetre K-functional and we prove several properties
of it. This object allows us to define the general Banach spaces (X0, X1)θ,q. We
also prove some of their structure properties. After that, we state and prove a
basic interpolation theorem for Banach spaces (X0, X1)θ,q and operators defined
on them.

We devote the last part of this chapter to the theorem of Holmstedt and the
reiteration theorem. Using them, we prove a general interpolation theorem for
abstract Banach spaces and we compute examples of K-functionals for pairs of
Lebesgue and Lorentz spaces.

In Chapter 3 we present a comparison between the main results on multilin-
ear interpolation theory and we give a proof of the Marcinkiewicz interpolation
theorem for bi-sublinear operators [11].
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Chapter 1

A Classical Interpolation
Theorem

1.1 Preliminaries

We devote this section to some basic definitions and results concerning Banach
spaces. The details of the proofs can be found in the book of Bennett and Sharpley
[3, Ch. 1].

Definition 1.1.1. Given a R-vector space X, a function ρ : X → R is called a
norm on X if, for all f, g ∈ X, for all a ∈ R, the following properties hold:

1. ρ(af) = |a|ρ(f);

2. ρ(f) = 0⇔ f = 0;

3. ρ(f + g) ≤ ρ(f) + ρ(g).

Definition 1.1.2. Consider a R-vector space X and ρ : X → R a norm on X.
The pair (X, ρ) is called a Banach space if X is complete with respect to ρ, that
is, for every Cauchy sequence {fn} in X, there exists an element f ∈ X such that
limn→∞ fn = f or, equivalently, limn→∞ ρ(fn − f) = 0.

Definition 1.1.3. Given a measure space (R, µ), we say that it is totally σ-finite
if R is the countable union of sets of finite measure.

Remark 1.1.4. From now on, (R, µ) and (S, ν) will denote totally σ-finite measure
spaces, if we do not specify otherwise.

Let M denote the collection of all scalar-valued µ-measurable functions on
R and M0 the class of functions in M that are finite µ-a.e. As usual, any two
functions coinciding µ-a.e. will be identified. The natural vector space operations
are well defined on M0.
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Definition 1.1.5. For all function f ∈M0(R, µ) and for all 1 ≤ p ≤ ∞, we define
the quantity

‖f‖p :=


(∫

R

|f |pdµ
) 1

p

, 1 ≤ p <∞,

ess sup
R
|f |, p =∞.

The Lebesgue space Lp = Lp(R, µ) consists of all f ∈M0(R, µ) for which ‖f‖p
is finite.

Proposition 1.1.6. Suppose 1 ≤ p ≤ ∞. Then (Lp, ‖·‖p) is a Banach space.

Remark 1.1.7. The triangular inequality for ‖·‖p is the classical Minkowski’s
inequality.

Another interesting inequality involving Lebesgue spaces is the so-called Höl-
der’s inequality.

Lemma 1.1.8. Suppose 1 ≤ p ≤ ∞ and consider p′ such that 1
p

+ 1
p′

= 1. Then

for all f ∈ Lp and for all g ∈ Lp′ we have that
∫
R
|fg|dµ ≤ ‖f‖p ‖g‖p′.

Remark 1.1.9. From now on, given 1 ≤ p ≤ ∞, p′ will denote the unique value
in [1,∞] such that 1

p
+ 1

p′
= 1. This value is called the conjugate exponent of p.

Remark 1.1.10. This inequality is sharp in the sense that

‖g‖p′ = sup

{∫
R

|fg|dµ : f ∈ Lp, ‖f‖p ≤ 1

}
,

for all g ∈ Lp′ and for all p and p′.

We close this section with the so-called Hardy’s inequalities, which can be
proved using Hölder’s inequality. We give here the complete proof, extending the
one in [3, Ch. 3].

Lemma 1.1.11. Let ψ be a nonnegative measurable function on (0,∞) and sup-
pose λ < 1 and 1 ≤ q <∞. Then(∫ ∞

0

(
tλ−1

∫ t

0

ψ(s)ds

)q
dt

t

) 1
q

≤ 1

1− λ

(∫ ∞
0

(tλψ(t))q
dt

t

) 1
q

and (∫ ∞
0

(
t1−λ

∫ ∞
t

ψ(s)
ds

s

)q
dt

t

) 1
q

≤ 1

1− λ

(∫ ∞
0

(t1−λψ(t))q
dt

t

) 1
q

.

9



Eduard Roure Perdices Master Thesis Spring 2015

Proof. Writing ψ(s) = s−λ/q
′
sλ/q

′
ψ(s) and applying Hölder’s inequality, we obtain

1

t

∫ t

0

ψ(s)ds ≤
(

1

t

∫ t

0

s−λds

)1/q′ (
1

t

∫ t

0

sλq/q
′
ψ(s)qds

)1/q

= (1− λ)−1/q′t−λ/q
′−1/q

(∫ t

0

sλ(q−1)ψ(s)qds

)1/q

.

Hence, by an interchange in the order of integration,∫ ∞
0

(
tλ−1

∫ t

0

ψ(s)ds

)q
dt

t
≤ (1− λ)1−q

∫ ∞
0

tλ−2

∫ t

0

sλ(q−1)ψ(s)qdsdt

= (1− λ)1−q
∫ ∞

0

sλ(q−1)ψ(s)q
∫ ∞
s

tλ−2dtds.

Performing the integration over t and taking q-th roots, we obtain the first in-
equality of the lemma. For the second inequality, writing ψ(s)

s
= s−1/q′s(λ−1)/q′

s−1/qs(1−λ)/q′ψ(s) and applying Hölder’s inequality, we obtain∫ ∞
t

ψ(s)
ds

s
≤
(∫ ∞

t

sλ−1ds

s

)1/q′ (∫ ∞
t

s(1−λ)q/q′ψ(s)q
ds

s

)1/q

= (1− λ)−1/q′t(λ−1)/q′
(∫ ∞

t

s(1−λ)(q−1)ψ(s)q
ds

s

)1/q

.

Hence, by an interchange in the order of integration,∫ ∞
0

(
t1−λ

∫ ∞
t

ψ(s)
ds

s

)q
dt

t

≤ (1− λ)1−q
∫ ∞

0

t−λ
∫ ∞
t

s(1−λ)(q−1)ψ(s)q
ds

s
dt

= (1− λ)1−q
∫ ∞

0

s(1−λ)(q−1)ψ(s)q
∫ s

0

t−λdt
ds

s
.

Performing the integration over t and taking q-th roots, we obtain the desired
inequality. �

Remark 1.1.12. If q =∞, we will consider the inequalities

sup
0<t<∞

tλ−1

∫ t

0

ψ(s)ds ≤
(

1

1− λ

)
sup

0<t<∞
tλψ(t)

and

sup
0<t<∞

t1−λ
∫ ∞
t

ψ(s)
ds

s
≤
(

1

1− λ

)
sup

0<t<∞
t1−λψ(t).
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1.2 The Marcinkiewicz Theorem

The Marcinkiewicz interpolation theorem is best formulated in the larger context
of a two-parameter family of spaces Lp,q, the Lorentz spaces, which generalize the
Lebesgue spaces Lp. Therefore, we first define the Lorentz spaces and expose some
of their elementary properties [3, Ch. 2,4].

Definition 1.2.1. The distribution function µf of a function f ∈ M0(R, µ) is
given by

µf (λ) = µ{x ∈ R : |f(x)| > λ}, ∀λ ≥ 0.

Proposition 1.2.2. Consider f, g, fn, (n = 1, 2, . . .) in M0(R, µ) and let a be a
nonzero scalar. The distribution function µf is nonnegative, decreasing and right-
continuous on [0,∞). Furthermore,

|g| ≤ |f | µ− a.e.⇒ µg ≤ µf ;

µaf (λ) = µf (λ/|a|), (λ ≥ 0);

µf+g(λ1 + λ2) ≤ µf (λ1) + µg(λ2), (λ1, λ2 ≥ 0);

|fn| ↑ |f | µ− a.e.⇒ µfn ↑ µf .

Definition 1.2.3. Suppose f belongs to M0(R, µ). The decreasing rearrangement
of f is the function f ∗ defined on [0,∞) by

f ∗(t) = inf{λ : µf (λ) ≤ t}, ∀t ≥ 0.

Remark 1.2.4. We use here the convention that inf ∅ =∞.

Proposition 1.2.5. Consider f, g, fn, (n = 1, 2, . . .) in M0(R, µ) and let a be
any scalar. The decreasing rearrangement f ∗ is nonnegative, decreasing and right-
continuous on [0,∞). Furthermore,

|g| ≤ |f | µ− a.e.⇒ g∗ ≤ f ∗;

(af)∗ = |a|f ∗;

(f + g)∗(t1 + t2) ≤ f ∗(t1) + g∗(t2), (t1, t2 ≥ 0);

|fn| ↑ |f | µ− a.e.⇒ f ∗n ↑ f ∗,

f ∗(µf (λ)) ≤ λ, (µf (λ) <∞),

µf (f
∗(t)) ≤ t, (f ∗(t) <∞).

The next result gives alternative descriptions of the Lp-norm in terms of the
distribution function and the decreasing rearrangement.

11
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Proposition 1.2.6. Let f ∈M0(R, µ). If 0 < p <∞, then∫
R

|f(x)|pdµ(x) = p

∫ ∞
0

λp−1µf (λ)dλ =

∫ ∞
0

f ∗(t)pdt.

Furthermore, in the case p =∞,

ess sup
x∈R
|f(x)| = inf{λ : µf (λ) = 0} = f ∗(0).

While the decreasing rearrangement does not necessarily preserve products of
functions, we have the following integral inequality due to Hardy and Littlewood.

Theorem 1.2.7. If f, g ∈M0(R, µ), then∫
R

|f(x)g(x)|dµ(x) ≤
∫ ∞

0

f ∗(s)g∗(s)ds.

Corollary 1.2.8. Let f ∈M0(R, µ). If E ⊆ R is a set of positive measure t, then

1

µ(E)

∫
E

|f(x)|dµ(x) ≤ 1

t

∫ t

0

f ∗(s)ds.

Proof. Take g(x) = χE(x), the characteristic function of E. Then, g∗(s) =
χ[0,µ(E)), and applying the previous theorem, we obtain∫

E

|f(x)|dµ(x) =

∫
R

|f(x)g(x)|dµ(x)

≤
∫ ∞

0

f ∗(s)g∗(s)ds =

∫ µ(E)

0

f ∗(s)ds.

Dividing by µ(E) and writing t = µ(E), we get the desired result. �

Definition 1.2.9. Let f ∈M0(R, µ). Then f ∗∗ will denote the maximal function
of f ∗ defined by

f ∗∗(t) =
1

t

∫ t

0

f ∗(s)ds, (t > 0).

Some elementary properties of the maximal operator f → f ∗∗ are listed below.

Proposition 1.2.10. Consider f, g, fn, (n = 1, 2, . . .) in M0(R, µ) and let a be
any scalar. Then f ∗∗ is nonnegative, decreasing and continuous on (0,∞). Fur-
thermore,

f ∗∗ ≡ 0⇔ f = 0 µ− a.e.;

f ∗ ≤ f ∗∗;

12
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|g| ≤ |f | µ− a.e.⇒ g∗∗ ≤ f ∗∗;

(af)∗∗ = |a|f ∗∗;

(f + g)∗∗(t) ≤ f ∗∗(t) + g∗∗(t), (0 < t <∞);

|fn| ↑ |f | µ− a.e.⇒ f ∗∗n ↑ f ∗∗.

Now we can give the definition of the Lorentz spaces.

Definition 1.2.11. Suppose 0 < p, q ≤ ∞. The Lorentz space Lp,q = Lp,q(R, µ)
consists of all f ∈M0(R, µ) for which the quantity

‖f‖p,q :=


(∫ ∞

0

(t1/pf ∗(t))q
dt

t

)1/q

, 0 < q <∞,

sup
0<t<∞

(t1/pf ∗(t)), q =∞,

is finite.

Remark 1.2.12. It is clear that the Lorentz space Lp,p coincides with the Lebesgue
space Lp, for 0 < p ≤ ∞, and ‖f‖p,p = ‖f‖p, for all f ∈ Lp. Note also that
the space L∞,q, for finite q, contains only the zero-function, and the space L∞,∞

coincides with the space L∞.

The following result shows that, for any fixed p, the Lorentz spaces Lp,q increase
as the second exponent q increases.

Proposition 1.2.13. Suppose 0 < p ≤ ∞ and 0 < q ≤ r ≤ ∞. Then, ‖f‖p,r ≤
c ‖f‖p,q, for all f ∈M0(R, µ), where c is a constant depending only on p, q and r.
In particular, Lp,q ↪→ Lp,r.

Proof. We may assume p <∞ and q < r since in the other cases there is nothing
to prove. Using the fact that f ∗ is decreasing, we have

t1/pf ∗(t) =

(
q

p

∫ t

0

(s1/pf ∗(t))q
ds

s

)1/q

≤
(
q

p

∫ t

0

(s1/pf ∗(s))q
ds

s

)1/q

≤
(
q

p

)1/q

‖f‖p,q .

Hence, taking the supremum over all t > 0, we obtain

‖f‖p,∞ ≤
(
q

p

)1/q

‖f‖p,q .

13
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This establishes the result in the case r =∞. In the remaining case where r <∞,
we have

‖f‖p,r =

(∫ ∞
0

(t1/pf ∗(t))r−q+q
dt

t

)1/r

≤ ‖f‖1−q/r
p,∞ ‖f‖q/rp,q

≤
(
q

p

)(r−q)/rq

‖f‖p,q . �

Remark 1.2.14. Embedding relations among spaces Lp,q, with p varying, depend
on the structure of the underlying measure space. On finite measure spaces, if
0 < p < r ≤ ∞ and 0 < q, s ≤ ∞, then Lr,s ↪→ Lp,q.

Definition 1.2.15. Given a totally σ-finite measure space (X,µ), we denote by
S(X) the linear space generated by the functions of the form

f(x) =
∑

1≤j≤N

∑
|k|≤N

2kχEk,j(x),

for N ∈ N and {Ek,j}k,j ⊆ X, subsets of finite measure.

We have the following result [5, 22].

Lemma 1.2.16. S(X) is dense in Lp,q(X,µ), for every 0 < p, q <∞.

Proof. Consider first a positive function f ∈ Lp,q. Call Ek(f) = {x : 2k ≤ f(x) <
2k+1} and f̃ = f −

∑
k∈Z 2kχEk(f). It holds that 0 ≤ f̃ < f/2 almost everywhere.

Define f0 = f and fj+1 = f̃j, for j ≥ 0. Call Ek,j = Ek(fj). We have that

fn+1 = fn −
∑
k∈Z

2kχEk,n = f̃n−1 −
∑
k∈Z

2kχEk,n

= fn−1 −
∑
k∈Z

2kχEk,n−1
−
∑
k∈Z

2kχEk,n

= · · · = f −
∑

1≤j≤n

∑
k∈Z

2kχEk,j .

Hence, for every n ≥ 1, it holds that

f = fn+1 −
∑

1≤j≤n

∑
k∈Z

2kχEk,j .

By induction on n, we get that 0 ≤ fn+1 < f
2n+1 almost everywhere, for every

n ≥ 0. Taking the limit for n→∞, we obtain the equality

f(x) =
∞∑
j=1

∑
k∈Z

2kχEk,j(x), a. e. x ∈ X.

