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with a constant delay is posed and a test of that new method is explained with some comments
of the results.
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by his explanations in the master’s subject, Simulation Methods.



Contents

Nomenclature v

Introduction 1

Chapter I. Delay Differential Equations 3
1. Existence and uniqueness 5
2. Maximal solution 9
3. Continuation of solutions 10
4. Continuity and differentiability of solutions 10
5. The solution map 12
6. Linear systems 14
7. Delay Differential Equations with a constant delay 15

Chapter II. Stability and Floquet Theory 19
1. Stability of solutions 19
2. Floquet Theory for Delay Differential Equations 20

Chapter III. Automatic differentiation 25
1. Evaluation procedure 25
2. Univariate polynomial propagation 27
3. Univariate Taylor’s propagation 31
4. Gradient propagation 33
5. An application. Hermite’s interpolation 36
6. A computer-assisted proof 43

Chapter IV. Integrators of Delay Differential Equations with a constant delay 45
1. Euler’s method 45
2. Runge-Kutta family of methods 46
3. Runge-Kutta-Fehlberg family of methods 51
4. Taylor’s method 57
5. Mackey-Glass equation 63

Chapter V. Computation of periodic orbits 67
1. Ordinary periodic orbits 67
2. Delayed periodic orbits 68
3. Comments for an implementation 69

Conclusions 73

Appendix A. Ascoli-Arzela’s Theorem 75

Appendix B. Fixed point Theorems 77

Appendix C. Uniform contractions 79

Appendix D. Review of spectral theory 81

Bibliography 85

iii



iv CONTENTS

Index 87



Nomenclature

(an) Sequence 6
≈ Relation of “approximately equals to” 37
∃P (x); Q There exists x verifying a property P such that Q holds
∀P (x), Q For all x verifying a property P , then Q holds
d·e Ceiling map 58
← Relation of “Assignment to” 51
↔ Swap of pointers 61
IR Set of real intervals. 43
R(m,n) Vector space of matrices of m rows and n columns over R 51
B(X,Y ) Susbset of the bounded and continuous maps from X to Y 5
L(X,Y ) Set of linear and continuous mappings 9
1A Characteristic function on the set A. 42
→ Logic implication
C(X,Y ) Set of continuous maps from X to Y 3
A Closure of a set in a topology 5
� Partial restriction relation 5

ϕ[j] Normalized j-th derivative, i.e. ϕ(j)

j!

O Big “O”. Complexity notation
o Small “o” 31
R[x]≤n n-th degree truncated polynomial over R 27
X ⊂ Y X is contained or equal to Y , i.e. X is a subset of Y

v





Introduction

The current project deals with delays that may be arisen in the time of a dynamical system.
Firstly, we are going to focus on an abstract definition using Functional Analysis tools. That first
stage is contained in Chapters I and II. Essentially, time Delay Differential Equations (DDE)
are studied and some closed results to the Ordinary Differential Equation (ODE) Theory are
also proved. For instance, the existence and uniqueness of an Initial Value Problem (IVP) of a
DDE, its continuity and differentiability with respect to the initial condition, . . .
The time Delay occupies a place of central importance in all areas of science such as biological
sciences (e.g. population dynamics), celestial mechanics (e.g. relativistic N -body problem), . . .
and, in general, in any system which the delays (also called lags) have effects in the dynamical
system. It must be said that if the delays are small, their effect may be omitted whereas they
are not small, they may be had an important role in the dynamic of the system.
Specific Delay Differential Equations are stood out by to be a first approach of that generalization
of ODE Theory. They have a formal expression:

ẋ(t) = f(t, x(t), x(t− τ)), τ ≥ 0.

Thus Delay Differential Equations with a constant delay τ differ from Ordinary Differential
Equations in that the derivative at any time depends on the solution at prior times.

The second stage of the thesis is to study how a Delay Differential Equation with a constant
delay may be integrated it using similar methods that one can found in ODE Theory. For
instance, Runge-Kutta methods, Runge-Kutta-Fehlberg methods and Taylor method. These
have been developed in Chapter IV. A fast search of the state of art tells us that the former
family of methods are the most common implemented in available software like dde-biftool1,
dde solver2. However, almost every one is implemented in either Fortran or Matlab.
The integration methods implemented for us have been:

• The Delayed Runge-Kutta 4.
• The Delayed Runge-Kutta-Fehlberg 78.
• The Delayed Taylor with different control steps.

All of them have been written in C. The strategy followed for testing them has been to consider
tests with a known solution and then their errors have been plotted in different Figures.

The Chapter III contains modern results of Automatic Differentiation. They are able to
compute all the derivatives easily and quickly up to a prefixed order whatever initial derivable
function being admits a decomposition in elementary maps. It allows us to consider interpolation
of Taylor expansions. However, that kind of interpolation should be treated with caution because
error propagations may be arisen.

Finally, a new method periodic orbit computation of a Delay Differential Equation can be
found in the last Chapter V. The current methods used so as to compute periodic orbits of a
DDE are called collocation methods (see [14]) and they are inspired by collocation methods in
an ODE. Even so, the original method, which we pose, is also inspired by the computation of
periodic orbits of an Ordinary Differential Equation, i.e. the Poincaré map. Hence, the Delayed
Poincaré map is defined and the Newton’s method is used in order to find a fixed point of that
map. In particular, the Automatic Differentiation and the Delayed Runge-Kutta 4, developed

1See http://www.cs.kuleuven.ac.be/cwis/research/twr/research/software/delay/ddebiftool.shtml.
2See http://www.radford.edu/~thompson/ffddes/index.html.
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2 INTRODUCTION

respectively in the Chapters III and IV, has been used in an implementation written in C++.

According to the preceding explanation we shall assume that basic (and maybe some fancy)
C and C++ programming language is well-known by the reader. Other elementary results of
Functional Analysis like Banach spaces, Differentiability on Banach spaces, . . . shall also be
well-known by the reader. Although some Appendices have been written in order to do use them
in some theoretical parts of the Chapters I and II.

The last issue that should explicitly be commented is the references used in the development
of the current final project. In the theoretical part, Chapters I and II, the main references have
been [8] and [11]. [7] for Chapter III. The notes of the master’s subject “Simulation methods”
(2014-2015 course) and [1] for Chapter IV. And, finally, any reference has been used in the last
Chapter V.



CHAPTER I

Delay Differential Equations

In many applications, one assumes that the future state of a process does not depend on the
past states and is determined by the present. If one suppose that the system is governed by an
equation which involves the state and the rate of change of the state, it is usually to consider
either ordinary or partial differential equations. However, in other situations that assumptions
becomes apparent a first approximation to the true situation and that a more realistic model
would include some of the past states of the system. Also, in some cases where one does not
imagine a dependence on the past.
This chapter deals with the notion of Functional Differential Equations (FDE), more particularly,
the notion of a Delay Differential Equation (DDE). We introduce the basic results of that Theory
like existence, uniqueness, continuation, continuous dependence for retarded equations, . . .
The main references used in this Chapter have been [10], [9] and [11].

definition I.1. Let t0 ∈ R, a ≥ 0 and r ≥ 0. If

x ∈ C([t0 − r, t0 + a],Rn),

then for any t ∈ [t0, t0 + a], we define C := C([0, r],Rn) and xt ∈ C by

xt(τ) = x(t− τ).

Now, let Ω be a subset of R× C and f : Ω→ Rn a function. A Delay Differential Equation on
Ω is the relation

ẋ = f(t, xt) (1.1)

where ẋ only represents the right-hand derivative of x.

Remark I.2. One can also consider the m-dimensional case putting Ω ⊂ R× Cm. Then

ẋ = f(t, xt(τ1), . . . , xt(τm)).

For simplicity on the notations, we shall use m = 1.

definition I.3. A map x is a solution of (1.1) on [t0−r, t0 +a) when there are t0 ∈ R and a > 0
such that

i. x ∈ C([t0 − r, t0 + a),Rn).
ii. (t, xt) ∈ Ω.

iii. For any t ∈ [t0, t0 + a),

ẋ(t) = f(t, xt).

definition I.4. If t0 ∈ R and u ∈ C, then x(t0, u) is a solution of (1.1) with initial condition u
at t0 when there is a > 0 such that

i. x(t0, u) is a solution of (1.1) on [t0 − r, t0 + a).
ii. xt0(t0, u) ≡ u.

Sometimes, one simply says that x(t0, u) is a solution through (t0, u).

As in the ODE case, we have in DDE an integral equation:

3
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lemma I.5. Let (t0, u) ∈ Ω ⊂ R× C and f : Ω→ Rn continuous. Finding a solution of{
ẋ = f(t, xt)

xt0 ≡ u.
is equivalent to solving the integral equation

x(t) = u(0) +

∫ t

t0

f(s, xs) ds, t ≥ t0

xt0 ≡ u.

Proof. Let us prove the two implications.

⇒) Let x(t0, u) be a solution of the initial value problem, that is,
∂x(t0, u)

∂t
(t) = f(t, xt(t0, u))

xt0(t0, u) ≡ u.
Then by the Fundamental Theorem of calculus,

x(t0, u)(t)− u(0) = x(t0, u)(t)− xt0(t0, u)(0) = x(t0, u)(t)− x(t0, u)(t0)

=

∫ t

t0

x′(t0, u)(s) ds =

∫ t

t0

f(s, xs(t0, u)) ds.

⇐) Again, by the Fundamental Theorem of calculus,

x′(t) =
d

dt

(
u(0) +

∫ t

t0

f(s, xs) ds

)
= f(t, xt(t0, u)). �

Let us show that any Initial Value Problem can be modified so that the initial time is t0.

notation. Given (t0, u) ∈ R× C, let ũ ∈ C([t0 − r,+∞),Rn) be defined by

ũt0 ≡ u
ũ(t0 + t) = u(0) ∀ t ≥ 0.

lemma I.6. Let (t0, u) ∈ Ω ⊂ R× C and f : Ω→ Rn be continuous.{
ẋ = f(t, xt)

xt0 ≡ u.
and

{
ẏ = f(t0 + t, ũt0+t + yt)

y0 ≡ 0.

have the same solutions. Equivalently,

x(t) = u(0) +

∫ t

t0

f(s, xs) ds, t ≥ t0 y(t) =

∫ t

0
f(t0 + s, ũt0+s + ys) ds, t ≥ 0

xt0 ≡ u y0 ≡ 0.

are equivalent.

Proof. By Lemma I.5, if x(t) is a solution for the initial conditions (t0, u), then

x(t) = u(0) +

∫ t

t0

f(s, xs) ds, t ≥ t0

xt0 ≡ u.
Let us consider the change y(t) = x(t0 + t)− ũ(t0 + t) for t ≥ −r.
If t ≥ 0, then

x(t0 + t)− ũ(t0 + t) = x(t0 + t)− u(0) =

∫ t0+t

t0

f(s, xs) ds =

∫ t

0
f(t0 + s, xt0+s) ds
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If −r ≤ t ≤ 0, then

y0(−t) = y(t) = x(t0 + t)− ũ(t0 + t) = xt0(−t)− ũt0(−t) = u(−t)− u(−t) = 0.

Therefore, y(t) solves the integral equation

y(t) =

∫ t

0
f(t0 + s, ũt0+s + ys) ds ∀ t ≥ 0,

y0 ≡ 0.

By Lemma I.5, the result follows. �

1. Existence and uniqueness

As happens in Ordinary Differential Equation, there are Theorems for the uniqueness and
existence of an Initial Value Problem of a Delay Differential Equation. In fact, if in the Defini-
tion I.1 the r = 0, a Delay Differential Equation is exactly an Ordinary Differential Equation.

lemma I.7. If x ∈ C([t0 − r, t0 + a],Rn), then xt is a continuous map of t for t ∈ [t0, t0 + a].

Proof. Since x is continuous, it is uniformly continuous on I = [t0 − r, t0 + a], so

∀ ε > 0, ∃ δ > 0; ∀ t, s ∈ I, |t− s| < δ ⇒ |x(t)− x(s)| < ε.

For t ∈ [t0, t0 + a] and |t− s| < δ,

|xt(τ)− xs(τ)| = |x(t− τ)− x(s− τ)| < ε.

for all τ ∈ [0, r]. �

notation. Let a, b, r be positive real numbers,

Ia = [0, a],

Bb = {v ∈ C : |v| ≤ b},
A(a, b) = {v ∈ C([−r, a],Rn) : v0 ≡ 0, vt ∈ Bb, t ∈ Ia}.

lemma I.8. Let Ω ⊂ R× C be open, K ⊂ Ω compact and f : Ω→ Rn continuous. There are

i. V ⊂ Ω neighbourhood of K such that f � V ∈ B(V,Rn).
ii. U ⊂ B(V,Rn) neighbourhood of f and constants M,a, b > 0 such that

|g(t, v)| < M ∀ (t, v) ∈ V and ∀ g ∈ U. (1.2)

Moreover, for each (t0, u) ∈ K,

(t0 + t, ũt0+t + vt) ∈ V ∀ t ∈ Ia and ∀ v ∈ A(a, b).

Proof. Since f is continuous and K is compact, there is M > 0 such that

|f(t0, u)| < M ∀ (t0, u) ∈ K.
Again, by compactness, there are α, β and ε positives such that,

|f(t0 + t, u+ v)| < M − ε ∀ (t0, u) ∈ K and ∀ (t, v) ∈ Iα ×Bβ.

Taking V = {(t0 + t, u+ v) : (t0, u) ∈ K and (t, v) ∈ Iα ×Bβ}, then f ∈ B(V,Rn). And there is
a neighbourhood U ⊂ B(V,Rn) of f such that the condition (1.2) holds.
Now, since K is compact, we choose a < α and 0 < b < β such that

‖ũt0+t − u‖ < β − b ∀ (t0, u) ∈ K and ∀ t ∈ Ia.
So by the construction of V ,

‖vt + ũt0+t − u‖ < b+ β − b = β ∀ v ∈ A(a, b). �
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lemma I.9. Let M, b > 0 be reals. The set

W = {v ∈ C(I,Rn) : ‖v‖ ≤ b and |v(t)− v(s)| ≤M |t− s| for all t, s ∈ I}
is compact in C(I,Rn) whatever compact subset I of Rm.

Proof. We shall apply the Corollary A.6.

• Closed. Let (vk) ⊂W be a sequence such that vk → v. Then v ∈W . Indeed,

‖v‖ < ε+ b and |v(t)− v(s)| < 2ε+M |t− s|.
So ‖v‖ ≤ b and |v(t)− v(s)| ≤M |t− s| as ε→ 0.
• Uniformly bounded. Immediate.
• Equicontinuous. It is straightforward, we must show that

∀ ε > 0, ∃ δ > 0; ∀ v ∈W and ∀x, y ∈ I, |x− y| < δ ⇒ |v(x)− v(y)| < ε.

So given ε > 0, we take δ < ε
M .

Therefore W is compact. It only remains to show the convexity, that means (1−λ)u+λv ∈W .
Indeed,

|(1− λ)
(
u(t)− u(s)

)
+ λ
(
v(t)− v(s)

)
| ≤ (1− λ)|u(t)− u(s)|+ λ|v(t)− v(s)| ≤M |t− s|

and
|(1− λ)u+ λv| ≤ (1− λ)|u|+ λ|v| ≤ (1− λ)b+ λb = b. �

lemma I.10. Let Ω ⊂ R× C be open, K ⊂ Ω compact and f : Ω → Rn continuous. Given U, V
neighbourhoods and positive constants M,a, b obtained by Lemma I.8. The map

T : K × U ×A(a, b)→ C([−r, a],Rn)

defined by

T (t0, u, g, v)(t) =


0 t ∈ [−r, 0]

∫ t

0
g(t0 + s, ũt0+s + vs) ds t ∈ Ia.

is continuous and there is a compact set W in C([−r, a],Rn) such that

T : K × U ×A(a, b)→W.

Moreover, if Ma ≤ b, then
T : K × U ×A(a, b)→ A(a, b).

Proof. A map T : K × U × A(a, b) → C([−r, a],Rn) is well defined in the sense that
T (t0, u, g, v) ∈ C([−r, a],Rn). The condition (1.2) tells us that for each t, s ∈ Ia,

|T (t0, u, g, v)(t)− T (t0, u, g, v)(s)| ≤M |t− s|
|T (t0, u, g, v)(t)| ≤Ma.

