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Introduction

The Project

The main purpose of this project is to study the classical theorems on interpolation
of linear operators in order to analyse some modern results on interpolation of
multilinear operators.

Following the approach of Bennett and Sharpley [3] to the classical interpola-
tion theory of quasilinear operators, we gather all the results that will allow us to

tackle the recent developments on multilinear interpolation theory, in particular,
the result of Grafakos, Liu, Lu and Zhao [11].

Our goal is to fully understand the different real interpolation techniques pre-
sented by the previous authors, so we devote our time and efforts to give detailed,
self-contained and complete proofs of the main interpolation results.

We focus on the study of real-variable methods and we start with one of the
cornerstones of the classical interpolation theory: the Marcinkiewicz interpolation
theorem.

We continue the study with the K-method of interpolation, which it may be
regarded as a lifting of the Marcinkiewicz interpolation theorem from its classical
context in spaces of measurable functions to an abstract Banach space setting.

Finally, we study multilinear interpolation theory, exposing the proof a version
of Marcinkiewicz’s interpolation theorem for bi-sublinear operators.

Personal Conclusions

There haven’t been any remarkable issues concerning the mathematics of the
project. Most of the basic tools that we have used were studied in the Master
courses of Functional Analysis and Harmonic Analysis. This project has allowed
to acquire a deeper comprehension of the results exposed in these courses, and
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also to understand more abstract ideas in the fields of Functional and Harmonic
Analysis.

The most difficult part of the project has been to find time to work on it, since
during its development I was attending the Master courses and giving lectures as
a professor at the Faculty of Chemistry. Nevertheless, we have fulfilled our initial
goals and obtained a document that can be regarded as an introduction to the
theory of interpolation of operators.

My future plans are to continue studying multilinear operators, using this work
as a bridge between the theory of interpolation of operators and the Rubio de Fran-
cia’s extrapolation theory for multilinear operators. If I am awarded a Ph.D. grant
during the following months, I will start the development of this new enterprise
by the end of this year.
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An Overview of Interpolation Theory

Consider a R-vector space X and a function p : X — R such that Vf,g € X
and Ya € R, we have that p(af) = |a|p(f), p(f) =0 < f =0 and p(f +g) <
p(f)+p(g). Then, pis called a norm on X. A pair (X, p) is called a Banach space
if X is complete with respect to p.

A first example of Banach spaces are the Lebesgue spaces LP, for 1 < p < oo.
Given (R, u) a totally o-finite measure space, LP(X, i) consists of all scalar-valued
measurable functions for which

11l = ( / If!pdu)p < oo,

or [|fllo, = esssupg |f| < oo, for the case p = oo, together with the norm |- .

Suppose that we have two Banach spaces (X, ||-[|y), (Y, ]|-]ly) and an operator
T :X — Y. We say that T is bounded if there exists a constant M > 0 such

3
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that |[Tz|,, < M|z||y, YV € X. One of the main purposes of the theory of
interpolation of operators is to determine whether a given operator between two
Banach spaces is bounded or not.

The first interpolation theorem in the theory of operators for LP spaces was
obtained by Riesz in 1926 [21], and refined by Thorin in 1939 [24]. This theorem,
known as the Riesz-Thorin convexity theorem, asserts that for 1 < pg, p1,qo, g1 <
00,0<0<1,1/p=(1-8)/po+6/p1, 1/g = (1 —=0)/q + 0/q. and a linear
operator 7',

T:LP — L%
T:L[ — L%

Its proof involves techniques in complex analysis. This result is an important part
of what it is known as the complex method of interpolation.

}:>T:Lp—>L‘1.

Consider the averaging operator A defined on L'(0,1) by

(AF)(t) = %/0 F(s)ds, 0 <t < 1.

It follows from the first Hardy’s inequality (see Lemma 1.1.11) that A : L?(0,1) —
LP(0,1) is a bounded linear operator for 1 < p < oco. If we wish to establish this
result by appealing to the Riesz-Thorin convexity theorem, we would first need to
verify that A is bounded on L*>°(0,1) and on L'(0,1). The L*-boundedness follows
from the definition of A. The problem is that A is not bounded on L', as may be
seen by considering a decreasing function of the form f(s) = s7!(log s)~2 near the
origin and observing that Af fails to be integrable there. Thus, the Riesz-Thorin
convexity theorem does not apply.

The desired interpolation can still be accomplished, but by a quite different
technique introduced by J. Marcinkiewicz in 1939 [18]. The Marcinkiewicz in-
terpolation theorem is best formulated in the larger context of a two-parameter
family of spaces, the Lorentz LP9-spaces, for 0 < p,q < oo. Given (R, u) a totally
o-finite measure space, LP?( X, 1) consists of all scalar-valued measurable functions

for which
© dt\
I, = ([ e ard) " <o

or [ fll, 00 = SUDgse oo (1P f*(t)) < 00, for the case ¢ = oo, where

) =inf{A > 0: pfo € R: [ f(z)] > \} < t}, Vit > 0.

The Marcinkiewicz interpolation theorem (see Theorem 1.2.36) asserts that for
1 <py<pr<oo,1<q#aqr<ool<id<l 1/p=(1-20)/po+0/p1,

4
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1/q=(1—-0)/q + 0/q and a quasilinear operator T,

T : [Posl __y [40,00

T . [Pl — [41,00 } — T . [P Lq,?"7

and if p; = oo,

T - [Posl __y [40,00

el

This result is an important part of what it is known as the real method of inter-
polation.

Returning to the example of the averaging operator A, we have that A : L' —
L' is bounded (since it is bounded from above by the Hardy-Littlewood maximal
operator [3, Ch. 3]) and A : L* — L* is bounded, so by the Marcinkiewicz
interpolation theorem, we conclude that A : LP — LP is bounded, for 1 < p < oo.

The theorems of Riesz-Thorin and Marcinkiewicz and other generalisations per-
tain to the Lebesgue spaces, the Lorentz spaces and other spaces closely related to
them [3, Ch. 4]. The development of general interpolation theorems for families of
abstract Banach spaces begun in 1958, and the works of Peetre played an essential
role [20]. The proof of the Marcinkiewicz interpolation theorem is based on an
idea of decomposition of a function in two pieces. This idea was generalised by
Peetre, giving rise to the concept of the K-functional, which plays a central role
in modern interpolation theory.

A pair (X, X7) of Banach spaces X, and X; is called a compatible couple if
there is some Hausdorff topological vector space 2" in which each of X, and X;
is continuously embedded. For such a couple, the Peetre K-functional is defined
for each f € Xq+ X7 and ¢ > 0 by

K(ft; Xo, X1) = f:iflgifl{ﬂfonxo +tfilly,, fi € X;,5 =0,1}.

We can define new Banach spaces, denoted by (X, X1)g,, for 0 < 6 < 1,
1<g<ooor0<6d<1, g= o0, consisting of all f in Xy + X; for which

oo d 1/q
||f||9,q=(/o <t—9K<f,t;Xo,Xl>>q—t) < oo,

t
for 0 <6 < 1,1 <q, or [|fllgoe = SUPpcsenet K (f,1; Xo, X1) < 00, for 0 < 6 <
1,qg = oc.
In this abstract setting, we have the following general interpolation result (see
Theorem 2.4.7). For (Xo, X;) and (Y, Y1) compatible couples, and 0 < 6y < 6y <

>
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1a 0 S ¢o 7& wlé 17 0< 0 < 17 (9/>¢,) = (1 - 9)(&)&0) +9(‘917¢1)> 1 S q S 00,
(Xo, X1)o,1 — Xo, — (X0, X1)6,,00, (Y0, Y1)y;1 = Yy, = (Y0,Y1)y; 00 and T a
linear operator, we have that
T : 790 — ?1/’0 )
T 701 . 7% =T (X(), X1)9/7q — (}/0, K)w/7q.
The previous results involve operators in one variable, but we can think of
operators of several variables which are linear in each of them. Consider, for
example, the following operator, known as the bilinear Hilbert transform:

H(h )@ = I [ A= 0fe+0T,

e—0t It|>e
for f; € LP(R), j =1,2, with 1 < p;,pr < oo and 1/p =1/p; + 1/ps.

In 1999, Lacey and Thiele proved that H : LP* x LP> — LP is bounded, provided
that 2/3 < p < oo [15]. In particular, this resolves in the affirmative Calderén’s
conjecture that H is bounded from L? x L? into L' [7]. However, the boundedness
into LP for 1/2 < p < 2/3 remains open as of this writing. This kind of problems
motivated the development of a multilinear version of the theory of interpolation
of operators.

In the literature we can find several multilinear interpolation theorems. In 1964,
Lions and Peetre proved an interpolation theorem for bilinear operators defined
over spaces (Xo, X1)gq [16].

In 1969, Strichartz proved a bilinear version of the Marcinkiewicz interpolation
theorem for Lebesgue spaces LP(X, u) for arbitrary totally o-finite measure spaces
(X, 1) [23].

In 1978, Zafran generalized the work of Lions and Peetre and proved an inter-
polation theorem for multilinear operators defined over spaces (Xo, X1)g4 [25].

In 2001, Grafakos and Kalton proved an extension of the classical Marcin-
kiewicz interpolation theorem to the multilinear setting and for Lorentz spaces
LP? over the measure space (R, m), where m denotes the Lebesgue measure [10].

In 2012, Grafakos, Liu, Lu and Zhao, proved a multilinear extension of the
Marcinkiewicz interpolation theorem for Lorentz spaces LP? over general measure
spaces [11].

Structure of the Chapters

The chapters are organized as follows:
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In Chapter 1 we recall the definition of Banach space and present the Lebesgue
spaces LP. For these spaces, we state the Holder’s inequality and use it to prove
the Hardy’s inequalities.

We continue with the definitions of the distribution function and the decreasing
rearrangement, and the review of some of their properties. With this tools, we
define the Lorentz spaces LP? and prove some results concerning their structure.

We expose some notions concerning operators. We present the definitions of
quasilinear, strong type, weak type and restricted weak type operators, and we
study the Calderon operator and some of its properties.

In the last part of this chapter, we state and prove the Marcinkiewicz inter-
polation theorem for quasilinear operators on Lorentz spaces, the corresponding
corollary for Lebesgue spaces and some degenerate cases.

In Chapter 2 we start working with abstract Banach spaces and operators de-
fined on them. We present the Peetre K-functional and we prove several properties
of it. This object allows us to define the general Banach spaces (X, X1)g,. We
also prove some of their structure properties. After that, we state and prove a
basic interpolation theorem for Banach spaces (Xo, X1)g,, and operators defined
on them.

We devote the last part of this chapter to the theorem of Holmstedt and the
reiteration theorem. Using them, we prove a general interpolation theorem for
abstract Banach spaces and we compute examples of K-functionals for pairs of
Lebesgue and Lorentz spaces.

In Chapter 3 we present a comparison between the main results on multilin-
ear interpolation theory and we give a proof of the Marcinkiewicz interpolation
theorem for bi-sublinear operators [11].




Chapter 1

A Classical Interpolation
Theorem

1.1 Preliminaries

We devote this section to some basic definitions and results concerning Banach
spaces. The details of the proofs can be found in the book of Bennett and Sharpley
[3, Ch. 1].

Definition 1.1.1. Given a R-vector space X, a function p : X — R is called a
norm on X if, for all f,g € X, for all a € R, the following properties hold:

L p(af) = lalp(f);
2.p(f)=0& f=0;

3. p(f +g) < p(f)+p(g)

Definition 1.1.2. Consider a R-vector space X and p : X — R a norm on X.
The pair (X, p) is called a Banach space if X is complete with respect to p, that
is, for every Cauchy sequence {f,} in X, there exists an element f € X such that
lim,, o frn = f or, equivalently, lim, ., p(f, — f) = 0.

Definition 1.1.3. Given a measure space (R, u), we say that it is totally o-finite
if R is the countable union of sets of finite measure.

Remark 1.1.4. From now on, (R, 1) and (S, v) will denote totally o-finite measure
spaces, if we do not specify otherwise.

Let .# denote the collection of all scalar-valued p-measurable functions on
R and .#, the class of functions in .# that are finite p-a.e. As usual, any two
functions coinciding p-a.e. will be identified. The natural vector space operations
are well defined on .#,.
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Definition 1.1.5. For all function f € .#,(R, 1) and for all 1 < p < oo, we define

the quantity
|f|pdu) C1<p<wx,
£, - (/

ess sup I, p = Q.

The Lebesgue space LP = LP(R, u) consists of all f € .#y(R, 1) for which || f][,
is finite.

Proposition 1.1.6. Suppose 1 < p < oo. Then (L, |-||,) is a Banach space.

Remark 1.1.7. The triangular inequality for ||-||, is the classical Minkowski’s
inequality.

Another interesting inequality involving Lebesgue spaces is the so-called Hol-
der’s inequality.

Lemma 1.1.8. Suppose 1 < p < oo and consider p' such that é + z% = 1. Then
for all f € L? and for all g € L*" we have that Jr | faldp < 1AL, gl

Remark 1.1.9. From now on, given 1 < p < oo, p’ will denote the unique value
in [1, 00| such that % + i = 1. This value is called the conjugate exponent of p.