14
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Now, for N ∈ N, put

fN(x) =
∑

1≤j≤N

∑
|k|≤N

2kχEk,j(x).

It holds that fN ∈ S(X), for every N . By Proposition 1.2.5, f ∗N ≤ f ∗, so ‖fN‖p,q ≤
‖f‖p,q < ∞, and f ∗N ↑ f ∗. Hence, by Lebesgue Dominated Convergence Theorem
[2], we obtain that fN → f in Lp,q. Finally, for an arbitrary f ∈ Lp,q, write
f = f+ − f−, where f+ = fχ{f>0} and f− = |f |χ{f<0} are both positive. By the
previous argument, taking {f+

N}N and {f−N}N in S(X) such that f+
N → f+ and

f−N → f− in Lp,q, and observing that fN := f+
N − f−N ∈ S(X) for every N , we

obtain that fN → f in Lp,q. �

We next wish to determine for which values of p and q the Lorentz space Lp,q

may be regarded as a Banach space. The functional f 7→ ‖f‖p,q is not always a
norm. Assume 1 ≤ q ≤ p < ∞. Lorentz [17] proved that if φ is a nonnegative

function defined on (0,∞), not identically 0 and such that
∫ l

0
φ(t)dt < ∞, ∀l ∈

[0,∞), then the functional

f 7→ ‖f‖ :=

(∫ ∞
0

φ(t)f ∗(t)qdt

)1/q

,∀f ∈M0(R, µ),

is a norm if, and only if φ is decreasing. In particular, for the case of the functional
f 7→ ‖f‖p,q, φ(t) = tq/p−1, which is decreasing if, and only if q ≤ p.

Theorem 1.2.17. Suppose 1 ≤ q ≤ p < ∞ or p = q = ∞. Then, the functional
f 7→ ‖f‖p,q is a norm.

Although the restriction q ≤ p in this result is necessary, it can be circumvented
in the case p > 1 by replacing ‖·‖p,q with an equivalent functional which is a norm
for all q ≥ 1.

Definition 1.2.18. Suppose 1 < p ≤ ∞ and 0 < q ≤ ∞. If f ∈M0(R, µ), let

‖f‖(p,q) :=


(∫ ∞

0

(t1/pf ∗∗(t))q
dt

t

)1/q

, 0 < q <∞,

sup
0<t<∞

(t1/pf ∗∗(t)), q =∞.

Lemma 1.2.19. If 1 < p ≤ ∞ and 1 ≤ q ≤ ∞, then

‖f‖p,q ≤ ‖f‖(p,q) ≤ p′ ‖f‖p,q

for all f ∈M0(R, µ).

15
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Proof. The first inequality is an immediate consequence of the definitions of ‖·‖p,q
and ‖·‖(p,q), and the fact that f ∗ ≤ f ∗∗. The second follows directly from the first
Hardy’s inequality. �

We have the following result.

Theorem 1.2.20. If 1 < p < ∞, 1 ≤ q ≤ ∞ or p = q = ∞, then (Lp,q, ‖f‖(p,q))
is a Banach space.

Let us now expose some definitions related to operators.

Definition 1.2.21. Suppose 1 ≤ p0 < p1 ≤ ∞, 1 ≤ q0, q1 ≤ ∞ and q0 6= q1. Let
σ denote the interpolation segment

σ =

[(
1

p0

,
1

q0

)
,

(
1

p1

,
1

q1

)]
,

that is, the line segment in the unit square {(x, y) | 0 ≤ x, y ≤ 1} with endpoints
(1/p0, 1/q0) and (1/p1, 1/q1). Let m denote the slope

m =

1
q0
− 1

q1
1
p0
− 1

p1

of the line segment σ. For each measurable function f on (0,∞) and each t > 0,
let

(Sσf)(t) := t−1/q0

∫ tm

0

s1/p0f(s)
ds

s
+ t−1/q1

∫ ∞
tm

s1/p1f(s)
ds

s
.

The operator Sσ : f 7→ Sσf is the Calderón operator associated with the interpo-
lation segment σ.

Here are some simple properties of the operator Sσ [3, Ch. 3].

Proposition 1.2.22. If f is a nonnegative measurable function on the inter-
val (0,∞), then Sσf is decreasing and for each t > 0, (Sσf)(t) = (Sσf)∗(t)
≤ Sσ(f ∗)(t).

Proposition 1.2.23. Let f be a µ-measurable function on R. Sσ(f ∗)(t) <∞ for
each t > 0 if, and only if, Sσ(f ∗)(1) <∞.

Proof. Assume that Sσ(f ∗)(1) <∞. Then

0 ≤
∫ 1

0

s1/p0f ∗(s)
ds

s
,

∫ ∞
1

s1/p1f ∗(s)
ds

s
<∞.
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Fix 0 < u < 1. Then

0 ≤
∫ u

0

s1/p0f ∗(s)
ds

s
≤
∫ 1

0

s1/p0f ∗(s)
ds

s
<∞.

Now, ∫ ∞
u

s1/p1f ∗(s)
ds

s
=

∫ 1

u

s1/p1f ∗(s)
ds

s
+

∫ ∞
1

s1/p1f ∗(s)
ds

s

and ∫ 1

u

s1/p1f ∗(s)
ds

s
≤ u1/p1−1/p0

∫ 1

u

s1/p0f ∗(s)
ds

s
<∞,

since p0 < p1, thus

0 ≤
∫ ∞
u

s1/p1f ∗(s)
ds

s
<∞.

Similarly, we have that

0 ≤
∫ u

0

s1/p0f ∗(s)
ds

s
,

∫ ∞
u

s1/p1f ∗(s)
ds

s
<∞

in the case u ≥ 1. Hence, Sσ(f ∗)(t) <∞, for each t > 0. �

Definition 1.2.24. Let T be an operator whose domain is some linear subspace of
M0(R, µ) and whose range is contained in the ν-measurable functions on S. Then
T is said to be quasilinear if there is a constant k ≥ 1 such that the relations

|T (f + g)| ≤ k(|Tf |+ |Tg|), |T (λf)| = |λ||Tf |

hold ν-a.e. on S for all f and g in the domain of T and for all scalars λ. If these
relations hold for k = 1, then T is said to be sublinear.

Definition 1.2.25. Suppose 1 ≤ p0 < p1 ≤ ∞ and 1 ≤ q0, q1 ≤ ∞ with q0 6= q1.
Let T be a quasilinear operator with respect to (R, µ) and (S, ν), and suppose Tf
is defined for all µ-measurable functions f on R. Then T is said to be of joint weak
type (p0, q0; p1, q1) if there is a constant c such that (Tf)∗(t) ≤ cSσ(f ∗)(t), (0 <
t <∞), for all f for which Sσ(f ∗)(1) <∞.

Definition 1.2.26. Suppose 1 ≤ p <∞ and 1 ≤ q ≤ ∞. Let T be an operator de-
fined on Lp,1(R, µ) and taking values in M0(S, ν). Then T is said to be of restricted
weak type (p, q) if it is a bounded operator from Lp,1(R, µ) into Lq,∞(S, ν), that is,
if there is a constant M such that ‖Tf‖q,∞ ≤M ‖f‖p,1 for all f ∈ Lp,1(R, µ). The
least constant M is called the restricted weak type (p, q) norm of T .

Remark 1.2.27. Suppose 1 ≤ p, q <∞ and 1 ≤ r, s ≤ ∞. Since Lp,1 ↪→ Lp,r and
Lq,s ↪→ Lq,∞, it follows that if T is a bounded operator from Lp,r into Lq,s, then T
is of restricted weak type (p, q).

17
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Definition 1.2.28. Suppose 1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞. Let T be an operator
defined on Lp(R, µ) and taking values in M0(S, ν). Then T is said to be of strong
type (p, q) if it is a bounded operator from Lp(R, µ) into Lq(S, ν), that is, if there is
a constant M such that ‖Tf‖q ≤M ‖f‖p for all f ∈ Lp(R, µ). The least constant
M is called the strong type (p, q) norm of T .

We present the following result. We will expose its proof later, after showing
some technical lemmas.

Theorem 1.2.29. Suppose 1 ≤ p0 < p1 <∞ and 1 ≤ q0, q1 ≤ ∞ with q0 6= q1 and
let T be a quasilinear operator defined on (Lp0,1 +Lp1,1)(R, µ) and taking values in
M0(S, ν). If T is of restricted weak types (p0, q0) and (p1, q1), then T is of joint
weak type (p0, q0; p1, q1).

Remark 1.2.30. The converse of this result is also true [3, Ch. 4].

Lemma 1.2.31. Consider a µ-measurable function f : R −→ R. If the function
f belongs to (Lp0,1 + Lp1,1)(R, µ), then Sσ(f ∗)(t) <∞ for all t > 0.

Proof. Fix t > 0 and recall that

Sσ(f ∗)(t) = t
−1
q0

∫ tm

0

s
1
p0 f ∗(s)

ds

s
+ t

−1
q1

∫ ∞
tm

s
1
p1 f ∗(s)

ds

s
.

To prove the result, it suffices to show that both integrals are finite. Let us

assume that f ∈ Lp0,1(R, µ). We have
∫ tm

0
s

1
p0 f ∗(s)ds

s
≤ ‖f‖p0,1 < ∞ and since

p0 < p1,
∫∞
tm
s

1
p1 f ∗(s)ds

s
=
∫∞
tm
s

1
p1
− 1
p0 s

1
p0 f ∗(s)ds

s
≤ t

m
p1
−m
p0 ‖f‖p0,1 < ∞. Thus

Sσ(f ∗)(t) < ∞. A similar argument establishes the result for f ∈ Lp1,1(R, µ).
Now if f ∈ (Lp0,1 + Lp1,1)(R, µ), there exist f0 ∈ Lp0,1(R, µ) and f1 ∈ Lp1,1(R, µ)
such that f = f0 + f1. Applying the properties of decreasing rearrangements and
performing a change of variables, we obtain

Sσ(f ∗)(t) ≤ 2
1
p0 t

−1
q0

∫ tm

2

0

r
1
p0 f ∗0 (r)

dr

r
+ 2

1
p0 t

−1
q0

∫ tm

2

0

r
1
p0 f ∗1 (r)

dr

r

+ 2
1
p1 t

−1
q1

∫ ∞
tm

2

r
1
p1 f ∗0 (r)

dr

r
+ 2

1
p1 t

−1
q1

∫ ∞
tm

2

r
1
p1 f ∗1 (r)

dr

r
.

Since fi ∈ Lpi,1(R, µ), it holds that Sσ(f ∗i )( t
21/m

) <∞, for i = 0, 1. Thus the four
integrals in the expression above are finite and Sσ(f ∗)(t) <∞. �

Lemma 1.2.32. Consider a µ-measurable function f : R −→ R and a real value
k ≥ 0, and define the functions g(x) := min(|f(x)|, k) and h(x) := max(|f(x)| −
k, 0), for all x ∈ R. Then, their decreasing rearrangements satisfy g∗(s) =
min(f ∗(s), k) and h∗(s) = max(f ∗(s)− k, 0), for all s > 0.
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Proof. Let us first consider the distribution function of the function g, µg(λ) =
µ{x ∈ R : |g(x)| > λ}. Since g is a minimum, it holds that {x ∈ R : |g(x)| > λ} =
{x ∈ R : |f(x)| > λ} ∩ {x ∈ R : k > λ}. Fix λ ≥ 0. If λ < k, then {x ∈ R : k >
λ} = R and µg(λ) = µf (λ). Similarly, if λ ≥ k, then {x ∈ R : k > λ} = ∅ and
µg(λ) = 0.

Fix s ≥ 0 and consider the decreasing rearrangement of the function g, g∗(s) =
inf{λ ≥ 0 : µg(λ) ≤ s}. It holds that {λ ≥ 0 : µg(λ) ≤ s} = {λ ≥ k : µg(λ) ≤
s} ∪ {k > λ ≥ 0 : µg(λ) ≤ s} = {λ ≥ k : 0 ≤ s} ∪ {k > λ ≥ 0 : µf (λ) ≤ s} =
[k,∞)∪{k > λ ≥ 0 : µf (λ) ≤ s}. Recall that for subsets A and B of R it holds that
inf A ∪ B = min(inf A, inf B). Thus, g∗(s) = min(k, inf{k > λ ≥ 0 : µf (λ) ≤ s}).
Since min(k, inf{k > λ ≥ 0 : µf (λ) ≤ s}) = min(k, inf{λ ≥ 0 : µf (λ) ≤ s}), it
follows that g∗(s) = min(f ∗(s), k).

Let us consider now the distribution function of h, µh(λ) = µ{x ∈ R : |h(x)| >
λ}. Since h is a maximum, it holds that {x ∈ R : |h(x)| > λ} = {x ∈ R :
|f(x)|−k > λ}∪{x ∈ R : 0 > λ}. Thus, µh(λ) = µf (k+λ) for all λ ≥ 0. Fix s ≥ 0
and consider the decreasing rearrangement of the function h, h∗(s) = inf{λ ≥ 0 :
µh(λ) ≤ s}. Since inf{λ ≥ 0 : µf (k+λ) ≤ s} = max(inf{λ ≥ 0 : µf (λ) ≤ s}−k, 0),
it follows that h∗(s) = max(f ∗(s)− k, 0). �

Lemma 1.2.33. Consider a µ-measurable function f : X −→ R and a real
value t > 0, and define the functions g(x) := f(x)χ{|f |>f∗(t)}(x) and h(x) :=
f(x)χ{|f |≤f∗(t)}(x). Then, their decreasing rearrangements satisfy

g∗(s) ≤
{
f ∗(s), 0 < s < t,
0, s ≥ t,

and

h∗(s) ≤
{
f ∗(t), 0 < s < t,
f ∗(s), s ≥ t,

for all s > 0.

Proof. Let us first consider the distribution function of the function g, µg(λ) =
µ{x ∈ X : |g(x)| > λ}. It holds that {x ∈ X : |g(x)| > λ} = {x ∈ X : |f(x)| >
max{λ, f ∗(t)}}, so

µg(λ) =

{
µ{x ∈ X : |f(x)| > λ}, λ ≥ f ∗(t),
µ{x ∈ X : |f(x)| > f ∗(t)}, λ < f ∗(t),

=

{
µf (λ), λ ≥ f ∗(t),
µf (f

∗(t)), λ < f ∗(t),

≤
{
µf (λ), λ ≥ f ∗(t),
t, λ < f ∗(t),

19



Eduard Roure Perdices Master Thesis Spring 2015

where we have used the fact that µf (f
∗(t)) ≤ t.

Fix s ≥ 0 and consider the decreasing rearrangement of the function g, g∗(s) =
inf{λ ≥ 0 : µg(λ) ≤ s}. It holds that {λ ≥ 0 : µg(λ) ≤ s} = {0 ≤ λ < f ∗(t) :
µg(λ) ≤ s} ∪ {λ ≥ f ∗(t) : µg(λ) ≤ s} ⊇ {0 ≤ λ < f ∗(t) : t ≤ s} ∪ {λ ≥ f ∗(t) :
µf (λ) ≤ s}. Hence,

g∗(s) ≤ inf ({0 ≤ λ < f ∗(t) : t ≤ s} ∪ {λ ≥ f ∗(t) : µf (λ) ≤ s})

=

{
inf{λ ≥ f ∗(t) : µf (λ) ≤ s}, 0 < s < t,
0, s ≥ t,

≤
{
f ∗(s), 0 < s < t,
0, s ≥ t,

since for s < t, f ∗(t) ≤ f ∗(s) and µf (f
∗(s)) ≤ s, so f ∗(s) ∈ {λ ≥ f ∗(t) : µf (λ) ≤

s}.
Let us consider now the distribution function of h. It holds that

µh(λ) = µ{x ∈ X : |h(x)| > λ} = µ{x ∈ X : λ < |f(x)| ≤ f ∗(t)}

≤
{

0, λ ≥ f ∗(t),
µf (λ), λ < f ∗(t).