Let us consider

W = {v ∈ C([−r, a],Rn) : |v(t)− v(s)| ≤M |t− s| and |v(t)| ≤Ma}.
By Lemma I.9, it is compact. Thus, T : K × U ×A(a, b)→W .
If Ma ≤ b, then W ⊂ A(a, b) and T : K×U ×A(a, b)→ A(a, b). Indeed, v ∈ A(a, b) if, and only
if, for each τ ∈ [0, r] and for each t ∈ [0, a],

v(τ) = 0 and |v(t− τ)| ≤ b.
That is, |v(t)| ≤ b with t ∈ [−r, a]. This condition holds if v ∈ K and Ma ≤ b.
Finally, we must show the continuity of T . Let us consider ((tk, uk, gk, vk))k a sequence on
K × U ×A(a, b) such that

(tk, uk, gk, vk)→ (t0, u, g, v) as k →∞.
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with (t0, u, g, v) ∈ K × U ×A(a, b). We know that

T (tk, uk, gk, vk) ∈W
and since W is compact, there is a convergent subsequence that we will designate with the same
index,

T (tk, uk, gk, vk)→ h as k →∞
now with h ∈W . Since

gk(tk + s, ũktk+s + vks )→ g(t0 + s, ũt0+s + vs) as k →∞
whenever t ∈ Ia. Moreover, all gk and g are uniformly bounded by Lemma I.8. Hence, by the
Dominated Convergence Theorem, for all t ∈ Ia,

h(t) = lim
k→∞

∫ t

0
gk(tk + s, ũktk+s + vks ) ds =

∫ t

0
g(t0 + s, ũt0+s + vs) ds = T (t0, u, g, v)(t).

We have proved that any convergent subsequence is not dependent of the subsequence. This
implies the convergence of the sequence. Therefore T is continuous. �

lemma I.11. A(a, b) is closed, bounded and convex set on C([−r, a],Rn).

Proof.

• Closed. Let (vk) ⊂ A(a, b) be a sequence so that vk → v as k → ∞. We must show
u ∈ A(a, b). Indeed

|v(τ)| ≤ |v(τ)− vk(τ)|+ |vk(τ)| < ε

for all 0 ≤ τ ≤ r and for all ε > 0. So v0 = 0.

|v(t− τ)| ≤ |v(t− τ)− vk(t− τ)|+ |vk(t− τ)| < ε+ b

for all 0 ≤ t ≤ a, for all 0 ≤ τ ≤ r and for all ε > 0. So vt ∈ Bb for any t ∈ Ia.
• Uniformly bounded. If v ∈ A(a, b),

sup
0≤τ≤r

|v(t− τ)| ≤ b ∀ 0 ≤ t ≤ a.

Therefore, A(a, b) is uniformly bounded.
• Convex. Clear. �

theorem I.12. Let Ω ⊂ R × C be open set and f : Ω → Rn continuous. If K ⊂ Ω is compact,
there are

i. V ⊂ Ω neighbourhood of K such that f � V ∈ B(V,Rn).
ii. U ⊂ B(V,Rn) neighbourhood of f � V .
iii. a positive real number.

such that for any (t0, u) ∈ K and any g ∈ U , there is a solution x(t; t0, u, g) of{
ẋ = g(t, xt)

xt0 ≡ u
that exists on [t0 − r, t0 + a].
Moreover, if g(t, v) is Lipschitz in v in each compact subset in Ω, the solution is unique.

Proof. Fixed g ∈ U , let us take W = {(t0, u)}. Applying Lemma I.10, T (t0, u, g, ·) has
a fixed point in the closed bounded and convex set A(a, b) by Corollary B.3. By Lemmas I.5
and I.6, we have a solution that exists on [t0 − r, t0 + a].
Now, if x and y are solutions on [t0 − r, t0 + a], by Lemma I.5,

xt0 − yt0 ≡ 0

x(t)− y(t) =

∫ t

t0

(
g(s, xs)− g(s, ys)

)
ds t ≥ t0.
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If L is a Lipschitz constant of g(t, v) in any compact subset in Ω containing the trajectories
{(t, xt)} and {(t, yt)} with t ∈ Ia, then we can choose α so that 0 < (α − t0)L < 1. Thus, for
each t ∈ Iα,

|x(t)− y(t)| ≤ L
∫ t

t0

‖xs − ys‖ ds ≤ (α− t0)L sup
t0≤s≤t

|xs − ys|.

Let us observe that

sup
t0≤s≤t

|xs − ys| = sup
t0≤s≤t

sup
0≤τ≤r

|x(s− τ)− y(s− τ)|

≤ sup
t0−r≤s≤t

|x(s)− y(s)| ≤ sup
t0−r≤s≤α

|x(s)− y(s)|.

Therefore we have proved that the mapping

C([t0 − r, t0 + a],Rn) −→ C([t0 − r, t0 + a],Rn)

x(t) 7−→


u(t0 − t) t ∈ [t0 − r, t0]

u(0) +

∫ t

t0

g(s, xs) ds t ∈ [t0, t0 + a].

is a contraction for t ∈ Iα. So x(t) = y(t). �

In Rn, we already know that a map is locally Lipschitz if, and only if, it is Lipschitz in each
compact subset. However, it could be not true in a Banach space, basically, it is because a
closed ball is not always a compact set. Therefore, we are going to prove one of the implication
in Proposition I.13.
As a consequence, if a mapping is locally Lipschitz, it is Lipschitz for each compact subset. On
the other hand, in Rn we already know that if a mapping is C1 in an open set Ω, it is locally
Lipschitz in Ω. However, we shall see that a C1 mappping in an open subset of a real Banach
space is Lipschitz on each compact subset of that open.
Summarizing, given an initial value problem of ẋ = f(t, xt). If f is C1 with respect to the second
variable, a solution exists and it is unique.

proposition I.13. Let f : X → Y be a locally Lipschitz mapping between real Banach spaces.

If X is compact, then f is Lipschitz.

Proof. There are open sets U1, . . . , Un in X such that

X = U1 ∪ · · · ∪ Un
and f � Ui is Lipschitz with value Li. Let δ > 0 be a Lebesgue number associated to this open
covering of X. Therefore, for all x, y ∈ X,

‖x− y‖ < δ ⇒ x, y ∈ Ui
for some i. Let us define

M = sup
x∈X
‖f(x)‖ and L = max

{
L1, . . . , Ln,

2M

δ

}
.

For each x, y ∈ X, there are two possible cases:

i. If ‖x− y‖ < δ, then ‖f(x)− f(y)‖ ≤ Li‖x− y‖ ≤ L‖x− y‖.
ii. If ‖x− y‖ ≥ δ, then ‖f(x)− f(y)‖ ≤ 2M =

2Mδ

δ
≤ L‖x− y‖.

Thus, f is Lipschitz on X. �

proposition I.14. Let Ω be an open set of a real Banach space.

If f : Ω→ Rn is C1, it is Lipschitz on each compact subset in Ω.
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Proof. Let K ⊂ Ω be a compact. Since f is C1 in Ω, then

Df : Ω→ L(Ω,Rn), x 7→ Df(x)

is continuous. So Df � K has a bounded called L. By Proposition I.13, if f � K is locally
Lipschitz, it will be Lipschitz.
Let x0 ∈ K and B(x0; ε) ⊂ K. Since each closed ball in a normed space is convex, given

x, y ∈ B(x0; ε), we define u = x− y and

g : [0, 1]→ Rn, t 7→ f(x+ tu).

Clearly g is continuous and by the chain rule g′(t) = Df(x + tu)u. Thus, by the Fundamental
Theorem of Calculus,

f(x)− f(y) = g(1)− g(0) =

∫ 1

0
g′(t) dt =

∫ 1

0
Df(x+ tu)u dt

Therefore, |f(x)− f(y)| ≤ L‖x− y‖. �

theorem I.15 (Globally uniqueness). Let Ω ⊂ R×C be open, (t0, u) ∈ Ω, f : Ω→ Rn continuous
and Lipschitz in each compact subset with respect to the second variable. If x : [t0 − r, a] → Rn
and y : [t0 − r, b]→ Rn are solutions of {

ẋ = f(t, xt)

xt0 ≡ u.
(1.3)

Then xt ≡ yt for any t ∈ [t0, c] with c = min{a, b}.

Proof. Suppose that there is t0 < t1 so that xt1 6≡ yt1 . Let us define

t∗ = inf{t ∈ [t0, c] : xt 6≡ yt}.
Thus, xt ≡ yt for any t ∈ [t0, t∗]. Let v ≡ xt∗ ≡ yt∗ . By Theorem I.12 at (t∗, v) ∈ Ω, there is
z : I∗ → Rn solution of the initial value problem (1.3). Contradiction with the election of t∗. �

2. Maximal solution

definition I.16. Let Ω ⊂ R×C be open, f : Ω→ Rn continuous and x solution on [t0− r, a) of{
ẋ = f(t, xt)

xt0 ≡ u.
x is a maximal solution when for any other solution y on [t0 − r, b) with a < b,

y � [t0, a) = x⇒ a = b.

theorem I.17 (Existence and uniqueness of maximal solutions). Let Ω ⊂ R×C be open set and
f : Ω→ Rn continuous and Lipschitz in each compact subset with respect to the second variable.
If (t0, u) ∈ Ω, there is maximal solution x : I(t0, u)→ Rn of{

ẋ = f(t, xt)

xt0 ≡ u.
(1.4)

Moreover, I(t0, u) = [t0 − r, a) with t0 < a.

Proof. Let S(t0, u) = {Iy y→ Rn : y is solution of (1.4)}. Let us define

I(t0, u) =
⋃

y∈S(t0,u)
Iy.

and x : I(t0, u)→ Rn defined by

x(t) = y(t) if t ∈ Iy.
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By Theorem I.15, x is well-defined because it does not depend on the solution y chosen.
Clearly, x is maximal.
If I(t0, u) = [t0 − r, a], then (a, x(a)) ∈ Ω and there is a solution with initial condition (a, x(a))
which is an left extension of x. Contradiction with the maximality of x. �

3. Continuation of solutions

theorem I.18. Let Ω ⊂ R × C be open set and f : Ω → Rn continuous. If x is a maximal
solution on [t0 − r, a) of ẋ = f(t, xt), then

∀K ⊂ Ω compact, ∃ tK ∈ [t0 − r, a); ∀ t ∈ [tK , a), (t, xt) /∈ K.

Proof. First of all, if a = +∞, the result is trivially true.
If r = 0, it corresponds to the case of an Ordinary Differential Equation.
If the conclusion is not true for r > 0, there are a sequence tk → a− as k →∞ and v ∈ C such
that

(tk, xtk)→ (a, v) as k →∞
with (tk, xtk) ∈W . Thus, for any ε > 0,

sup
τ∈[ε,r]

|xtk(τ)− v(τ)| → 0 as k →∞.

So x(a− τ) = v(τ) with 0 < τ ≤ r. Hence, x can be extended continuously as follows:

x̂(t) =

{
x(t) t ∈ [t0 − r, a)

v(0) t = a.

Since now (a, x̂a) ∈ Ω, one can find a solutions trough (a, x̂a) to the right of a. However, it is a
contraction with the maximality assumption of x. �

theorem I.19. Let Ω ⊂ R× C open and f : Ω→ Rn continuous verifying:

K ⊂ Ω closed and bounded set implies f(K) is bounded set.

If x is a maximal solution on [t0 − r, a) of ẋ = f(t, xt), then

∀K ⊂ Ω closed and bounded, ∃ tK ∈ [t0 − r, a); ∀ t ∈ [tK , a), (t, xt) /∈ K.

Proof. First of all, if a = +∞, the result is true.
If r = 0, it corresponds to the case of an Ordinary Differential Equation.
If r > 0 and the conclusion is not true, there is a sequence (tk) ⊂ R such that

tk → a− as k →∞
and (tk, xtk) ∈ K. Since r > 0, then {x(t) : t ∈ [t0− r, b)} is bounded. Therefore, there is M > 0
such that

|f(t, u)| ≤M ∀ (t, u) ∈ {(t, xt) : t ∈ [t0, a)}.
By Lemma I.5,

|x(t+ b)− x(t)| ≤
∫ t+b

t
|f(s, xs)| ds ≤Mb

for any t with t+ b < a. Hence, x is uniformly continuous on [t0 − r, a). �

4. Continuity and differentiability of solutions

We want to obtain results about the continuity and differentiability of a solution of an initial
value problem of a Delay Differential Equation. The first Theorem I.20 is a little bit technical
and we will skip the proof.
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theorem I.20 (Continuity of initial conditions). Let Ω ⊂ R × C open set and f : Ω → Rn
continuous. The solution x(t0, u, f) of {

ẋ = f(t, xt)

xt0 ≡ u
is continuous with respect to t0, u and f .

theorem I.21 (Differentiability of initial conditions). Let Ω ⊂ R×C open set and f ∈ Cp(Ω,Rn)
with p ≥ 1. The solution x(t0, u, f) of {

ẋ = f(t, xt)

xt0 ≡ u
(1.5)

is unique and Cp with respect to u, f for t in any compact set in the domain of x(t0, u, f).

Proof. By Theorem I.12 and Proposition I.14, the solution of (1.5) is unique. Let the
maximal interval of existence of x(t0, u, f) be [t0 − r, t0 + β).
Firstly, we must show that x(t0, u, f) is C1 with respect to u on [t0 − r, t0 + α], of course, with
α < β. There is an open neighbourhood U of u such that x(t0, v, f) is defined for any v ∈ U on
[t0 − r, t0 + α]. If

K = {(t, xt) : t ∈ [t0, t0 + β)},
it is compact. By Lemma I.8, we obtain M,a, b, U and V . We choose a so that

Ma ≤ b and 0 < La < 1. (1.6)

with L a bound of the derivative of f with respect to u on Ω.
Let us consider the solution change used in Lemma I.6, that is

y(t) = x(t0 + t)− ũ(t0 + t) t ∈ Ia
and the map T (t0, u, f) defined in Lemma I.10. By Lemma I.6, y(t) is a fixed point of T (t0, u, f).
The restriction (1.6) on a and b implies that T (t0, u, f) takes A(a, b) into itself for each a, b and
it is a contraction.
Moreover, the contraction constant does not depend on (t0, u, f) ∈ V × U . Since T (t0, u, f) is
Cp in Ω, by Theorem C.3, the fixed point y(t0, u, f) is Cp in Ω.
A very similar proof shows that x(t0, u, f)(t) is C1 in f for t ∈ [t0, t0 + a]. �

4.1. Linear variational equations. According to Theorem I.21, given an initial value
problem as (1.5) which is Cp and it has solution x(t0, u, f), the linear variational equations are:

Variational equation for t0: For any t ≥ t0, Dt0x(t0, u, f) : R → Rn is linear and con-
tinuous and for any t ∈ R,Dt0x(t0, u, f)t verifies{

ẏ = D1f(t, xt(t0, u, f)) +D2f(t, xt(t0, u, f))yt

yt0 ≡ 0.

Variational equation for u: For any t ≥ t0, Dux(t0, u, f)(t) : C → Rn is linear and
continuous and for any v ∈ C, Dux(t0, u, f)v(t) verifies{

ẏ = D2f(t, xt(t0, u, f))yt

yt0 ≡ id.

Variational equation for f : For any t ≥ t0, Dfx(t0, u, f)(t) : Cp(Ω,Rn) → Rn is linear
and continuous and for any g ∈ Cp(Ω,Rn), Dfx(t0, u, f)g(t) verifies{

ż = D2f(t, xt(t0, u, f))zt + g(t, xt(t0, u, f))

zt0 ≡ 0.
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5. The solution map

definition I.22. Let Ω ⊂ R× C be open set and f : Ω→ Rn be continuous. The solution map
is defined by

T (t, t0) : C −→ C

u 7−→ xt(t0, u)

where xt(t0, u) is the solution of the Delay Differential Equation with a unique solution{
ẋ = f(t, xt)

xt0 ≡ u.