Remark 1.1.10. This inequality is sharp in the sense that
Il = sup {/ Foldu: | e 17| fll, < 1} ,
R

for all g € L¥ and for all p and p'.

We close this section with the so-called Hardy’s inequalities, which can be
proved using Holder’s inequality. We give here the complete proof, extending the
one in [3, Ch. 3].

Lemma 1.1.11. Let ¢ be a nonnegative measurable function on (0,00) and sup-
pose A <1 and 1 < q < oo. Then

([ (o o) ) = 25 (f o)

Q=

and
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Proof. Writing 1(s) = s~ s/ (s) and applying Holder’s inequality, we obtain

1 rt 1t Va rq gt ) 1/q
—/ P(s)ds < (—/ 3’\ds> (—/ s/ 1/1(3)qu>
t Jo t Jo t Jo
t 1/q
=(1- A)—l/q’t—/\/Q’—l/q (/ s’\(q_l)iﬂ(s)qu) _
0

Hence, by an interchange in the order of integration,

[ (e from)cumu oo [ oo

=(1-))" Q/ sAa- %(s)q/ t*2dtds.

0 s

Performing the integration over ¢t and taking g-th roots, we obtain the first in-
equality of the lemma. For the second inequality, writing lp(s) = g1/ sA-1/d
s~ 1/a5(1=2/4"4))(s) and applying Holder’s inequality, we obtain

00 d 00 d 1/q 00 ) d 1/q
/ w<s>§s( / —) ( / s<“>q/w<s>q§)

: ([ ds\ "
=(1- A)*l/q t(A=1)/q </ s(1=N(g—1) w(é,)q_s)

t S

Hence, by an interchange in the order of integration,

CEws
/tk/ (=N (a=1)y )dsdt

_ (11— ) q/ S1-N(a- 1)¢(S)q/s g s
0 0

S

Performing the integration over ¢ and taking ¢-th roots, we obtain the desired
inequality. [J

Remark 1.1.12. If ¢ = 0o, we will consider the inequalities

sup M} /tw(s)dsg (ﬁ) sup tM(t)
o _

0<t<oo 0<t<oo

sup ¢ /toolb(S)% < <$) sup (1)

0<t<oo 0<t<oo

and

10
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1.2 The Marcinkiewicz Theorem

The Marcinkiewicz interpolation theorem is best formulated in the larger context
of a two-parameter family of spaces LP9, the Lorentz spaces, which generalize the
Lebesgue spaces LP. Therefore, we first define the Lorentz spaces and expose some
of their elementary properties [3, Ch. 2,4].

Definition 1.2.1. The distribution function py of a function f € #y(R,p) is
given by
us(N) = € R [f(@)] > A}, YA > 0,

Proposition 1.2.2. Consider f, g, fn,(n = 1,2,...) in My(R, ) and let a be a
nonzero scalar. The distribution function py is nonnegative, decreasing and right-
continuous on [0,00). Furthermore,

gl < 1fl p—ae. = pg < puy;
taf(A) = pr(A/lal), (A > 0);

frprg( A+ A2) < (M) + pg(A2), (A1, A2 > 0);
|ful T1fl 10— ae. = g, T py

Definition 1.2.3. Suppose f belongs to .#y(R, i). The decreasing rearrangement
of f is the function f* defined on [0, 00) by

fr(t) =inf{\: pur(X) < t}, Ve >0.
Remark 1.2.4. We use here the convention that inf ) = oo.

Proposition 1.2.5. Consider f,g, fn,(n = 1,2,...) in Mo(R, 1) and let a be
any scalar. The decreasing rearrangement f* is nonnegative, decreasing and right-
continuous on [0,00). Furthermore,

9] < [fl p—ae =g" < f5
(af)" = lalf*

(f+9)"(tr +t2) < [7(t1) + g7(t2), (t1,12 > 0);
[l Tl = ace.= fo 1 f7,
fr(ug(N) < A, (pp(A) < 00),
pe(f7(t) < ¢, (f*(t) < o0).

The next result gives alternative descriptions of the LP-norm in terms of the
distribution function and the decreasing rearrangement.

11
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Proposition 1.2.6. Let f € #(R, ). If 0 < p < oo, then

/R |f(@)[Pdu(z) = p /0 h AP p(AN)d\ = /0 h F*(t)Pdt.

Furthermore, in the case p = oo,

esssup | f(x)| = inf{\ : pur(N) =0} = £7(0).

TER

While the decreasing rearrangement does not necessarily preserve products of
functions, we have the following integral inequality due to Hardy and Littlewood.

Theorem 1.2.7. If f. g € #y(R, 1), then

[ r@ldute) < [~ s

Corollary 1.2.8. Let f € My(R, ). If E C R is a set of positive measure t, then

5 [ relauta /f

Proof. Take g(z) = xg(z), the characteristic function of E. Then, g*(s) =
X[o,u(E)), and applying the previous theorem, we obtain

[ I @ldna /|f 2)ldp()
/ F4(s)g*(s)ds = /OH(E) F4(s)ds.

Dividing by u(E) and writing ¢t = p(F), we get the desired result. [J

Definition 1.2.9. Let f € .#,(R, ;). Then f** will denote the mazimal function

of f* defined by
1 t
= —/ f*(s)ds, (t>0).
t Jo

Some elementary properties of the mazimal operator f — f** are listed below.

Proposition 1.2.10. Consider f,g, fu,(n = 1,2,...) in Mo(R, 1) and let a be
any scalar. Then f** is nonnegative, decreasing and continuous on (0,00). Fur-
thermore,

ff =0 f=0pu—ae,;
<

12
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9| < [fl p—ae = g™ < f™
(af)™ = lalf*;
(f+9)™ @) < (1) +97(@1), (0<t<o0);
[ful TSl 1 —ace. = f37 1+ 7

Now we can give the definition of the Lorentz spaces.

Definition 1.2.11. Suppose 0 < p,q < co. The Lorentz space LP? = LP(R, u)
consists of all f € #,(R, p) for which the quantity

oo 1/q
([Twrrord) " oca<x,
0

sup (17 f*(1)), g = oo,

0<t<oo

1f1lpq =

is finite.

Remark 1.2.12. It is clear that the Lorentz space LPP coincides with the Lebesgue
space LP, for 0 < p < oo, and [|f],, = [|Ifll,, for all f € LP. Note also that
the space L°9, for finite ¢, contains only the zero-function, and the space L°*°
coincides with the space L>.

The following result shows that, for any fixed p, the Lorentz spaces LY increase
as the second exponent g increases.

Proposition 1.2.13. Suppose 0 < p < oo and 0 < g < r < oco. Then, ||f||m <

c ||f||pq, for all f € My(R, 1), where ¢ is a constant depending only on p,q and r.
In particular, LP4 — LP",

Proof. We may assume p < co and ¢ < r since in the other cases there is nothing
to prove. Using the fact that f* is decreasing, we have

t ds 1/q t ds 1/q
o= (1 [error®) < (4 errert)
q 1/q
<(4) 111,
p

Hence, taking the supremum over all ¢ > 0, we obtain

1/q
q
T (2—9) T

13
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This establishes the result in the case r = co. In the remaining case where r < oo,
we have

I/

o d
o= [Ty <un i

t

q (r—q)/rq
< (5) =

Remark 1.2.14. Embedding relations among spaces L”9, with p varying, depend
on the structure of the underlying measure space. On finite measure spaces, if
O<p<r<ooand0<gq,s <oo, then L™ — LP4,

Definition 1.2.15. Given a totally o-finite measure space (X, u), we denote by
S(X) the linear space generated by the functions of the form

1<G<N [k|<N
for N € N and {Ej;}r; € X, subsets of finite measure.
We have the following result [5, 22].
Lemma 1.2.16. S(X) is dense in LP9(X, ), for every 0 < p,q < 0.

Proof. Consider first a positive function f € L% Call Ey(f) = {z : 2" < f(z) <
281} and f = f — ZkeZ2 XE.(f)- 1t holds that 0 < f < f/2 almost everywhere.
Define fy = f and f;1, = fj, for j > 0. Call Ey; = Ei(f;). We have that

fn+1 = fn - Z 2kXEk,n = fn—l - Z QkXEk,n

kEZ keZ
§ : k E : k
= fn—l - 2 XEk,n—l - 2 XEk,n
keZ kezZ
— _ k
== = Y Y 2,
1<j<n k€Z

Hence, for every n > 1, it holds that

f=Jfnt1— Z Z2kXEk,j'

1<j<n kEZ

By induction on n, we get that 0 < f,11 < TL% almost everywhere, for every
n > 0. Taking the limit for n — oo, we obtain the equality

ZZQkXEk ,a.e.x € X.

j=1 kezZ

14
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Now, for N € N, put

fu(@) =Y Y 2xm, (@)
1<G<N |K|<N
It holds that fy € S(X), for every N. By Proposition 1.2.5, f, < f*, so [|fw|l,, <
1f]l,, < o0, and fX T f*. Hence, by Lebesgue Dominated Convergence Theorem
2], we obtain that fy — f in LP9. Finally, for an arbitrary f € LP? write
f=fT—f", where f* = fxis>01 and f~ = | f|x{s<oy are both positive. By the
previous argument, taking {fy}x and {fy}ny in S(X) such that f; — f* and
fy — f~ in LP9 and observing that fy := f¥ — fy € S(X) for every N, we
obtain that fy — f in LP4. [J

We next wish to determine for which values of p and ¢ the Lorentz space L
may be regarded as a Banach space. The functional f — [/ f]|,, is not always a
norm. Assume 1 < ¢ < p < oo. Lorentz [17] proved that if ¢ is a nonnegative
function defined on (0, 00), not identically 0 and such that fol o(t)dt < oo, VI €
[0, 00), then the functional

. ( I ¢(t)f*(t)th> " it e tn(mom)

is a norm if, and only if ¢ is decreasing. In particular, for the case of the functional
f= Al o(t) = t9/P=1 which is decreasing if, and only if ¢ < p.

Theorem 1.2.17. Suppose 1 < q < p < oo orp=q = 00. Then, the functional
f=|fll,, i a norm.

Although the restriction ¢ < p in this result is necessary, it can be circumvented
in the case p > 1 by replacing |||, , with an equivalent functional which is a norm
for all ¢ > 1.

Definition 1.2.18. Suppose 1 < p< oo and 0 < g <oo. If f € (R, 1), let

00 1/q
([Tarrwr) o<

sup (/7 f*(t)), q = oo.

0<t<oo

Hf”(p,q) =

Lemma 1.2.19. If 1 <p < oo and 1 < q < o0, then

Hf”p,q S HfH(p,q) S p/ ”pr,q

for all f € My(R, ).

15
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Proof. The first inequality is an immediate consequence of the definitions of [|-[|,, ,
and |||, and the fact that f* < f**. The second follows directly from the first
Hardy’s inequality. [J

We have the following result.

Theorem 1.2.20. If1 <p < o0, 1 < ¢ < o0 orp=gq=o0, then (L™, |/f],)
1s a Banach space.

Let us now expose some definitions related to operators.

Definition 1.2.21. Suppose 1 < py < p; <00, 1 < g, q1 < 0o and gy # q1. Let
o denote the interpolation segment

SEORED!

that is, the line segment in the unit square {(z,y) | 0 < x,y < 1} with endpoints
(1/po,1/q0) and (1/p1,1/q1). Let m denote the slope

1 _ 1

__ 9o q1
m=7T 1
Po P1

of the line segment o. For each measurable function f on (0,00) and each t > 0,
let

tm

Sl/pof(s)@+t—1/q1/ Sl/plf(s)ﬁ.
S

tTn S

S0 =t [

0

The operator S, : f — S, f is the Calderon operator associated with the interpo-
lation segment o.

Here are some simple properties of the operator S, [3, Ch. 3].

Proposition 1.2.22. If f is a nonnegative measurable function on the inter-
val (0,00), then S, f is decreasing and for each t > 0, (S,f)(t) = (S,f)*(t)
< Se(f)(1).

Proposition 1.2.23. Let f be a p-measurable function on R. S,(f*)(t) < oo for
each t > 0 if, and only if, Sy(f*)(1) < 0.

Proof. Assume that S,(f*)(1) < co. Then

1 0 d
0< / sl/pof*(s)@,/ sl/plf*(s)—s < 0.
0 S J1

S

16
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Fix 0 < u < 1. Then

v d ! d
()g/ sl/pof*(s)—sg/ sl/pof*(s)—5<oo.
0 S 0 S
Now,
e’} 1 e’}
/ Sl/mf*(s)@:/ Sl/mf*(s)ﬁ_,_/ Sl/plf*(s)ﬁ
u S u S 1 S
and

1 1
/ Sl/Plf*(S)@ < ul/pl—l/po/ sl/pof*(s)§ < 00,

S S

since py < p1, thus

> 1/ * ds
0< s P (s)— < o0.
S
u

Similarly, we have that

b d > d
0< / sl/pof*(s)—s,/ s1UPF*(5) 2 < oo
0 8 u

s
in the case u > 1. Hence, S, (f*)(t) < oo, for each ¢ > 0. [

Definition 1.2.24. Let T be an operator whose domain is some linear subspace of
AMo(R, 1) and whose range is contained in the v-measurable functions on S. Then
T is said to be quasilinear if there is a constant k > 1 such that the relations

T(f +9)l < k(TFI+[Tgl), TN = [AMITS]

hold v-a.e. on S for all f and g in the domain of 7" and for all scalars A. If these
relations hold for £ = 1, then T is said to be sublinear.