Fix s ≥ 0 and consider the decreasing rearrangement of the function h, h∗(s) =
inf{λ ≥ 0 : µh(λ) ≤ s}. It holds that {λ ≥ 0 : µh(λ) ≤ s} ⊇ {0 ≤ λ < f ∗(t) :
µf (λ) ≤ s} ∪ {λ ≥ f ∗(t) : 0 ≤ s}. Hence,

h∗(s) ≤ inf ({0 ≤ λ < f ∗(t) : µf (λ) ≤ s} ∪ {λ ≥ f ∗(t) : 0 ≤ s})
= min{inf{0 ≤ λ < f ∗(t) : µf (λ) ≤ s}, f ∗(t)}
= min{inf{λ ≥ 0 : µf (λ) ≤ s}, f ∗(t)} = min{f ∗(s), f ∗(t)}

=

{
f ∗(t), 0 < s < t,
f ∗(s), s ≥ t.

This completes the proof. �

Now we can give the proof of Theorem 1.2.29.

Proof. (Thm. 1.2.29) Let f ∈ (Lp0,1 + Lp1,1)(R, µ) and fix t > 0. Consider

m =

1
q0
− 1

q1
1
p0
− 1

p1

and define f0 and f1 on R by f1(x) = min(|f(x)|, f ∗(tm)) · sgn f(x) and f0(x) =
f(x) − f1(x) = max(|f(x)| − f ∗(tm), 0) · sgn f(x). Then, by the previous lemma,
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f ∗1 (s) = min(f ∗(s), f ∗(tm)) for all s > 0 and since f ∗ is decreasing,

‖f1‖p1,1 =

∫ ∞
0

s
1
p1 min(f ∗(s), f ∗(tm))

ds

s
=

∫ tm

0

s
1
p1 f ∗(tm)

ds

s

+

∫ ∞
tm

s
1
p1 f ∗(s)

ds

s
= p1t

m
p1 f ∗(tm) +

∫ ∞
tm

s
1
p1 f ∗(s)

ds

s
.

Similarly, f ∗0 (s) = max(f ∗(s)− f ∗(tm), 0) for all s > 0 and

‖f0‖p0,1 =

∫ ∞
0

s
1
p0 max(f ∗(s)− f ∗(tm), 0)

ds

s
=

∫ tm

0

s
1
p0 f ∗(s)

ds

s

−
∫ tm

0

s
1
p0 f ∗(tm)

ds

s
=

∫ tm

0

s
1
p0 f ∗(s)

ds

s
− p0t

m
p0 f ∗(tm).

Since f ∈ (Lp0,1 + Lp1,1)(R, µ), it holds that Sσ(f ∗)(tm) < ∞, thus ‖fi‖pi,1 < ∞
and fi ∈ Lpi,1(R, µ), for i = 0, 1.

Now suppose that T is quasilinear with constant K. Since f = f0 + f1,
by the properties of decreasing rearrangements we have (Tf)∗(t) ≤ (K(|Tf0| +
|Tf1|))∗(t) ≤ K

(
(Tf0)∗

(
t
2

)
+ (Tf1)∗

(
t
2

))
. Furthermore, the restricted weak type

hypotheses on T give (Tfi)
∗ ( t

2

)
≤
(
t
2

)−1
qi Mi ‖fi‖pi,1, for i = 0, 1. Combining these

estimates, we obtain

(Tf)∗(t) ≤ C

(
t
−1
q0

p0

‖f0‖p0,1 +
t
−1
q1

p1

‖f1‖p1,1

)
,

with C = K · maxi(piMi2
1
qi ). Incorporating the expressions of the norms and

observing that the terms in f ∗(tm) cancel, we find that (Tf)∗(t) ≤ C · Sσ(f ∗)(t).
Since f ∈ (Lp0,1 + Lp1,1)(R, µ), it holds that Sσ(f ∗)(t) < ∞ for all t > 0. Hence,
T is of joint weak type (p0, q0; p1, q1). �

Remark 1.2.34. A simple modification of the proof above shows that if T is of
restricted weak type (p0, q0), p0 < ∞, and strong type (∞, q1), then T is of joint
weak type (p0, q0;∞, q1). The expression for ‖f1‖p1,1 is replaced by the property
that ‖f1‖∞ = f ∗(tm) and then the strong type (∞, q1) hypothesis is invoked in the

form T : L∞ → Lq1 ↪→ Lq1,∞, so (Tf1)∗
(
t
2

)
≤
(
t
2

)−1
q1 M1 ‖f1‖∞.

This proof and some previous results allow us to characterize the space Lp0,1 +
Lp1,1 in terms of the Calderón operator Sσ.

Corollary 1.2.35. Consider a µ-measurable function f : R −→ R. The following
conditions are equivalent:
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1. The function f belongs to (Lp0,1 + Lp1,1)(R, µ);

2. Sσ(f ∗)(t) <∞ for all t > 0;

3. Sσ(f ∗)(1) <∞.

Now we can give the statement and the proof of the main theorem of this
section, the Marcinkiewicz interpolation theorem.

Theorem 1.2.36. Suppose 1 ≤ p0 < p1 < ∞ and 1 ≤ q0, q1 ≤ ∞ with q0 6= q1.
Let 0 < θ < 1 and define p and q by

1

p
=

1− θ
p0

+
θ

p1

,
1

q
=

1− θ
q0

+
θ

q1

.

Let T be a quasilinear operator defined on (Lp0,1 +Lp1,1)(R, µ) and taking values in
M0(S, ν). Suppose T is of restricted weak types (p0, q0) and (p1, q1), with restricted
weak type norms M0 and M1, respectively. If 1 ≤ r ≤ ∞, then

T : Lp,r −→ Lq,r.

That is, there is a constant c, depending only on p0, q0, p1, q1 and r, such that, for
all f ∈ Lp,r,

‖Tf‖q,r ≤
c

θ(1− θ)
max(M0,M1) ‖f‖p,r .

Proof. Because of Theorem 1.2.29, we know that T is of joint weak type (p0, q0;
p1, q1) with joint weak type norm M ≤ c ·max(M0,M1), where c depends only on
p0, q0, p1, q1. Assume, first, that r <∞. We have

‖Tf‖q,r ≤M

(∫ ∞
0

(
t
1
qSσ(f ∗)(t)

)r dt
t

) 1
r

.

Applying Minkowski’s inequality for Lr, we obtain

‖Tf‖q,r ≤M

(∫ ∞
0

(
t
1
q
− 1
q0

∫ tm

0

s
1
p0 f ∗(s)

ds

s

)r
dt

t

) 1
r

+M

(∫ ∞
0

(
t
1
q
− 1
q1

∫ ∞
tm

s
1
p1 f ∗(s)

ds

s

)r
dt

t

) 1
r

.

Making the change of variables u = tm in each of the integrals and using the
relations

1

m

(
1

q
− 1

q0

)
=

1

p
− 1

p0

,
1

m

(
1

q
− 1

q1

)
=

1

p
− 1

p1

,
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we have that

‖Tf‖q,r ≤M |m|
−1
r

(∫ ∞
0

(
u

1
p
− 1
p0

∫ u

0

s
1
p0 f ∗(s)

ds

s

)r
du

u

) 1
r

+M |m|
−1
r

(∫ ∞
0

(
u

1
p
− 1
p1

∫ ∞
u

s
1
p1 f ∗(s)

ds

s

)r
du

u

) 1
r

.

Applying first and second Hardy’s inequalities to the first and the second terms,
respectively, the resulting estimate reduces to

‖Tf‖q,r ≤M |m|
−1
r c1

(∫ ∞
0

(
u

1
pf ∗(u)

)r du
u

) 1
r

+M |m|
−1
r c2

(∫ ∞
0

(
u

1
pf ∗(u)

)r du
u

) 1
r

= M |m|
−1
r (c1 + c2) ‖f‖p,r ,

with
1

c1

= θ

(
1

p0

− 1

p1

)
,

1

c2

= (1− θ)
(

1

p0

− 1

p1

)
.

Now assume that r =∞. In this case, we have

‖Tf‖q,∞ = sup
0<t<∞

t
1
q (Tf)∗(t) ≤M sup

0<t<∞
t
1
qSσ(f ∗)(t)

≤M sup
0<t<∞

(
t
1
q
− 1
q0

∫ tm

0

s
1
p0 f ∗(s)

ds

s

)
+M sup

0<t<∞

(
t
1
q
− 1
q1

∫ ∞
tm

s
1
p1 f ∗(s)

ds

s

)
≤M sup

0<t<∞

(
u

1
p
− 1
p0

∫ u

0

s
1
p0 f ∗(s)

ds

s

)
+M sup

0<t<∞

(
u

1
p
− 1
p1

∫ ∞
u

s
1
p1 f ∗(s)

ds

s

)
≤M(c1 + c2) ‖f‖p,∞ .

This completes the proof. �

Corollary 1.2.37. With parameters as above, suppose in addition that p0 ≤ q0

and p1 ≤ q1. If T is of restricted weak types (p0, q0) and (p1, q1), with norms M0

and M1, respectively, then
T : Lp −→ Lq.
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That is, there is a constant c, depending only on p0, q0, p1, q1, such that, for all
f ∈ Lp,

‖Tf‖q ≤
c

θ(1− θ)
max(M0,M1) ‖f‖p .

Let us see what we can say when p0 = p1 and q0 6= q1 or p0 < p1 and q0 = q1.

Lemma 1.2.38. Suppose 1 ≤ q1 < q < q0 ≤ ∞. If 1 ≤ r ≤ ∞, then Lq0,∞ ∩
Lq1,∞ ↪→ Lq,r.

Proof. Since Lq,1 ↪→ Lq,r, it suffices to show that Lq0,∞ ∩ Lq1,∞ ↪→ Lq,1. A
measurable function f belongs to Lq0,∞∩Lq1,∞ if, and only if sup0<t<∞ t

1/q0f ∗(t) <
∞ and sup0<t<∞ t

1/q1f ∗(t) <∞. This condition holds if, and only if there exists a
constant c ≥ 0 such that{

f ∗(t) ≤ ct−1/q0 , (0 < t < 1),

f ∗(t) ≤ ct−1/q1 , (t ≥ 1).

Now,

‖f‖q,1 =

∫ ∞
0

t1/q−1f ∗(t)dt ≤ c

∫ 1

0

t1/q−1−1/q0dt+ c

∫ ∞
1

t1/q−1−1/q1dt

=
c

1
q
− 1

q0

+
c

1
q1
− 1

q

<∞,

and hence, f ∈ Lq,1. �

Remark 1.2.39. Under the hypotheses of Theorem 1.2.36 and in the case p0 = p1,
this lemma implies that T : Lp0,1 → Lq,r.

Lemma 1.2.40. Suppose 1 ≤ p0 < p < p1 < ∞. If 1 ≤ r ≤ ∞, then Lp,r ↪→
Lp0,1 + Lp1,1.

Proof. Since Lp,r ↪→ Lp,∞, it suffices to show that Lp,∞ ↪→ Lp0,1 +Lp1,1. A
measurable function f belongs to Lp,∞ if, and only if sup0<t<∞ t1/pf ∗(t) < ∞
and this condition holds if, and only if there exists a constant c ≥ 0 such that
f ∗(t) ≤ ct−1/p, for all t > 0. Now,∫ 1

0

t1/p0f ∗(t)
dt

t
+

∫ ∞
1

t1/p1f ∗(t)
dt

t
≤ c

∫ 1

0

t1/p0−1−1/pdt+ c

∫ ∞
1

t1/p1−1−1/pdt

=
c

1
p0
− 1

p

+
c

1
p
− 1

p1

<∞,

and in virtue of Corollary 1.2.35, f ∈ Lp0,1 + Lp1,1. �

24



Eduard Roure Perdices Master Thesis Spring 2015

Remark 1.2.41. Under the hypotheses of Theorem 1.2.36 and in the case q0 = q1,
this lemma implies that T : Lp,r → Lq0,∞.

Remark 1.2.42. Theorem 1.2.36 holds also in the case p1 = ∞ provided the
restricted weak type (p1, q1) hypothesis is replaced by the strong type (p1, q1)
hypothesis. In that case, the operator is of joint weak type (p0, q0;∞, q1) and the
proof of Theorem 1.2.36 carries over almost verbatim.

Remark 1.2.43. Under the hypotheses of Theorem 1.2.36 we obtain that T :
Lp,r → Lq,s in the case r ≤ s, but in general this result is not true if r > s.
Consider the measure space (R+,m), where m denotes the Lebesgue measure on
R+. Take p0 = q0, p1 = q1 and consider the identity operator T = Id : (Lp0,1 +
Lp1,1)(R+,m) → (Lp0,1 + Lp1,1)(R+,m), which is of restricted weak types (p0, p0)
and (p1, p1). If 1 ≤ s < r = ∞, then T : Lp,∞ 9 Lp,s, since for the function
f(t) = t−1/p, (t > 0), we have f ∗ = f , ‖f‖p,∞ = 1 and ‖f‖p,s =∞.
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Chapter 2

Real Interpolation Method

2.1 Preliminaries

The K-method of interpolation, or real method, may be regarded as a lifting of
the Marcinkiewicz interpolation theorem from its classical context in spaces of
measurable functions to an abstract Banach space setting. In order to study this
method, we need some basic definitions and results concerning interpolation spaces.
The details of the proofs can be found in the book of Bennett and Sharpley [3,
Ch. 3].

Definition 2.1.1. A pair (X0, X1) of Banach spaces X0 and X1 is called a com-
patible couple if there is some Hausdorff topological vector space X in which each
of X0 and X1 is continuously embedded.

Remark 2.1.2. The pair (L1, L∞) is a compatible couple because both L1 and
L∞ are continuously embedded in the Hausdorff space M0 of measurable functions
that are finite almost everywhere.

Definition 2.1.3. Let (X0, X1) be a compatible couple, with corresponding Haus-
dorff space X . Let X0 + X1 denote the sum of X0 and X1, that is, the set of
elements x ∈X that are representable in the form x = x0 + x1, for some x0 ∈ X0

and x1 ∈ X1. For each x in X0 +X1, set

‖x‖X0+X1
= inf

x=x0+x1
{‖x0‖X0

+ ‖x1‖X1
},

where the infimum extends over all representations x = x0 + x1 of x with x0 ∈ X0

and x1 ∈ X1. For each element x in the intersection X0 ∩X1 of X0 and X1, set

‖x‖X0∩X1
= max{‖x0‖X0

, ‖x1‖X1
}.

26



Eduard Roure Perdices Master Thesis Spring 2015

Theorem 2.1.4. If (X0, X1) is a compatible couple, then X0 + X1 and X0 ∩ X1

are Banach spaces under the norms ‖·‖X0+X1
and ‖·‖X0∩X1

, respectively.