By Theorem I.20, T is continuous. If now, we consider that the Delay Differential Equation
is autonomous, i.e. ẋ = f(xt), the parameter t0 has not any role, so we can assume t0 = 0 and
consider T (t) instead of T (t, t0). Then

proposition I.23. Let Ω ⊂ R × C be an open set and f : Ω → Rn be a continuous map. The
solution map

T (t) : C −→ C

u 7−→ xt(u),

verifies

i. T (0) = id.
ii. T (t) ◦ T (s) = T (t+ s)

iii. T (t)(u) is continuous in (t, u).

where it is understood that t and s are allowed to range over an interval may depend on u.

Proof.

i. T (0)(u) = x0(u) = u = id(u) for any u.
ii. It follows by the uniqueness assumption of solutions.
iii. By Theorem I.20. �

For Ordinary Differential Equation, the solution map defines an homeomorphism. However,
for Delay Differential Equation may not be true. Let us show a short collection of properties
of the solution map T (t, t0) valid for any equation whose unique solution for any given initial
condition.

Firstly, let us start with general facts:

definition I.24.

• A bounded set in a metric space is a subset contained in a ball.
• A mapping between metric spaces is bounded when it takes closed bounded sets into

bounded sets.
• A mapping from a topological space to a metric space is locally bounded when it takes

some neighbourhood of each point into a bounded set.
• A mapping from a metric space to a topological space is compact when it takes bounded

sets to a relatively compact sets.
• A mapping from a metric space to a topological space is locally compact when it takes

some bounded neighbourhood of each point into a relatively compact set.

Remark I.25. A locally bounded map may not be locally compact. Indeed, the identity map
id : R→ R is locally bounded from R with the euclidian topology to R with the discrete topology.
But it is not locally compact because id(B(0; 2)) = R is not relatively compact.

lemma I.26. Any continuous map f from a topological space to a metric space is locally bounded.

Proof. By continuity, f−1(B(f(x), 1)) is open and f restricted in that open is bounded. �
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corollary I.27. T (t, t0) is locally bounded for t ≥ t0.

Proof. Since T (t, t0)u is continuous in (t, t0, u), it follows that for any t ≥ t0 and u ∈ C for
which (t0, u) ∈ Ω and T (t, t0)u is defined, there is a neighbourhood U of u in C which depends
on (t, t0, u) such that T (t, t0)(U) is bounded. �

lemma I.28. T (t, t0) is locally compact for t ≥ t0 + r.

Proof. By continuity of f and T (s, t0)u, for any t ≥ t0, there is a neighbourhood U(t, t0, u)
of u and a constant M such that for any t0 ≤ s ≤ t,

‖T (s, t0)
(
U(t, t0, u)

)
‖ ≤M and |f

(
s, T (s, t0)(U(t, t0, u)

)
| ≤M.

That means |ẋ(t0, U(t, t0, u))(s)| ≤M for any t0 ≤ s ≤ t. Thus, the family of mappings

{xt(t0, v) : v ∈ U(t, t0, v)}
is precompact for t ≥ t0 + r and by Lemma A.2, it is relatively compact. �

Now, we shall show that with some extra conditions, the solution map will be compact.

definition I.29.

• A map T (λ) : X → Y between metric spaces depending on a parameter in a metric
space Λ is said to be bounded uniformly on compact sets of Λ when

∀Λ0 ⊂ Λ compact, ∀U ⊂ X bounded, ∃V ⊂ Y bounded; ∀λ ∈ Λ0, T (λ)(U) ⊂ V.
• A map T (t, t0) : X → Y from a topological space to a metric spaces with t ≥ t0 is said

to be conditionally compact when T (t, t0)(u) is continuous in (t, t0, u) and

∀V ⊂ Y bounded, ∃K ⊂ Y compact; ∀ t0 ≤ s ≤ t, T (s, t0)(u) ∈ V ⇒ T (t, t0)(u) ∈ K.

lemma I.30. Let T (t, t0) : X → Y be a map between metric spaces defined for t ≥ t0 and bounded
uniformly on compact sets of [t0,+∞).

If T (t, t0) is conditionally compact, it is compact for t ≥ t0.

Proof. Given U ⊂ X bounded and t ≥ t0. There is V ⊂ Y bounded such that

T (s, t0)(U) ⊂ V with t ≥ s ≥ t0.

There is also K ⊂ Y compact such that T (t, t0)(U) ⊂ K. So T (t, t0)(U) is compact. �

theorem I.31 (Solution map representation). Let f : R×C → Rn be a bounded continuous map.
The solution map can be written as

T (t, t0) = Φ(t− t0) + Ψ(t, t0), t ≥ t0
where Φ(t− t0) : C → C is defined by

u(τ) 7→
{
u(t− τ)− u(0) if t− τ < 0

0 if t− τ ≥ 0

and Ψ(t, t0) : C → C is conditionally compact. Thus, T (t, t0) is a contraction for t > t0 and is
conditionally compact for t ≥ t0 + r.

Proof. The map Φ(t−t0) is linear and continuous for t ≥ t0. Then we define the continuous
map Ψ(t, t0) = T (t, t0)− Φ(t− t0). Concretely,

Ψ(t, t0)(u)(τ) =


u(0) if t− τ < t0

u(0) +

∫ t+t0

t0

f
(
s, T (s, t0)(u)

)
ds if t− τ ≥ t0.
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Since Φ(t − t0) is bounded and linear, given U ⊂ C bounded set, there is V ⊂ C bounded set
such that

T (s, t0)(u) ∈ V t ≥ s ≥ t0
provided that Ψ(s, t0)(u) ∈ U for t ≥ s ≥ t0. Since f is bounded and continuous, there is M
depending only on U, t0 and t such that for t ≥ s ≥ t0

Ψ(t, t0)(u) ∈ U ⇒ |f
(
s, T (s, t0)(u)

)
| ≤M.

Therefore, ∫ b

a
|f
(
s, T (s, t0)(u)

)
| ds ≤M(b− a) t ≥ b ≥ a ≥ t0.

By Lemma I.9, we define the compact

K = {v ∈ C : v ∈ U and |v(τ)− v(σ)| ≤M |τ − σ| with τ, σ ∈ [0, r]}.
Then Ψ(t, t0)(u) ∈ K because Ψ(t, t0)(u) = u(0) for t − τ ≤ t0. Finally, we conclude the proof
observing that Φ(t− t0) = 0 for t− t0 ≥ r. �

The next Corollary is straightforward using first Theorem I.31 and then Lemma I.30.

corollary I.32. If f : R × C → Rn is a bounded continuous map and the solution map
T (t, t0) : C → C with t ≥ t0 is a map bounded uniformly on compact sets of [t0,+∞), then

i. The map Ψ(t, t0) of Theorem I.31 is compact for t ≥ t0.
ii. T (t, t0) is compact for t ≥ t0 + r.

6. Linear systems

A special case of Delay Differential Equation is the linear Delay Differential Equation. That
is given (t0, u) ∈ R× C, {

ẋ(t) = A(t)xt + h(t) t ≥ t0
xt0 ≡ u.

(1.7)

where h is continuous and A is linear and continuous.

theorem I.33. There exists a unique solution x(t0, u) of (1.7) defined on [t0 − r,+∞).

Proof. Since A(t) is linear and continuous, it is Lipschitz. So we have a locally unique
solution by Theorem I.12. Now, let x be a maximal solution of (1.7) on [t0−r,+∞). Integrating
the system,

|x(t)| ≤ |u(0)|+
∫ t

t0

|A(s)xs| ds+

∫ t

t0

|h(s)| ds

for any t ∈ [t0, a). Thus

‖xt‖ ≤ ‖u‖+

∫ t

t0

‖A(s)‖‖xs‖ ds+

∫ t

t0

|h(s)| ds.

By Gronwall’s Lemma,

‖xt‖ ≤
(
‖u‖+

∫ t

t0

|h(s)| ds
)

exp

∫ t

t0

‖A(s)‖ ds

for any t ∈ [t0, a). The right hand side in the above inequality is locally bounded for t ∈ [t0,+∞).
Hence, we obtain

sup
t0≤t<a

‖xt‖ = M < +∞.

Moreover, x is uniformly continuous on [t0, a) by the inequality

|x(t)− x(t′)| ≤M
∫ t′

t
‖A(s)‖ ds+

∫ t′

t
|h(s)| ds t0 ≤ t < t′ < a.

So, {(t, xt) : t0 ≤ t < a} belongs to a compact set in R×C. This contradicts Theorem I.18. �



7. DELAY DIFFERENTIAL EQUATIONS WITH A CONSTANT DELAY 15

corollary I.34. Let x(t0, u, h) be the solution of (1.7). Then

x(t0, u, h) = x(t0, u, 0) + x(t0, 0, h)

where

x(t0, ·, 0) : C −→ C([t0 − r,+∞),Rn) x(t0, 0, ·) : C([0, t],Rn) −→ C([t0 − r,+∞),Rn)

u 7−→ x(t0, u, 0) h 7−→ x(t0, 0, h)

are linear and continuous maps. Moreover, for t ≥ t0,

|x(t0, u, 0)(t)| ≤ ‖u‖ exp

∫ t

t0

‖A(s)‖ ds

and

|x(t0, 0, h)(t)| ≤
∫ t

t0

|h(s)| ds exp

∫ t

t0

‖A(s)‖ ds.

Proof. x(t0, u, 0) and x(t0, 0, h) are solution, respectively, of{
ẋ(t) = A(t)xt t ≥ t0
xt0 ≡ u

and

{
ẋ(t) = A(t)xt + h(t) t ≥ t0
xt0 ≡ 0.

So by linearity of A(t),

∂
(
x(t0, u, 0) + x(t0, u, 0)

)
∂t

(t) =
∂x(t0, u, 0)

∂t
(t) +

∂x(t0, u, 0)

∂t
(t)

= A(t)xt(t0, u, 0) +A(t)xt(t0, u, 0) + h(t)

= A(t)
(
xt(t0, u, 0) + xt(t0, u, 0)

)
+ h(t),

and xt0(t0, u, 0) + xt0(t0, 0, h) ≡ u. By uniqueness, x(t0, u, h) = x(t0, u, 0) + x(t0, 0, h). The
linearity of u(t0, ·, 0) and x(t0, 0, ·) follows again by uniqueness of the solutions. The continuity
of them follows from Theorem I.20 and the inequalities from Gronwall’s Lemma. �

7. Delay Differential Equations with a constant delay

In the previous Sections we have considered the Banach space C = C([0, r],Rn) with uniform
topology, Ω ⊂ R× C2 an open subset and f : Ω→ Rn a continuous map. Then an initial value
problem is {

ẋ(t) = f(t, xt(τ1), xt(τ2))

xt0 ≡ u
(1.8)

where xt ∈ C is defined by xt(τ) = x(t− τ).
Now, we want to focus on a particular case of (1.8), that is, a Delay Differential Equation with
a unique constant delay. In order to do so, let us take the next differential equation:

ẋ(t) = f
(
t, xt(τ1(t)), xt(τ2(t))

)
τ̇1 = 0

τ̇2 = 0

τ1(0) = 0

τ2(0) = 1.

It becomes to
ẋ(t) = f(t, x(t), x(t− 1)). (1.9)

The differential equation (1.9) can be viewed as an Ordinary Differential Equation (ODE) if it
is expressed by ẋ(t) = f(t, x(t), ϕ(t)). Thus, the results proved in ODE’s Theory are straight-
forward applied at each interval [t0 + k − 1, t0 + k] with k ≥ 0 an integer. In particular, if f is
of class Cp, then the solution is of class Cp at each (t0 + k − 1, t0 + k). Moreover, at each point
t = t0 + k we obtain an extra order of differentiability until Cp.
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example I.35. One of the easiest example is{
ẋ(t) = x(t− 1)

x0 ≡ 1.

That initial value problem can be computed explicitly in each interval [k − 1, k] with k ≥ 0 an
integer. Indeed,

t ∈ [−1, 0], x(t) = 1

t ∈ [0, 1], x(t) = t+ 1

t ∈ [1, 2], x(t) =
t2

2
+ t+

1

2

t ∈ [2, 3], x(t) =
t3

6
+
t2

2
+
t

2
+

1

6

t ∈ [3, 4], x(t) =
t4

24
+
t3

6
+
t2

4
+
t

6
+

1

24
...

In Figure I.1, ẋ(t) = x(t− 1) and ẋ(t) = x(t) are compared.
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Figure I.1. Plot of a Delay Differential Equation and its corresponding Ordinary Differential
Equation.

7.1. Linear differential equation with a constant delay. The Equation (1.7) with a
constant delay becomes to

ẋ(t) = Ax(t) +Bx(t− 1) + h(t). (1.10)

where A, B and τ ≥ 0 are constants and h is a given continuous map. As an immediate
consequence of the Theorem I.33 is:

theorem I.36. If u is a given continuous function on [0, 1], there is a unique map x(u, h)
defined on [−1,+∞) that coincides with u on [−1, 0] and satisfies the Equation (1.10) for t ≥ 0.
Moreover, x(u, h)(t) is C1 for all t > 0 and it is C1 at t = 0 if, and only if, u(τ) has a derivative
at τ = 0 with

u̇(0) = Au(0) +Bu(−1) + h(0).

If h has derivatives of all orders, then x(u, h) becomes smoother with increasing values of t.
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Proof. If x is a solution of (1.10) which coincides with u on [−1, 0], then the ordinary-
variation-of-constants formula implies that x must satisfy

x(t) = u(t), t ∈ [−1, 0],

x(t) = eAtu(0) +

∫ t

0
eA(t−s)

(
Bx(s− 1) + h(s)

)
ds, t ≥ 0.

(1.11)

Also, if x satisfies (1.11), it must satisfy (1.10). The uniqueness part follows the fact that it is
unique in each interval [k, k + 1] for any integer k ≥ 0.
The remainder statements follow from Theorem I.21. �

7.2. Characteristic equation of a homogeneous linear differential equation with
a constant delay. Let us consider the linear Delay Differential Equation with a fixed delay
τ ≥ 0,

ẋ(t) = Ax(t) +Bx(t− τ) (1.12)

It has a non-trivial solution eλtc if, and only if,

λ−A−Be−λτ = 0.

The map h(λ) = λ−A−Be−λτ is called characteristic map of (1.12). For any solution λ,

|λ−A| = |B|e−τ Reλ.

So if |λ| → +∞, then e−τ Reλ → ∞. Besides, h is an entire map, so there is a real number α
such that there can be only a finite number of zeros of h(λ) in any compact set. Thus, there
are only a finite number in any vertical strip in the complex plane. All that can be summarize
in the following Lemma I.37.

lemma I.37. Let ẋ(t) = Ax(t) + Bx(t − τ) be a linear Delay Differential Equation. It has a
non-trivial solution eλtc if, and only if,

λ−A−Be−λτ = 0. (1.13)

If there is a sequence (λj) of solutions such that |λj | → +∞ as j →∞, then

Reλj → −∞ as j →∞.
Therefore, there is a real number α such that all the solutions of (1.13) verify Reλ < α and
there are only a finite number of solutions in any vertical strip in the complex plane.

theorem I.38. Let ẋ(t) = Ax(t) + Bx(t− τ) be a linear Delay Differential Equation. Let λ be
a root of multiplicity m of the characteristic equation

h(λ) = λ−A−Be−λτ = 0.

Then tkeλt with k = 0, . . . ,m−1 is a solution of the differential equation. Since it is linear, any
finite sum of such solution is also a solution and infinite sums are also solutions under suitable
conditions to ensure convergence.

Proof. If x(t) = tkeλt, then

e−λt
(
ẋ(t)−Ax(t)−Bx(t− τ)

)
= tkλ+ ktk−1 −Atk −B(t− τ)ke−λτ

= tkλ+ ktk−1 −Atk −Be−λτ
k∑
j=0

(
k

j

)
tk−jτ j

=
k∑
j=0

(
k

j

)
tk−jh(j)(λ)

If now λ is a zero of h(λ) of multiplicity m, then h(j)(λ) = 0 for j = 0, . . . ,m − 1. Therefore,
x(t) = tkeλt is a solution for k = 0, . . . ,m− 1. �





CHAPTER II

Stability and Floquet Theory

1. Stability of solutions

definition II.1. Let Ω ⊂ R× C be open, f : Ω→ Rn continuous and x = 0 so that

f(t, 0) = 0 ∀ t.
Let us denote x(t0, u) solution of of the initial value problem of ẋ = f(t, xt). We say that:

• x = 0 is stable when

∀ t0, ∀ ε > 0, ∃ δ > 0; ∀ t ≥ t0, ‖u‖ < δ ⇒ ‖xt(t0, u)‖ < ε.