Definition 1.2.25. Suppose 1 < py < p; < oo and 1 < qo,¢; < oo with ¢y # ¢1.
Let T be a quasilinear operator with respect to (R, ) and (S, v), and suppose T f
is defined for all y-measurable functions f on R. Then T is said to be of joint weak
type (po, qo; p1,q1) if there is a constant ¢ such that (Tf)*(t) < ¢S,(f*)(t), (0 <
t < 00), for all f for which S,(f*)(1) < oo.

Definition 1.2.26. Suppose 1 < p < oo and 1 < g < co. Let T be an operator de-
fined on LP(R, i) and taking values in .#,(S, v). Then T is said to be of restricted
weak type (p,q) if it is a bounded operator from LP''(R, i) into L%*°(S, v), that is,
if there is a constant M such that | T ||, < M| f|,, for all f € L»'(R, y1). The
least constant M is called the restricted weak type (p,q) norm of T.

Remark 1.2.27. Suppose 1 < p,q < oo and 1 < r,s < oco. Since LP! — LP" and
L?% — [9*° it follows that if T" is a bounded operator from LP" into L%®, then T
is of restricted weak type (p, q).

17
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Definition 1.2.28. Suppose 1 < p < oo and 1 < ¢ < oco. Let T" be an operator
defined on LP(R, ) and taking values in .#(S,v). Then T is said to be of strong
type (p, q) if it is a bounded operator from LP(R, 1) into L9(S,v), that is, if there is
a constant M such that [|Tf|[, < M [|f||, for all f € LP(R, u). The least constant
M is called the strong type (p,q) norm of T.

We present the following result. We will expose its proof later, after showing
some technical lemmas.

Theorem 1.2.29. Suppose 1 < pg < p; < o0 and 1 < qy,q1 < o0 with gy # ¢1 and
let T be a quasilinear operator defined on (LP! 4+ LPY1) (R, 1) and taking values in
Mo(S,v). If T is of restricted weak types (po,qo) and (p1,q1), then T is of joint
weak type (po, qo; P1, q1)-

Remark 1.2.30. The converse of this result is also true [3, Ch. 4].

Lemma 1.2.31. Consider a p-measurable function f : R — R. If the function
f belongs to (LPoY + LPYY) (R, 1), then S,(f*)(t) < oo for all t > 0.

Proof. Fix ¢t > 0 and recall that

tm

S0 =15 [ HreTee [CreT

tm
To prove the result, it suffices to show that both integrals are finite. Let us
m 1
assume that f € LP'(R, ;). We have [ s#o f*(s)% < [ f1l,,,, < oo and since
po < pry [ st fr(s)d = [ sn st fr(s)4 < i w0 |f|, | < oo. Thus
Se(f*)(t) < oco. A snmlar argument establishes the result for f € LPYY(R, p).
Now if f € (LPo! + LPUY) (R, 1), there exist fo € LPoY(R, p) and f; € LPYY(R, p)
such that f = fy + fi. Applying the properties of decreasing rearrangements and
performing a change of variables, we obtain
T Ty
11 1 r 11 1 r
e A O R O
0 r 0 r
11 [ 1 d 11 [ 1 d
torta / o fa‘(r)—r torta / ror fl*(r)—T
t T tm T

m

Since f; € LP'(R, ), it holds that S,(f;")(5%) < oo, for i = 0,1. Thus the four
integrals in the expression above are finite and S, (f* )(t) < o0. O

Lemma 1.2.32. Consider a p-measurable function f: R — R and a real value
k >0, and define the functions g(z) := min(|f(x)|, k) and h(z) := max(|f(x)| —
k,0), for all x € R. Then, their decreasing rearrangements satisfy g*(s) =
min(f*(s), k) and h*(s) = max(f*(s) — k,0), for all s > 0.

18
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Proof. Let us first consider the distribution function of the function g, p,(A\) =
u{x € R: |g(x)| > A}. Since g is a minimum, it holds that {x € R : |[g(x)| > A\} =
{reR:|fx)|>An{reR: k>N Fix A>0. f A<k, then{z e R: k>
A} = R and p,(A) = pp(N). Similarly, if A > k, then {z € R : k > A} = 0 and
fg(A) = 0.

Fix s > 0 and consider the decreasing rearrangement of the function g, g*(s) =
inf{\ > 0 : py(X) < s}. It holds that {A > 0 : pg(A) < s} ={A >k py(N) <
sSfU{E>A>0:p,N) <s}={A>k:0<stU{k>A>0:pur\) <s}=
[k, 00)U{k > A >0:pus(N) < s}. Recall that for subsets A and B of R it holds that
inf AU B = min(inf A4, inf B). Thus, ¢*(s) = min(k,inf{k > A > 0: us(\) < s}).
Since min(k, inf{k > X > 0 : pp(A) < s}) = min(k,inf{\ > 0 : pur(A) < s}), it
follows that ¢g*(s) = min(f*(s), k).

Let us consider now the distribution function of h, p,(\) = p{z € R : |h(x)| >
A}. Since h is a maximum, it holds that {z € R : |h(z)| > A\} = {x € R :
|f(x)]—k > AU{x € R:0> A}. Thus, pn(N) = ps(k+A) forall A > 0. Fix s > 0
and consider the decreasing rearrangement of the function h, h*(s) = inf{A > 0:
pn(A) < s} Since inf{\ > 0 : ps(k+X) < s} = max(inf{\ > 0: pur(\) < s}—k,0),
it follows that h*(s) = max(f*(s) — k,0). O

Lemma 1.2.33. Consider a p-measurable function f : X — R and a real
value t > 0, and define the functions g(x) = f(x)X{f>r@y(x) and h(x) =
f(@)xqr<rwy(x). Then, their decreasing rearrangements satisfy

. f*(s), 0<s<t,
9(8)2{0’ s>t
and )
(), 0<s<t
* < ) )
h<3>—{f*(s>, s>,
for all s > 0.

Proof. Let us first consider the distribution function of the function g, p,(A\) =
p{x € X : |g(x)] > A}. It holds that {z € X : |g(x)] > \} = {z € X : |f(z)| >

max{\, f*(t)}}, so
CfulreX @)= A A> ),
HalY) = { Wz e X [f(@)] > (0}, A< 10,
B {w), > fH(0),
(1), A< f (1),

(A), A= (1),
= { Zf A< (1),

19
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where we have used the fact that pug(f*(¢)) <t

Fix s > 0 and consider the decreasing rearrangement of the function g, g*(s)
inf{\ > 0 : p,(\) < s}. It holds that {A > 0 : py(X) < s} ={0 < X < f*(¢)
1o(N) < sFULN 2 F(1) s 1y(N) S s} 2 {0 S A< 1 (6) s £ < sU{A = f2(1) -
pp(A) < s}. Hence,

g7(s) Smf ({0 S A< f7(t) : £ < s} ULA = [7(1) - pp(A) < s})

f inf{A > (1) s pp(N) <s}, 0<s<t,
10, s>t

< f*(s), 0<s<t,
— 10, s>1,

since for s < t, f*(t) < f*(s) and ps(f*(s)) <s,s0 f*(s) € {2 > f*(t) : py(N) <
s}.
Let us consider now the distribution function of h. It holds that
pn(A) = p{z € X+ |h(z)] > A} = p{z € X : A < [f(z)| < 7 ()}
= LN, A< ().
Fix s > 0 and consider the decreasing rearrangement of the function h, h*(s) =

inf{A\ > 0 : pp(A) < s}. It holds that {A > 0 : pp(A) < s} 2D {0 < X < f*(¢) :
pr(A) <spU{A> f*(t): 0 < s}. Hence,

hi(s) <inf ({0 <A < f7() - (X)) < sPU{AZ f7(1) 1 0 < s)
= min{inf{0 < X < f*(¢) : ur(\) < s}, f*(¢)}
= min{inf{A > 0: s (X) < s}, f7(£)} = min{f"(s), f*()}

_{ f5(t), 0<s<t,
S fr(s), s>t

This completes the proof. [J
Now we can give the proof of Theorem 1.2.29.

Proof. (Thm. 1.2.29) Let f € (LPo! + LP*')(R, ) and fix t > 0. Consider

11
_ Qo q1
m=7T_1
Po P1

and define fo and f; on R by fy(z) = min(|f(z)], f*(t")) - sen f(z) and fo(z) =
f(z) — fi(x) = max(|f(z)| — f*(t™),0) - sgn f(x). Then, by the previous lemma,
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fi(s) = min(f*(s), f*(t™)) for all s > 0 and since f* is decreasing,

1 ds e ds
ills = [ Smmin(f()f(tm))s = [ et

S
+/tm 71 (s ) S =ptn [ (t”‘>+/tm ()
Similarly, f;(s) = max(f*(s) — f*(t™),0) for all s > 0 and
1 d " d
il = [ () - 0T = [0
" d Y d m
_/0 70 f (") 55 _/0 5”°f*(s>;s—p0“°f*(tm)-

Since f € (L' + LPY')(R, p), it holds that S,(f*)(t™) < oo, thus || fil, ; < oo
and f; € LP"(R, p), for i = 0, 1.
Now suppose that T is quasilinear with constant K. Since f = fy + fi,

by the properties of decreasing rearrangements we have (T'f)*(t) < (K(|T fo| +
ITf1]))*(t) < K ((Tfo)* (L) + (Tf1)* (4)). Furthermore, the restricted weak type

1
hypotheses on T give (T'f;)* (£) < () “ M; || fill,, ,, for i = 0,1. Combining these
estimates, we obtain

(Tf)y@) <c (p— [1foll g1 + ||f1||p1 1> )

with C = K - maXi(pZ-MiQ‘%i). Incorporating the expressions of the norms and
observing that the terms in f*(¢™) cancel, we find that (Tf)*(t) < C - S,(f*)(¢).
Since f € (LPo! + LPUY) (R, u), it holds that S,(f*)(t) < oo for all ¢ > 0. Hence,
T is of joint weak type (po, go;p1,¢1). O

Remark 1.2.34. A simple modification of the proof above shows that if T" is of
restricted weak type (po, o), po < 00, and strong type (oo, q1), then T is of joint
weak type (po, go; 00, ¢1). The expression for || fi[|,, ; is replaced by the property
that || f1]|., = f*(t") and then the strong type (0o, ¢1) hypothesis is invoked in the

form T : L>® — L — L% so (T'f1)* (%) < (%);Tl My || fillo

This proof and some previous results allow us to characterize the space LPo:! 4
LPr! in terms of the Calderén operator S, .

Corollary 1.2.35. Consider a p-measurable function f: R — R. The following
conditions are equivalent:
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1. The function f belongs to (LP>! + LPYY) (R, p);
2. S,(f*)(t) < oo forallt > 0;
3. 8, (f)(1) < 0.

Now we can give the statement and the proof of the main theorem of this
section, the Marcinkiewicz interpolation theorem.

Theorem 1.2.36. Suppose 1 < py < p1 < 00 and 1 < qo,q1 < 0o with qy # ¢1.
Let 0 < 8 <1 and define p and q by

1 1-0 6

1—-6 6

1
P P Mg o @

Let T be a quasilinear operator defined on (LPo' + LPYY) (R, 1) and taking values in
Mo (S,v). Suppose T is of restricted weak types (po, qo) and (p1, q1), with restricted
weak type norms My and My, respectively. If 1 < r < oo, then

T:LP" —s L9

That is, there is a constant c, depending only on po, qo, p1,q1 and r, such that, for
all f € LV,
c
1T fllgr < =0 max (Mo, M) || f1l,.