Definition 2.1.5. If (X0, X1) is a compatible couple, then a Banach space X is
said to be an intermediate space between X0 and X1 if X is continuously embedded
between X0 ∩X1 and X0 +X1:

X0 ∩X1 ↪→ X ↪→ X0 +X1.

Observe that X0 and X1 are always intermediate spaces for the couple (X0, X1).
Now we turn our attention on operators defined on these spaces. We denote

by B(X, Y ) (or B(X), if X = Y ) the space of bounded linear operators from a
Banach space X into a Banach space Y . The space B(X, Y ) is itself a Banach
space under the operator norm

‖T‖B(X,Y ) = sup{‖Tx‖Y : ‖x‖X ≤ 1}.

Definition 2.1.6. Let (X0, X1) and (Y0, Y1) be two compatible couples and let T
be a linear operator defined on X0 + X1 and taking values in Y0 + Y1. Then T
is said to be admissible with respect to the couples (X0, X1) and (Y0, Y1) if the
restriction of T to Xi maps Xi into Yi, for each i = 0, 1, and, furthermore, is a
bounded operator from Xi into Yi:

‖Tx‖Yi ≤ ‖T‖B(Xi,Yi)
‖x‖Xi , ∀x ∈ Xi.

The class of admissible operators is denoted by

A = A (X0, X1;Y0, Y1).

The norm of an admissible operator T is given by

‖T‖A = max
i=0,1
{‖T‖B(Xi,Yi)

}.

Proposition 2.1.7. Every admissible operator T is a bounded operator from X0 +
X1 into Y0 + Y1, and

‖T‖B(X0+X1,Y0+Y1) ≤ ‖T‖A .

Proof. Suppose T is admissible and consider x ∈ X0 + X1. Let x = x0 + x1 be
any representation of x as a sum of elements x0 ∈ X0 and x1 ∈ X1. Then, by the
previous definitions, we have

‖Tx‖Y0+Y1
= ‖Tx0 + Tx1‖Y0+Y1

≤ ‖Tx0‖Y0 + ‖Tx1‖Y1
≤ ‖T‖B(X0,Y0) ‖x0‖X0

+ ‖T‖B(X1,Y1) ‖x1‖X1

≤ ‖T‖A (‖x0‖X0
+ ‖x1‖X1

).
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Taking the infimum over all representations x = x0 + x1 of x, we obtain that

‖Tx‖Y0+Y1
≤ ‖T‖A ‖x‖X0+X1

.

This concludes the proof. �

Theorem 2.1.8. The class A (X0, X1;Y0, Y1) of admissible operators is a Banach
space when equipped with the norm ‖·‖A . Furthermore, A is continuously embed-
ded in B(X0 +X1, Y0 + Y1).

We finish this section with the formulation of the interpolation property.

Definition 2.1.9. Let (X0, X1) and (Y0, Y1) be two compatible couples. Let X
and Y be intermediate spaces of the couples (X0, X1) and (Y0, Y1), respectively.
The pair (X, Y ) is said to have the interpolation property relative to (X0, X1) and
(Y0, Y1) if every admissible operator maps X into Y .

2.2 The K-Functional

We begin this section with some definitions and elementary properties of the K-
interpolation method.

Definition 2.2.1. Let (X0, X1) be a compatible couple of Banach spaces. The
Peetre K-functional is defined for each f ∈ X0 +X1 and t > 0 by

K(f, t;X0, X1) = inf
f=f0+f1

{‖f0‖X0
+ t ‖f1‖X1

},

where the infimum extends over all representations f = f0 + f1 of f with f0 ∈ X0

and f1 ∈ X1.

Since

min(1, t) ‖f‖X0+X1
≤ K(f, t;X0, X1) ≤ max(1, t) ‖f‖X0+X1

,

the functionals f 7→ K(f, t;X0, X1), t > 0, define a family of mutually equivalent
norms on X0 +X1.

Since every f ∈ X0 has the trivial representation f = f + 0 as a member of
X0 +X1, we have that

K(f, t;X0, X1) ≤ ‖f‖X0
, ∀f ∈ X0, t > 0.

Similarly, for f ∈ X1, we have

K(f, t;X0, X1) ≤ t ‖f‖X1
, ∀f ∈ X1, t > 0.
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Proposition 2.2.2. For each f ∈ X0 +X1, the K-functional K(f, t; X0, X1) is a
nonnegative concave function of t > 0, and

t−1K(f, t;X0, X1) = K(f, t−1;X1, X0).

In particular, K(f, t;X0, X1) is increasing on (0,∞) and t−1K(f, t; X0, X1) is
decreasing.

Proof. All the properties follow immediately from the definition, except for con-
cavity. To stablish this, consider t1, t2 > 0 and let t be the convex combination
t = α1t1 + α2t2, where α1, α2 > 0 and α1 + α2 = 1. For each decomposition
f = f0 + f1 of f with f0 ∈ X0 and f1 ∈ X1, we have

α1K(f, t1;X0, X1) + α2K(f, t2;X0, X1) ≤ α1(‖f0‖X0
+ t1 ‖f1‖X1

)

+ α2(‖f0‖X0
+ t2 ‖f1‖X1

) = (α1 + α2) ‖f0‖X0
+ (α1t1 + α2t2) ‖f1‖X1

= ‖f0‖X0
+ t ‖f1‖X1

.

Taking the infimum over all decompositions f = f0 + f1 of f , we obtain

α1K(f, t1;X0, X1) + α2K(f, t2;X0, X1) ≤ K(f, t;X0, X1),

and the result follows. �

Proposition 2.2.3. The K-functional K(f, t; X0, X1) is subadditive, that is, given
f, g ∈ X0 +X1 and t > 0, we have

K(f + g, t;X0, X1) ≤ K(f, t;X0, X1) +K(g, t;X0, X1).

Proof. It holds that

K(f + g, t;X0, X1) ≤ inf
f=f0+f1

inf
g=g0+g1

{‖f0 + g0‖X0
+ t ‖f1 + g1‖X1

},

where the infimums are taken over all representations f = f0 + f1 of f with
f0 ∈ X0 and f1 ∈ X1, and all representations g = g0 + g1 of g with g0 ∈ X0 and
g1 ∈ X1, respectively. Now, by the triangular inequalities for ‖·‖X0

and ‖·‖X1
and

the properties of the infimum, we have that

inf
f=f0+f1

inf
g=g0+g1

{‖f0 + g0‖X0
+ t ‖f1 + g1‖X1

}

≤ inf
f=f0+f1

inf
g=g0+g1

{‖f0‖X0
+ t ‖f1‖X1

+ ‖g0‖X0
+ t ‖g1‖X1

}

= inf
f=f0+f1

{‖f0‖X0
+ t ‖f1‖X1

}+ inf
g=g0+g1

{‖g0‖X0
+ t ‖g1‖X1

}

= K(f, t;X0, X1) +K(g, t;X0, X1).

This completes the proof. �
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Theorem 2.2.4. Let (X0, X1) and (Y0, Y1) be compatible couples and suppose that
Xj ↪→ Yj, j = 0, 1. Then, there exists a constant c > 0, depending only on the
spaces X0, X1, Y0, Y1, such that

K(f, t;Y0, Y1) ≤ cK(f, t;X0, X1), ∀f ∈ X0 +X1, t > 0.

Proof. Since X0 +X1 ↪→ Y0 + Y1, we have that

K(f, t;Y0, Y1) = inf
f=f̄0+f̄1

{
∥∥f̄0

∥∥
Y0

+ t
∥∥f̄1

∥∥
Y1
, f̄j ∈ Yj, j = 0, 1}

≤ inf
f=f0+f1

{‖f0‖Y0 + t ‖f1‖Y1 , fj ∈ Xj, j = 0, 1}.

By hypothesis, there exist constants c0, c1 > 0 such that ‖·‖Yj ≤ cj ‖·‖Xj , j = 0, 1.

Taking c = max{c0, c1}, we obtain

inf
f=f0+f1

{‖f0‖Y0 + t ‖f1‖Y1} ≤ inf
f=f0+f1

{c0 ‖f0‖X0
+ c1t ‖f1‖X1

}

≤ max{c0, c1} inf
f=f0+f1

{‖f0‖X0
+ t ‖f1‖X1

} = cK(f, t;X0, X1).

This completes the proof. �

2.3 A Basic K-Interpolation Result

We have seen that the Marcinkiewicz interpolation theorem has a natural formu-
lation in terms of the Lorentz Lp,q-spaces. Now, if 1 < p ≤ ∞, 1 ≤ q ≤ ∞,
then Lp,q is an intermediate space between L1 and L∞. Furthermore, and as we
will see later, the Lp,q-norm can be defined entirely in terms of the K-functional
for (L1, L∞). We impose now an analogous structure on any compatible couple
(X0, X1) by defining a two-parameter family of intermediate spaces as follows:

Definition 2.3.1. Let (X0, X1) be a compatible couple and suppose 0 < θ < 1,
1 ≤ q <∞ or 0 ≤ θ ≤ 1, q =∞. The space (X0, X1)θ,q consists of all f in X0 +X1

for which the functional

‖f‖θ,q :=


(∫ ∞

0

(t−θK(f, t;X0, X1))q
dt

t

)1/q

, 0 < θ < 1, 1 ≤ q,

sup
0<t<∞

t−θK(f, t;X0, X1), 0 ≤ θ ≤ 1, q =∞,

is finite.

Notation. We will use the notations X0 +∞X1 := (X0, X1)0,∞ and X1 +∞X0 :=
(X0, X1)1,∞.
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Theorem 2.3.2. Let (X0, X1) be a compatible couple of Banach spaces and suppose
0 < θ < 1, 1 ≤ q < ∞ or 0 ≤ θ ≤ 1, q = ∞. Then (X0, X1)θ,q equipped with the
norm ‖·‖θ,q is a Banach space intermediate between X0 and X1.

Given that the structure of the spaces (X0, X1) is modelled on that of the Lp,q-
spaces, it is to be expected that they will satisfy similar embedding relations. We
establish the following result.

Proposition 2.3.3. If 0 < θ < 1 and 1 ≤ q ≤ r ≤ ∞, then

(X0, X1)θ,q ↪→ (X0, X1)θ,r.

Proof. We may assume q < r since in the other case there is nothing to prove.
Using the fact that K(f, t;X0, X1) is increasing, we have

t−θK(f, t;X0, X1) =

(
θq

∫ ∞
t

(s−θK(f, t;X0, X1))q
ds

s

)1/q

≤
(
θq

∫ ∞
t

(s−θK(f, s;X0, X1))q
ds

s

)1/q

≤ (θq)1/q ‖f‖θ,q .

Hence, taking the supremum over all t > 0, we obtain

‖f‖θ,∞ ≤ (θq)1/q ‖f‖θ,q .

This establishes the result in the case r =∞. In the remaining case where r <∞,
we have

‖f‖θ,r =

(∫ ∞
0

(t−θK(f, t;X0, X1))r−q+q
dt

t

)1/r

≤ ‖f‖1−q/r
θ,∞ ‖f‖q/rθ,q

≤ (θq)(r−q)/rq ‖f‖θ,q . �

Theorem 2.3.4. Let T be an admissible linear operator with respect to compatible
couples (X0, X1) and (Y0, Y1). Then

K(Tf, t;Y0, Y1) ≤M0K(f, tM1/M0;X0, X1), ∀f ∈ X0 +X1, t > 0.

Proof. The admissible operator T satisfies

‖Tfi‖Yi ≤Mi ‖fi‖Xi , ∀fi ∈ Xi, i = 0, 1.
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If f ∈ X0 + X1 and f = f0 + f1 is any decomposition of f with f0 ∈ X0 and
f1 ∈ X1, then Tf = Tf0 + Tf1 and Tfi ∈ Yi, i = 0, 1. Hence,

K(Tf, t;Y0, Y1) ≤ ‖Tf0‖Y0 + t ‖Tf1‖Y1

≤M0

(
‖f0‖X0

+ t
M1

M0

‖f1‖X1

)
.

Taking the infimum over all representations f = f0 +f1 of f , we obtain the desired
result. �

Applying this result to the (θ, q)-spaces, we obtain the following basic interpo-
lation theorem.

Theorem 2.3.5. Let (X0, X1) and (Y0, Y1) be compatible couples and let 0 < θ <
1, 1 ≤ q < ∞ or 1 ≤ θ ≤ 1, q = ∞. Let T be an admissible linear operator with
respect to (X0, X1) and (Y0, Y1), with

‖Tfi‖Yi ≤Mi ‖fi‖Xi , ∀fi ∈ Xi, i = 0, 1.

Then
T : (X0, X1)θ,q −→ (Y0, Y1)θ,q,

with
‖Tf‖θ,q ≤M1−θ

0 M θ
1 ‖f‖θ,q .

Proof. We start the discussion with the case q = ∞. In virtue of the previous
theorem, and performing the change of variables s = tM1/M0 we have

‖Tf‖θ,∞ = sup
t>0

t−θK(Tf, t;Y0, Y1) ≤M0 sup
t>0

t−θK(f, tM1/M0;X0, X1)

= M0 sup
s>0

(
s
M0

M1

)−θ
K(f, s;X0, X1) = M1−θ

0 M θ
1 ‖f‖θ,∞ .

Similarly, for the case q <∞ we have

‖Tf‖θ,q =

(∫ ∞
0

(t−θK(Tf, t;Y0, Y1))q
dt

t

)1/q

≤
(
M q

0

∫ ∞
0

(t−θK(f, tM1/M0;X0, X1))q
dt

t

)1/q

= M1−θ
0 M θ

1

(∫ ∞
0

(s−θK(f, s;X0, X1))q
ds

s

)1/q

= M1−θ
0 M θ

1 ‖f‖θ,q .

This completes the proof. �
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2.4 The General K-Interpolation Theorem

Let (X0, X1) be a compatible couple and consider two interpolation spaces

Xθ0 = (X0, X1)θ0,q0 , Xθ1 = (X0, X1)θ1,q1 ,

where 0 < θ0 < θ1 < 1 and 1 ≤ q0, q1 ≤ ∞. Then (Xθ0 , Xθ1) is itself a compatible
couple. The following result, due to Holmstedt, relates the K-functionals of both
couples.

Notation. We say that two positive quantities A and B are equivalent if there
exist two constants c1, c2 > 0 independent of the essential parameters defining A
and B, such that c1A ≤ B ≤ c2A. We use the notation A ∼ B. If we only have
B ≤ c2A, we write B . A.

Theorem 2.4.1. Let (X0, X1) be a compatible couple and suppose 0 < θ0 < θ1 < 1
and 1 ≤ q0, q1 ≤ ∞. Let δ = θ1 − θ0. Then,

K(f, tδ;Xθ0 , Xθ1) ∼
(∫ t

0

(s−θ0K(f, s;X0, X1))q0
ds

s

)1/q0

+ tδ
(∫ ∞

t

(s−θ1K(f, s;X0, X1))q1
ds

s

)1/q1

,

for all f ∈ Xθ0 +Xθ1 and all t > 0; if q0 or q1 is infinite, the corresponding integral
in this expression is replaced by the supremum in the usual way.

Proof. For j = 0, 1, let

Pjg(t) :=

(∫ t

0

(s−θjK(g, s;X0, X1))qj
ds

s

)1/qj

and

Qjg(t) :=

(∫ ∞
t

(s−θjK(g, s;X0, X1))qj
ds

s

)1/qj

,

with the usual modification if qj = ∞. By the subadditivity of K(g, s; X0, X1)
and the Minkowski’s inequality for Lqj , it follows that Pj and Qj are subadditive.
Now, we can express the desired result in the form

K(f, tδ;Xθ0 , Xθ1) ∼ P0f(t) + tδQ1f(t).