• x = 0 is uniformly stable when

∀ ε > 0, ∃ δ > 0; ∀ t0, ∀ t ≥ t0, ‖u‖ < δ ⇒ ‖xt(t0, u)‖ < ε.

• x = 0 is asymptotically stable when it is stable and

∀ t0, ∃ η > 0; ‖u‖ < δ ⇒ x(t0, u)(t) −−−−→
t→+∞

0.

• x = 0 is uniformly asymptotically stable when it is asymptotically stable and

∀ t0, ∃ δ; ∀ η > 0, ∃ t1; ∀ t ≥ t0 + t1, ‖u‖ ≤ δ ⇒ ‖xt(t0, u)‖ ≤ η.

Remark II.2. Stability notions has been explained in Definition II.1 for a solution x = 0.
The general case is also defined if we do the next comment: Given ẋ = f(t, xt), a solution x(t)
verifies one of the definitions in II.1 when the solution of y = 0 of the new equation

ẏ = f(t, yt + xt)− f(t, xt)

verifies the same condition.

proposition II.3. Let Ω ⊂ R× C be open, f : Ω→ Rn continuous and ω > 0 so that

f(t+ ω, v) = f(t, v) ∀ (t, v) ∈ Ω.

If ẋ = f(t, xt) has unique solutions, then the solution x = 0 is stable when it is uniformly stable.

Proof.

⇒) By periodicity, for any t ≥ t0, any integer k and any u ∈ C,

xt(t0, u) = xt+kω(t0 + kω, u).

Indeed, xt+kω(t0 + kω, u) verifies

∂x(t0 + kω, u)

∂t
(t+ kω) = f(t+ kω, xt+kω(t0 + kω, u))

= f(t, xt+kω(t0 + kω, u))

and xt0+ω ≡ u. By uniqueness of solutions, xt+t0(t0, u) = xt+t0+kω(t0 + kω, u). Thus,
it is enough to show that

∀ ε > 0, ∃ δ > 0; ∀ t0 ∈ [0, ω], ∀ t ≥ t0, ‖u‖ < δ ⇒ ‖xt(t0, u)‖ < ε.

For 0 ≤ t0 ≤ ω and t ≥ t0, xt+ω(t0, u) = xt+ω(ω, xω(t0, u))
⇐) Clear. �
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2. Floquet Theory for Delay Differential Equations

For a moment, let us recall the Floquet representation of a homogeneous linear periodic
ordinary differential equation. Consider the homogeneous linear ω-periodic system

ẋ = A(t)x and A(t+ ω) = A(t) (2.1)

where A(t) is a continuous n-by-n real or complex matrix function of t. Then every fundamental
matrix solution X(t) of (2.1) has the form

X(t) = P (t)eBt

where P (t) and B are n-by-n matrices, P (t+ ω) = P (t) for all t and B is constant.

In functional differential equations, does not exist a complete Floquet theory. Although we
have a Floquet representation in some cases.

2.1. Indexed families on a Banach space. In order to use the Spectral Theory of a
linear and continuous map, we introduce the notion of periodic family of a Banach space.

definition II.4. Let X be a Banach space. An indexed family by R×R of linear and continuous
maps

T (t, t0) : X → X, t ≥ t0
is a family on X when

i. T (t0, t0) = id.
ii. T (t, t0) ◦ T (t0, s) = T (t, s) for all t ≥ t0 ≥ s.

It is called ω-periodic family on X when there is ω > 0 verifying:

iii. T (t+ ω, t0 + ω) = T (t, t0) for all t ≥ t0.
iv. There is M > 0 such that for all 0 ≤ t0 ≤ ω and t0 ≤ t ≤ t0 + ω,

‖T (t, t0)‖ ≤M.

definition II.5. Let {T (t, t0)}t≥t0 be an ω-periodic family. The period map is defined by

P (t0) : X −→ X

u 7−→ T (t0 + ω, t0)(u).

lemma II.6. Let P (t0) be a period map of an ω-period family {T (t, t0)}t≥t0. Then

i. P (t0) is linear and continuous.
ii. P (t0 + ω) = P (t0).
iii. P k(t0) = T (t0 + kω, t0).
iv. T (t, t0) ◦ P k(t0) = P k(t) ◦ T (t, t0).

Proof.

i. Since T (t0 + ω, t0) is linear and continuous.
ii. P (t0 + ω) = T (t0 + 2ω, t0 + ω) = T (t0 + ω, t0) = P (t0).
iii. We apply induction on k.

• k = 1. It is just the definition.
• It P k(t0) = T (t0 + kω, t0), then

T (t0 + kω + ω, t0) = T (t0 + kω + ω, t0 + ω) ◦ T (t0 + ω, t0)

= P k(t0 + ω) ◦ P (t0) = P k(t0) ◦ P (t0) = P k+1(t0).

iv. We have

T (t, t0) ◦ P k(t0) = T (t, t0) ◦ T (t0 + kω, t0)

= T (t+ kω, t0 + kω) ◦ T (t0 + kω, t0) = T (t+ kω, t0)

and P k(t) ◦ T (t, t0) = T (t+ kω, t) ◦ T (t, t0) = T (t+ kω, t0). �
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proposition II.7. Let P (t0) be a period map of an ω-period family {T (t, t0)}t≥t0. Then

The non-zero point spectrum is independent of t0.

In particular, the dimension of the eigenspace of a non-zero eigenvalue is independent of t0.

Proof. Let us consider σ∗p(P (t0)) the point spectrum without 0, we must show that

σ∗p(P (t0)) = σ∗p(P (t)).

That means two inclusions:

⊂) Let λ 6= 0 and u so that P (t0)(u) = λu. By Lemma II.6,

0 =
(
T (t, t0) ◦ (P (t0)− λ · id)

)
(u) =

(
(P (t)− λ · id) ◦ T (t, t0)

)
(u)

whenever t ≥ t0. We observe that T (t, t0)(u) is λ-eigenvalue for t ≥ t0. Indeed, if it is
zero, there is k 6= 0 such that t+ kω ≥ t0, then by Lemma II.6,

0 =
(
T (t+ kω, t0) ◦ T (t, t0)

)
(u) = T (t+ kω, t0)(u) = P k(t0)(u) = λku.

It contradicts the conditions λ 6= 0 or u 6= 0.
⊃) If t0 + kω > t, by Lemma II.6, σ∗p(P (t)) ⊂ σ∗p(P (t0 + kω)) ⊂ σ∗p(P (t0)). �

definition II.8. Let P (t0) be a period map of an ω-period family {T (t, t0)}t≥t0 .

• The non-zero point spectrum is denoted by

σ∗p(P ).

their elements are called characteristic multipliers or Floquet multipliers.
• A λ is called a characteristic exponent when eλω is a characteristic multiplier.

corollary II.9. λ is a characteristic multiplier when there is u 6= 0 such that for all t ≥ t0,

T (t+ ω, t0)u = λT (t, t0)u.

Proof. We must show two implications:

⇒) If λ ∈ σ∗p(P ), then P (t0)u = λu for some u 6= 0. Then

T (t+ ω, t0)u = T (t+ ω, t0 + ω)T (t0 + ω, t0)u = T (t, t0)P (t0)u = λT (t, t0)u.

⇐) Take t = t0 and apply Proposition II.7. �

lemma II.10. Let A be a square matrix with a non-zero and unique eigenvalue. There is a matrix
B such that

A = eB.

N.B.: There is a more general result which tells us that if a matrix A has a non-zero determinant,
there is B verifying A = eB (see [12, ch. 4]).

Proof. Let λ 6= 0 be the eigenvalue and log λ be a complex value so that elog λ = λ. The
matrix C = (log λ)Id verifies,

eC =
∑
k≥0

Ck

k!
=
∑
k≥0

logk λ

k!
Id = elog λId = λId.

Since A is diagonalizable, then A = U(λId)U−1 = UeCU−1 = eUCU
−1

. �

theorem II.11. Let P (t0) be a period map of an ω-period family {T (t, t0)}t≥t0 on a Banach
space X. If P (t0) is compact, then for any characteristic multiplier λ, there are ϕ1, . . . , ϕd in
X, a constant d-by-d matrix B and a d-row vector ϕ(t) in X such that

i. σ(eBω) = {λ}.
ii. ϕ(t0) = (ϕ1, . . . , ϕd).

iii. ϕ(t+ ω) = ϕ(t) for all t in R.
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iv. For all t ≥ t0,

T (t, t0)ϕ(t0) = ϕ(t)eB(t−t0).

If ψ is any d-vector, then

T (t, t0)ϕ(t0)ψ = ϕ(t)eB(t−t0)ψ.

Moreover, the generalized eigenspace of P (t) for λ has the same rank k ≥ 1 and basis ϕ(t). And
its dimension is independent of t ∈ R.

Proof. By Theorem D.15, we can obtain the decomposition

X = N(λ)⊕ F (λ).

with N(λ) finite dimensional subspace. Let ϕ1, . . . , ϕd be a basis of N(λ), denoted ϕ(t0). Since
P (0)

(
N(λ)

)
⊂ N(λ), by Linear Algebra, there is a d-by-d matrix M such that

P (0)ϕ(t0) = ϕ(t0)M.

Since σ(u � N(λ)) = {λ}, the only eigenvalue of M is λ 6= 0. By Lemma II.10, there is a d-by-d
matrix B such that M = eBω. Let us define

ϕ(t) = T (t, t0)ϕ(t0)e
−B(t−t0), t ≥ t0.

Then for t ≥ t0,
ϕ(t+ ω) = T (t+ ω, t0)ϕ(t0)e

−B(t+ω−t0)

= T (t+ ω, t0 + ω)T (t0 + ω, t0)ϕ(t0)e
−Bωe−B(t−t0)

= T (t, t0)T (t0 + ω, t0)ϕ(t0)e
−Bωe−B(t−t0)

= T (t, t0)P (t0)ϕ(t0)e
−Bωe−B(t−t0)

= T (t, t0)ϕ(t0)e
Bωe−Bωe−B(t−t0)

= T (t, t0)ϕ(t0)e
−B(t−t0) = ϕ(t).

We can extend ϕ(t) for t ∈ R in the following way:

t 7→ ϕ(t+mω), for any integer m such that t+mω ≥ t0.
Then the new ϕ(t) is ω-periodic in t ∈ R. Now, we claim that

T (t, t0) ker
(
(P (t0)− λ · id)j

)
= ker

(
(P (t)− λ · id)j

)
, t ≥ t0 and j ≥ 1. (2.2)

Let us show it by induction on j.

• j = 1. By Lemma II.6,

T (t, t0) ◦ (P (t0)− λ · id) = (P (t)− λ · id) ◦ T (t, t0),

so it follows (2.2) for j = 1.
• Again by Lemma II.6 and by induction hypothesis, (2.2) is proved.

Relation (2.2) tells us that T (t, t0) with t ≥ t0 maps the generalized eigenspace P (t0) for λ onto
the generalized eigenspace P (t) for λ. Let us prove that the restriction of T (t, t0) with t ≥ t0 to
the generalized eigenspace of P (t0) for λ is injective. Indeed, if u is an element of the generalized
eigenspace of P (t0) for λ and T (t, t0)u = 0 for some t0 ≤ t ≤ t0 +mω and some integer m, then

(P (t0)− λ · id)ku = 0 for some integer k

moreover, Pm(t0)u = T (t0+mω, t0)u = T (t0+mω, t)T (t, t0)u = 0. Since λ 6= 0, the polynomials
(x− λ)k and xm are coprimes, so by Bézout’s identity,

a(x)(x− λ)k + b(x)xm = 1

for some polynomials a(x) and b(x). Therefore,

u = a(P (t0))(P (t0)− λ · id)ku+ b(P (t0))P
m(t0)u = 0
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and the injectivity has been proved. We also see that the generalized eigenspace of P (t) for λ
is equal to ker

(
(P (t)− λ · id)k

)
with the same k as the one for P (t0). So ϕ(t) defines a basis of

ker
(
(P (t)− λ · id)k

)
. �

2.2. Floquet representation for linear Delay Differential Equations.

proposition II.12. Let A(t) : C → Rn be a linear and continuous map and ω > 0 so that for
any t,

A(t+ ω) = A(t).

The indexed family of maps

T (t, t0) : C −→ C t ≥ t0
u 7−→ xt(t0, u)

(2.3)

is an ω-periodic family on C where xt(t0, u) is the solution defined on [t0 − r,+∞) of{
ẋ = A(t)xt

xt0 ≡ u.
In particular, its period map

P (t0) : C −→ C

u 7−→ xt0+ω(t0, u)
(2.4)

is ω-periodic with respect to t0 and it is also linear and continuous.

Proof. By Theorem I.33, for any t0 ∈ R and u ∈ C, there is a solution x(t0, u) of (2.3)
defined on [t0 − r,+∞). By Theorem I.20, x(t0, u) is continuous and by Lemma I.7 xt(t0, u) is
also continuous. By Corollary I.34, x(t0, ·) is linear, so xt(t0, ·) is linear. Thus, T (t, t0) is linear
and continuous whenever t ≥ t0. We must check the other conditions of the Definition II.4:

i. T (t0, t0)(u) = xt0(t0, u) ≡ u. So T (t0, t0) = id.
ii. T (t, t0)◦T (t0, s) = T (t, s). Indeed, by uniqueness of solutions, xt(t0, xt0(s, u)) = xt(s, u)

for t ≥ t0 ≥ s.
iii. T (t+ ω, t0 + ω) = T (t, t0). Indeed, let x(t0 + ω, u) and x(t0, u) be solutions. Then

∂x(t0 + ω, u)

∂t
(t+ ω) = A(t+ ω)xt+ω(t0 + ω, u) = A(t)xt+ω(t0 + ω, u),

∂x(t0, u)

∂t
(t+ ω) = A(t+ ω)xt+ω(t0, u) = A(t)xt+ω(t0, u)

and

∂x(t0, u)

∂t
(t) = A(t)xt(t0, u).

By uniqueness, xt+ω(t0 + ω, u) = xt+ω(t0, u) = xt(t0, u) for all u.
iv. It follows from Corollary I.34.

The period map comes from Definition II.5 and Lemma II.6. �

Thanks to Theorem II.11, we can formulate the next Theorem II.13.

theorem II.13. Let A(t) : C → Rn be a linear and continuous map and ω > 0 so that for any t,

A(t+ ω) = A(t).

Let P (t0) be its period map. For any λ characteristic multiplier, there are a d-dimensional
basis ϕ1, . . . , ϕd of a P (t0)-invariant vector subspace, a constant d-by-d matrix B and an n-by-d
matrix function ϕ(t) on C such that

i. σ(eBω) = {λ}.
ii. ϕ(t0) = (ϕ1, . . . , ϕd).

iii. ϕ(t+ ω) = ϕ(t) for all t in R.
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iv. For all t ≥ t0,
xt(t0, ϕ(t0)) = ϕ(t)eB(t−t0).

If ψ is any d-vector, then
xt(t0, ϕ(t0)ψ) = ϕ(t)eB(t−t0)ψ.

Moreover,

v. The characteristic multiplier is independent of t0.
vi. The generalized eigenspace of P (t) for λ has the same rank k ≥ 1 and basis ϕ(t). And

its dimension is independent of t ∈ R.
vii. λ = eµω is a characteristic multiplier when there is a non-zero solution of the Delay

Differential Equation ẋ = A(t)xt of the form

x(t) = p(t)eµt

where p(t+ ω) = p(t).

Proof. Since ω > 0, there is an integer m > 0 such that mω ≥ r. Then Pm(t0) =
T (t0 +mω, t0) by Lemma II.6. Therefore, by Corollary I.32, Pm(t0) is compact. There is not
any problem if ω is substituted by mω. Then i, ii, iii, iv and vi follows by Theorem II.11. The
v follows by Proposition II.7. Thus, it only remains to show vii.

vii. Let us suppose that t0 = 0. Then

xt(0, u)(τ) = x(0, u)(t− τ) = xt−τ (0, u)(0)

whenever 0 ≤ τ ≤ r. If u 6= 0 is an eigenvector of eigenvalue λ, for all 0 ≤ τ ≤ r,
ϕ(t)(τ) = ϕ(t− τ)(0)eBτ .