Proof. Because of Theorem 1.2.29, we know that T is of joint weak type (po, qo;
p1,q1) with joint weak type norm M < ¢- max(My, M;), where ¢ depends only on
Do, o, P1, q1. Assume, first, that » < oco. We have

ITfl,, <M ( / * (s.im0) %)

Applying Minkowski’s inequality for L", we obtain

o/ N I\T di\
o< ([ (4 o) )

t

1
i [ 1 ds\" dt\"
+ M (/ (tq h / " f*(S)_S> _) ‘
0 tm S t

Making the change of variables ©u = t™ in each of the integrals and using the

relations
1(1 1)_1 1 1(1 1>_1 1
m\q¢ P po m\¢ ¢ P p

22
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we have that

o (u ds\" du\ "

51, < ol ([ (w5 [Csdre®) &)
-1 11 [ ds\" du\ "

—|—M|m|7 (/0 (up P1 / Smf ( ) SS) %)

Applying first and second Hardy’s inequalities to the first and the second terms,
respectively, the resulting estimate reduces to

HTqu,r < ]\4|m|7Tlc1 (/OOO <U%f*(u)>r %)i
satmlFe ([ (uhr ) d—)

-1
= M|m|7 (c1 + ) | f1L,, »

1 1 1 1 1 1
b r) bron(iog)
C1 Po b1 Co DPo b1

Now assume that » = co. In this case, we have

with

[T fll g0 = sup ta(Tf)"(t) <M sup taS,(f")(t)
0<t<oo 0<t<oo

tm

<M sup (téio/ 5 1 (5) 2

0<t<oo

0<t<oo

+ M sup (t;_qll splf )
tm

11
< M sup (uf’ r0 SPOf

0<t<oo

d
s
11 d
+ M sup (up P splf —>
s

0<t<oo

< M(cr + c2) Hpr,oo -
This completes the proof. [J

Corollary 1.2.37. With parameters as above, suppose in addition that py < qo
and p1 < q1. If T is of restricted weak types (po,qo) and (p1,q1), with norms M,
and My, respectively, then

T:LP — LA,
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That is, there is a constant ¢, depending only on pg, qo, P1,q1, Such that, for all
fer,
c
171, < oi=0) max (Mo, M) || f],, -

Let us see what we can say when py = p; and gy # ¢ or pg < p; and ¢o = ¢.

Lemma 1.2.38. Suppose 1 < ¢1 < q¢ < qo < o0. If1 <r < oo, then L9 N
Lavo0 —y L7,

Proof. Since L%!' < L% it suffices to show that L9 N L9 « [+l A
measurable function f belongs to L%°°M L9 if, and only if supy_,. o, Y% f*(t) <
00 and SUpg., o tY/% f*(t) < oo. This condition holds if, and only if there exists a
constant ¢ > 0 such that

fr)<ca Ve (0<t<1),
frt) < et (t>1).

Now,

oo 1 00
1711, 2 :/ tl/qlf*(t)dtgc/ tl/qll/qodt—i—C/ /a1t gy

0 0 1
Cc Cc
= -

< o0,

Q=
Q=

1 _
a

S

and hence, f € L%!. O

Remark 1.2.39. Under the hypotheses of Theorem 1.2.36 and in the case pg = py,
this lemma implies that 7" : LPo! — L7,

Lemma 1.2.40. Suppose 1 < pg < p < p; < . If 1 <r < o0, then LP" —
LP0,1+LP171‘

Proof. Since LP" — LP*°, it suffices to show that LP>° < [P0l pppul A
measurable function f belongs to LP> if, and only if supy., ., tY/Pf*(t) < oo
and this condition holds if, and only if there exists a constant ¢ > 0 such that
f*(t) < ct=Y? for all t > 0. Now,

' 1/ dt o 1 dt 1 1/po—1—1 oo 1 1
t pof*(t)7 + t /plf*<t)? <c $1/po Pdt + ¢ Y /P qt

0 1 0 1
Cc C
= +

1
Po

- < 00,
p1

and in virtue of Corollary 1.2.35, f € Lro:l + [rrl O
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Remark 1.2.41. Under the hypotheses of Theorem 1.2.36 and in the case ¢y = q1,
this lemma implies that T": LP" — L0:°°,

Remark 1.2.42. Theorem 1.2.36 holds also in the case p; = oo provided the
restricted weak type (pi,qi) hypothesis is replaced by the strong type (p1,q1)
hypothesis. In that case, the operator is of joint weak type (po, go; 00, ¢1) and the
proof of Theorem 1.2.36 carries over almost verbatim.

Remark 1.2.43. Under the hypotheses of Theorem 1.2.36 we obtain that T :
LP" — L%° in the case r < s, but in general this result is not true if r > s.
Consider the measure space (R, m), where m denotes the Lebesgue measure on
RT. Take py = qo,p1 = q1 and consider the identity operator T = Id : (LPo! +
LPUY)(RT,m) — (LPo! + LPrY)(RT, m), which is of restricted weak types (po, po)
and (p1,p1). If 1 < s <r = oo, then T": LP*>* — LP* since for the function
F() = 47, (¢ > 0), we have £ = £, |[f],,.. = 1 and [£],,, = oc.
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Chapter 2

Real Interpolation Method

2.1 Preliminaries

The K-method of interpolation, or real method, may be regarded as a lifting of
the Marcinkiewicz interpolation theorem from its classical context in spaces of
measurable functions to an abstract Banach space setting. In order to study this
method, we need some basic definitions and results concerning interpolation spaces.
The details of the proofs can be found in the book of Bennett and Sharpley |3,
Ch. 3.

Definition 2.1.1. A pair (X, X;) of Banach spaces Xy and X is called a com-
patible couple if there is some Hausdorff topological vector space 2" in which each
of Xy and X is continuously embedded.

Remark 2.1.2. The pair (L', L>) is a compatible couple because both L' and
L*° are continuously embedded in the Hausdorff space .#( of measurable functions
that are finite almost everywhere.

Definition 2.1.3. Let (X, X;) be a compatible couple, with corresponding Haus-
dorff space 2. Let Xy 4+ X; denote the sum of Xy and Xy, that is, the set of
elements x € 2" that are representable in the form x = xy + x1, for some zy € X
and x; € X;. For each z in Xy + X1, set

2l =, nf Lol + 1llx,

where the infimum extends over all representations x = xy + x1 of z with xy € X,
and =1 € X;. For each element x in the intersection Xy N X; of Xy and X7, set

[0l xonx, = max{|[zollx, » 1], }-
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Theorem 2.1.4. If (X, X1) is a compatible couple, then Xy + X7 and Xo N X4
are Banach spaces under the norms ||| x ,x, and ||| x,~x, respectively.

Definition 2.1.5. If (X, X7) is a compatible couple, then a Banach space X is
said to be an intermediate space between Xy and X, if X is continuously embedded
between Xo N X7 and Xy 4+ Xi:

Xole%X%Xo‘i‘Xl.

Observe that Xy and X; are always intermediate spaces for the couple (X, X7).

Now we turn our attention on operators defined on these spaces. We denote
by B(X,Y) (or A(X), if X =Y) the space of bounded linear operators from a
Banach space X into a Banach space Y. The space #(X,Y) is itself a Banach
space under the operator norm

1Tl 50x,vy = sup{[[ T lly - |2l x < 1}

Definition 2.1.6. Let (Xy, X;) and (Yp, Y;) be two compatible couples and let T
be a linear operator defined on Xy + X; and taking values in Yy + Y;. Then T
is said to be admissible with respect to the couples (X, X7) and (Yp, Y1) if the
restriction of T to X; maps X; into Y;, for each i = 0,1, and, furthermore, is a
bounded operator from X; into Y;:

| Tx

v, S ”TH%(XZ-,Yi) |xHX1 , Vo € X;.

The class of admissible operators is denoted by
ﬂ = ﬂ(X()? Xl; %7 }/‘1>
The norm of an admissible operator T is given by
Iy = max{|[Tll g, v -

Proposition 2.1.7. Every admissible operator T is a bounded operator from Xo—+
X into Yo+ Y1, and
1T 304 50 v0v2) < T MLy

Proof. Suppose T' is admissible and consider x € Xy + X;. Let x = z¢y + 1 be
any representation of x as a sum of elements xq € Xy and z; € X;. Then, by the
previous definitions, we have

”Tm”yowl = || Txo +Tx1HYO+Y1 < ”TxOHYO + ”TleYl

< “T"%(XO,YO) H%HXO + “T"@(Xl,yl) [zl x,
< TN (lollx, + Nl llx,)-
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Taking the infimum over all representations x = x¢ + x; of x, we obtain that

This concludes the proof. []

Theorem 2.1.8. The class o/ (Xo, X1; Y, Y1) of admissible operators is a Banach
space when equipped with the norm ||| ,. Furthermore, &/ is continuously embed-
ded in B(Xo+ X1,Yo +Y1).

We finish this section with the formulation of the interpolation property.

Definition 2.1.9. Let (X, X;) and (Y, Y1) be two compatible couples. Let X
and Y be intermediate spaces of the couples (Xg, X7) and (Yp, Y7), respectively.
The pair (X,Y) is said to have the interpolation property relative to (Xo, X;) and
(Yo, Y1) if every admissible operator maps X into Y.

2.2 The K-Functional

We begin this section with some definitions and elementary properties of the K-
interpolation method.

Definition 2.2.1. Let (Xy, X;) be a compatible couple of Banach spaces. The
Peetre K-functional is defined for each f € Xy + X; and t > 0 by

K(f,t; Xo,X1) = inf t
(F.t: X0, X0) = inf {folly, +¢1Ailx, )

where the infimum extends over all representations f = fy + f1 of f with fy € X
and f1 € X;.

Since

min(1, ) Hf”X0+X1 < K(f,t; Xo, X1) < max(1,t) HfHX0+X1 )

the functionals f — K(f,t; X, X1), t > 0, define a family of mutually equivalent
norms on Xy + Xj.

Since every f € X, has the trivial representation f = f + 0 as a member of
Xo + X1, we have that

K(f.t; X0, X1) < || fllx, . VS € Xo,t > 0.
Similarly, for f € X, we have

K(f 1 Xo, X1) <t fllx, . Vf € X1,£> 0.
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Proposition 2.2.2. For each f € Xy + X1, the K-functional K(f,t; Xo,X1) is a
nonnegative concave function of t > 0, and

K (f, 5 Xo, X1) = K(f, t7 X4, Xo).

In particular, K(f,t; Xo, X1) is increasing on (0,00) and t 'K (f, t; Xy, X1) is
decreasing.

Proof. All the properties follow immediately from the definition, except for con-
cavity. To stablish this, consider t;,t; > 0 and let ¢ be the convex combination
t = aqt; + asty, where ay,a9 > 0 and a3 + as = 1. For each decomposition
f = fo+ fiof fwith fo € Xy and f; € X, we have

a1 K (f,t1; Xo, X1) + o K(f, t2; Xo, X1) < aa([| follx, + 1 1 1l x,)
+aa([[follx, +t2 1 fillx,) = (1 + @2) | follx, + (ats + aata) [ f1ll x,
= [[follx, +t 11l x, -

Taking the infimum over all decompositions f = fy + f1 of f, we obtain
a1 K (f,t1; Xo, X1) + o K(f, t2; Xo, X1) < K(f, t; Xo, X1),
and the result follows. [J

Proposition 2.2.3. The K -functional K(f,t; Xo, X1) is subadditive, that is, given
f.g€ Xo+ Xy and t > 0, we have

K(f +gat;X07X1) S K(fvtaX(),Xl) + K(g7t7X0aX1)
Proof. It holds that

K(f+g9,t; Xo,X;) < inf inf + +t + ,

(f+gt: X, X)) < dnf inf {lfo+gllx, +Elf1+allx,}

where the infimums are taken over all representations f = fy + f; of f with
fo € Xo and f; € X1, and all representations g = go + g1 of g with gy € X and
g1 € Xy, respectively. Now, by the triangular inequalities for ||-||, and ||-[|, and
the properties of the infimum, we have that

. t
n - int {0+ goll, + 11+ g1l )

< inf inf t t
< nf int {llfolly, + il + ol + ¢ lorllx,)

= inf t inf t
ot {follx, + Al + nf Slgoll, + gl }

= K(f,t; Xo, X1) + K(g,t; Xo, X1).

This completes the proof. [J
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Theorem 2.2.4. Let (Xy, X1) and (Yy, Y1) be compatible couples and suppose that
X; =Y, j=0,1. Then, there exists a constant ¢ > 0, depending only on the
spaces Xg, X1, Yy, Y1, such that

K(f,t,Yb,le) S CK(fat;X():Xl): Vf € X0+X17 t>0.
Proof. Since Xy + X; — Yy + Y7, we have that
K@m%&@:f?Q{Ww%+wﬁmpﬁenJ:0A}
=Jo 1

< inf t € X;,j=0,1}.
< ot {llfolly, +t1Ailly, o fs € X505 =01}

By hypothesis, there exist constants co,c; > 0 such that [|-,, < ¢ |||, j =0,1.
Taking ¢ = max{cy, ¢ }, we obtain

inf +t < inf 4ot
f:1}3+f1{HfOHYO ”f1HY1}_f:1}3+f1{COHfOHXO c Hfluxl}

< maX{CmCl}f:i££f1{||fo||xo +t{fillx, } = cK(f. t; Xo, X1).