Suppose first that f ∈ Xθ0 +Xθ1 and fix t > 0. Let f = g+h be any representation
of f with g ∈ Xθ0 and h ∈ Xθ1 . Then, using the subadditivity of P0 and Q1, we
obtain

P0f(t) + tδQ1f(t) ≤ ‖g‖Xθ0
+ P0h(t) + tδ

(
Q1g(t) + ‖h‖Xθ1

)
.
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Since Xθ0 = (X0, X1)θ0,q0 ↪→ (X0, X1)θ0,∞, there exists a constant c0 > 0 depending
only on θ0 and q0 such that

sup
s>0

s−θ0K(g, s;X0, X1) ≤ c0 ‖g‖Xθ0
.

Hence, for all s > 0 we have that

K(g, s;X0, X1) ≤ c0s
−θ0 ‖g‖Xθ0

.

With this estimate and performing the integration, we find that

Q1g(t) ≤ c0 ‖g‖Xθ0

(∫ ∞
t

s(θ0−θ1)q1−1ds

)1/q1

= c0

(
1

(θ1 − θ0)q1

)1/q1

t−δ ‖g‖Xθ0
.

Similarly, there exists a constant c1 > 0 depending only on θ1 and q1 such that

P0h(t) ≤ c1

(
1

(θ1 − θ0)q0

)1/q0

tδ ‖h‖Xθ1
.

Combining all these estimates, we obtain that there exists a constant c > 0 de-
pending only on θ0, θ1, q0, q1 such that

P0f(t) + tδQ1f(t) ≤ c
(
‖g‖Xθ0

+ tδ ‖h‖Xθ1

)
.

Hence, passing to the infimum over all such representations f = g + h of f , we
conclude that

P0f(t) + tδQ1f(t) ≤ cK(f, tδ;Xθ0 , Xθ1).

Conversely, suppose that f ∈ X0 +X1 and that P0f(t) and Q1f(t) are finite. We
shall show that f ∈ Xθ0 +Xθ1 and

K(f, tδ;Xθ0 , Xθ1) ≤ c
(
P0f(t) + tδQ1f(t)

)
,

with c > 0 a constant depending only on θ0, θ1, q0, q1. Let f = g + h be a repre-
sentation of f with g ∈ X0, h ∈ X1, and

‖g‖X0
+ t ‖h‖X1

≤ 2K(f, t;X0, X1).

Then, for all s > 0 we obtain that

K(g, s;X0, X1) ≤ ‖g‖X0
≤ 2K(f, t;X0, X1)
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and

K(h, s;X0, X1) ≤ s ‖h‖X1
≤ 2s

t
K(f, t;X0, X1).

With these estimates and performing the integration, we find that

Q0g(t) =

(∫ ∞
t

(s−θ0K(g, s;X0, X1))q0
ds

s

)1/q0

≤ 2K(f, t;X0, X1)

(∫ ∞
t

s−θ0q0−1ds

)1/q0

= 2

(
1

θ0q0

)1/q0

t−θ0K(f, t;X0, X1).

Using the fact that t−1K(f, t;X0, X1) is decreasing on (0,∞), we get that

P0f(t) =

(∫ t

0

(s1−θ0−1K(f, s;X0, X1))q0
ds

s

)1/q0

≥
(∫ t

0

(s1−θ0t−1K(f, t;X0, X1))q0
ds

s

)1/q0

= t−1K(f, t;X0, X1)

(∫ t

0

s(1−θ0)q0−1ds

)1/q0

=

(
1

(1− θ0)q0

)1/q0

t−θ0K(f, t;X0, X1).

Hence,

Q0g(t) ≤ 2

(
1− θ0

θ0

)1/q0

P0f(t).

Similarly, we obtain that

P0h(t) =

(∫ t

0

(s−θ0K(h, s;X0, X1))q0
ds

s

)1/q0

≤ 2t−1K(f, t;X0, X1)

(∫ t

0

s(1−θ0)q0−1ds

)1/q0

≤ 2

(
1

(1− θ0)q0

)1/q0

t−θ0K(f, t;X0, X1) ≤ 2P0f(t).

Since g = f − h, by the subadditivity of P0 we obtain that P0g ≤ P0f + P0h. The
previous estimates show that there exists a constant c0 > 0 depending only on θ0

and q0 such that

‖g‖Xθ0
= (P0 +Q0)g(t) ≤ c0P0f(t) <∞,
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which proves, in particular, that g ∈ Xθ0 .
Using the fact that K(f, t; X0, X1) is increasing on (0,∞), we get that

Q1f(t) =

(∫ ∞
t

(s−θ1K(f, s;X0, X1))q1
ds

s

)1/q1

≥ K(f, t;X0, X1)

(∫ ∞
t

s−θ1q1−1ds

)1/q1

=

(
1

θ1q1

)1/q1

t−θ1K(f, t;X0, X1).

Following the previous arguments, we obtain that

P1h(t) =

(∫ t

0

(s−θ1K(h, s;X0, X1))q1
ds

s

)1/q1

≤ 2t−1K(f, t;X0, X1)

(∫ t

0

s(1−θ1)q1−1ds

)1/q1

≤ 2

(
1

(1− θ1)q1

)1/q1

t−θ1K(f, t;X0, X1)

≤ 2

(
θ1

1− θ1

)1/q1

Q1f(t)

and

Q1g(t) =

(∫ ∞
t

(s−θ1K(g, s;X0, X1))q1
ds

s

)1/q1

≤ 2K(f, t;X0, X1)

(∫ ∞
t

s−θ1q1−1ds

)1/q1

= 2

(
1

θ1q1

)1/q1

t−θ1K(f, t;X0, X1) ≤ 2Q1f(t).

Since h = f − g, by the subadditivity of Q1 we have that Q1h ≤ Q1f +Q1g. The
previous estimates show that there exists a constant c1 > 0 depending only on θ1

and q1 such that

‖h‖Xθ1
= (P1 +Q1)h(t) ≤ c1Q1f(t) <∞,

and so h ∈ Xθ1 . Combining all the previous results we get that there exists a
constant c > 0 depending only on θ0, θ1, q0, q1 such that

K(f, tδ;X0, X1) ≤ ‖g‖Xθ0
+ tδ ‖h‖Xθ1

≤ c
(
P0f(t) + tδQ1f(t)

)
,

which is the desired estimate. �
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Remark 2.4.2. This theorem also holds for the case 0 < q0, q1 < 1 and for a
more general type of spaces rather than Banach spaces, the so-called quasi-normed
spaces [13].

Definition 2.4.3. Suppose 0 ≤ θ ≤ 1. An intermediate space X of a compatible
couple (X0, X1) is said to be of class θ if 0 < θ < 1 and (X0, X1)θ,1 ↪→ X ↪→
(X0, X1)θ,∞, or θ = 0 and X0 ↪→ X ↪→ X0 +∞X1, or θ = 1 and X1 ↪→ X ↪→
X1 +∞X0.

The following result corresponds to the extreme cases θ0 = 0 and θ1 = 1 of the
previous theorem [13, 3, Ch. 5].

Theorem 2.4.4. Let (X0, X1) be a compatible couple and let X0 and X1 be in-
termediate spaces of (X0, X1) of class 0 and 1, respectively. Suppose 0 < θ < 1,
1 ≤ q ≤ ∞ and let Xθ,q = (X0, X1)θ,q. Then

K(f, tθ;X0, Xθ,q) ∼ tθ
(∫ ∞

t

(s−θK(f, s;X0, X1))q
ds

s

)1/q

,

for all f ∈ X0 +Xθ,q and all t > 0, and

K(f, t1−θ;Xθ,q, X1) ∼
(∫ t

0

(s−θK(f, s;X0, X1))q
ds

s

)1/q

,

for all f ∈ Xθ,q +X1 and all t > 0; with the usual modifications if q =∞.

Now we stablish the reiteration theorem, which shows that the interpolation
spaces (Xθ0 , Xθ1)θ,q can be obtained as interpolation spaces from the original cou-
ple (X0, X1).

Theorem 2.4.5. Let (X0, X1) be a compatible couple and suppose 0 < θ0 < θ1 < 1.
Let Xθj be an intermediate space of (X0, X1) of class θj, j = 0, 1. If 0 < θ < 1
and 1 ≤ q ≤ ∞, then

(Xθ0 , Xθ1)θ,q = (X0, X1)θ′,q,

with equivalent norms, where θ′ = (1− θ)θ0 + θθ1.

Proof. Let δ = θ1 − θ0. By hypothesis,

(X0, X1)θj ,1 ↪→ Xθj ↪→ (X0, X1)θj ,∞, j = 0, 1.

By Theorem 2.4.1 with q0 = q1 =∞, we have that

t−θ0K(f, t;X0, X1) . K(f, tδ; (X0, X1)θ0,∞, (X0, X1)θ1,∞),
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and since Xθj ↪→ (X0, X1)θj ,∞, j = 0, 1, we obtain that

K(f, tδ; (X0, X1)θ0,∞, (X0, X1)θ1,∞) . K(f, tδ;Xθ0 , Xθ1).

If q is finite, this, with the change of variables s = tδ and the definition of θ′ gives

‖f‖q(X0,X1)θ′,q
=

∫ ∞
0

(tθ0−θ
′−θ0K(f, t;X0, X1))q

dt

t

.
∫ ∞

0

(tθ0−θ
′
K(f, tδ;Xθ0 , Xθ1))

q dt

t

∼
∫ ∞

0

(s(θ0−θ′)/(θ1−θ0)K(f, s;Xθ0 , Xθ1))
q ds

s

=

∫ ∞
0

(s−θK(f, s;Xθ0 , Xθ1))
q ds

s
= ‖f‖q

(Xθ0
,Xθ1

)θ,q
.

Similarly, for the case q =∞ we have

‖f‖(X0,X1)θ′,∞
= sup

t>0
tθ0−θ

′−θ0K(f, t;X0, X1) . sup
t>0

tθ0−θ
′
K(f, tδ;Xθ0 , Xθ1)

= sup
s>0

s−θK(f, s;Xθ0 , Xθ1) = ‖f‖(Xθ0
,Xθ1

)θ,∞
.

These estimates imply that (Xθ0 , Xθ1)θ,q ↪→ (X0, X1)θ′,q. To complete the proof,
we need to establish the embedding in the opposite direction.

Using that (X0, X1)θj ,1 ↪→ Xθj , j = 0, 1, and applying Theorem 2.4.1 with
q0 = q1 = 1, we obtain

K(f, tδ;Xθ0 , Xθ1) . K(f, tδ; (X0, X1)θ0,1, (X0, X1)θ1,1)

.
∫ t

0

s−θ0K(f, s;X0, X1)
ds

s
+ tδ

∫ ∞
t

s−θ1K(f, s;X0, X1)
ds

s
.

If q is finite, this, with the change of variables u = tδ and the Minkowski’s inequality
for Lq, gives

‖f‖(Xθ0
,Xθ1

)θ,q
=

(∫ ∞
0

(u−θK(f, u;Xθ0 , Xθ1))
q du

u

)1/q

.

(∫ ∞
0

(
t−δθ

∫ t

0

s−θ0K(f, s;X0, X1)
ds

s

)q
dt

t

)1/q

+

(∫ ∞
0

(
tδ(1−θ)

∫ ∞
t

s−θ1K(f, s;X0, X1)
ds

s

)q
dt

t

)1/q

.
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For the first summand, applying the first of Hardy’s inequalities with λ = 1−δθ < 1
and exponent q, and taking into account the definition of θ′, we obtain(∫ ∞

0

(
t−δθ

∫ t

0

s−θ0K(f, s;X0, X1)
ds

s

)q
dt

t

)1/q

.

(∫ ∞
0

(t−δθ−θ0K(f, t;X0, X1))q
dt

t

)1/q

= ‖f‖(X0,X1)θ′,q
.

For the second summand, applying the second of Hardy’s inequalities with λ =
1− δ(1− θ) < 1 and exponent q, and taking into account the definition of θ′, we
obtain (∫ ∞

0

(
tδ(1−θ)

∫ ∞
t

s−θ1K(f, s;X0, X1)
ds

s

)q
dt

t

)1/q

.

(∫ ∞
0

(tδ(1−θ)−θ1K(f, t;X0, X1))q
dt

t

)1/q

= ‖f‖(X0,X1)θ′,q
.

This establishes the desired result for finite q. Similarly, for the case q = ∞, we
have

‖f‖(Xθ0
,Xθ1

)θ,∞
= sup

u>0
u−θK(f, u;Xθ0 , Xθ1)

. sup
t>0

t−δθ
∫ t

0

s−θ0K(f, s;X0, X1)
ds

s

+ sup
t>0

tδ(1−θ)
∫ ∞
t

s−θ1K(f, s;X0, X1)
ds

s

. sup
t>0

t−δθ−θ0K(f, t;X0, X1) + sup
t>0

tδ(1−θ)−θ1K(f, t;X0, X1)

∼ ‖f‖(X0,X1)θ′,∞
.

This completes the proof. �

Remark 2.4.6. This theorem also holds for the cases 0 = θ0 < θ1 < 1, 0 < θ0 <
θ1 = 1 and θ0 = 0, θ1 = 1, but the proof is slightly different [3, Ch. 5].

Via the reiteration theorem, the basic K-interpolation theorem of the previous
section can be generalized as follows:

Theorem 2.4.7. Let (X0, X1) and (Y0, Y1) be compatible couples and suppose 0 ≤
θ0 < θ1 ≤ 1, 0 ≤ ψ0, ψ1 ≤ 1 with ψ0 6= ψ1. Let Xθj and Y ψj be intermediate spaces
of (X0, X1) and (Y0, Y1) of class θj and ψj, respectively, for j = 0, 1. Let T be a
linear operator satisfying

‖Tf‖Y ψj ≤Mj ‖f‖Xθj
, j = 0, 1.
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If 0 < θ < 1 and 1 ≤ q ≤ ∞, then

‖Tf‖(Y0,Y1)ψ′,q
≤ cM1−θ

0 M θ
1 ‖f‖(X0,X1)θ′,q

,

where (θ′, ψ′) = (1− θ)(θ0, ψ0) + θ(θ1, ψ1).

Proof. The hypotheses imposed over T , together with Theorem 2.3.4 give

K(Tf, t;Y ψ0 , Y ψ1) ≤M0K

(
f, t

M1

M0

;Xθ0 , Xθ1

)
.

In the case q =∞, and performing the change of variables s = tM1/M0, we have

‖Tf‖(Y ψ0 ,Y ψ1 )θ,∞
= sup

t>0
t−θK(Tf, t;Y ψ0 , Y ψ1)

≤M0 sup
t>0

t−θK

(
f, t

M1

M0

;Xθ0 , Xθ1

)
= M0 sup

s>0

(
s
M0

M1

)−θ
K(f, s;Xθ0 , Xθ1)

= M1−θ
0 M θ

1 ‖f‖(Xθ0
,Xθ1

)θ,∞
.

Similarly, for the case q <∞ we have

‖Tf‖(Y ψ0 ,Y ψ1 )θ,q
=

(∫ ∞
0

(t−θK(Tf, t;Y ψ0 , Y ψ1))
q dt

t

)1/q

≤
(
M q

0

∫ ∞
0

(
t−θK

(
f, t

M1

M0

;Xθ0 , Xθ1

))q
dt

t

)1/q

= M1−θ
0 M θ

1

(∫ ∞
0

(s−θK(f, s;Xθ0 , Xθ1))
q ds

s

)1/q

= M1−θ
0 M θ

1 ‖f‖(Xθ0
,Xθ1

)θ,q
.