Putting ϕ̃(t− τ) = ϕ(t− τ)(0) and u = ϕ(0)v for some v, then for all t in R,

x(0, ϕ(0)v)(t) = ϕ̃(t)eBtv.

⇒) Since σ(eBω) = {λ} = {eµω}, then σ(B) = {µ}. Thus

x(0, ϕ(0)v)(t) = ϕ̃(t)eµtv.

⇐) We must show that λ = eµω is characteristic multiplier. Indeed,

P (0)(u)(0) = xω(0, u)(0) = x(0, u)(ω) = p(ω)eµω = p(0)λ.

By hypothesis p(0) 6= 0. So λ is a characteristic multiplier. �

corollary II.14. Let A(t) : C → Rn be a linear, continuous and ω-periodic map and P (t0) its
periodic map with λ characteristic multiplier,

i. If |λ| < 1 for all λ, the solution x = 0 is uniformly asymptotically stable.
ii. If |λ| ≤ 1 for all λ, the solution x = 0 is uniformly stable.



CHAPTER III

Automatic differentiation

The recent sophisticated software tools and the high level programming languages have made
the computation of some numerical issues, in particular, evaluation programs easier and more
important. On one hand, some procedures of a program can now be determined more or less
automatically, that is, without the user having to rewrite the function evaluation procedure. It
is a quite common situation since mathematical models often depend on a possibly large number
of parameters (some of them maybe unknown). On the other hand, optimization tasks are a key
objective because qualitative and quantitative dependence are every time much complicated.
In this context appears the automatic differentiation or also called algorithmic differentiation,
in any case the acronym is AD. The main idea behind AD is the following:

“AD differentiates what you implement”.

The Chapter starts establishing how one may decompose an evaluation procedure in compo-
sition of elemental functions. Then the chain’s rule applied several times will give us the desired
derivatives.

1. Evaluation procedure

Let us suppose that we have a function F : Rn → Rm which can be decomposed it into even
smaller atomic operations which will called elemental functions and typically they are denoted
by ϕi. A composition procedure gives us the function y = F (x), that is, y1

...
ym

 = F

x1...
xn

 .

The evaluation procedure can be expressed as:

vi−n = xi i = 1, . . . , n

vi = ϕi(vj)j≺i i = 1, . . . , s

ym−i = vs−i i = m− 1, . . . , 0.

That means,

• Firstly, the inputs xi’s are assigned to a new variables vi−n’s.
• Secondly, F (x) is computed in a finite way by composition of its elemental functions.
• Finally, the outputs ym−i’s are assigned independently1 by vs−i’s.

The notation ≺ is an order relation called dependence relation. It is define as follows:

j ≺ i⇐⇒ vi depends directly on vj .

Typically, it will happen that j < i as integer numbers.

As usual notation in computer science, we will write

j ≺∗ i⇐⇒ j ≺ i1 ≺ · · · ≺ ir ≺ i for some r.

1This step avoids possible problems that may appear in a parallelism paradigm.
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Important comment. We have assumed that F = ϕs ◦ · · · ◦ ϕ1. Although we will not
express with all detail, we can have elemental functions

ϕi : Rni → Rmi , i = 1, . . . , s

with n1 = n and ms = m. In some cases, one can break vector-valued elemental functions into
their scalar components. Hence, one can always achieve mi = 1 for notational simplicity or the
sake of conceptional. However, the drawback of this simplifying assumtion is that efficiency may
be lost when several of the component functions involve common intermediate. Therefore, it
will depend on the specific problem that we are codifying to choose which can be better; the
vector-valued or the scalar-valued decomposition.

1.1. Overwrites. The evaluation procedure explained above has been interpreted from a
mathematical point of view, that means, we have wanted to assume that each variable vi’s occurs
exactly once time in the left-hand side and, of course, it does not affect any other variable when
we are assigning it.
A reason of this point of view is that it allows to do a computational graph, that is, an acyclic
graph whose vertices are simply the variables vi’s and an arc runs from vj to vi exactly when
j ≺ i. The roots of the graph represent the independent variables and the leaves the dependent
variables. Typically, we draw the graph from the roots on the left to the leaves on the right.
Optionally, one can also draw the inputs and the outputs (e.g. Figure III.1).

In a specific implementation for a specific problem, one want to be efficient with a minimum
and adjacency use of memory. So one can try to overwrite some assignments and to use the
minimum possible of variables for the combination of steps implemented. Authors as [7] defines
the allocation function & assuming that a preprocessor or compiler generate an addressing
scheme that maps the variables vi’s into subsets of an integer range.

example III.1. Let F : R3 → R2 be a function defined by

(x, y, z) 7→ (cos(ex+y + z), ex+y).

The evaluation procedure can be expressed by

v−2 = x
v−1 = y
v0 = z
v1 = v−2 + v−1
v2 = exp(v1)
v3 = v2 + v0
v4 = cos(v3)
v5 = v2
y1 = v4
y2 = v5.

v−2 = x
v−1 = y
v0 = z
v1 = v−2 + v−1
v1 = exp(v1)
v2 = v1 + v0
v2 = cos(v2)
y1 = v2
y2 = v1.

Table III.1. Evaluation procedure with and without overwriting.

The computational graph of this evaluation procedure is in Figure III.1.

x v−2 v1 v2 v5 y2

y v−1

z v0 v3 v4 y1

+ exp

+

+

cos+

Figure III.1. Computational graph.



2. UNIVARIATE POLYNOMIAL PROPAGATION 27

2. Univariate polynomial propagation

definition III.2. Given a ring R, the n-th degree truncated polynomial ring is defined as

R[x]≤n := R[x]/(xn+1) ' {anxn + · · ·+ a0 : a0, . . . , an ∈ R}.

Clearly, R[x]0 ' R and we have the ring ascending chain

R ( R[x]1 ( R[x]2 ( · · · .

corollary III.3. R[x]≤n is not an integral domain for any n ≥ 1.
In particular, it is neither a unique factorization domain nor a principal ideal domain nor an
euclidian domain and nor a field.

Proof. We must show that it has a zero divisor. Indeed, xn and x are non-zero elements,
but

x · xn = xn+1 = 0 and xn · x = xn+1 = 0. �

If R = R, then R[x]≤n can be endowed with a vectorial norm and inequalities like Triangular,
Hölder and Minkowsky hold. Thus one can perform arithmetic just like on real numbers. In
modern computer languages like C++, C#, Java, Python, . . . one may simply overload real
variables with n-th degree truncated polynomial variables. The parameter n can be fixed at
compiler-time for an efficiency reason or be selected at runtime for a flexibility reason. One can
also consider the free module

R[x]m≤n := R[x]≤n ×
(m· · · × R[x]≤n.

It is endowed with a norm associated to the norm of R[x]≤n, typically the supremum of the
norm of each variable.

lemma III.4. Let ϕ : R→ R be a derivable function verifying

a(u) · ϕ′(u)− b(u) · ϕ(u) = c(u)

for u ∈ R[x]≤n and for some a, b and c. Then, v = ϕ(u) may be obtained recurrently by

v0 = ϕ(u0)

vk =
1

ka0

 k∑
j=1

(
ck−j +

k−j∑
i=0

bivk−i−j

)
juj −

k−1∑
j=1

jak−jvj

 , k = 1, . . . , n.

Proof. By the chain’s rule, v′ = ϕ′(u) · u′. That is, a(u) · v′ =
(
c(u) + b(u) · v

)
· u′. As we

will see in detail in Theorem III.5, the product is just the discrete convolution. Thus,

a0kvk +

k−1∑
j=1

jak−jvj =

k∑
j=0

ak−jjvj =

k∑
j=0

(
ck−j +

k−j∑
i=0

bk−j−ivi

)
juj . �

In particular, if b(u) ≡ 0 in Lemma III.4, then ϕ(u) is simply a rational quadrature, i.e.

ϕ(u) =

∫
c(u)

a(u)
du.
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theorem III.5. Let u, v, w, s, c ∈ R[x]≤n, λ, α ∈ R with α 6= 0. Then

Recurrence for k up to n Complexity

v = u+ w vk = uk + wk n+ 1

v = λu vk = λuk n+ 1

v = u · w vk =

k∑
j=0

ujwk−j =

k∑
j=0

uk−jwj (n+ 1)2

v =
u

w
vk =

1

w0

(
uk −

k∑
j=1

wjvk−j

)
(n+ 1)2

v = u2 vk =
k∑
j=0

ujuk−j 1
2(n+ 1)2

v =
√
u

v0 =
√
u0

vk =
1

2v0

(
uk −

k−1∑
j=1

vjvk−j

)
1
2n

2

v = uα
v0 = uα0

vk =
1

ku0

k−1∑
j=0

((k − j)α− j)uk−jvj n2

v = log(u)
v0 = log(u0)

vk =
1

u0

(
uk −

1

k

k−1∑
j=1

(k − j)ujvk−j
)

n2

v = eu
v0 = exp(u0)

vk =
1

k

k−1∑
j=0

(k − j)vjuk−j n2

s = sin(u)
s0 = sin(u0)

2n2
sk =

1

k

k∑
j=1

jck−juj

c = cos(u)
c0 = cos(u0)

ck = −1

k

k∑
j=1

jsk−juj

Table III.2. Polynomial coefficient propagation through some univariate elemental functions.
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Proof.

X v = u+ w and v = λu are clear.
X v = u · w is just the Cauchy product. Indeed,( n∑
k=0

ukx
k

)
·
( n∑
k=0

wkx
k

)
=

2n∑
k=0

xk
k∑
j=0

ujwk−j −
n−1∑
k=0

xk
(
uk

2n−k∑
j=n+1

wjx
j + wk

2n−k∑
j=n+1

ujx
j

)
.

Modulo xn+1, we obtain( n∑
k=0

ukx
k

)
·
( n∑
k=0

wkx
k

)
=

n∑
k=0

xk
k∑
j=0

ujwk−j .

It is clear that in R we also have
k∑
j=0

ujwk−j =

k∑
j=0

uk−jwj .

X v =
u

w
is equivalent to w · v = u. Therefore

w0vk +
k∑
j=1

wjvk−j =
k∑
j=0

wjvk−j = uk ⇒ vk =
1

w0

(
uk −

k∑
j=1

wjvk−j

)
.

X v = u2 is clear because u2 = u · u.
X v =

√
u is equivalent to v · v = u. Therefore

v0vk +
k−1∑
j=1

vjvk−j + vkv0 =
k∑
j=0

vjvk−j = uk ⇒ vk =
1

2v0

(
uk −

k−1∑
j=1

vjvk−j

)
.

X v = uα. Let us define ϕ(x) = xα. Then

u ·
(
uα · α

u

)
− αuα = 0.

It follows now applying Lemma III.4 with a(u) = u, b(u) = α and c(u) = 0.
X v = log(u). Let us define ϕ(x) = log(x). Then

u · 1

u
− 0 log(u) = 1.

To apply Lemma III.4 with a(u) = u, b(u) = 0 and c(u) = 1.
X v = eu. Let us define ϕ(x) = ex. Then

1eu − 1eu = 0.

To apply Lemma III.4 with a(u) = 1, b(u) = 1 and c(u) = 0.
X v = sin(u). Let us define ϕ(x) = sin(x). Then

1 cos(u)− 0 sin(u) = cos(u).

To apply Lemma III.4 with a(u) = 1, b(u) = 0 and c(u) = cos(u).
X v = cos(u). Let us define ϕ(x) = cos(x). Then

−1 sin(u)− 0 cos(u) = sin(u).

To apply Lemma III.4 with a(u) = −1, b(u) = 0 and c(u) = sin(u). �

Remark III.6. Some important observations are:

• One can use the symmetries of the expressions v = u2 and v =
√
u. Indeed, we have

v2k = u2k + 2
k−1∑
j=0

uju2k−j and v2k+1 = 2
k∑
j=0

uju2k+1−j

for the first. It is just for this reason that the complexity is the reduced to the half.



30 III. AUTOMATIC DIFFERENTIATION

• The formula of Theorem III.5 for v = uα may not work if u0 = 0. However, if α is an
odd integer, v = uα has sense and one can computed by iteration of uα = uα−1 · u.
• The output of some expressions in Theorem III.5 can be allocated in some input vari-

able. For instance, v = u · w, v =
u

w
and v = u2.

We can observe, in Script III.1, a possible declaration in a high-level programming language
C++, using an Object Oriented Programming (OOP) paradigm.

#include <iostream>
#include <cmath>
using namespace std ;

template <typename T>
class Polynomial
{
private :

T ∗ pol ;
unsigned int N;
/∗ P r i v a t e methods ∗/
. . .

public :
/∗ Constructors , p u b l i c methods and d e s t r u c t o r ∗/
. . .
/∗ Over loading o p e r a t o r s ∗/
inl ine T& operator [ ] ( unsigned int i ) ;
inl ine Polynomial & operator=(const Polynomial &p) ;
Polynomial operator+(const Polynomial &p) ;
inl ine Polynomial operator+(const T &t ) ;
Polynomial& operator+=(Polynomial &p) ;
inl ine Polynomial& operator+=(const T &t ) ;
Polynomial operator−(const Polynomial &p) ;
inl ine Polynomial operator−(const T &t ) ;
Polynomial& operator−=(const Polynomial &p) ;
inl ine Polynomial& operator−=(const T &t ) ;
Polynomial operator ∗( const Polynomial &p) ;
inl ine T operator ∗( const T &t ) ;
Polynomial& operator∗=(const Polynomial &p) ;
inl ine Polynomial& operator∗=(const T &t ) ;
Polynomial operator /( const Polynomial &p) ;
inl ine Polynomial operator /( const T &t ) ;
Polynomial& operator/=(const Polynomial &p) ;
inl ine Polynomial& operator/=(const T &t ) ;

friend std : : ostream& operator<<(std : : ostream &out , Polynomial &p) ;
}
template <typename T>
Polynomial<T> s q r t ( const Polynomial<T> &p) ;

template <typename T>
Polynomial<T> pow( const Polynomial<T> &p , const T &t ) ;

template <typename T>
Polynomial<T> exp ( const Polynomial<T> &p) ;

template <typename T>
void s i n c o s ( const Polynomial<T>&p , Polynomial<T>&s , Polynomial<T>&c ) ;

Script III.1. Arithmetic of univariate polynomial in C++.
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3. Univariate Taylor’s propagation

Let us recall the Taylor’s expansion notion for a derivable map.

definition III.7. Let I be a non-trivial interval of R. If ϕ : I → Rm is a p-times derivable at
a ∈ I, the p-th Taylor polynomial of ϕ at a is

P (ϕ)(t) =

p∑
j=0

ϕ[j](a)(t− a)j with ϕ[j] =
ϕ(j)

j!
and ϕ[0] := ϕ.

It is clear that P (ϕ)(j)(a) = ϕ(j)(a) for any j = 0, . . . , p.

notation (Small “o”).

g(x) = o(h(x)) as x→ a⇐⇒ g(x) = h(x)h0(x) and h0(x)→ 0 as x→ a.

theorem III.8. Let ϕ : I → Rm be a p-times derivative map at a ∈ I. Then

ϕ(t) = P (ϕ)(t) + o
(
(t− a)p

)
as t→ a⇔ lim

t→a
ϕ(t)− P (ϕ)(t)

(t− a)p
= 0.

Moreover, P (ϕ)(t) is the unique polynomial of degree ≤ p which satisfies that property.

The Theorem III.8 tells us that any p-times derivative mapping ϕ : I → Rm has a unique
locally extension to Pϕ : R[t]≤p → R[t]m≤p defined by u 7→ P (ϕ ◦ u). More abstractly, for any
p ≥ 1, there is a linear extension mapping

Cp(I,Rm) −→ C(R[t]≤p,R[t]m≤p)
ϕ 7−→ Pϕ.