This completes the proof. [J

2.3 A Basic K-Interpolation Result

We have seen that the Marcinkiewicz interpolation theorem has a natural formu-
lation in terms of the Lorentz LP?-spaces. Now, if 1 < p < 00,1 < ¢ < o0,
then LP? is an intermediate space between L! and L*°. Furthermore, and as we
will see later, the LP”?-norm can be defined entirely in terms of the K-functional
for (L', L>). We impose now an analogous structure on any compatible couple
(Xo, X1) by defining a two-parameter family of intermediate spaces as follows:

Definition 2.3.1. Let (Xg, X;) be a compatible couple and suppose 0 < 6 < 1,
1<g<ooor0<6<1,q=o0. The space (Xo, X1)s, consists of all fin Xo+X;
for which the functional

00 dt 1/q
(/ (t_eK(fat;Xﬂle))q7> ’ 0<f< 171 < q,
0

sup t K (f,t; Xo, X1), 0<0<1,q=o00,

0<t<oo

1Fllgq =

is finite.

Notation. We will use the notations X+ 00X := (X, X1)0,c0 and X; + 00Xy :=
(X07 Xl)l,OO'
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Theorem 2.3.2. Let (Xo, X1) be a compatible couple of Banach spaces and suppose
0<f<1l,1<g<ooor0<60<1,q=o00. Then (Xo, X1)s, equipped with the
norm |||y, is @ Banach space intermediate between Xo and X;.

Given that the structure of the spaces (X, X) is modelled on that of the LP4-
spaces, it is to be expected that they will satisfy similar embedding relations. We
establish the following result.

Proposition 2.3.3. If0 <0 <1 and1<qg<r <oo, then
(X07X1>9,q — (X07X1>9,7'-

Proof. We may assume ¢ < r since in the other case there is nothing to prove.
Using the fact that K(f,t; Xo, X;) is increasing, we have

> 1/q
R X0 = (00 (6K, )
t

00 ds 1/q
< (00 [R5 30,2002
¢ s
< (60)""[1fllg, -
Hence, taking the supremum over all ¢ > 0, we obtain

1f g0 < (00)"[1£1lg g -

This establishes the result in the case r = co. In the remaining case where r < oo,
we have

s r—aradt\ et
1510, = ([ R0 0 8) < 12
< (09)"" 1 fllg,- O

Theorem 2.3.4. Let T' be an admissible linear operator with respect to compatible
couples (Xo, X1) and (Yo, Yr). Then

K(Tf,t;Y, Y1) < MoK(f,tMy/Mo; Xo, X1), Vf € Xo+ Xy, t > 0.
Proof. The admissible operator 1" satisfies

1T fi

v, < Millfillx,, ¥fi € Xiy 0 =0, 1.
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If f e Xo+ Xy and f = fy+ fi1 is any decomposition of f with fy € Xy and
fie Xy, thenTf=Tfy+Tf and Tf; €Y;, i =0,1. Hence,

K(Tf,t:Y0,Y1) < T folly, + t 1T filly,
M,y
< M (||fo||x0 + tﬁo ||f1||x1> :
Taking the infimum over all representations f = fy+ f1 of f, we obtain the desired
result. [J

Applying this result to the (6, ¢)-spaces, we obtain the following basic interpo-
lation theorem.

Theorem 2.3.5. Let (Xo, X1) and (Yo, Y1) be compatible couples and let 0 < 6 <
LL1<g<ooorl<fO<1qg=o00. LetT be an admissible linear operator with
respect to (Xo, X1) and (Yo, Y1), with

ITfilly, < Mi|fillx, » Vi € Xiyi = 0, 1.

Then
T:(Xo,X1)p,g — (YOaYl)@m

with
1T fllgy < My~ MY || £l -

Proof. We start the discussion with the case ¢ = oo. In virtue of the previous
theorem, and performing the change of variables s = tM; /M, we have

HTfHOOO = SuptioK(Tfﬂf; }/E)a}/l) S MO SuptieK(fa tMl/MO;X())Xl)
’ t>0

t>0

Mo\ ~* -
—hE (ﬁ) K (f. 5 Xo. X2) = My~ MY | fll

s>0 1

Similarly, for the case ¢ < oo we have

00 d 1/q
sl = ([ s, v

~ A
< (aag [ om om0, 0 )
0

o0 ds 1/q
= aat? ([T R (s o x0p )
0

= My=" M ||/,

This completes the proof. [J
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2.4 The General K-Interpolation Theorem

Let (Xo, X;) be a compatible couple and consider two interpolation spaces
790 = (X07X1)90,QO7 791 = (XO’X1)917<11>

where 0 < y < 0, <1 and 1 < g, ¢ < 0o. Then (Xg,, Xy, ) is itself a compatible
couple. The following result, due to Holmstedt, relates the K-functionals of both
couples.

Notation. We say that two positive quantities A and B are equivalent if there
exist two constants ¢, co > 0 independent of the essential parameters defining A
and B, such that c;A < B < s A. We use the notation A ~ B. If we only have
B < A, we write B < A.

Theorem 2.4.1. Let (X, X1) be a compatible couple and suppose 0 < 0y < 6 < 1
and 1 < qo,q1 < 00. Let 0 =60y —0y. Then,

o . t dS 1/(10
K(f7 té;Xﬁonﬁ) ~ (/ (5_60K<f73;X07X1))q0?)
0

o0 /q
o ([T rrGsnxn )
t

forall f € Xg,+ Xy, and allt > 0; if qo or q, is infinite, the corresponding integral
in this expression is replaced by the supremum in the usual way.

Proof. For j =0,1, let

t dS 1/‘]]’
P = ( [ (g5 50,0 )

and

o) 1/q;
Qutt) = ([ Rl s X )

with the usual modification if ¢; = co. By the subadditivity of K(g,s; Xo, X1)
and the Minkowski’s inequality for L%, it follows that P; and @); are subadditive.
Now, we can express the desired result in the form

K(f? té;yeoayel) ~ P0f<t) + t6Q1f<t)

Suppose first that f € X, +X(91 and fix t > 0. Let f = g+h be any representation
of f with g € Xy, and h € Xy,. Then, using the subadditivity of Fy and (), we
obtain

Rof(t) + Q1 (1) < llglkx,, + Poh(t) + 1 (Qig(t) + Il )
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Since Xy, = (Xo, X1)00.00 = (X0, X1)0,,00, there exists a constant ¢y > 0 depending
only on 6y and ¢y such that

sup s~ K (g, 5 Xo, X1) < co llglx,, -

Hence, for all s > 0 we have that
K(g,s; X0, X1) < cos™% ||9HY90 :

With this estimate and performing the integration, we find that

Q19(t) < ¢ ||g||yg0 (/ 3(00—61)q1—1d8)
¢

- L sl
- (01 — Oo)qn %o, -

Similarly, there exists a constant ¢; > 0 depending only on ; and ¢; such that

1/Q1

1 1/q0 5
Poh(t) S C1 <m) t ||h||y91 .

Combining all these estimates, we obtain that there exists a constant ¢ > 0 de-
pending only on 6q, 01, o, ¢1 such that

Pof (1) +°Quf (1) < ¢ (lglls,, + ¢ I, )

Hence, passing to the infimum over all such representations f = g + h of f, we
conclude that -
Pof(t) + ' Quf(t) < K (f.°; Xo, Xo,)-

Conversely, suppose that f € Xo + X; and that I f(t) and Q. f(?) are finite. We
shall show that f € Xy, + Xy, and

K(f7 t6;7907701) <c (Pof(t) +t6Qlf(t)) )

with ¢ > 0 a constant depending only on 6y, 61, q0,q:. Let f = g+ h be a repre-
sentation of f with g € Xy, h € Xy, and

191l x, + 1Pl x, < 2K(f 8 Xo, X1).
Then, for all s > 0 we obtain that

K(g7S;X07X1) S ||g||X0 S 2K(f7t7X0aX1)

34



Eduard Roure Perdices Master Thesis Spring 2015

and
2s
K(h>S;XO7Xl> S S HhHXl S ?K(fataX(J?Xl)

With these estimates and performing the integration, we find that

0o d 1/q0
Qog(t) = (/ (3_00K<973;X07X1))q0?8>

1/q0

< 2K(f,t; Xo, X1) ( / 3—90q0—1d3>
t
1 1/q0
=2(— K (f. t; Xo, X1).
oqo
Using the fact that t K (f,t; Xy, X;) is decreasing on (0, 00), we get that
1/q0

P (1) = ( /0 (K (5 X, Xﬂ)%@)

t dS 1/(10
> ( / <sl—90t-1f<<f,t;XO,X1>>QO—)
0 S

t 1/q0
=t 'K(f,t; Xo, X1) (/ s(l_GO)QO_Ids)
0

1 1/Q0 0
— _— ti OK 7t7X ,X .
<<1 - eo>qo) Ut Xo, 1)

Hence,

) . Pof ().

Similarly, we obtain that

t dS 1/(10
() = ([ (s b0, X002
0

1/q0

¢
< 27K (f, t; Xo, X1) (/ 5(19o)qolds>
0

1/qo0
<9 ((1_—190)%) K (f, t; Xo, X1) < 2P, f(1).

Since g = f — h, by the subadditivity of Fy we obtain that Pyg < Fyf + FPyh. The
previous estimates show that there exists a constant ¢y > 0 depending only on 6
and ¢y such that

lgllx,, = (Po+Qo)a(t) < coPof (1) < oo,
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which proves, in particular, that g € Xg,.
Using the fact that K(f,t; Xo, X7) is increasing on (0, 00), we get that

o0 /¢
Qi) = ([ a0 )

s g ([ oo
t

Vaq

1 1/‘h
=\ 7 t K (f,t; Xo, X1).
O1qq

Following the previous arguments, we obtain that

t dS 1/‘11
p(t) = ([ (570K X x0 2
0

t /a1
S 2t_1K(f, t7 Xo, Xl) (/ 3(1_91)q1_1d8)
0

1 /q
<2 (m) K (f,t; Xo, X1)

0, /a1
§2(1_91) Q1f(t)

and

) s 1/‘h
Quglt) = ( / <sf’1f<<g,s;xo,xl>>qld—)

S

e’} 1/‘h
< 2K(f,t; Xo, X1) (/ 391q11d5>
t

a1
=2 (L) K (f 1 Xo, X1) < 2Q1 f(t).
0hqu

Since h = f — g, by the subadditivity of (); we have that Q1h < Q1 f + Q1g9. The
previous estimates show that there exists a constant ¢; > 0 depending only on 6,
and ¢, such that

[hllx, = (P +QuA(r) < aQif(#) < o,

and so h € Xy,. Combining all the previous results we get that there exists a
constant ¢ > 0 depending only on 6y, 01, qo, ¢1 such that

K(f.1%:X0.X0) < llgllx,, + £ Ihlls, < c(Rft)+£Quf).

which is the desired estimate. O
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Remark 2.4.2. This theorem also holds for the case 0 < ¢9,q1 < 1 and for a
more general type of spaces rather than Banach spaces, the so-called quasi-normed
spaces [13].

Definition 2.4.3. Suppose 0 < 0 < 1. An intermediate space X of a compatible
couple (Xo, X1) is said to be of class 6 if 0 < 6 < 1 and (Xo, X1)p1 — X —
(X0, X1)p00, or 8 = 0 and Xg — X — Xy + 00Xy, or § =1 and X; — X —
X1 —|— OOX().

The following result corresponds to the extreme cases #y = 0 and 6; = 1 of the
previous theorem [13, 3, Ch. 5].

Theorem 2.4.4. Let (Xy, X1) be a compatible couple and let Xy and X, be in-
termediate spaces of (Xo, X1) of class 0 and 1, respectively. Suppose 0 < 6 < 1,
1 <q<ooandlet Xg, = (Xo,X1)o4. Then

e 00 ds 1/q
RO Ko Xag) ~ ¢ ([T 6K s Xo 00 )
t

forall f € Xo+ Xg, and all t > 0, and

) . t , ds 1/q
K50, %0 ~ ([ RG s xS )
0

for all f € Xg,+ X1 and all t > 0; with the usual modifications if ¢ = oc.

Now we stablish the reiteration theorem, which shows that the interpolation
spaces (Xg,, X, )o,, can be obtained as interpolation spaces from the original cou-
ple (Xo, X1>

Theorem 2.4.5. Let (X, X1) be a compatible couple and suppose 0 < 6y < 6 < 1.
Let 79j be an intermediate space of (Xo, X1) of class §;, j =0,1. If0 <6 < 1
and 1 < q < o0, then

(X907 X91)9,q = (X(J? X1>9',q7

with equivalent norms, where 8 = (1 — 0)0y + 00.

Proof. Let 6 = 0, — 6. By hypothesis,
(X0, X1)g;,1 = Xo, = (Xo, X1)9;00, 4 = 0, 1.
By Theorem 2.4.1 with ¢y = ¢; = 0o, we have that

t_GOK(-f’ t7 X07 Xl) 5 K(f7 t(S’ (X07 Xl)eo,ooa (XOa X1>91,Oo)a
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and since 79}. — (Xo, X1)9;,00, J = 0,1, we obtain that
K(f? t(s? <X07 X1)907007 (X07 X1)91700) SJ K(f7 t6;7907791).