Applying the reiteration theorem and taking into account the definition of (θ′, ψ′),
we obtain that

‖Tf‖(Y0,Y1)ψ′,q
. ‖Tf‖(Y ψ0 ,Y ψ1 )θ,q

≤M1−θ
0 M θ

1 ‖f‖(Xθ0
,Xθ1

)θ,q
.M1−θ

0 M θ
1 ‖f‖(X0,X1)θ′,q

.

This completes the proof. �

Remark 2.4.8. The Calderón operator Sσ for the interpolation segment

σ = [(1− θ0, 1− ψ0), (1− θ1, 1− ψ1)]
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is lurking in the background here. Indeed, since Y ψj ↪→ (Y0, Y1)ψj ,∞ for j =

0, 1, the K-functional K(Tf, t;Y ψ0 , Y ψ1) can be estimated from below applying
Theorem 2.4.1 with q0 = q1 =∞, obtaining

t−ψ0K(Tf, t;Y0, Y1) . K(Tf, tψ1−ψ0 ; (Y0, Y1)ψ0,∞, (Y0, Y1)ψ1,∞)

. K(Tf, tψ1−ψ0 ;Y ψ0 , Y ψ1).

Similarly, if 0 < θj < 1, the embedding (X0, X1)θj ,1 ↪→ Xθj , j = 0, 1, and Theo-
rem 2.4.1 with q0 = q1 = 1, give raise to the estimates

K(f, t;Xθ0 , Xθ1) . K(f, t; (X0, X1)θ0,1, (X0, X1)θ1,1)

.
∫ t1/(θ1−θ0)

0

s−θ0K(f, s;X0, X1)
ds

s

+ t

∫ ∞
t1/(θ1−θ0)

s−θ1K(f, s;X0, X1)
ds

s
.

Recall that

K(Tf, tψ1−ψ0 ;Y ψ0 , Y ψ1) ≤M0K

(
f, tψ1−ψ0

M1

M0

;Xθ0 , Xθ1

)
.

Combining all these estimates, we obtain that

K(Tf, t;Y0, Y1)

t

.M0t
ψ0−1

∫ (
M1
M0

) 1
θ1−θ0 t

ψ1−ψ0
θ1−θ0

0

s1−θ0K(f, s;X0, X1)

s

ds

s

+M1t
ψ1−1

∫ ∞
(
M1
M0

) 1
θ1−θ0 t

ψ1−ψ0
θ1−θ0

s1−θ1K(f, s;X0, X1)

s

ds

s

The right-hand side is essentially the Sσ-operator applied to the function K(f, s;
X0, X1)/s. Defining M = (M1/M0)1/(θ1−θ0) and m = (ψ1 − ψ0)/(θ1 − θ0), multi-
plying each side by t1−ψ

′
, taking the Lq(dt/t)-norm and applying the Minkowski’s

inequality for Lq, performing the chancge of variables u = Mtm, applying the first
of Hardy’s inequalities with λ = 1 + (ψ0 − ψ′)/m < 1 and exponent q, and the
second of Hardy’s inequalities with λ = 1− (ψ1 − ψ′)/m < 1 and exponent q, and
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taking into account the definition of (θ′, ψ′) we get that

‖Tf‖(Y0,Y1)ψ′,q

.M0

(∫ ∞
0

(
tψ0−ψ′

∫ Mtm

0

s−θ0K(f, s;X0, X1)
ds

s

)q
dt

t

)1/q

+M1

(∫ ∞
0

(
tψ1−ψ′

∫ ∞
Mtm

s−θ1K(f, s;X0, X1)
ds

s

)q
dt

t

)1/q

.M1−θ
0 M θ

1

(∫ ∞
0

(
u(ψ0−ψ′)/m

∫ u

0

s−θ0K(f, s;X0, X1)
ds

s

)q
du

u

)1/q

+M1−θ
0 M θ

1

(∫ ∞
0

(
u(ψ1−ψ′)/m

∫ ∞
u

s−θ1K(f, s;X0, X1)
ds

s

)q
du

u

)1/q

.M1−θ
0 M θ

1

(∫ ∞
0

(u−θ
′
K(f, u;X0, X1))q

du

u

)1/q

= M1−θ
0 M θ

1 ‖f‖(X0,X1)θ′,q
,

where the constants implicit in the symbol . do not depend on M0, M1. This is
exactly the procedure used previously to establish the Marcinkiewicz interpolation
theorem. It illustrates once again how closely the abstract K-method is modelled
on the classical Marcinkiewicz theory.

2.5 Some Examples of K-Functionals

Since the essence of the K-interpolation structure resides in the K-functional itself,
we devote this section to determine in concrete terms the K-functionals for a
variety of specific pairs of Banach spaces. We start computing the K-functional
for the compatible couple (L1, L∞).

Theorem 2.5.1. Let (R, µ) be a totally σ-finite measure space. Then, for each
f ∈ (L1 + L∞)(R, µ),

K(f, t;L1, L∞) =

∫ t

0

f ∗(s)ds = tf ∗∗(t), t > 0.

Proof. The second equality follows from the definition of f ∗∗. Fix f ∈ L1 + L∞

and t > 0. We show first that∫ t

0

f ∗(s)ds ≤ K(f, t;L1, L∞).
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Let f = g + h be any representation of f with g ∈ L1 and h ∈ L∞. The subaddi-
tivity of f ∗∗ gives ∫ t

0

f ∗(s)ds ≤
∫ t

0

g∗(s)ds+

∫ t

0

h∗(s)ds

and hence, by Proposition 1.2.6 and the fact that f ∗ is decreasing,∫ t

0

f ∗(s)ds ≤
∫ ∞

0

g∗(s)ds+ th∗(0) = ‖g‖1 + t ‖h‖∞ .

Taking the infimum over all possible representations f = g + h, we obtain the
desired estimate.

For the reverse inequality

K(f, t;L1, L∞) ≤
∫ t

0

f ∗(s)ds,

it will suffice to construct functions g ∈ L1 and h ∈ L∞ such that f = g + h and

‖g‖1 + t ‖h‖∞ ≤
∫ t

0

f ∗(s)ds.

Clearly, the right-hand side may be assumed to be finite, otherwise there is nothing
to prove. Then Corollary 1.2.8 guarantees the integrability of f over any subset of
R of measure at most t. Thus, if we let E = {x : |f(x)| > f ∗(t)} and set t0 = µ(E),
Proposition 1.2.5 gives t0 ≤ t and so f is integrable over E. In particular, for the
functions

g(x) = max{|f(x)| − f ∗(t), 0} · sgn f(x)

and
h(x) = min{|f(x)|, f ∗(t)} · sgn f(x),

we have

‖g‖1 =

∫ ∞
0

max{|f(x)| − f ∗(t), 0}dµ(x) =

∫
E

|f(x)|dµ(x)− µ(E)f ∗(t)

≤
∫ t0

0

f ∗(s)ds− t0f ∗(t) ≤
∫ t

0

f ∗(s)ds <∞

and
‖h‖∞ ≤ f ∗(t) <∞,

so g ∈ L1 and h ∈ L∞. Moreover,

‖g‖1 + t ‖h‖∞ ≤
∫ t0

0

f ∗(s)ds+ (t− t0)f ∗(t).
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But by Proposition 1.2.5, f ∗(s) is constant and equal to f ∗(t) whenever t0 ≤ s ≤ t,
so the last estimate in fact coincides with the desired result. Since f = g + h, the
proof is complete. �

As a consequence of this theorem and the definition of the Lp,q-norm in terms
of f ∗∗, we have the following result.

Theorem 2.5.2. If 0 < θ < 1 and 1 ≤ q ≤ ∞, then

(L1, L∞)θ,q = Lp,q,

where 1/p = 1− θ.

Combining these results with Theorem 2.4.1 and its corollaries, we obtain de-
scriptions of the K-functionals for the Lebesgue and Lorentz spaces.

Theorem 2.5.3. Suppose 1 < p < r < ∞ and 1 ≤ q, s ≤ ∞. Let δ = 1/p− 1/r.
Then,

K(f, t;Lp,q, Lr,s) ∼

(∫ t1/δ

0

(u1/pf ∗∗(u))q
du

u

)1/q

+ t

(∫ ∞
t1/δ

(u1/rf ∗∗(u))s
du

u

)1/s

,

for all f ∈ Lp,q +Lr,s and all t > 0; if q or s is infinite, the corresponding integral
in this expression is replaced by the supremum in the usual way.

Corollary 2.5.4. Suppose 1 < p < r <∞. Let δ = 1/p− 1/r. Then,

K(f, t;Lp, Lr) ∼

(∫ t1/δ

0

(f ∗∗(u))pdu

)1/p

+ t

(∫ ∞
t1/δ

(f ∗∗(u))rdu

)1/r

,

for all f ∈ Lp + Lr and all t > 0.

Theorem 2.5.5. Suppose 1 < p <∞ and 1 ≤ q ≤ ∞. Then

K(f, t;L1, Lp,q) ∼ t

(∫ ∞
tp/(p−1)

(s1/pf ∗∗(s))q
ds

s

)1/q

,

for all f ∈ L1 + Lp,q and all t > 0, and

K(f, t;Lp,q, L∞) ∼
(∫ tp

0

(s1/pf ∗∗(s))q
ds

s

)1/q

,

for all f ∈ Lp,q + L∞ and all t > 0; with the usual modifications if q =∞.
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Corollary 2.5.6. Suppose 1 < p <∞. Then

K(f, t;L1, Lp) ∼ t

(∫ ∞
tp/(p−1)

(f ∗∗(s))pds

)1/p

,

for all f ∈ L1 + Lp and all t > 0, and

K(f, t;Lp, L∞) ∼
(∫ tp

0

(f ∗∗(s))pds

)1/p

,

for all f ∈ Lp + L∞ and all t > 0.

Remark 2.5.7. These results also hold for parameters 0 < p < r ≤ ∞ and
0 < q, s ≤ ∞, as shown by Holmstedt [13]. Moreover, the function f ∗∗ can be
replaced by f ∗ in the expressions above and the corresponding descriptions of the
K-functionals are also true [1, 13, 14, 20].

Remark 2.5.8. The previous theorems provide descriptions of the K-functionals
up to certain multiplicative constants implicit in the symbol ∼. Several authors
have computed exact formulas for some pairs of Lorentz spaces. Nilsson and
Peetre gave a formula for the couple (L1, Lp) with 1 < p < ∞ [19], and Ericsson
proved formulas for the couples (Lp,1, L∞) and (Lp,∞, L∞) with 0 < p < ∞, and
(Lp/q,1, Lp,q) with 1 < q ≤ p <∞ [8].
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Chapter 3

Multilinear Interpolation Theory

3.1 Brief History of Multilinear Interpolation

Multilinear interpolation is a powerful tool that yields intermediate estimates from
a finite set of initial estimates for operators of several variables. In particular, the
real multilinear interpolation method yields strong type bounds for multilinear or
multi-sublinear operators as a consequence of initial restricted weak type estimates.
We start this section describing what is a multilinear operator.

Definition 3.1.1. Let n ≥ 1 be an integer. For 1 ≤ j ≤ n, let (Xj, µj) and (Y, ν)
be totally σ-finite measure spaces. Let S (Xj) be the space of simple functions on
Xj. Let T be a map defined on S (X1) × · · · ×S (Xn) that takes values in the
measure space (Y, ν). Then T is called multilinear if for all fj, gj in S (Xj) and
all scalars λ we have

T (f1, . . . , λfj, . . . , fn) = λT (f1, . . . , fj, . . . , fn),

T (f1, . . . , fj + gj, . . . , fn) = T (f1, . . . , fj, . . . , fn) + T (f1, . . . , gj, . . . , fn).

The operator T is called multi-quasilinear if there exists a constant K ≥ 1 such
that

|T (f1, . . . , λfj, . . . , fn)| = |λ||T (f1, . . . , fj, . . . , fn)|,
and

|T (f1, . . . , fj + gj, . . . , fn)| ≤ K(|T (f1, . . . , fj, . . . , fn)|+ |T (f1, . . . , gj, . . . , fn)|).

In the case where K = 1, T is called multi-sublinear. If n = 2, we talk about
bilinear, bi-quasilinear and bi-sublinear operators, respectively.

If we try to generalize the classical Marcinkiewicz interpolation theorem to the
multilinear setting, we will run into trouble because of the following. Suppose
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that (A0, A1), (B0, B1) and (C0, C1) are compatible couples of Banach spaces, and
that T is a bilinear operator defined on (A0 +A1)× (B0 +B1), and mapping this
product continuously into C0 + C1 and such that T maps A0 × B0 continuously
into C0 and A1×B1 into C1. Take a ∈ A0 +A1, b ∈ B0 +B1, and write a = a0 +a1,
b = b0 + b1, with ai ∈ Ai, bi ∈ Bi, for i = 0, 1. At this point we would like to
invoke the bilinearity of T but if we do so, the terms T (a0, b1) and T (a1, b0) will
appear, and we don’t know how to control them with the given hypotheses. A way
to bypass this problem is to impose embedding relations on the spaces involved.
This is precisely what Lions and Peetre did, and in 1964 they proved the following
interpolation theorem for bilinear operators [16].

Theorem 3.1.2. Let (A0, A1), (B0, B1) and (C0, C1) be interpolation pairs, with
Ai ⊆ Bi, i = 0, 1. Let T be a bilinear operator bounded from A1×B1 into C1 with
norm ω1, and such that the restriction T : A0 ×B0 −→ C0 is bounded, with norm
ω0. Let 1 ≤ p, q ≤ ∞ such that 1/r := 1/p + 1/q − 1 ≥ 0, and 0 < θ < 1. Then,
T : (A0, A1)θ,p× (B0, B1)θ,q −→ (C0, C1)θ,r is bounded, with norm at most ω1−θ

0 ωθ1.

The proof of this result is based on the J-method, which is equivalent to the
K-method [6, Ch. 3].

In 1969, Strichartz proved the following result, which is a bilinear version of
the Marcinkiewicz interpolation theorem [23]. This result can be regarded as a
specialization of the previous result of Lions and Peetre to the case of the Lebesgue
spaces Lp(X,µ) for arbitrary totally σ-finite measure spaces (X,µ). Observe that
in this case, we start from three weak type estimates for the operator involved,
instead of the two hypotheses imposed in the previous result.

Theorem 3.1.3. Let T (f1, . . . , fm) be a bilinear transformation from

{Lp1,1(X1, µ1)× Lp1,2(X2, µ2)}+ {Lp2,1(X1, µ1)× Lp2,2(X2, µ2)}
+ {Lp3,1(X1, µ1)× Lp3,2(X2, µ2)}

to measurable function on (Y, ν). Suppose T satisfies the weak type estimates

ν{z : |T (f1, f2)(z)| ≥ α} ≤

(
Mi ‖f1‖pk,1 ‖f2‖pk,2

α

)qk

,

with pk,1, pk,2, qk ≥ 1, for k = 1, 2, 3, and the qk’s pairwise different. Suppose the
points (1/pk,1, 1/pk,2) in R2 span a nondegenerate simplex, and let (1/p1, 1/p2) be
a point in the interior of the simplex. In barycentric coordinates

1

p1

=
∑
k

ηk
pk,1

,
1

p2

=
∑
k

ηk
pk,2

,
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where
∑

k ηk = 1 and 0 < ηk < 1. Let 1/q =
∑

k ηk/qk. Suppose that for just one
of the pj’s, say pi, we have pi ≤ q. Then T satisfies the strong type estimate

‖T (f1, f2)‖q ≤M ‖f1‖p1 ‖f2‖p2 .