One can generalize the above explanation as follows:

definition III.9. Let U ⊂ Rn be open. If ϕ : U → Rm is a p-times differentiable map at a ∈ U ,
the p-th Taylor polynomial of ϕ at a is

P (ϕ)(t) =

p∑
j=0

D[j]ϕ(a)(t− a)α with D[j]ϕ =
1

α!
Djϕ

where Djϕ is defined by

Djϕ(a)(x) =
∑
|α|=j

|α|!
α!

∂|α|ϕ
∂αx

(a)xα

being α ∈ Nn a mult-index2.

theorem III.10. Let U ⊂ Rn be open, ϕ : U → Rm be a p-times differentiable map at a ∈ U .
Then

ϕ(t) = P (ϕ)(t) + o
(
|t− a|p

)
as t→ a⇔ lim

t→a
ϕ(t)− P (ϕ)(t)

|t− a|p = 0.

Moreover, P (ϕ)(t) is the unique polynomial of degree ≤ p which satisfies that property.

Hence each p-times differentiable mapping ϕ : Rn → Rm has a unique locally extension to
Pϕ : R[t]n≤p → R[t]m≤p defined by u 7→ P (ϕ ◦u). That is, for any p ≥ 1, there is a linear extension
mapping

Cp(Rn,Rm) −→ C
(
R[t]n≤p,R[t]m≤p

)
ϕ 7−→ Pϕ.

Applying now also the Theorem III.5, the Theorem III.11 is straightforward. Basically, because
we are considering ϕ(u1(t), . . . , un(t)) and the latter Theorem mentioned can be applied in each
variable.

2Standard multi-index notation is used and |α| denotes the `1-norm of the multi-index α.
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theorem III.11. Let u, v, w, s, c be p-times derivatives maps, λ, α ∈ R with α 6= 0. Then

Recurrence for k up to p Complexity

v = u+ w v[k](t) = u[k](t) + w[k](t) p+ 1

v = λu v[k](t) = λu[k](t) p+ 1

v = u · w v[k](t) =

k∑
j=0

u[j](t)w[k−j](t) =

k∑
j=0

u[k−j](t)w[j](t) (p+ 1)2

v =
u

w
v[k](t) =

1

w[0](t)

(
u[k](t)−

k∑
j=1

w[j](t)v[k−j](t)
)

(p+ 1)2

v = u2 v[k](t) =
k∑
j=0

u[j](t)u[k−j](t) 1
2(p+ 1)2

v =
√
u

v[0](t) =
√
u[0](t)

v[k](t) =
1

2v[0](t)

(
u[k](t)−

k−1∑
j=1

v[j](t)v[k−j](t)
)

1
2p

2

v = uα
v[0](t) =

(
u[0](t)

)α
v[k](t) =

1

ku[0](t)

k−1∑
j=0

((k − j)α− j)u[k−j](t)v[j](t) p2

v = log(u)
v[0](t) = log

(
u[0](t)

)
v[k](t) =

1

u[0](t)

(
u[k](t)− 1

k

k−1∑
j=1

(k − j)u[j](t)v[k−j](t)
)

p2

v = eu
v[0](t) = exp

(
u[0](t)

)
v[k](t) =

1

k

k−1∑
j=0

(k − j)v[j](t)u[k−j](t) p2

s = sin(u)
s[0](t) = sin

(
u[0](t)

)

2p2
s[k](t) =

1

k

k∑
j=1

jc[k−j](t)u[j](t)

c = cos(u)
c[0](t) = cos

(
u[0](t)

)
c[k](t) = −1

k

k∑
j=1

js[k−j](t)u[j](t)

Table III.3. Taylor coefficient propagation through some univariate elemental functions.
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Propagation. The Taylor expansion tells us that a smooth map ϕ can be expressed locally
as:

ϕ(t0 + h) = ϕ[0](t0) + ϕ[1](t0)h+ ϕ[2](t0)h
2 + ϕ[3](t0)h

3 + · · · .

Therefore if we have an evaluation procedure F = ϕs ◦ · · · ◦ ϕ1, then using Table III.3 we can
obtain the Taylor expansion of F truncated to a prefixed order.

4. Gradient propagation

A multivariate Taylor propagation of a function F : Rn → Rm requires a monomial order
prefixed. But, it does not matter in the case of the Gradient propagation. Indeed, let us assume,
for instance, the monomial order

s1 > · · · > sn > 1.

The gradient propagation of F will be an element in R[s1, . . . , sn]≤1. The idea is to propagate

F (x1 + s1, . . . , xn + sn)

where s1, . . . , sn will be symbols (i.e. indeterminates).
Let us formalize it with the notation of an evaluation procedure. Given

vi−n = xi i = 1, . . . , n

vi = ϕi(vj)j≺i i = 1, . . . , s

ym−i = vs−i i = m− 1, . . . , 0.

an evaluation procedure for the function F . Introducing s1, . . . , sn symbols, the Gradient prop-
agation is:

vi−n = xi

v̇i−n = si
i = 1, . . . , n

vi = ϕi(vj)j≺i

v̇i =
∑
j≺i

∂ϕi
∂vj

(
(vj)j≺i

)
v̇j

i = 1, . . . , s

ym−i = vs−i
ẏm−i = v̇s−i

i = m− 1, . . . , 0.

Abbreviating ui = (vj)j≺i and u̇i = (v̇j)j≺i we write v̇i = ϕ̇i(ui)u̇i.
When vi shares a location with one of its arguments vj , the derivative v̇i will be incorporated
after vi has been updated. So it is a common notation to indicate [vi, v̇i] in order to indicate
that they should be evaluated simultaneously sharing intermediate results.
Typically, given a function F , one want to evaluate F and DF at a given point. It rarely makes
sense to evaluate DF without evaluating F at the same time. Thus, we are going to assume that
a Gradient propagation procedure includes the evaluation of the underlying function F itself.

The next Proposition III.12 is a straightforward result of an elementary course of Maths
and the proof will be skipped.
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proposition III.12. Let u, v, w be derivable maps and λ, α ∈ R. Then

ϕ ϕ̇

v = λ v̇ = 0

v = u± w v̇ = u̇± ẇ

v = uw v̇ = u̇w + uẇ

v =
1

u
v̇ = −vvu̇

v =
√
u u̇ =

u̇

2v

v = uα
v̇ =

u̇

u

v̇ = αvv̇

v = exp(u) v̇ = vu̇

v = log(u) v̇ =
u̇

u

v = cos(u) v̇ = − sin(u)u̇

v = sin(u) v̇ = cos(u)u̇

Table III.4. Some tangent elemental operations.

We observe that all procedures in Table III.4 are still correct when two or even three of the
variables u, v or w coincide. That fact, it is usually called “alias-safe”.

example III.13. Let F : R3 → R2 be a function defined by

(x, y, z) 7→ (cos(ex+y + z), ex+y).

The gradient evaluation procedure can be expressed by

v−2 = x
v−1 = y
v0 = z
v1 = v−2 + v−1
v2 = exp(v1)
v3 = v2 + v0
v4 = cos(v3)
v5 = v2
y1 = v4
y2 = v5.

v̇−2 = sx
v̇−1 = sy
v̇0 = sz
v̇1 = v̇−2 + v̇−1
v̇2 = v2v̇1
v̇3 = v̇2 + v̇0
v̇4 = − sin(v3)v̇3
v̇5 = v̇2
ẏ1 = v̇4
ẏ2 = v̇5.

Table III.5. Gradient evaluation procedure without overwriting.
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Explicitly, we have

ẏ1 = − sin(ex+y + z)ex+ysx − sin(ex+y + z)ex+ysy − sin(ex+y + z)sz

ẏ2 = ex+ysx + ex+ysy.

Putting sx ↔ (1, 0, 0), sx ↔ (0, 1, 0) and sz ↔ (0, 0, 1) we have obtained

DF (x, y, z) =

(
− sin(ex+y + z)ex+y − sin(ex+y + z)ex+y − sin(ex+y + z)

ex+y ex+y 0

)
.

A possible declaration in a high-level programming language C++, using an Object Oriented
Programming (OOP) paradigm is in Script III.2.

#include <iostream>
#include <cmath>
using namespace std ;

template <typename T>
class Gradient
{
private :

T ∗ gra ;
unsigned int N;
/∗ P r i v a t e methods ∗/
. . .

public :
/∗ Constructors , p u b l i c methods and d e s t r u c t o r ∗/
. . .
/∗ Over loading o p e r a t o r s ∗/
inl ine T& operator [ ] ( unsigned int i ) ;
inl ine Gradient & operator=(const Gradient &u) ;
Gradient operator+(const Gradient &w) ;
inl ine Gradient operator+(const T &t ) ;
Gradient& operator+=(Gradient &u) ;
inl ine Gradient& operator+=(const T &t ) ;
Gradient operator−(const Gradient &w) ;
inl ine Gradient operator−(const T &t ) ;
Gradient& operator−=(const Gradient &u) ;
inl ine Gradient& operator−=(const T &t ) ;
Gradient operator ∗( const Gradient &w) ;
inl ine T operator ∗( const T &t ) ;
Gradient& operator∗=(const Gradient &u) ;
inl ine Gradient& operator∗=(const T &t ) ;
Gradient operator /( const Gradient &w) ;
inl ine Gradient operator /( const T &t ) ;
Gradient& operator/=(const Gradient &w) ;
inl ine Gradient& operator/=(const T &t ) ;

friend std : : ostream& operator<<(std : : ostream &out , Gradient &u) ;
}
template <typename T>
Gradient<T> s q r t ( const Gradient<T> &u) ;
template <typename T>
Gradient<T> pow( const Gradient<T> &u , const T &t ) ;
template <typename T>
Gradient<T> exp ( const Gradient<T> &u) ;
template <typename T>
void s i n ( const Gradient<T>&u , Gradient<T>&s ) ;
template <typename T>
void cos ( const Gradient<T>&u , Gradient<T>&c ) ;

Script III.2. Gradient propagation class in C++.
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5. An application. Hermite’s interpolation

Given two Taylor expansions at two different points, a question is whether the Taylor ex-
pansion at an intermediate point can be interpolated with a good accuracy. In order to do so,
the next application has been studied.

Let ϕ : [a, b]→ R be a smooth map on (a, b). Given a table of values of n+ 1 points and its
mk first normalized derivatives. That is,

x ϕ[0] ϕ[1] · · ·
x0 ϕ

[0]
0 ϕ

[1]
0 · · · ϕ

[m0]
0

...
...

...
...

xn ϕ
[0]
n ϕ

[1]
n · · · ϕ

[mn]
n

with ϕ[j] =
ϕ(j)

j!
and ϕ(0) := ϕ.

Assuming that x0 < · · · < xn.
The Hermite’s interpolation problem consists in finding a polynomial P of degree less or equals
to

N =

n∑
k=0

(mk + 1)

such that

P [j](xk) = ϕ
[j]
k for j = 0, . . . ,mk and k = 0, . . . , n.

By Rolle’s Theorem, the error expression is well-known if ϕ is CN+1(a, b) map

ϕ(x)− P (x) = ϕ[N+1](ξ(x))(x− x0)m0+1 · · · (x− xn)mn+1

with x ∈ (a, b) and ξ(x) between x0, . . . , xn, x.

Construction of Hermite’s polynomial. One can generalize the divided differences
method used typically in the Newton’s interpolation method. The divided differences are defined
by:

ϕ[xjk] = ϕ
[j]
k

with j = 0, . . . ,mk and k = 0, . . . , n. Then

ϕ[xkii , x
ki+1

i+1 , . . . , x
ki+j

i+j , x
ki+j

i+j+1] =
ϕ[xki−1i , x

ki+1

i+1 , . . . , x
ki+j

i+j+1]− ϕ[xkii , . . . , x
ki+j

i+j , x
ki+j−1
i+j+1 ]

xi+j+1 − xi
(3.1)

with i = 0, . . . , n− j and j = 0, . . . , n− 1. If some exponent of (3.1) is outside of its range, the
point will be removed. For instance,

ϕ[x10, x
2
1, x

0
2] =

ϕ[x00, x
2
1, x

0
2]− ϕ[x10, x

2
1]

x2 − x0
.

Thus the Hermite’s polynomial is

P (x) = ϕ[x00] + ϕ[x10](x− x0) + · · ·+ ϕ[xm0
0 ](x− x0)m0

+ ϕ[xm0
0 , x01](x− x0)m0+1 + ϕ[xm0

0 , x11](x− x0)m0+1(x− x1)
+ · · · · · ·
+ ϕ[xm0

0 , . . . , x
mn−1

n−1 , xmn
n ](x− x0)m0+1 · · · (x− xn−1)mn−1+1(x− xn)mn .

(3.2)
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Let us do an example:

x0 ϕ
[0]
0

ϕ
[1]
0

x0 ϕ
[0]
0 ϕ

[2]
0

ϕ
[1]
0 ϕ

[3]
0

x0 ϕ
[0]
0 ϕ

[2]
0 ϕ[x3

0, x
0
1]

ϕ
[1]
0 ϕ[x2

0, x
0
1] ϕ[x3

0, x
1
1]

x0 ϕ
[0]
0 ϕ[x1

0, x
0
1] ϕ[x2

0, x
1
1] ϕ[x3

0, x
2
1]

ϕ[x0
0, x

0
1] ϕ[x1

0, x
1
1] ϕ[x2

0, x
2
1] ϕ[x3

0, x
2
1, x

0
2]

x1 ϕ
[0]
1 ϕ[x0

0, x
1
1] ϕ[x1

0, x
2
1] ϕ[x2

0, x
2
1, x

0
2]

ϕ
[1]
1 ϕ[x0

0, x
2
1] ϕ[x1

0, x
2
1, x

0
2]

x1 ϕ
[0]
1 ϕ

[2]
1 ϕ[x0

0, x
2
1, x

0
2]

ϕ
[1]
1 ϕ[x2

1, x
0
2]

x1 ϕ
[0]
1 ϕ[x1

1, x
0
2]

ϕ[x0
1, x

0
2]

x2 ϕ
[0]
2

Table III.6. Table of generalized divided differences. The computation is in bold font and the
Hermite’s polynomial coefficients are boxed.

Hence, the Hermite’s polynomial will be

P (x) = ϕ
[0]
0 + ϕ

[1]
0 (x− x0) + ϕ

[2]
0 (x− x0)2 + ϕ

[3]
0 (x− x0)3

+ ϕ[x30, x
0
1](x− x0)4 + ϕ[x30, x

1
1](x− x0)4(x− x1)

+ ϕ[x30, x
2
1](x− x0)4(x− x1)2 + ϕ[x30, x

2
1, x

0
2](x− x0)4(x− x1)3.

As the Hermite’s polynomial P of ϕ satisfies P (j)(xk) = ϕ(j)(xk). One wonder if P can be
used locally for approximate the Taylor expansion of ϕ. That is,

ϕ(t0 + h) ≈ P [0](t0) + P [1](t0)h+ P [2](t0)h
2 + P [3](t0)h

3 + · · · .

A first naive approach is to consider iteratively the same initial problem but with lesser
columns, i.e.

x ϕ[i] ϕ[i+1] · · ·
x0 ϕ

[i]
0 ϕ

[i+1]
0 · · · ϕ

[m0]
0

...
...

...
...

xn ϕ
[i]
n ϕ

[i+1]
n · · · ϕ

[mn]
n

with i > 0 and ϕ[j] =
ϕ(j)

j!
.

At each iteration, one must compute the generalized divided differences and then evaluate at t0.
It is quite clear that each computed table can not be reused. Indeed, returning to our example:
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x0 ϕ
[1]
0

ϕ
[2]
0

x0 ϕ
[1]
0 ϕ

[3]
0

ϕ
[2]
0 ϕ[1][x2

0, x
0
1]

x0 ϕ
[1]
0 ϕ[1][x1

0, x
0
1] ϕ[1][x2

0, x
1
1]

ϕ[1][x0
0, x

0
1] ϕ[1][x1

0, x
1
1]

x1 ϕ
[1]
1 ϕ[1][x0

0, x
1
1]

ϕ
[2]
1

x1 ϕ
[1]
1

Table III.7. Derived generalized divided differences. The computation is in bold font and the
Hermite’s polynomial coefficients are boxed.