If ¢ is finite, this, with the change of variables s = ¢° and the definition of #’ gives

e dt
oo, = [ 0K 1, X005
< * o0 5% 7 na@
~ (t K(f7t ;X907X91)) ?
0
= (00—0)/(01-00) + % %8
~ (5 ’ ! ? K(f7S;X907X91>> ?
0

< R — ds
o ACRLTAS ¥ o
Similarly, for the case ¢ = oo we have

HfH(X(),Xl)G/ - —= Stuloj t@o*ﬁ?’f@o[((f; t7 XO, Xl) 5 Stug t@O*olK(f’ t57 700’791)
’ > >

= sup S_GK(fa 5;7907791) = Hf”(ng,YQl)

s>0

6,00 '

These estimates imply that (Xg,, Xg,)s, <= (X0, X1)grq- To complete the proof,
we need to establish the embedding in the opposite direction.

Using that (Xo, X1)g,1 — ng, j = 0,1, and applying Theorem 2.4.1 with
go = q¢1 = 1, we obtain

K(f7 té;yemyel) SJ K(f7 t67 (X()u Xl)@o,l) (XU) Xl)@l,l)

t d > d
< / SR (f, 5 X0, X1) 2 4 9 / SOK(f s Xo, X1)
0 S t S

If ¢ is finite, this, with the change of variables u = ¢° and the Minkowski’s inequality
for L4, gives

o] 0 _ du 1/q
”fH(Ye Xo)og (v K (f,u; Xog, Xoy))!—
0 1/9,9 0

u

0o t q 1/q
S ( / (t‘” / SGOK(f,s;Xo,Xn@) @)
0 0 S t
00 00 dS th 1/‘1
+ (/ (t5(19)/ sTOK(f, s;XO,Xl)—) —) .
0 ‘ S t
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For the first summand, applying the first of Hardy’s inequalities with A = 1—4§6 < 1
and exponent ¢, and taking into account the definition of #’, we obtain

00 t ds\ 9 dt 1/q
([ (e [sortrsxaxst) F)
0 0 S t

(o) 500 dt l/q
< ([T o) = o,

For the second summand, applying the second of Hardy’s inequalities with A =
1 —6(1 —6) <1 and exponent ¢, and taking into account the definition of 6, we

obtain
o0 o0 d th 1/‘1
([ (e [T sonrsxx)®) 5)
0 ‘ S t

> 6(1-0)—0 dt Ha
< ([T nms ) = i,

This establishes the desired result for finite ¢. Similarly, for the case ¢ = oo, we
have

_ ) . 7
Hf”(ygo,ygl)g,m—suggu K(f,u; Xo,, Xo,)

50 ! 0 ds
Ssupt” /S‘ "K(f,s; X0, X1)—
t>0 0 S
& d
+supt5(1_e)/ S_QIK(f»S;XO,Xl)—S
t>0 t S
5sugt—59—90K<f,t;Xo,Xl>+sugtm—“—g%(f,t;XO,X1>
t> t>

~ Hf”(XD,Xl)g,w .
This completes the proof. [1

Remark 2.4.6. This theorem also holds for the cases 0 =0y < 01 < 1,0 < 6y <
0, =1 and 0y = 0,60, = 1, but the proof is slightly different [3, Ch. 5].

Via the reiteration theorem, the basic K-interpolation theorem of the previous
section can be generalized as follows:

Theorem 2.4.7. Let (X, X1) and (Y, Y1) be compatible couples and suppose 0 <
Oy <0, <1,0 < g, 1 <1 with g # 1. Let 79]. and 7%. be intermediate spaces
of (Xo,X1) and (Yo,Y1) of class 0; and 1;, respectively, for j = 0,1. Let T be a
linear operator satisfying

ITflly, <M;lflx, - 7=01
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If0<f0<1andl<q< oo, then
HTfH(YO,YI)Q/,Qq S CMgioM]io HfH(Xo,Xl)‘g/yq )
where (9/7 W) = (1 - 6)<907 w(]) + 0(917 ¢1)
Proof. The hypotheses imposed over T, together with Theorem 2.3.4 give

_ _ M, —
K(Tf,t;Y 4, Yy,) < MoK (f,t—Ml;Xgo,Xgl) .
0

In the case ¢ = oo, and performing the change of variables s = tM; /M, we have

ITH 5, 70 0 = SUPE K (T 657 4, Y,

t>0

M, — —
< Mosupt_‘gK (f,t—l;Xeo,Xel)
M,

t>0

s>0 1

= M, MY 11l 4, %0,

Mo\’ - -
:MOSUP (‘SVO) K(fﬂS;XeoaX01)

6,00 :

Similarly, for the case ¢ < oo we have

L S A
8 v, = (O RER 6T o)

[e%¢) M o . th 1/‘]
< | M? UK =2 X, X —
< (o [ (o (r5 T X)) )
o0 - ds\
- M(}_QMIG (/ (S_QK(ﬁS;X@o’X&))q_)
0 S

= MM g, %0

0.0 "

Applying the reiteration theorem and taking into account the definition of (6', /),
we obtain that

17y, SITF s 5
< My~ My 11

0.q

1-60 7 16
Yé)gvyﬁ)@yq 5 MO Ml ||f||(X0’X1)9/vq '

This completes the proof. [J

Remark 2.4.8. The Calderon operator S, for the interpolation segment

o=1[(1-00,1—10),(1—01,1—1)
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is lurking in the background here. Indeed, since 7¢j — (Y0, Y1)y, 00 for j =
0,1, the K-functional K(Tf,t;Y y,,Y,,) can be estimated from below applying
Theorem 2.4.1 with ¢y = ¢; = 00, obtaining

K (Tf, Y0, Y1) S K(TF 47775 (Yo, Y1) yoso0r (Yo, Y1) 00)
5 K(Tfa twl_wo;?d)m?%)'
Similarly, if 0 < 6; < 1, the embedding (Xo, X1)g;1 — 79]., j = 0,1, and Theo-
rem 2.4.1 with gy = ¢; = 1, give raise to the estimates
K<f7 t7 7607791) S K(f’ t) (X07 Xl)@(),lv (X()v X1)9171)

t1/(61—-060) ds
S SR X))
0

~
S

> d
+t/ S_olK(f,S;Xo,Xl)—s.
t S

1/(61—0¢)
Recall that
K Pv1i—Yo.Vy %—woMl._ '
(vat 7Y¢07Y¢1)§M0K fat M’XGMX@I .

Combining all these estimates, we obtain that

K(Tf,t;Yy, Y1)

t
oy \ oy T
<Mt¢0_1/<Mé>l I K (s X, X) ds
~ 0 s S
> K(f, s Xy, X1)ds
+Mlt1l11—l/ L eiw 81—91 (f7 ) <20 1)_
(%)Wt91—90 S S
0

The right-hand side is essentially the S,-operator applied to the function K(f, s;
Xy, X1)/s. Defining M = (M;/My)"/=%) and m = (¢; — 1)/ (01 — 6p), multi-
plying each side by ¢'~¥', taking the L9(dt/t)-norm and applying the Minkowski’s
inequality for L7, performing the chancge of variables u = Mt™, applying the first
of Hardy’s inequalities with A = 1 4+ (¢ — ¢')/m < 1 and exponent ¢, and the
second of Hardy’s inequalities with A = 1 — (¢; — ¢’)/m < 1 and exponent ¢, and
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taking into account the definition of (¢',1)") we get that

1Ty,
Me™ 1/q
) d dt
< MO( (td’o T/) OOK(f S; X07X1) 8) ?)
0
ds\* dt
([ (e [ ) Y
th 8 t
OO , ds\? du\ "
o ([ (6o [ oig o) 1)
0 0 s U
00 , e’} dS qdu 1/q
(/ (U(wl¢)/m/ SalK(ﬂS;Xo;Xl)_) _)
0 u S U

d
; U
— M&_HMf ||f||(X0,X1)9/

OO

+ M3~ M?

where the constants implicit in the symbol < do not depend on Mj, M;. This is
exactly the procedure used previously to establish the Marcinkiewicz interpolation
theorem. It illustrates once again how closely the abstract K-method is modelled
on the classical Marcinkiewicz theory.

2.5 Some Examples of K-Functionals

Since the essence of the K-interpolation structure resides in the K-functional itself,
we devote this section to determine in concrete terms the K-functionals for a
variety of specific pairs of Banach spaces. We start computing the K-functional
for the compatible couple (L', L*°).

Theorem 2.5.1. Let (R, ) be a totally o-finite measure space. Then, for each
fe L+ L) (R, p),

K(f,t; L', L) = /Ot fr(s)ds =tf™(t), t > 0.

Proof. The second equality follows from the definition of f**. Fix f € L' 4+ L
and t > 0. We show first that

/t F(s)ds < K(f,t: L', L),
0
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Let f = g+ h be any representation of f with ¢ € L' and h € L*>. The subaddi-

tivity of f** gives
t ¢ ¢
/f*(s)dsg/ g*(s)ds+/ h*(s)ds
0 0 0

and hence, by Proposition 1.2.6 and the fact that f* is decreasing,

/ﬁ@ws/g%m+wwzwmwmm
0 0

Taking the infimum over all possible representations f = ¢ + h, we obtain the
desired estimate.
For the reverse inequality

t
K(f,t: L', L) < / £*(s)ds
0

it will suffice to construct functions g € L* and h € L* such that f = g + h and

t
\MﬁﬂW@Slﬁ@%

Clearly, the right-hand side may be assumed to be finite, otherwise there is nothing
to prove. Then Corollary 1.2.8 guarantees the integrability of f over any subset of
R of measure at most ¢. Thus, if welet E' = {x: |f(z)| > f*(t)} and set to = p(E),
Proposition 1.2.5 gives ty <t and so f is integrable over E. In particular, for the
functions

g(x) = max{|f(x)| — f(£),0} - sgn f(z)

" h(z) = min{|f(z)], f*(t)} - sen f(@),
we have
||g||1=/oomax{|f(w>|— ), 0}dp(z /If )dp(z) — u(E)f(t)
/ Fr(s)ds — tof*(t /f )ds < oo
and

17l < f5(t) < o0,
so g € L' and h € L>. Moreover,

to
Mm+ﬂwméllﬂﬂﬁ+ﬁ—wﬂ®.
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But by Proposition 1.2.5, f*(s) is constant and equal to f*(t) whenever ty, < s < t,
so the last estimate in fact coincides with the desired result. Since f = g + h, the
proof is complete. []

As a consequence of this theorem and the definition of the LP%-norm in terms
of f**, we have the following result.

Theorem 2.5.2. I[f0 <0 <1 and1 < q < oo, then
(Ll,LOO)g,q = LP9
where 1/p=1—16.

Combining these results with Theorem 2.4.1 and its corollaries, we obtain de-
scriptions of the K-functionals for the Lebesgue and Lorentz spaces.

Theorem 2.5.3. Suppose 1 <p<r<ooandl <q,s<oo. Letd =1/p—1/r.
Then,

£/ 1/q
f“ﬁ@U@L“>~<l (M@FWMVﬂﬁ

u

00 1/s
it ( /t1/5<u1/ff**<u>>sd;“) |

forall f € LP94 L™ and allt > 0; if q or s is infinite, the corresponding integral
in this expression is replaced by the supremum in the usual way.

Corollary 2.5.4. Suppose 1 <p <r <oo. Let 6 =1/p—1/r. Then,

KU@L&UJ~(Awaf%wVM>mﬁt([;uwmwmQ”i

forall f € LP+ L" and all t > 0.

Theorem 2.5.5. Suppose 1 < p < oo and 1 < q < oo. Then
& ds\
R RGO I
tp/(p—1) S
for all f € L' + LP? and all t > 0, and
tP dS l/q
K~ (L)
0

S

for all f € LP2+ L and all t > 0; with the usual modifications if ¢ = co.
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Corollary 2.5.6. Suppose 1 < p < oo. Then

(e 9]

1/p
Kz~ ([C (o)

forall f € L' + LP and all t > 0, and

Ko )~ ([oyas) "

for all f € LP + L* and all t > 0.

Remark 2.5.7. These results also hold for parameters 0 < p < r < oo and
0 < ¢,s < 00, as shown by Holmstedt [13]. Moreover, the function f** can be
replaced by f* in the expressions above and the corresponding descriptions of the
K-functionals are also true [1, 13, 14, 20].

Remark 2.5.8. The previous theorems provide descriptions of the K-functionals
up to certain multiplicative constants implicit in the symbol ~. Several authors
have computed exact formulas for some pairs of Lorentz spaces. Nilsson and
Peetre gave a formula for the couple (L', L?) with 1 < p < oo [19], and Ericsson
proved formulas for the couples (LP', L) and (LP*°, [*°) with 0 < p < oo, and
(LP/at [P9) with 1 < ¢ < p < oo [8].
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Chapter 3

Multilinear Interpolation Theory

3.1 Brief History of Multilinear Interpolation

Multilinear interpolation is a powerful tool that yields intermediate estimates from
a finite set of initial estimates for operators of several variables. In particular, the
real multilinear interpolation method yields strong type bounds for multilinear or
multi-sublinear operators as a consequence of initial restricted weak type estimates.
We start this section describing what is a multilinear operator.