The proof involves arguments based on the Riesz-Thorin interpolation theorem
[3, Ch. 4] and the ordinary Marcinkiewicz interpolation theorem.

In 1978, Zafran generalized the work of Lions and Peetre [16] and proved the
following interpolation theorems for multilinear operators [25]. There are two
important facts in this result. The first one is that there is no need to assume any
kind of embedding hypothesis on the spaces involved. The second one is that for all
n ≥ 1 and T a n-linear operator, we always start with two weak type hypotheses
imposed on T .

Theorem 3.1.4. Let (B0
j , B

1
j ), (C0, C1) be interpolation pairs, 1 ≤ j ≤ n. Let T

be a multilinear operator from
⊕n

j=1 B
0
j ∩B1

j into C0 ∩ C1 such that

‖T (x1, . . . , xn)‖Ck ≤Mk

n∏
j=1

‖xj‖Bkj ,

for k = 0, 1 and for all (x1, . . . , xn) ∈
⊕n

j=1B
0
j ∩ B1

j . Let 0 < s < 1, 1 ≤ pj ≤ ∞,
and suppose 1/q =

∑n
j=1 1/pj − n+ 1 ≥ 0. Then,

‖T (x1, . . . , xn)‖(C0,C1)s,q
≤M1−s

0 M s
1

n∏
j=1

‖xj‖(B0
j ,B

1
j )s,pj

,

for all (x1, . . . , xn) ∈
⊕n

j=1B
0
j ∩ B1

j . In particular, if pj < ∞, 1 ≤ j ≤ n, then T

has a unique extension as a bounded multilinear operator from
⊕n

j=1(B0
j , B

1
j )s,pj

into (C0, C1)s,q of norm at most M1−s
0 M s

1 .

As a corollary of this theorem, we obtain the corresponding result for the
Lebesgue spaces. In contraposition to the result of Strichartz, in this case it is
enough to impose only two weak type hypotheses on the operator involved, at the
price of the condition 0 ≤ 1/q ≤

∑n
j=1 1/pj − n + 1. If this condition is removed,

the interpolation result fails, in general. We will present an example of this fact
in the next section.

Corollary 3.1.5. Let (Xj, µj) and (Y, ν) denote totally σ-finite measure spaces,
1 ≤ j ≤ n, and denote by Sj the integrable simple functions on Xj, and by M
the measurable functions on Y . Let 1 ≤ p1,j 6= p2,j ≤ ∞, 1 ≤ q1 6= q2 ≤ ∞,
and 0 < s < 1. Define 1/pj = (1 − s)/p1,j + s/p2,j and 1/q = (1 − s)/q1 + s/q2
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and suppose 0 ≤ 1/q ≤
∑n

j=1 1/pj − n + 1. Let T be a multilinear operator from⊕n
j=1 Sj into M such that

‖T (f1, . . . , fn)‖Lqk,∞(ν) ≤Mk

n∏
j=1

‖fj‖Lpk,j ,1(µj)
,

for all (f1, . . . , fn) ∈
⊕n

j=1 Sj. Then,

‖T (f1, . . . , fn)‖Lq(ν) ≤ cM1−s
0 M s

1

n∏
j=1

‖fj‖Lpj (µj)
,

for all (f1, . . . , fn) ∈
⊕n

j=1 Sj, where c is a constant depending only on the
pk,j, qk, n and s. In particular, T has a unique extension to

⊕n
j=1 L

pj(µj) sat-
isfying the previous estimate.

The proof of this result is based on the J-method [6, Ch. 3].

In 2001, Grafakos and Kalton proved the following extension of the classical
Marcinkiewicz interpolation theorem to the multilinear setting [10]. This result
holds for Lorentz spaces Lp,q over the measure space (R+,m), where m denotes
the Lebesgue measure. In this case, for all n ≥ 1 and T a n-linear operator, we
start with n+ 1 weak type hypotheses imposed on T .

Theorem 3.1.6. Let 0 < pk,j ≤ ∞ for 1 ≤ k ≤ n + 1 and 1 ≤ j ≤ n, and also
let 0 < qk ≤ ∞ for 1 ≤ k ≤ n+ 1. Suppose that a locally continuous n-linear map
T : En → L0(0,∞) satisfies

‖T (χE1 , . . . , χEn)‖qk,∞ ≤M
n∏
j=1

m(Ej)
1/pk,j ,

for all sets Ej of finite measure and all 1 ≤ k ≤ n+ 1. Assume that the system
1/p1,1 1/p1,2 · · · 1/p1,n 1
1/p2,1 1/p2,2 · · · 1/p2,n 1

...
...

...
...

...
1/pn,1 1/pn,2 · · · 1/pn,n 1

1/pn+1,1 1/pn+1,2 · · · 1/pn+1,n 1




σ1

σ2
...
σn
−τ

 =


1/q1

1/q2
...

1/qn
1/qn+1


has a unique solution (σ1, . . . , σn,−τ) ∈ Rn+1 with not all σj = 0. Suppose that
(1/p1, . . . , 1/pn, 1/q) lies in the open convex hull of the points (1/pk,1, . . . , 1/pk,n,
1/qk) in Rn+1 and let 0 < sj, s ≤ ∞ satisfy

1

s
=

∑
1≤j≤n:σj 6=0

1

sj
.
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Then T extends to a bounded n-linear map

T :
n∏
j=1

Lpj ,sj(0,∞) −→ Lq,s(0,∞),

with norm a multiple of M .

The proof of this result is based on the work of Boyd [4].

In 2012, Grafakos, Liu, Lu and Zhao, proved a multilinear extension of the
Marcinkiewicz real method interpolation theorem [11]. Their result is similar to
the theorem of Grafakos and Kalton but with the difference that it works for
general measure spaces rather than R+. Just as in the previous theorem, for a
n-linear operator T , we impose n+ 1 weak type hypotheses on T .

In order to state this theorem, we introduce some notation.

Definition 3.1.7. Let n be a positive integer. For 1 ≤ k ≤ n+ 1 and 1 ≤ j ≤ n,
we are given 0 < pk,j <∞ and 0 < qk <∞. We define determinants γj as follows:

γ0 = det


1/p1,1 1/p1,2 · · · 1/p1,n 1
1/p2,1 1/p2,2 · · · 1/p2,n 1

...
...

...
...

...
1/pn,1 1/pn,2 · · · 1/pn,n 1

1/pn+1,1 1/pn+1,2 · · · 1/pn+1,n 1

 ,

and for each j, we define

γj = det


1/p1,1 1/p1,2 · · · −1/q1 · · · 1/p1,n 1
1/p2,1 1/p2,2 · · · −1/q2 · · · 1/p2,n 1

...
...

...
...

...
...

...
1/pn,1 1/pn,2 · · · −1/qn · · · 1/pn,n 1

1/pn+1,1 1/pn+1,2 · · · −1/qn+1 · · · 1/pn+1,n 1

 ,

where the j-th column of the determinant defining γj is obtained by replacing the j-
th column of the determinant defining γ0 by the vector Q := (−1/q1, . . . ,−1/qn+1).

Remark 3.1.8. These determinants have a geometric meaning. For 1 ≤ k ≤ n+1,
let Pk := (1/pk,1, . . . , 1/pk,n) be points in Rn. Let

H :=

{
n+1∑
k=1

ηkPk : ∀k, ηk ∈ (0, 1),
n+1∑
k=1

ηk = 1

}
be the open convex hull of the points Pk, 1 ≤ k ≤ n + 1. Then, H is an open
subset of Rn whose n-dimensional volume is n!|γ0|. Hence, the condition γ0 6= 0
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is equivalent to the fact that H is a nontrivial open simplex in Rn. The geometric
meaning for the remaining γj’s is similar. That is, the condition γj 6= 0 is equiv-
alent to the fact that the open convex hull of P1, . . . , Pj−1, Q, Pj+1, . . . , Pn+1 is a
nontrivial open simplex in Rn.

We now state the theorem of Grafakos, Liu, Lu and Zhao.

Theorem 3.1.9. Let T be a n-sublinear operator defined on S (X1)×· · ·×S (Xn)
and taking values in the set of measurable functions of (Y, ν). For 1 ≤ k ≤ n + 1
and 1 ≤ j ≤ n, we are given 1 ≤ pk,j and 1 < qk. Suppose that γ0 6= 0. Assume
that T satisfies

‖T (χE1 , . . . , χEn)‖qk,∞ ≤ Bk

n∏
j=1

µj(Ej)
1/pk,j ,

for all 1 ≤ k ≤ n+ 1 and for all subsets Ej of Xj with µj(Ej) <∞. Let

P =

(
1

p1

, . . . ,
1

pn

)
=

n+1∑
k=1

ηkPk,

for some ηk ∈ (0, 1) such that
∑n+1

k=1 ηk = 1, and define

1

q
=

n+1∑
k=1

ηk
qk
.

For each j, let 1 ≤ sj, and let

1

s
=

∑
1≤j≤n; γj 6=0

1

sj
.

Under these assumptions, there is a positive finite constant c such that

‖T (f1, . . . , fn)‖q,s ≤ c

(
n+1∏
k=1

Bηk
k

)
n∏
j=1

‖fj‖pj ,sj ,

for all fj ∈ Lpj ,sj(Xj).

For simplicity, we have removed the description of the constant c. Observe
that the linear system in the theorem of Grafakos and Kalton will have a unique
solution if, and only if γ0 6= 0, and in this case, σj = −γj/γ0, so the choice of the
parameter s is the same as in the previous theorem.
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3.2 A Modern Bi-Sublinear Interpolation

Theorem

We will devote this section to the proof of Theorem 3.1.9 for the case of bi-sublinear
operators. For convenience, we restate the result.

Theorem 3.2.1. Let T be a bi-sublinear operator defined on S (X1)×S (X2) and
taking values in the set of measurable functions of (Y, ν). For 1 ≤ k ≤ 3 and
j = 1, 2, we are given 1 ≤ pk,j and 1 < qk. Suppose that γ0 6= 0. Assume that T
satisfies

‖T (χE1 , χE2)‖qk,∞ ≤ Bkµ1(E1)1/pk,1µ2(E2)1/pk,2 ,

for all 1 ≤ k ≤ 3 and for all subsets Ej of Xj with µj(Ej) <∞. Let

P =

(
1

p1

,
1

p2

)
=

3∑
k=1

ηkPk,

for some ηk ∈ (0, 1) such that
∑3

k=1 ηk = 1, and define

1

q
=

3∑
k=1

ηk
qk
.

For each j = 1, 2, let 1 ≤ sj, and let

1

s
=

∑
1≤j≤2; γj 6=0

1

sj
.

Under these assumptions, there is a positive finite constant c such that

‖T (f1, f2)‖q,s ≤ c ‖f1‖p1,s1 ‖f2‖p2,s2 ,

for all fj ∈ Lpj ,sj(Xj).

As a preliminary to this theorem, we state the following lemmas.

Lemma 3.2.2. Let p ≥ 1, q > 1 and T be a sublinear operator defined on the
characteristic functions χE, with E ⊆ X and µ(E) < ∞. Assume that for some
constant M > 0 and for all such measurable subsets E, we have

‖T (χE)‖q,∞ ≤Mµ(E)1/p.

Then, T : Lp,1 → Lq,∞ is bounded.
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Proof. Let f ∈ S(X) and positive. Then, f is of the form

f(x) =
∞∑
j=1

∑
k∈Z

2kχEk,j(x),

where the sums are, in fact, finite almost everywhere (see Definition 1.2.15).
Recall that for q > 1, ‖·‖(q,∞) is a norm and ‖·‖q,∞ ≤ ‖·‖(q,∞) . ‖·‖q,∞. Hence,

by the sublinearity of T , we have

‖T (f)‖q,∞ ≤ ‖T (f)‖(q,∞) ≤
∞∑
j=1

∑
k∈Z

2k
∥∥T (χEk,j)

∥∥
(q,∞)

.
∞∑
j=1

∑
k∈Z

2k
∥∥T (χEk,j)

∥∥
q,∞ .M

∞∑
j=1

∑
k∈Z

2kµ(Ek,j)
1/p.

Since Ek,j = {x : 2k ≤ fj(x) < 2k+1} and fj <
f
2j

, we obtain that Ek,j ⊆ {x :
f(x) > 2k+j}, so µ(Ek,j) ≤ µf (2

k+j). Therefore,

‖T (f)‖q,∞ .M
∞∑
j=1

∑
k∈Z

2kµf (2
k+j)1/p = M

∞∑
j=1

1

2j

∑
k∈Z

2k+jµf (2
k+j)1/p

.M
∞∑
j=1

1

2j

∑
k∈Z

2k+1µf (2
k+1)1/p .M

∑
k∈Z

2k+1µf (2
k+1)1/p

.M
∑
k∈Z

∫ 2k+1

2k
µf (s)

1/pds .M

∫ ∞
0

µf (s)
1/pds .M ‖f‖p,1 ,

where we have used that µf is decreasing, so∫ 2k+1

2k
µf (s)

1/pds ≥ 2kµf (2
k+1)1/p,

and that Lp,1 ↪→ Lp.
For an arbitrary f ∈ S(X), the same result holds by decomposing f in its

positive and negative parts. Finally, T extends uniquely to the whole space Lp,1

by density, and the theorem follows. �

Lemma 3.2.3. Under the assumptions of Theorem 3.2.1,

‖T (χE1 , χE2)‖q,∞ ≤ Bη1
1 B

η2
2 B

η3
3 µ1(E1)1/p1µ2(E2)1/p2 ,

for all subsets Ej of Xj with µj(Ej) <∞.
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Proof. By hypothesis,

‖T (χE1 , χE2)‖qk,∞ ≤ Bkµ1(E1)1/pk,1µ2(E2)1/pk,2 ,

for 1 ≤ k ≤ 3, hence

3∏
k=1

‖T (χE1 , χE2)‖
ηk
qk,∞ ≤

3∏
k=1

Bηk
k µ1(E1)ηk/pk,1µ2(E2)ηk/pk,2

=

(
3∏

k=1

Bηk
k

)
3∏

k=1

µ1(E1)ηk/pk,1µ2(E2)ηk/pk,2

=

(
3∏

k=1

Bηk
k

)
µ1(E1)1/p1µ2(E2)1/p2 .

Now, for any measurable function f , and since
∑3

k=1 ηk = 1, we have

‖f‖q,∞ = sup
t>0

t1/qf ∗(t) = sup
t>0

t
∑3
k=1 ηk/qkf ∗(t)

= sup
t>0

(
t1/q1f ∗(t)

)η1 (
t1/q2f ∗(t)

)η2 (
t1/q3f ∗(t)

)η3
≤ ‖f‖η1q1,∞ ‖f‖

η2
q2,∞ ‖f‖

η3
q3,∞ .