Hence, the Hermite’s polynomial for ϕ[1] will be

P (x) = ϕ
[1]
0 + ϕ

[2]
0 (x− x0) + ϕ

[3]
0 (x− x0)2

+ ϕ[1][x20, x
0
1](x− x0)3 + ϕ[1][x20, x

1
1](x− x0)3(x− x1).

(3.3)

Clearly, each computation in Table III.7 does not coincide with any computation of Table III.6
(in a general case).

A second approach is to derivative the Hermite’s polynomial and to evaluate it at the desired
point t0. One have two ways:

i. Symbolic derivation.
ii. Numerical derivation.

In the first case, we will have a general expression for each derivative of the Hermite’s polynomial
and then we should evaluate it at t0.
In the second case, we can obtain directly the derivative at t0. In order to do that, we shall use
Automatic Differentiation because any polynomial can be expressed in an evaluation procedure.
First of all, we need an efficient evaluation of a polynomial at a point. It is called the Horner’s
algorithm and has a linear complexity O(N).

Horner’s method. Given the coefficient list (a1, . . . , an) of a univariate polynomial, i.e.

a1 + · · ·+ anx
n.

A Horner’s evaluation algorithm has been codified in the Script III.3 whose complexity is linear.

double horner method ( int n , double ∗ const a , double x )
{

typeof (n) i ;
typeof ( x ) s ;

s = a [ n−1] ;
for ( i = n−2; i >= 0 ; i −−)
{ s = s ∗ x + a [ i ] ; }

return s ;
}

Script III.3. Horner’s method codification in C.
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A suitable modification can be considered for the evaluation of the Hermite’s polynomial
(3.2) at y. Indeed, let us define

m = (m0, . . . ,mn−1)

N =
n−1∑
k=0

(mk + 1)

x = (x0, . . . , xn−1)

a =
(
ϕ[x0], . . . , ϕ[xm0

0 , . . . , x
mn−1

n−1 ]
)
.

Then a possible implementation is in the Script III.4.

double hermite horner method ( int N, int n , int ∗ const m, double ∗
const a , double ∗ const x , double y )

{
typeof (n) k ;
typeof (N) i = N−2;
typeof ( y ) h , s = a [N−1] ;

for ( k = n−1; k >= 0 ; k −−)
{

h = y − x [ k ] ;
for (N −= m[ k ] ; i >= N; i −−)
{ s = s ∗ h + a [ i ] ; }

}
return s ;

}

Script III.4. Horner’s method codification for Hermite’s polynomial in C.

For instance, the polynomial on the Equation (3.3) is expressed as(((
ϕ[1][x20, x

1
1](x− x1) + ϕ[1][x20, x

0
1]
)
(x− x0) + ϕ

[3]
0

)
(x− x0) + ϕ

[2]
0

)
(x− x0) + ϕ

[1]
0 .

Now the idea is to overload the arithmetic using Theorem III.11. In our particular case,
the only issue that may become a problem is the product s*h, but it is not a trouble because
h only have two components in its Taylor’s expansion. Thus, the discrete convolution at most
contains 2 sums in each order.

Let us see that the two approaches proposed are not exactly the same. For instance, given
ϕ(x) = (x+ 1)4 and the respective tables of derived generalized divided differences:

0 1

4

0 1 11

15 6
1 16 17

32
1 16

Table III.8. Hermite derivatives approach.

0 4

15
1 32

Table III.9. Naive approach.

From the left hand side we obtain the interpolated polynomial P1(x) = 1+4x+11x2+6x2(x−1)
and from the right hand side P2(x) = 4 + 15x. An immediate computation gives us

P ′1(x) = 4 + 22x+ 12x(x− 1) + 6x2.

Clearly the degrees of P ′1 and P2 are not the same. Therefore each approach has a different
error in its computation and apparently the derivation of the Hermite interpolated polynomial
should be better, as one observe in Figure III.2.
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Figure III.2. The error of an intermediate point of P ′1 will considerably be smaller than P2.

5.1. Problem in higher orders. Let us consider ϕ : R→ R be a function so that the next
table of values has been given using Theorem III.11:

x ϕ[0] ϕ[1] · · · ϕ[m]

x0 = −1
2 ϕ

[0]

− 1
2

ϕ
[1]

− 1
2

· · · ϕ
[m]

− 1
2

y = 0 ϕ
[0]
0 ϕ

[1]
0 · · · ϕ

[m]
0

x1 = 1
2 ϕ

[0]
1
2

ϕ
[1]
1
2

· · · ϕ
[m]
1
2

with ϕ[j] =
ϕ(j)

j!
.

Let P be the Hermite interpolated polynomial on x0 and x1. We want to compare the error
with the derivatives of P and ϕ at an intermediate point y. That is,

|P [j](y)− ϕ[j](y)|.
Moreover, let us introduce another value to be compared. As we have the truncated Taylor
expansion at x0, i.e.

ϕ(x0 + h) = ϕ[0](x0) + ϕ[1](x0)h+ · · ·+ ϕ[m](x0)h
m (3.4)

Taking h = y − x0, we obtain ϕ̃[j](y) using automatic differentiation (again using the Horner
method in (3.4) with respect to h). Hence, the errors that we want to compare are

|P [j](y)− ϕ[j](y)| and |ϕ̃[j](y)− ϕ[j](y)|
with y ∈ [x0, x1].
The chosen test functions have been:

ϕ(x) =
1

1 + 25x2
, ϕ(x) = cos(x) and ϕ(x) = ex.

As we can observe in Figure III.3, whenm is near to 10 the derivatives of the Hermite polynomial
are better than the derivatives in the Taylor expansion and there is no difference if (x0, x1) =
(−1

2 ,
1
2) or (x0, x1) = (12 ,−1

2). However, if m > 10, then some strange effects appear. For
instance, the error of for ϕ(x) = exp(x) at y = 0 increases a lot. One can try to execute with a
higher value of m but all those effects arise in an exaggerate way.
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Figure III.3. Comparison of the derivatives of the Hermite’s polynomial for x0, x1 and derivatives
of the Taylor expansion for some test functions.
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proposition III.14. The table of generalized divided differences of two points x0 < x1 of the

map ϕ(x) = ex always has positive terms ϕ[xi0, x
j
1] > 0 if j = 0, 1.

Proof. Let us suppose that x1 − x0 = 1. The data of the initial table are ex0 1
j! and ex1 1

j!

with j = 0, . . . ,m. By the Mean Value Theorem,

ϕ[x00, x
0
1] = ex1 − ex0 = eα00 ϕ[x00, x

1
1] = ex1 − eα00 = eα01

ϕ[x10, x
0
1] = eα00 − ex0 = eα10 ϕ[x10, x

1
1] = eα01 − eα10 = eα11

ϕ[x20, x
0
1] = eα10 − ex0−log 2! = eα20 ϕ[x20, x

1
1] = eα11 − eα20 = eα21

ϕ[x30, x
0
1] = eα20 − ex0−log 3! = eα30 ϕ[x30, x

1
1] = eα21 − eα30 = eα31

...
...

ϕ[xm0 , x
0
1] = eα(m−1)0 − ex0−logm! = eαm0 ϕ[xm0 , x

1
1] = eα(m−1)1 − eαm0 = eαm1

Hence there is a set {αij : i = 0, . . . ,m and j = 0, 1} so that

x0 ≤ α00 ≤ x1
x0 − log i! ≤ αi0 ≤ α(i−1)0 i = 1, . . . ,m

and

α00 ≤ α01 ≤ x1
αi0 ≤ αi1 ≤ α(i−1)1 i = 1, . . .m.

Therefore ϕ[xi0, x
j
1] > 0 whenever i = 0, . . . ,m and j = 0, 1. �

According to the previous Proposition, the term of ϕ[xm0 , x
j
1] has to be strictly positive for

j = 0, 1. But a numerical digit cancellation appears when the number of derivatives m is big

enough. We have plotted the Hermite polynomial term ϕ[xm0 , x
j
1] for different values of m in

Figure III.4 where (x0, x1) = (−1
2 ,

1
2).

Summing up, the derivatives of the Hermite’s interpolated polynomial might be an appropriate
method if, and only if, the number of the initial derivatives is not large.
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6. A computer-assisted proof

A computer-assisted proof is a “mathematical” proof that has been at least partially gen-
erated by computer. The aim of that section is to show how the Hermite’s interpolation really
has computational drawbacks. Firstly, let us recall the notion of floating number in order to
introduce a brief introduction in interval arithmetic.

6.1. Floating-point number. A floating-point number, or float for short, is an arbitrary
precision significand (also called mantissa) with a limited precision exponent. For instance, the
double-precision floating-point number occupies 8 bytes in computer memory and according to
the IEE 754 standard has a format:

063 52

sign exponent (11 bit) significand (52 bit)

Figure III.5. IEEE 754 double-precision binary floating-point format.

Thus, the precision is the number of bits used to represent the significand of a floating-point
number. The IEEE754 double-precision format has a precision of 53 bits, i.e. approximately 16
decimal digits because 53 log10 2 ≈ 15.9546.

6.2. Interval computations. The basic principle of interval arithmetic consists in enclos-
ing every number by an interval containing it and being representable by machine numbers.
Thus interval arithmetic is an arithmetic defined on sets of intervals denoted by IR, rather than
sets of real numbers.

The main operations in IR are defined as follows: If x = [x, x] and y = [y, y] are closed
connected sets of real numbers, then

x opy = {x op y : x ∈ x and y ∈ y} for op ∈ {+,−, ·,÷}.
If ϕ : R→ R is a continuous function, then ϕ : IR→ IR denotes an extension to the real intervals
and it has to verify

ϕ(x) ⊂ ϕ(x).

Clearly, if ϕ is monotone, an extension ϕ is quite immediate. In particular,

e : IR −→ IR

[x, x] 7−→ [ex, ex]
extends

e : R −→ (0,+∞)

x 7−→ ex.

e is the most natural and, in that case, is the tightest possible extension. But it is not unique.

6.3. The MPFR and MPFI libraries. Let us introduce two different libraries written
in C which allow us to do computations with multiple precision and to change the arithmetic to
an interval arithmetic.

6.3.1. Multiple Precision Floating-Point Reliable. The MPFR is a portable library written
in C for arbitrary precision arithmetic on floating-point numbers. It aims to provide a class of
floating-point numbers with precise semantics. The main characteristics of MPFR are

i. Its code is portable.
ii. The precision in bits can be set exactly to any valid value for each variables.
iii. It provides the four rounding modes from the IEEE 754-1985 standard.

In particular, with a precision of 53 bits, MPFR is able to exactly reproduce all computations
with double-precision machine floating-point numbers.

6.3.2. Multiple Precision Floating Interval. The MPFI is intended to be a portable library
written in C for arbitrary precision interval arithmetic with intervals represented using MPFR
reliable floating-point numbers. It is based on the GNU MP library and on the MPFR library.
The purpose of an arbitrary precision interval arithmetic is on the one hand to get guaranteed
results, thanks to interval computation, and on the other hand to obtain accurate results, thanks
to multiple precision arithmetic.
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6.4. Lack of accuracy of the Hermite’s interpolation method. The MPFR and
MPFI libraries provides a powerful tool in order to implement a computer-assisted proof.
Let us focus on the Hermite’s interpolation inaccuracy explained in Section 5. The example that
we are going to study is the exponential function ϕ(x) = ex at the points x0 = −1

2 and x1 = 1
2 .

Since x1 − x0 = 1, the table of generalized divided differences is actually a table of generalized
differences. And all the normalized derivatives ϕ[j](xi) are straightforward using Table III.3.

Let us suppose that our data has size n, i.e. ϕ[0](xi), . . . , ϕ
[n](xi). Computing the table of

generalized differences as in Table III.6, we obtain the coefficients of the Hermite’s polynomial

ϕ[0](x0), . . . , ϕ
[n](x0),ϕ[xn

0 , x
0
1], . . . ,ϕ[xn

0 , x
n−1
1 ]. (3.5)

Firstly, (3.5) is computed with a double precision, i.e. IEEE754 double-precision floating-point
number.
Secondly, (3.5) is computed with an interval arithmetic with a prefixed precision.
In Figure III.6 has been plotted the error of the computed double precision and the multiple
precision interval. That means, if [a, b] is the interval and c is the double, the error will be
bounded by

error ≤ max{|a− c|, |b− c|}.
The conclusions are:

• The error behaviour of the first n + 1 values is as one expects because it is just the
input data which is the Taylor expansion of an analytic function.
• The rest has an extremely awful accuracy.

211 = 2048 precision
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Figure III.6. Plot of the error of the Hermite polynomial’s coefficients with a double precision
computation and a multiple precision interval computation for different input data
sizes. Computation time: 0.04 seconds.

In addition, the biggest interval diameter of (3.5) are in the Table III.10.

n the biggest interval diameter
100 2.106078674434713e− 558
80 2.143634287380493e− 570
60 2.254879986115886e− 582
40 2.519891634836048e− 594
20 3.273297938271279e− 606

Table III.10. The biggest interval diameter for different values of n with 2048 precision.



CHAPTER IV

Integrators of Delay Differential Equations with a constant
delay

Let us begin considering a Delay Differential Equation with a constant delay expressed by

ẋ(t) = f(t, x(t), x(t− τ))

with τ is a fixed positive real number. If τ = 0, we have an ordinary differential equation
and integration methods can be applied. The aim of the Chapter is to translate some of those
methods to delayed methods. That is, to impose delayed conditions and how they raise again
the integration method.
First of all, we must fix the problem to be studied. It is called the Initial Value Problem and it
suggests to find a solution x(t0, u) verifying{

ẋ(t) = f(t, x(t), ϕ(t))

xt0 ≡ u
with ϕ(t) = x(t− τ). (4.1)

A first observation is that the map u will be discrete in a table of values whose size will be
depend on each problem.

1. Euler’s method

The first integration method of an Ordinary Differential Equation is the Euler’s method.

Ordinary case. Fixed a step size h and an initial condition (t0, x0). Then

xn+1 = xn + hf(tn, xn)

tn+1 = tn + h

is its iterative Euler’s scheme. By Taylor’s expansion,

x(t0 + h; t0, x0) = x0 + f(t0, x0)h+
h2

2
Dtf(t0, x0) +

h2

2
Dxf(t0, x0)

(
f(t0, x0)

)
+ · · · (4.2)

So the error of the Euler’s method is O(h2) and one says that it is a method of first order because
it is exact up to the first order in h.

Delayed case. Fixed a step size h = τ
N and an initial condition (t0, u). The iterative

scheme is

xn+1 = xn + hf(tn, xn, ϕ(tn))

tn+1 = tn + h.

It is also a first order method with error O(h2). Although its Taylor’s expansion is now

x(t0, u)(t0 + h) = x0 + f(t0, x0, ϕ(t0))h+
h2

2
Dtf(t0, x0, ϕ(t0))

+
h2

2
Dxf(t0, x0, ϕ(t0))(f(t0, x0, ϕ(t0)))

+
h2

2
Dϕf(t0, x0, ϕ(t0))

(
f(t0 − τ, ϕ(t0), ϕ(t0 − τ)

)
+ · · ·

The imposed condition on the step size is because we want to cross exactly at multiples of τ .
The reason of that is because ẋ only represents the right-hand derivative of x.

45
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2. Runge-Kutta family of methods

A first attempt to improve the Euler’s method is to compute the next iteration in two stages.
Let us explain it for the first iteration:

i. Compute f(t0, x0) and obtain x∗1 = x0 + hf(t0, x0).
ii. Compute f(t0 + h, x∗1).

iii. Compute a better approximation of x∗1 by the average

x1 = x0 + h
f(t0, x0) + f(t0 + h, x∗1)

2

and t1 = t0 + h.

More general,

i. Compute f(t0, x0) and obtain x∗1 = x0 + a1hf(t0, x0).
ii. Compute f(t0 + h, x∗1).

iii. Compute a better approximation of x∗1 by

x1 = x0 + h
(
b11f(t0, x0) + b12f(t0 + h, x∗1)

)
and t1 = t0 + h.

where now the values a1, b11 and b12 are parameters to determine. As we want to be more
accurate, we impose a second order method. That is, the coefficients of (4.2), so a1 = 1 and
b11 = b12 = 1

2 .