Definition 3.1.1. Let n > 1 be an integer. For 1 < j <mn, let (X}, it;) and (Y, v)
be totally o-finite measure spaces. Let .’(X;) be the space of simple functions on
X;. Let T be a map defined on .(X;) x --- x .#(X,,) that takes values in the
measure space (Y,rv). Then T is called multilinear if for all f;, g; in . (X;) and
all scalars A\ we have

T(flw--v)‘fj?"'vfn):)‘T<f17---7fj7"'7fn)7
T(fl?"'afj+gj7"'7fn):T(fla"'afja"'afn)+T(f1>"'7gj7"'afn>'

The operator T is called multi-quasilinear if there exists a constant K > 1 such
that

T(f1,- - Ay s f) = INT (fro- s fio e os fo)l,
and

|T(f17---7fj+gj7"'7fn)‘ SK(’T(flu7f]77fn)|+’T<f1>7gJ77fn)D

In the case where K = 1, T is called multi-sublinear. If n = 2, we talk about
bilinear, bi-quasilinear and bi-sublinear operators, respectively.

If we try to generalize the classical Marcinkiewicz interpolation theorem to the
multilinear setting, we will run into trouble because of the following. Suppose
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that (Ao, A1), (Bo, B1) and (Cy, C1) are compatible couples of Banach spaces, and
that 7" is a bilinear operator defined on (Ay + Ay) X (By + By), and mapping this
product continuously into Cy + C; and such that T maps Ay X By continuously
into Cy and Ay X By into C1. Take a € Ag+ Ay, b € By+ By, and write a = ag+aq,
b = by + by, with a; € A;, b; € B;, for i = 0,1. At this point we would like to
invoke the bilinearity of 7" but if we do so, the terms T'(ag, by) and T'(ay,by) will
appear, and we don’t know how to control them with the given hypotheses. A way
to bypass this problem is to impose embedding relations on the spaces involved.
This is precisely what Lions and Peetre did, and in 1964 they proved the following
interpolation theorem for bilinear operators [16].

Theorem 3.1.2. Let (Ao, A1), (Bo, By) and (Cy, Cy) be interpolation pairs, with
A; € B;,1=0,1. Let T be a bilinear operator bounded from A; x By into Cy with
norm wy, and such that the restriction T : Ag X By — Cy is bounded, with norm
wo. Let 1 < p,q < oo such that 1/r:=1/p+1/¢—1>0, and 0 < 6 < 1. Then,
T : (Ao, A1)gp X (Bo, B)ag — (Co, Ch)e, is bounded, with norm at most wi%w?.

The proof of this result is based on the J-method, which is equivalent to the
K-method [6, Ch. 3].

In 1969, Strichartz proved the following result, which is a bilinear version of
the Marcinkiewicz interpolation theorem [23]. This result can be regarded as a
specialization of the previous result of Lions and Peetre to the case of the Lebesgue
spaces LP(X, p) for arbitrary totally o-finite measure spaces (X, u). Observe that
in this case, we start from three weak type estimates for the operator involved,
instead of the two hypotheses imposed in the previous result.

Theorem 3.1.3. Let T(f1,..., fm) be a bilinear transformation from

{LPY (X0, ) X LP22 (X, pio)} + { L (X1, i) X LP*2 (X, pio) }
+{LP (X, ) X LP2 (X, po) }

to measurable function on (Y,v). Suppose T satisfies the weak type estimates

Ml ||fz||pk,2>‘”“
)

(67

vz |T(fr, f2)(2)] = a} < (

with pr1,De2,qe > 1, for k =1,2,3, and the g, ’s pairwise different. Suppose the
points (1/pr1, 1/pk2) in R? span a nondegenerate simplex, and let (1/p1,1/p2) be
a point in the interior of the simplex. In barycentric coordinates

_Zpkl P2 _ZPM
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where Y, ny =1 and 0 < np < 1. Let 1/q = >, me/q. Suppose that for just one
of the p;’s, say p;, we have p; < q. Then T satisfies the strong type estimate

IT(frs f)lly < M full,, £l -

The proof involves arguments based on the Riesz-Thorin interpolation theorem
[3, Ch. 4] and the ordinary Marcinkiewicz interpolation theorem.

In 1978, Zafran generalized the work of Lions and Peetre [16] and proved the
following interpolation theorems for multilinear operators [25]. There are two
important facts in this result. The first one is that there is no need to assume any
kind of embedding hypothesis on the spaces involved. The second one is that for all
n > 1 and T a n-linear operator, we always start with two weak type hypotheses
imposed on 7.

Theorem 3.1.4. Let (BY, B}), (C°,C") be interpolation pairs, 1 < j <n. Let T
be a multilinear operator from @}_, B) N B} into C° N C" such that

n
1T (s, wallen < M ] sl

i=1

fork=0,1 andforall(xl,...,xn)E@?ZIBJQQB;. Let 0 <s<1,1<p; <oo,
and suppose 1/q = Z;L:1 1/pj —n+12>0. Then,

n
1T mlleo ., < MM [T 1l .,

j=1

for all (xq,...,x,) € @?:1 B? N B;. In particular, if p; < 00, 1 < j <n, then T
has a unique extension as a bounded multilinear operator from @?:1(3973})5’,%
into (C°,CY),, of norm at most My *M;5.

As a corollary of this theorem, we obtain the corresponding result for the
Lebesgue spaces. In contraposition to the result of Strichartz, in this case it is
enough to impose only two weak type hypotheses on the operator involved, at the
price of the condition 0 < 1/¢ < 7", 1/p; —n + 1. If this condition is removed,
the interpolation result fails, in general. We will present an example of this fact
in the next section.

Corollary 3.1.5. Let (X, p;) and (Y,v) denote totally o-finite measure spaces,
1 < j <n, and denote by .7; the integrable simple functions on X;, and by A
the measurable functions on Y. Let 1 < p1j; # poj < 00, 1 < q1 # g2 < 00,
and 0 < s < 1. Define 1/p; = (1 —s)/p1j + $/p2j and 1/qg = (1 — s)/q1 + /2
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and suppose 0 < 1/q < 2?21 1/p; —n+1. Let T be a multilinear operator from
@D_, 7 into A such that

IT(Frs o ) Loy < Mi [TIE o g

Jj=1

forall (fi,..., fn) € @j_, 7. Then,

ITCfr e Sl lagy < MM Tl

j=1

for all (fi,...,fn) € " ., where ¢ is a constant depending only on the
j=1<"1J

Pkj, Gk, and s. In particular, T has a unique extension to @?:1 LPi(p;) sat-

isfying the previous estimate.

The proof of this result is based on the J-method [6, Ch. 3].

In 2001, Grafakos and Kalton proved the following extension of the classical
Marcinkiewicz interpolation theorem to the multilinear setting [10]. This result
holds for Lorentz spaces LP'? over the measure space (Rt m), where m denotes
the Lebesgue measure. In this case, for all n > 1 and T" a n-linear operator, we
start with n + 1 weak type hypotheses imposed on T'.

Theorem 3.1.6. Let 0 < p;; < oo for1 <k <n+1andl <j <n, and also
let 0 < qp < oo for1 <k <n+1. Suppose that a locally continuous n-linear map
T:E" — Lo(0,00) satisfies

n

||T(XE17 cee ’XE")qu,oo S MHm(Ej)l/Pk,j7

j=1
for all sets E; of finite measure and all 1 < k <mn+ 1. Assume that the system
1/p1a Upipg - 1/pin 1 01 1/q:
1/p2a Upso -+ 1/pon 1 02 1/qq
]-/pn,l 1/pn,2 e 1/pn,n 1 Onp ]-/Qn
1/pn+1,1 1/pn+1,2 s 1/pn+1,n 1 -T 1/Qn+1
has a unique solution (o1, ...,0,, —7) € R™™ with not all 0; = 0. Suppose that

(1/p1,...,1/pn,1/q) lies in the open convex hull of the points (1/pg1,. .., 1/Dkn,
1/qr) in R™ and let 0 < s, s < oo satisfy

- Y -

8 .
1<j<n:o;#0 7

—_
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Then T extends to a bounded n-linear map

T: Hij’S]'(O, 00) — LT%(0, 00),

j=1
with norm a multiple of M.
The proof of this result is based on the work of Boyd [4].

In 2012, Grafakos, Liu, Lu and Zhao, proved a multilinear extension of the
Marcinkiewicz real method interpolation theorem [11]. Their result is similar to
the theorem of Grafakos and Kalton but with the difference that it works for
general measure spaces rather than R*. Just as in the previous theorem, for a
n-linear operator 7', we impose n + 1 weak type hypotheses on T'.

In order to state this theorem, we introduce some notation.

Definition 3.1.7. Let n be a positive integer. For 1 <k <n-+1and 1 <j <n,
we are given 0 < p; ; < oo and 0 < g < oo. We define determinants v; as follows:

1/]91,1 1/]91,2 ce ]-/pl,n 1
1/paa 1/pso -+ 1/pan 1
Yo = det : : : : >
1/an 1/pn2 e 1/pnm, 1
Vpns1ig 1/png12 -+ 1/pngin 1
and for each j, we define
1/p1a piog - —=1/qg - 1/p1n 1
1/paa 1/pso -+ —1/gg -+ 1/pon, 1
7 = det : : : : : : >

1/an 1/pn2 e ‘_1/Qn T 1/pnm/ 1
1/Pn+1,1 1/pn+1,2 s —1/Qn+1 ce 1/pn+1,n 1

where the j-th column of the determinant defining ; is obtained by replacing the j-
th column of the determinant defining ~y, by the vector @ := (—=1/q1, ..., —1/qui1)-

Remark 3.1.8. These determinants have a geometric meaning. For 1 < k < n+1,
let P := (1/pk1,...,1/prn) be points in R". Let

n+1 n+1
H .= { > Pk € (0,1),) np =1 }
k=1 k=1

be the open convex hull of the points P,, 1 < k < n+ 1. Then, H is an open
subset of R™ whose n-dimensional volume is n!|yy|. Hence, the condition vy # 0
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is equivalent to the fact that H is a nontrivial open simplex in R”. The geometric
meaning for the remaining +;’s is similar. That is, the condition v; # 0 is equiv-
alent to the fact that the open convex hull of Pi,..., Pj_1,Q, Pjt1,...,Pyy1 is a
nontrivial open simplex in R".

We now state the theorem of Grafakos, Liu, Lu and Zhao.

Theorem 3.1.9. Let T' be a n-sublinear operator defined on ./ (Xy) x - - - x.%(X,)
and taking values in the set of measurable functions of (Y,v). For 1 <k <mn+1

and 1 < 7 <mn, we are given 1 < py; and 1 < q,. Suppose that vy # 0. Assume
that T satisfies

||T<XE17aXE koo_Bk?H:u Upk]
for all1 <k <n+1 and for all subsets E; of X; with p;(E;) < oo. Let

1 n+1
P= P,
(pl ) an ‘

for some ny, € (0,1) such that Y p=1me = 1, and define

n+1
1_ 3
4 5

For each j, let 1 < s;, and let
1 1
Pl Dl
1<j<n;v;#0
Under these assumptions, there is a positive finite constant ¢ such that

n+1

IT(fr, - fa)lls S € (H B’”f) LTz, -

for all f; € LPi% (X;).

For simplicity, we have removed the description of the constant c. Observe
that the linear system in the theorem of Grafakos and Kalton will have a unique
solution if, and only if 7 # 0, and in this case, 0; = —7v;/70, so the choice of the
parameter s is the same as in the previous theorem.
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3.2 A Modern Bi-Sublinear Interpolation
Theorem

We will devote this section to the proof of Theorem 3.1.9 for the case of bi-sublinear
operators. For convenience, we restate the result.

Theorem 3.2.1. Let T be a bi-sublinear operator defined on .7 (X;1) x £ (X2) and
taking values in the set of measurable functions of (Y,v). For 1 < k < 3 and
J=1,2, we are given 1 < py; and 1 < q. Suppose that vy # 0. Assume that T
satisfies

1T (X21s XE )l gy 00 < Brba (Ex) /P62y (Ey) /7w,

for all 1 < k <3 and for all subsets E; of X; with p1;(E;) < co. Let
3
1 1
pP= <—, —) => b,
p1 P2 P

for some ny, € (0,1) such that Zi:l ne = 1, and define

For each j = 1,2, let 1 < s;, and let
ooy 2
5 1<jSan, A0 5
Under these assumptions, there is a positive finite constant ¢ such that
IT(fr, P2l s < cllfill,, s 12l ., s
for all f; € LP%(X;).
As a preliminary to this theorem, we state the following lemmas.

Lemma 3.2.2. Let p > 1, ¢ > 1 and T be a sublinear operator defined on the
characteristic functions xg, with E C X and p(E) < co. Assume that for some
constant M > 0 and for all such measurable subsets F, we have

1T () g0 < Mu(E)Y?.