Combining these estimates, we obtain

‖T (χE1 , χE2)‖q,∞ ≤
3∏

k=1

‖T (χE1 , χE2)‖
ηk
qk,∞

≤

(
3∏

k=1

Bηk
k

)
µ1(E1)1/p1µ2(E2)1/p2 . �

Lemma 3.2.4. Let T be as in Theorem 3.2.1. Let 1 ≤ p1, p2 and 1 < q. Suppose
that for some constant M > 0, we have

‖T (χE1 , χE2)‖q,∞ ≤Mµ1(E1)1/p1µ2(E2)1/p2 ,

for all subsets Ej of Xj with µj(Ej) < ∞. Then, T : Lp1,1 × Lp2,1 → Lq,∞ is
bounded.

Proof. Fix F ⊆ X2 with µ2(F ) < ∞ and consider the operator TF := T (·, χF ).
Since T is bi-sublinear, TF is sublinear. Moreover,

‖TF (χE)‖q,∞ ≤Mµ1(E)1/p1µ2(F )1/p2 ,
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for all subsets E of X1 with µ1(E1) <∞. Applying Lemma 3.2.2, we obtain that
TF : Lp1,1 → Lq,∞ is bounded. In particular,

‖T (f, χF )‖q,∞ .Mµ2(F )1/p2 ‖f‖p1,1 ,

for all f ∈ Lp1,1. Now, fix f ∈ Lp1,1 and consider the operator Tf := T (f, ·). Since
T is bi-sublinear, Tf is sublinear, and by the previous estimate and Lemma 3.2.2,
we obtain that Tf : Lp2,1 → Lq,∞ is bounded. In particular,

‖T (f, g)‖q,∞ .M ‖f‖p1,1 ‖g‖p2,1 ,

for all g ∈ Lp2,1. Hence, T : Lp1,1 × Lp2,1 → Lq,∞ is bounded. �

Combining the previous lemmas, we obtain the following result.

Corollary 3.2.5. Under the assumptions of Theorem 3.2.1, we have that

T : Lp1,1 × Lp2,1 −→ Lq,∞

is bounded.

In the sequel we will make use of the set

S2 := {(σ`,1, σ`,2) : ` = 1, . . . , 4}

of all possible pairs of the form (±1,±1). Under the assumptions of Theorem 3.2.1,
since all pj <∞ and P = (1/p1, 1/p2) lies in the open convex hull H, we can choose
ε > 0 small enough such that the points R` := P + ε(σ`,1, σ`,2) belong to H, for
` = 1, . . . , 4. Hence, for each ` we can write(

1

r`,1
,

1

r`,2

)
:= R` =

3∑
k=1

θ`,kPk,

for some θ`,k ∈ (0, 1) such that
∑3

k=1 θ`,k = 1. Observe that for each ` = 1, . . . , 4,
and j = 1, 2, r`,j <∞. Also, we have

1

r`,j
− 1

pj
= εσ`,j.

For each ` = 1, . . . , 4, we also define

1

r`
:=

3∑
k=1

θ`,k
qk
.

It holds that
1

q
− 1

r`
=
γ1

γ0

(
1

r`,1
− 1

p1

)
+
γ2

γ0

(
1

r`,2
− 1

p2

)
.

We will also need the following two lemmas.
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Lemma 3.2.6. Consider the set Λ := {1 ≤ j ≤ 2 : γj 6= 0}. For all j = 1, 2,
fix functions fj ∈ S(Xj) and for any t > 0, write fj = fj,1,t + fj,−1,t, with fj,1,t =
fjχ{|fj |>f∗j (t−γj/γ0 )} and fj,−1,t = fjχ{|fj |≤f∗(t−γj/γ0 )}. For j ∈ Λ and ` = 1, . . . , 4, if

pj > r`,j, we have that∥∥∥∥∥t γjγ0
(

1
r`,j
− 1
pj

)
‖fj,1,t‖r`,j ,1

∥∥∥∥∥
Lsj( dtt )

. ‖fj‖pj ,sj ,

and if pj < r`,j, we have∥∥∥∥∥t γjγ0
(

1
r`,j
− 1
pj

)
‖fj,−1,t‖r`,j ,1

∥∥∥∥∥
Lsj( dtt )

. ‖fj‖pj ,sj .

Proof. Assume, first, that pj > r`,j. For the case sj < ∞, by Lemma 1.2.33,
the change of variables u = t−γj/γ0 and the first of Hardy’s inequalities with λ =
1 + (1/pj − 1/r`,j) < 1 and exponent sj ≥ 1, we have that∥∥∥∥∥t γjγ0

(
1
r`,j
− 1
pj

)
‖fj,1,t‖r`,j ,1

∥∥∥∥∥
Lsj( dtt )

=

(∫ ∞
0

t
sj
γj
γ0

(
1
r`,j
− 1
pj

)(∫ ∞
0

v1/r`,jf ∗j,1,t(v)
dv

v

)sj dt
t

)1/sj

.

(∫ ∞
0

u
−sj

(
1
r`,j
− 1
pj

)(∫ u

0

v1/r`,jf ∗j (v)
dv

v

)sj du
u

)1/sj

.

(∫ ∞
0

(u1/pjf ∗j (u))sj
du

u

)1/sj

= ‖fj‖pj ,sj .

Similarly, for the case sj =∞ we have

sup
t>0

t
γj
γ0

(
1
r`,j
− 1
pj

)
‖fj,1,t‖r`,j ,1

. sup
u>0

u
−
(

1
r`,j
− 1
pj

) ∫ u

0

v1/r`,jf ∗j (v)
dv

v

. sup
u>0

u1/pjf ∗j (u) = ‖fj‖pj ,∞ .

Now, assume that pj < r`,j. For the case sj <∞, applying Minkowski’s inequality
for Lsj , using Lemma 1.2.33, performing the change of variables u = t−γj/γ0 , eval-
uating directly the first summand and applying the second of Hardy’s inequalities
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with λ = 1 + (1/r`,j − 1/pj) < 1 and exponent sj ≥ 1 to the second summand, we
have that∥∥∥∥∥t γjγ0

(
1
r`,j
− 1
pj

)
‖fj,−1,t‖r`,j ,1

∥∥∥∥∥
Lsj( dtt )

.

(∫ ∞
0

u
−sj

(
1
r`,j
− 1
pj

)(
f ∗j (u)

∫ u

0

v1/r`,j
dv

v

)sj du
u

)1/sj

+

(∫ ∞
0

u
−sj

(
1
r`,j
− 1
pj

)(∫ ∞
u

v1/r`,jf ∗j (v)
dv

v

)sj du
u

)1/sj

. ‖fj‖pj ,sj .

Similarly, for the case sj =∞ we have

sup
t>0

t
γj
γ0

(
1
r`,j
− 1
pj

)
‖fj,−1,t‖r`,j ,1 . sup

u>0
u
−
(

1
r`,j
− 1
pj

)
f ∗j (u)

∫ u

0

v1/r`,j
dv

v

+ sup
u>0

u
−
(

1
r`,j
− 1
pj

) ∫ ∞
u

v1/r`,jf ∗j (v)
dv

v
. sup

u>0
u1/pjf ∗j (u) = ‖fj‖pj ,∞ .

This concludes the proof. �

Lemma 3.2.7. Consider the set Λ′ := {1 ≤ j ≤ 2 : γj = 0}. For j ∈ Λ′ and
` = 1, . . . , 4, if pj > r`,j, we have that

‖fj,1,1‖r`,j ,1 . ‖fj‖pj ,∞ ,

and if pj < r`,j, we have

‖fj,−1,1‖r`,j ,1 . ‖fj‖pj ,∞ .

Proof. When j ∈ Λ′, we have γj = 0 and fj,1,1 = fjχ{|fj |>f∗j (1)} and fj,−1,1 =
fjχ{|fj |≤f∗(1)}. If pj > r`,j, applying Lemma 1.2.33 we obtain

‖fj,1,1‖r`,j ,1 ≤
∫ 1

0

v1/r`,jf ∗j (v)
dv

v

≤
(∫ 1

0

v1/r`,j−1/pj
dv

v

)
‖fj‖pj ,∞ . ‖fj‖pj ,∞ .

Now, assume that pj < r`,j. By Lemma 1.2.33 we get that

‖fj,−1,1‖r`,j ,1 ≤
∫ 1

0

v1/r`,jf ∗j (1)
dv

v
+

∫ ∞
1

v1/r`,jf ∗j (v)
dv

v

≤
(∫ 1

0

v1/r`,j
dv

v
+

∫ ∞
1

v1/r`,j−1/pj
dv

v

)
‖fj‖pj ,∞ . ‖fj‖pj ,∞ .

This concludes the proof. �
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Now we can give the proof of Theorem 3.2.1.

Proof. (Thm. 3.2.1) For all j = 1, 2, fix functions fj ∈ S(Xj) and for any t > 0
write fj = fj,1,t/4+fj,−1,t/4. Proposition 1.2.5, together with Minkowski’s inequality
for Ls with s ≥ 1, the bi-sublinearity of the operator T and the quasilinearity of
the Ls-quasi-norm with 0 < s < 1 [9], imply that

‖T (f1, f2)‖q,s =
∥∥t1/qT (f1, f2)∗(t)

∥∥
Ls( dtt )

≤

∥∥∥∥∥∥t1/q
 ∑
i1,i2∈{1,−1}

|T (f1,i1,t/4, f2,i2,t/4)|

∗ (t)

∥∥∥∥∥∥
Ls( dtt )

≤

∥∥∥∥∥∥t1/q
∑

i1,i2∈{1,−1}

(|T (f1,i1,t/4, f2,i2,t/4)|)∗(t/4)

∥∥∥∥∥∥
Ls( dtt )

.
∑

i1,i2∈{1,−1}

∥∥t1/q(|T (f1,i1,t, f2,i2,t)|)∗(t)
∥∥
Ls( dtt )

=
4∑
`=1

∥∥t1/q(|T (f1,σ`,1,t, f2,σ`,2,t)|)∗(t)
∥∥
Ls( dtt ) ,

because each pair (i1, i2) with ij ∈ {1,−1} corresponds to a unique ` such that
(i1, i2) = σ` ∈ S2.

It follows from Corollary 3.2.5 that for ` = 1, . . . , 4, we have

‖T (f1, f2)‖r`,∞ . ‖f1‖r`,1,1 ‖f2‖r`,2,1 ,

for all functions fj ∈ S(Xj), and since

1

q
− 1

r`
=
γ1

γ0

(
1

r`,1
− 1

p1

)
+
γ2

γ0

(
1

r`,2
− 1

p2

)
,
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we obtain that for all ` = 1, . . . , 4, and t > 0,

t1/q(|T (f1,σ`,1,t, f2,σ`,2,t)|)∗(t)

≤ t
1
q
− 1
r` sup

s>0
s1/r`(|T (f1,σ`,1,t, f2,σ`,2,t)|)∗(s)

= t
1
q
− 1
r`

∥∥T (f1,σ`,1,t, f2,σ`,2,t)
∥∥
r`,∞

. t
1
q
− 1
r`

∥∥f1,σ`,1,t

∥∥
r`,1,1

∥∥f2,σ`,2,t

∥∥
r`,2,1

=

(
t
γ1
γ0

(
1
r`,1
− 1
p1

) ∥∥f1,σ`,1,t

∥∥
r`,1,1

)(
t
γ2
γ0

(
1
r`,2
− 1
p2

) ∥∥f2,σ`,2,t

∥∥
r`,2,1

)

=

(∏
j∈Λ

t
γj
γ0

(
1
r`,j
− 1
pj

) ∥∥fj,σ`,j ,t∥∥r`,j ,1
)(∏

j∈Λ′

∥∥fj,σ`,j ,1∥∥r`,j ,1
)
,

where we made use of the observation that for j ∈ Λ′ we have γj = 0 and hence,
for all t > 0, ∥∥fj,σ`,j ,t∥∥r`,j ,1 =

∥∥fj,σ`,j ,1∥∥r`,j ,1 .
In virtue of Hölder’s inequality with exponents 1 =

∑
j∈Λ

s
sj

, the fact that Lpj ,sj ↪→
Lpj ,∞ and applying Lemma 3.2.6 when j ∈ Λ or Lemma 3.2.7 when j ∈ Λ′, we get
that ∥∥t1/q(|T (f1,σ`,1,t, f2,σ`,2,t)|)∗(t)

∥∥
Ls( dtt )

.

∏
j∈Λ

∥∥∥∥∥t γjγ0
(

1
r`,j
− 1
pj

) ∥∥fj,σ`,j ,t∥∥r`,j ,1
∥∥∥∥∥
Lsj( dtt )

(∏
j∈Λ′

∥∥fj,σ`,j ,1∥∥r`,j ,1
)

.

(∏
j∈Λ

‖fj‖pj ,sj

)(∏
j∈Λ′

‖fj‖pj ,∞

)
. ‖f1‖p1,s1 ‖f2‖p2,s2

and hence,
‖T (f1, f2)‖q,s . ‖f1‖p1,s1 ‖f2‖p2,s2 ,

for all fj ∈ S(Xj). Finally, T extends uniquely to Lp1,s1 × Lp2,s2 by its bi-
sublinearity and the density of the space S(Xj) in Lpj ,sj(Xj), and the theorem
follows. �

Remark 3.2.8. The general version of Theorem 3.2.1 is stated for multi-quasi-
linear operators, with parameters 0 < pk,j, qk, sj ≤ ∞ and the constant c is given
explicitly. If we don’t take into account the estimates of the constants, the proof
of the general theorem follows almost verbatim [11].
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Corollary 3.2.9. Suppose that in Theorem 3.2.1 we have all γj 6= 0 and

1

q
≤ 1

p1

+
1

p2

.

Then, there exists a positive constant c such that T satisfies the strong bound

‖T (f1, f2)‖q ≤ c ‖f1‖p1 ‖f2‖p2 ,

for all fj ∈ Lpj(Xj).

Proof. For j = 1, 2, we take sj = pj and define s by 1
s

= 1
p1

+ 1
p2

. By hypothesis,
q ≥ s, so Lq,s ↪→ Lq and we have

‖T (f1, f2)‖q . ‖T (f1, f2)‖q,s .

The required boundedness holds by Theorem 3.2.1. �

Remark 3.2.10. Let X1 = X2 = Y = (0,∞) and µ1 = µ2 = ν = m, the Lebesgue
measure. Let

T (f, g)(z) =

∫ ∞
0

f(xz)g(x)dx.

Then, by Hölder’s inequality,

|T (f, g)(z)| ≤ z−1/p ‖f‖p ‖g‖p′ ,

so ‖T (f, g)‖p,∞ ≤ ‖f‖p ‖g‖p′ , for all 1 ≤ p ≤ ∞. But if p <∞ we never have the
strong type estimate, for if we choose g to be a positive function and consider the
linear operator

S(f)(z) =

∫ ∞
0

f(xz)g(x)dx =

∫ ∞
0

f(x)g
(x
z

) dx
z
,

it is an integral operator with positive kernel homogeneous of degree −1 and hence
it will be bounded in Lp if, and only if

∫∞
0
g(x)x−1/pdx < ∞ [12]. Now, for the

function

g(x) =
1

x1/p′(| log x|+ 1)
,

we have that g ∈ Lp
′

and
∫∞

0
g(x)x−1/pdx = ∞. This example shows that if in

Corollary 3.1.5 we remove the hypothesis 0 ≤ 1/q ≤
∑n

j=1 1/pj − n + 1, or if in
Theorem 3.2.1 we remove the hypothesis γ0 6= 0, then the interpolation results are
no longer true, in general.
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