Then, T : LPY — L% js bounded.
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Proof. Let f € §(X) and positive. Then, f is of the form

j=1 keZ

where the sums are, in fact, finite almost everywhere (see Definition 1.2.15).
Recall that for ¢ > 1, [|-[|, . is a norm and [-[|,, S |l .00 Hence,
by the sublinearity of T', we have

so < l-llgo0y S

1T lgoe S IT oy € D D 28 NT Ok ooy

j=1 keZ

SZZQ’?HT(XEW qOONMzzzk 1/p

j=1 keZ j=1 keZ

Since Ey; = {x : 2F < f;(z) < 21} and f; <
f(z) > 2"} so w(Ey ;) < pp(277). Therefore,

HT q MZZ2I€ 2k+] 1/p _ MZ2 22k+3 2k+j 1/p
oo J

23, we obtain that Ej; C {z :

j=1 keZ 7=1 keZ
Z szﬂ 2k+1 1/p < MZ2k+1 2k+1>1/p
j=1 kEZ kEZ
ok+1 o0
sMZékumwmgMAummeMmm,
keZ

where we have used that j; is decreasing, so
2k+1

/ py(s)/Pds > 28 s (2547,
2

k

and that LPt < LP.

For an arbitrary f € S(X), the same result holds by decomposing f in its
positive and negative parts. Finally, T extends uniquely to the whole space LP!
by density, and the theorem follows. [

Lemma 3.2.3. Under the assumptions of Theorem 3.2.1,
1T (X Xl goo < BY BY B pa (B1) P g (B2) VP2,

for all subsets E; of X; with p;(E;) < oo.

33



Eduard Roure Perdices Master Thesis Spring 2015

Proof. By hypothesis,

||T<XE17 XEQ)qu’OO < Bklul(El)l/pkvl'UQ(EQ)l/pk,z’

for 1 < k < 3, hence

H HT XEI’XEQ) Qry00 = HB%/JQ El)nk/pklu (E'Q)'Uk/Pk,z
k=1 k=1

3 3
= (H sz> H ,u1(E1)nk/pk’1u2(E2)”’“/pk*2
k=1 k=1
3
= (H BZk) Ml(El)l/plm(EQ)l/m'

k=1

. . 3
Now, for any measurable function f, and since ) J,_, nx = 1, we have

Hqu 0o — SUp tl/qf*(t) = sup t22:1 nk/Qkf*(t)
’ t>0 t>0

= sup (/9 1 (0))"™ (£ ()" (£ (1) "

t>0

< NG o0 1 1o 00 1 15 00 -

Combining these estimates, we obtain

3

1T (xE:s xE)l g00 = H |T(XEys XE,)| qk 0o
=1

<H Bnk) /mu (E2)1/p2' ]

Lemma 3.2.4. Let T be as in Theorem 3.2.1. Let 1 < p1,po and 1 < q. Suppose
that for some constant M > 0, we have

T (X2 Xl oo < Mpa (Ey)"P i (Eo)V/P2,

for all subsets E; of X; with u;j(E;) < oo. Then, T : LPvt x [Pzl — L0 s
bounded.

Proof. Fix F' C X, with pus(F) < oo and consider the operator Tr := T'(-, xr).
Since T is bi-sublinear, T is sublinear. Moreover,

ITe(XE) g0 < Mpua(E)/P iy (F)72,
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for all subsets E of X; with u;(E;) < oo. Applying Lemma 3.2.2, we obtain that
Tp : LPvt — L9 is bounded. In particular,

1T X goe S Mpa(E)72 | f]y0

for all f € L', Now, fix f € LP*! and consider the operator Ty := T'(f,-). Since
T' is bi-sublinear, T} is sublinear, and by the previous estimate and Lemma 3.2.2,
we obtain that T} : LP»! — L% is bounded. In particular,

1T D lg o0 S M NN, 2 11900
for all g € L. Hence, T : LP*! x LP»! — L[4 is bounded. [J
Combining the previous lemmas, we obtain the following result.
Corollary 3.2.5. Under the assumptions of Theorem 3.2.1, we have that
T . LPvl x [p2! o [oo°
s bounded.
In the sequel we will make use of the set
Sy = {(0p1,002) : £ =1,...,4}

of all possible pairs of the form (41, +1). Under the assumptions of Theorem 3.2.1,
since all p; < oo and P = (1/py, 1/p2) lies in the open convex hull H, we can choose
e > 0 small enough such that the points Ry := P + (041, 002) belong to H, for

¢ =1,...,4. Hence, for each ¢ we can write
3
1 1
(—, —) =Re=> 0%,
Te1 Te2 1

for some 6, € (0,1) such that Eizl 0o, = 1. Observe that for each ¢ =1,....4,
and j = 1,2, ry; < oo. Also, we have

1 1
— — — = ¢€0y,.
Teg Py
For each ¢/ =1,...,4, we also define
3
1 O 1
TK - ; k '

It holds that
1 1_71<1 1)+72(1 1>
q Ty Yo \T¢1 D1 Yo \T¢,2 D2 .

We will also need the following two lemmas.
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Lemma 3.2.6. Consider the set A :== {1 < j < 2:~; # 0}. Forallj =12,
fiz functions f; € S(X;) and for any t > 0, write f; = fi14+ fij—14, with fj1, =
ij{‘fj‘>f;(t"Yj/’Y0)} and fj,—l,t = ij{|fj|§f*(t—vj/w0)}- FOTj - A and ¢ = 1’ . 747 if
pj > 15, we have that

ﬁ( 15;)
N T il S 5ll
(%)
and if p; < rj, we have
ﬁ( 1_7;>
(AN ||fj7_17t||7'l,j71 5 Hfj”pj’sj‘
(%)

Proof. Assume, first, that p; > r,;. For the case s; < oo, by Lemma 1.2.33,
the change of variables u = t~%/% and the first of Hardy’s inequalities with A =
1+ (1/p; —1/rs;) <1 and exponent s; > 1, we have that

E(L_L)
£ P | fia

’r’[,j,l

(%)

=R ([ ) 4
:(/0 t (e, )(/0 l/ef,l,t . t)
< (/Oou—sg'<r;j_plj) </ UT“f ( >dv) du ) 1/s;
~\Jo 0 v U

00 U du 1/s;
S([Twmn@p ) < 1gl,,

Similarly, for the case s; = oo we have

)
Suptm Te,j Pj ||fJ71’t||r“

t>0
u
<o (3575) | oo
u>0 0 v
Ssupu® fr(w) = £l
u>0

Now, assume that p; < ry ;. For the case s; < oo, applying Minkowski’s inequality
for L%, using Lemma 1.2.33, performing the change of variables u = t=%/7% eval-
uating directly the first summand and applying the second of Hardy’s inequalities
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with A =1+ (1/r,; —1/p;) < 1 and exponent s; > 1 to the second summand, we
have that

v (%)

ﬁ(i_i)
o\ P ||fj7_1’tH7“g,j,1
, 1/s;
u dv\* du
* U Ul/wa]’_ _
it [ ot u)

([
0

, Y 1/s;
+<A ) ([T g ) %j Sl

Similarly, for the case s; = oo we have

%(rel P) _(%_PL) * ' l/re dv
sup ¢\l Ssupu N R (u) I
>0 u>0 0 v
(1 o0 d
+ supu (ré,j Pj) / vl/r;z,jfj’,k (U)_U < sup ul/Pi f;(u) = ||fj||p~ -
u>0 u v u>0 7

This concludes the proof. [

Lemma 3.2.7. Consider the set A" == {1 < j < 2:~; =0}. Forj e A and
C=1,...,4, if pj > rej, we have that

Tf,j>1 5 ||f]||p]7oo7
and if p; < 1, we have
1ficral, o S U5l
Proof. When j € A’, we have v, = 0 and f;;1 = ij{|fj|>f;‘(1)} and fj_11 =
Tixqr <y I pj > 7oy, applying Lemma 1.2.33 we obtain

" dv
Hfj’l’lH?"e,j,l S/ 1/ Mf ( )
0

(Y

1
S(/ g1/ @Y ymmwwwwpw
0

Now, assume that p; < r¢;. By Lemma 1.2.33 we get that

1
RPN 45 . dv
Hfj,*l,l”re’wl S/O' rvl/ Z,ij (1)7 _i_/lv 1/ gjf ( )

[

< 1 1/7’e7dv - 1/Wj—1/pg
=\ vyt Hfa||pj S Wil 0

This concludes the proof. [
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Now we can give the proof of Theorem 3.2.1.

Proof. (Thm. 3.2.1) For all j = 1,2, fix functions f; € S(X;) and for any ¢ > 0
write f; = fj 174+ fj—1,/4- Proposition 1.2.5, together with Minkowski’s inequality
for L* with s > 1, the bi-sublinearity of the operator T" and the quasilinearity of
the LS-quasi-norm with 0 < s < 1 [9], imply that

IT(fr, F)llgs = (/7T (1, f2)* (8)]

(%)
£t/ > T (frivasas Fraway)| | (2)

i1,02€{1,—1} Ls(dt)

*

IN

IN

th/a Z (T (friire/as foingya)])(E/4)

i1,02€{1,—1} Ls(dt)

S D0 TG P ) O] o

i1,92€{1,—1}

4
=S T frps s Frroen) ) (D)
/=1

(4)
because each pair (i1,4p) with 7; € {1, —1} corresponds to a unique ¢ such that

(’il,i2> =0y € SQ.
It follows from Corollary 3.2.5 that for £ =1,...,4, we have

1T f2) o0 S 2l s 120l 00

for all functions f; € S(Xj), and since

q Ty Yo \T¢1 D1 Yo \Te2 D2 7
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we obtain that for all / =1,...,4, and t > 0,

T (frop s Faomn)) ()
1_ 1 *
<taome sup Sl/T[<|T<f1,sz,1,t7 f270e,2,t)|) (S)

>0
1_1
=ta ¢ {T(ngm,taf2,az,2’t)Hre,oo
1_1
Steome |f1,Ue,1»tHr4,171 Hfzwﬂ’t”?“é,?’l

ﬂ(L_L) v 11

- (A o) (B

t fl,o’g’l,t o1l t f2,o’g’2,t ro2,1
ﬁ(i_i)

(T sl ) (T
t fjva—l,j7t r[,jzl f‘770'£,j71 Tﬁ,jvl I

JEA JeN

where we made use of the observation that for j € A’ we have v; = 0 and hence,
for all t > 0,

”fjaffzmt” - Hfj,ag,]-,lH
In virtue of Hélder’s inequality with exponents 1 = > jen 3> the fact that LPi»%i —
J
LPi*° and applying Lemma 3.2.6 when j € A or Lemma 3.2.7 when j € A’, we get
that

'r'g’]',l T'g’j,l :

[EY9T (frioes s Formeni))*(2)]

s (11

JEA

(%)

% (L,L
Yo \"; Py .
t f]ﬁz,jat

Té,jﬂl

<H Hfj,az,j,l mj,1>
sz(%) JEN
f'S (H ||f.]HpJ75J> <H Hf.7||pj7oo> SJ Hf1‘|p1,s1 ||f2||p2,82

JEA JeA

and hence,

||T<f17f2) q,s 5 ||f1||p1781 ||f2||p2,52’

for all f; € S(Xj;). Finally, T extends uniquely to LP"*' x LP>*2 by its bi-
sublinearity and the density of the space S(X;) in L% (X;), and the theorem
follows. U

Remark 3.2.8. The general version of Theorem 3.2.1 is stated for multi-quasi-
linear operators, with parameters 0 < py ;, g, s; < 0o and the constant c is given
explicitly. If we don’t take into account the estimates of the constants, the proof
of the general theorem follows almost verbatim [11].
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Corollary 3.2.9. Suppose that in Theorem 3.2.1 we have all v; # 0 and

1
+ —

1
b1 pz.

|

Then, there exists a positive constant ¢ such that T satisfies the strong bound

1T Chrs P2l < el filly, 17211, -
for all f; € LPi(X;).

Proof. For j = 1,2, we take s; = p; and define s by % = pil + piz. By hypothesis,
q > s, so L9 — L9 and we have

IT(fr, f)llg S NT (s F)llg s -
The required boundedness holds by Theorem 3.2.1. [J

Remark 3.2.10. Let X; = X5 =Y = (0,00) and p; = ps = v = m, the Lebesgue
measure. Let

T(f.9)(z) = / " fe2)g(a)d.

Then, by Holder’s inequality,

T(f,9)(2) < =771 £1l, g, »

50 [[T(f, 9o < IS, gl for all 1 < p < oo. But if p < oo we never have the
strong type estimate, for if we choose g to be a positive function and consider the

linear operator

SE) = [ Heslgae = [ e (2) T

it is an integral operator with positive kernel homogeneous of degree —1 and hence
it will be bounded in L? if, and only if [ g(z)z™"/Pdx < oo [12]. Now, for the

function
1

9@) = T ([loga] £ 1)

we have that g € L” and [;° g(z)x~'/Pdz = co. This example shows that if in
Corollary 3.1.5 we remove the hypothesis 0 < 1/¢ < Z?Zl 1/pj —n+1, orif in
Theorem 3.2.1 we remove the hypothesis 79 # 0, then the interpolation results are
no longer true, in general.
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