Ordinary case. The generalization of the previous idea gives us the Runge-Kutta family.
The idea is that if we want to pass from (t0, x0) to (t1, x1), we can try to compute f at different
auxiliary points and then to use a linear combination of them in order to predict x1.

k1 = f(t0 + a1h, x0 + h
s∑
j=1

b1jkj)

...

ks = f(t0 + ash, x0 + h

s∑
j=1

bsjkj)

x1 = x0 + h

s∑
j=1

cjkj

t1 = t0 + h

Table IV.1. Runge-Kutta with s stages and h fixed step size.

We need k1, . . . , ks in the Table IV.1 and if ki wants to be computed, then k1, . . . , ks will be
needed. Hence, a system of equations has to be solved in order to obtain k1, . . . , ks. It can
be done using Newton’s method. Although the issue is avoided in an explicit version, i.e. the
computation of ki is conditioned to known k1, . . . , ki−1.
Typically the Runge-Kutta coefficients are given in a Butcher’s Tableau:

a1 b11 · · · b1s
...

...
...

as bs1 · · · bss
c1 · · · cs

Table IV.2. Implicit Butcher’s Tableau.

a1
a2 b21
a3 b31 b32
...

...
...

. . .

as bs1 bs2 · · · bs(s−1)
c1 c2 · · · cs−1 cs

Table IV.3. Explicit Butcher’s Tableau.
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2.0.1. RK4. A very popular explicit Runge-Kutta method with 4 stages and order 4 is the
well-known RK4 whose Butcher’s Tableau is:

0

1
2

1
2

1
2 0 1

2

1 0 0 1

1
6

1
3

1
3

1
6

k1 = f(t0, x0)

k2 = f(t0 + h
2 , x0 + h

2k1)

k3 = f(t0 + h
2 , x0 + h

2k2)

k4 = f(t0 + h, x0 + hk3)

x1 = x0 + h
6 (k1 + 2k2 + 2k3 + k4)

t1 = t0 + h.

Table IV.4. RK4 equations.

Delayed case. The integration of a Delay Differential Equation with a constant delay
by Delayed Runge-Kutta method is expressed in Table IV.5. It is a closed formulation to
Table IV.1, the differences are in the terms ϕ(t0 + aih). Of course, a step size h = τ

N will also
be considered.

k1 = f(t0 + a1h, x0 + h
s∑
j=1

b1jkj , ϕ(t0 + a1h))

...

ks = f(t0 + ash, x0 + h
s∑
j=1

bsjkj , ϕ(t0 + ash))

x1 = x0 + h

s∑
j=1

cjkj

t1 = t0 + h

Table IV.5. Delayed Runge-Kutta with s stages and h = τ
N step size.

As the initial condition u is a function, which has been discretised, some values ϕ(t0 + aih) may
be unknown. So it must be interpolated by the known data. It is just that fact which produces
a more complicated implementation, at the same time that it adds other error source. Let us
explain the delayed Runge-Kutta 4:

2.0.2. DRK4. The iterative scheme is

k1 = f(t0, x0, ϕ(t0))

k2 = f(t0 + h
2 , x0 + h

2k1, ϕ(t0 + h
2 ))

k3 = f(t0 + h
2 , x0 + h

2k2, ϕ(t0 + h
2 ))

k4 = f(t0 + h, x0 + hk3, ϕ(t0 + h))

x1 = x0 + h
6 (k1 + 2k2 + 2k3 + k4)

t1 = t0 + h.

(4.3)

In order to understand the difficulties of the method, let us consider specific values. For instance,
τ = 1, N = 4, h = 1

N and t0 = 0. Then the initial condition u is discretised with 4 values
u0, u1, u2 and u3. Thus, the input is two vectors called pt and px of size N + 1 and n(N + 1)
respectively. In fact, as the step h is constant in all the process one may only use px.
The first iteration is the computation of t = 0. Hence

• In k1 the value at t = −1 is needed, which is known.
• In k2 the value at t = 1

8 − 1 is needed, which is unknown.

• In k3 the value at t = 1
8 − 1 is needed, which is unknown.

• In k4 the value at t = 1
4 − 1 is needed, which is known.
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Therefore, in DRK4 we need to compute the interpolated polynomial one time in each iteration.
Clearly, the points used in that interpolation have to be ≤ N because the value at t = 0 is
still unknown in px. That value at t = 0 ought to be stored in px too because we want to
interpolate in k2 and k3 at t = 1

4 . A representation of that previous explanation can be found
in Figure IV.1.

−1 −0.75 −0.5 −0.25 0

0.25 0.5 0.75 · · ·0

interpolated

known

Figure IV.1. Points used in the computation of the first interval. The dashed arrows require an
interpolation procedure of the known data. The boundary of the intervals should
be shared in the known data and in the unknown data.

2.1. Comments for an implementation. As we have already commented the boundary
of each interval has to be shared. The input data allocation have been represented in Figure IV.2
and the new allocation that we have implemented in Figure IV.3.

u0 u1 u2 u3

−1 −0.75 −0.5 −0.25

u1
0

un
0

...

u1
1

un
1

...

u1
2

un
2

...

u1
3

un
3

...

px

pt 0

u4

u1
4

un
4

...

double pointer

pointer

Figure IV.2. The input data with a double pointer px and a single pointer pt.
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x0 x1 x2 x3 x4

x1
1

xn
1
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x1
2

xn
2

...

x1
3

xn
3

...

cx

ct

double pointer

pointer

Figure IV.3. Previous interval allocation px, pt and current interval allocation cx, ct for a Delayed
Runge-Kutta implementation.
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The idea is to use a double pointer so that the first and the last pointers are going to be
pointed to the opposite. It is a kind of relation called “head-tail and tail-head”.
In fact, in that specific method with constant step h, the vectors pt and ct are only necessary
for the interpolation step. As we are going to see in the next sections if the the step h is non
constant, the time vectors will have an extra role. Thus, the struct used in our implementation
is in Script IV.1. Of course, the number of points P used in the interpolation procedure will
be a parameter given by the user.

struct dde rk
{

/∗∗
∗ n Dimension o f our problem
∗ n j e t s Number o f j e t s
∗ i d x Index o f the l a s t j e t used
∗ pt Previous time array
∗ px Previous x ’ s array
∗ c t Current time array
∗ cx Current x ’ s array
∗/

int n , n j e t s , idx ;

double ∗pt , ∗∗px , ∗ ct , ∗∗ cx ;
} ;

Script IV.1. Struct for an implementation of Delayed Runge-Kutta method in C.

After the memory allocation control in our implementation we propose the declaration of
drk4 function in Script IV.2 whose arguments are:

� Struct dde rk initialized.
� Dimension n of the problem.
� Pointer to the time t whose next value will be t+ h.
� Pointer to the current x.
� Constant step h.
� Delay r.
� Pointer to the function of our Delay Differential Equation.
� Pointer to the interpolation function.
� Pointer to the k’s and the number of k’s used in (4.3).
� Auxiliary pointer for the interpolated polynomial with inter len points.

int drk4 ( struct dde rk ∗const dde ,
int n ,
double ∗const t ,
double ∗const x ,
double h ,
double r ,
void (∗F) ( int , int , double ∗const , double , double ∗const ,

double , double ∗const , double ∗∗const ) ,
int (∗ i n t e r ) ( int , int , double , double ∗const , double ∗∗const ,

double ∗const , double ∗const ) ,
int nK, double ∗∗const K,
int i n t e r l e n , double ∗const i n t e r p o l ) ;

Script IV.2. Declaration of the implemented function for the Delayed Runge-Kutta 4 in C.

2.2. Example. The first example that we have considered is the Delay Differential Equa-
tion with a constant delay

ẋ(t) = x(t− 1).
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As we want to be able to compare the error of the method, let us do a suitable modification in
order to have a well-known solution. That is, let us introduce a new function r(t)

ẋ(t) = x(t− 1) + r(t).

If we want x(t) = cos(t) to is the solution, we deduce that r(t) = − sin(t) − cos(t − 1). Thus,
the Initial Value Problem becomes to{

ẋ(t) = x(t− 1)− sin(t)− cos(t− 1)

x0(τ) = cos(−τ)
(4.4)

with 0 ≤ τ ≤ 1. Since we are imposing the solution, the interpolation step can be done with the
solution itself. A plot of that error has been plotted in Figure IV.4.

−16

−15

−14

−13

−12

−11

−10

−9

−8

−7

−6

0 5 10 15 20 25 30

lo
g
1
0
|x
(t
)
−

co
s(
t)
|

t

ẋ(t) = x(t− 1)− sin(t)− cos(t− 1)
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Figure IV.4. Delayed Runge Kutta 4 with step h = 1
N and without interpolation of (4.4).

We have two error sources:

• The Runge Kutta error which essentially depends on the constant step h.
• The interpolation error which essentially depends on the number of points used P .

We have also implemented two interpolation methods; the Newton interpolation method and
the Lagrange interpolation method. In both case the result has been the same (as we expected).
The plot with different values of h and P is in Figure IV.5.
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Figure IV.5. Error modifying h = 1
N in the left side and modifying P in the right side of (4.4).
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3. Runge-Kutta-Fehlberg family of methods

Ordinary case. A Runge-Kutta-Fehlberg method is closed to a Runge-Kutta method with
the difference that it allows to determine a suitable step to have a solution with a prearranged
tolerance at each step. The idea is to compute two different approximations and then to try to
estimate the step h for the next iteration.
Let us explain the Runge-Kutta-Fehlberg pq (typically p < q) with s stages.

? Fixed a tolerance tol and values hmin ≤ |h| ≤ hmax.
? Given a matrix (bij) ∈ R(s, s) and vectors (a1, . . . , as), (c1, . . . , cs1) and (d1, . . . , ds2).
? Given an initial point x0 and an initial time t0.
• Compute

ki = f(t0 + aih, x0 + h
s∑
j=1

bijkj) i = 1, . . . , s.

• Compute approximations with respective orders p and q by

x
(1)
1 =

s1∑
i=1

ciki

and

x
(2)
1 =

s2∑
i=1

diki.

• δ = ‖x(1)1 − x
(2)
1 ‖.

• If tol < δ, then

h← 0.9h

(
tol

δ

) 1
q

.

If |h| ≤ hmin, error message and exit.
Iterate the process with the new value h.
• If δ < tol, then

x0 ← x0 + x
(2)
1 and t0 ← t0 + h.

Moreover,

h← 0.9hmin

{
1.2,

(
tol

δ

) 1
q
}
.

If hmax ≤ |h|, then

h← h

|h|hmax.

• Iterate until a final time.

Immediate comments of the previous procedure are: the Butcher’s Tableau becomes to

a1 b11 · · · b1s
...

...
...

as bs1 · · · bss
c1 · · · cs1
d1 · · · ds2

Table IV.6. Implicit Butcher’s Tableau.

a1
a2 b21
a3 b31 b32
...

...
...

. . .

as bs1 bs2 · · · bs(s−1)
c1 c2 · · · cs1−1 cs1
d1 d2 · · · ds2−1 ds2

Table IV.7. Explicit Butcher’s Tableau.

Each update of the step h will always be between hmin and hmax and the values 0.9 and 1.2 are
only “security factors”.
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Delayed case. The delayed case for a Runge-Kutta-Fehlberg is exactly the same up to the
computation of ki’s which is replaced by

ki = f
(
t0 + aih, x0 + h

s∑
j=1

bijkj , ϕ(t0 + aih)
)

i = 1, . . . , s. (4.5)

3.1. Comments for an implementation. The initial condition for a Delay Differential
Equation has to be discretised. As in Delayed Runge-Kutta method some values ϕ(t0 + aih)
may be unknown and we should interpolate the known data in order to obtain the unknown
data. That fact generates a new error source.
A difference with the Delayed Runge-Kutta method is that the vectors for time pt and points
px have not a fixed size. As a consequence, we must search information in our sorted stored
data and we want to do it in an efficient way.

3.1.1. Efficient search of a sorted array in C. Given an element b and a vector (a1, . . . , an)
so that a1 < · · · < an. We want to be able to find an index i such that

ai ≤ b < ai+1.

In order to avoid problems when i = n, let us assume that the initial vector is (a1, . . . , an, a1).
The programming language C has a function in its library stdlib.h called bsearch. That
function implements a binary search of a sorted array whose declaration is

#include <s t d l i b . h>

void ∗bsearch ( const void ∗key , const void ∗base ,

s ize t nmemb, s ize t s i z e ,

int (∗ compar ) ( const void ∗ , const void ∗) ) ;

According to the manual:

Description: The bsearch() function searches an array of nmemb objects, the ini-
tial member of which is pointed to by base, for a member that matches the object
pointed to by key. The size of each member of the array is specified by size.

The contents of the array should be in ascending sorted order according to the
comparison function referenced by compar. The compar routine is expected to
have two arguments which point to the key object and to an array member, in
that order, and should return an integer less than, equal to, or greater than zero
if the key object is found, respectively, to be less than, to match, or be greater
than the array member.

Return value: The bsearch() function returns a pointer to a matching member
of the array, or NULL if no match is found. If there are multiple elements that
match the key, the element returned is unspecified.

It is well-known that the binary search of a sorted array of size n has a complexity O(log2 n).
Thus the problem is reduced to implement the pointer function compar.

int cmp( const void ∗b , const void ∗a ) a t t r i b u t e ( ( a l w a y s i n l i n e ) ) ;
int cmp( const void ∗b , const void ∗a ) {

double t0 , t , t1 ;
t0 = ( ( typeof(&t0 ) ) a ) [ 0 ] ;
t = ( ( typeof(&t ) ) b) [ 0 ] ;
t1 = ( ( typeof(&t1 ) ) a ) [ 1 ] ;

i f ( t < t0 ) {return −1;}
i f ( t == t0 ) {return 0 ; }
i f ( t1 <= t ) {return 1 ; }
return 0 ;

}

Script IV.3. compar function for bsearch function.
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A possible implementation of that function can be found in Script IV.3 whose first line is just
an optimisation issue which says to the compiler gcc that the function has to be always inlined.
Up to here, the posed problem has been solved. However, an extra optimisation can be done.
Firstly, let us propose a new struct for a Delayed Runge-Kutta-Fehlberg method in Script IV.4.
As we can observe we will use two new variables plen and clen in order to have a control of
the used memory. Clearly, both values are going to be lesser than njets.

struct dde rk f
{

/∗∗
∗ n Dimension o f our problem
∗ n j e t s Number o f j e t s
∗ p len Length o f the p r e v i o u s data
∗ p idx Index o f the l a s t j e t used
∗ c l e n Length o f the curren t data
∗ pt Previous time array
∗ px Previous x ’ s array
∗ c t Current time array
∗ cx Current x ’ s array
∗/

int n , n j e t s , plen , pidx , c l en ;

double ∗pt , ∗∗px , ∗ ct , ∗∗ cx ;
} ;

Script IV.4. Struct for an implementation of Delayed Runge-Kutta-Fehlberg method in C.

Hence the memory allocation will be n·njets for px, n·(njets−1) for cx (see Section 3.1.2)
and njets for each pt and ct. The values plen and clen will be the real memory used in the
previous interval (i.e. pt and px) and in the current interval (i.e. ct and cx).
Furthermore, the search only has to be in pt. The same index obtained will be the same index in
px. But if we focus on that search, we realise that if we have obtained the index i, the possible
next index in next searches will be ≥ i. It is just that reason that the field pidx in Script IV.4
has an extra role. In the one hand it saved the last index obtained in the last search (up to the
boundary of the interval that we impose the value). On the other hand, it may optimise the
next searches to do. Indeed, let us explain the Script IV.5.

int g e t j e t ( int plen , double ∗const pt , double t , int ∗const pidx )
{

typeof ( t ) ∗ s ;

i f ( pidx == NULL)
{

s = ( typeof ( s ) ) bsearch(&t , pt , plen , s izeof (∗ pt ) ,&cmp) ;
i f ( s != NULL)
{ return ( s − pt ) ; }

return −1;
}

s = ( typeof ( s ) ) bsearch(&t , pt+(∗pidx ) , plen−(∗pidx ) , s izeof (∗ pt ) ,&cmp) ;
i f ( s != NULL)
{
∗pidx = s − pt ;
return ∗pidx ;

}
return −1;

}

Script IV.5. Optimised search of previous jets.
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The idea is to reduce the search space in successive calls to the function. For that reason, we
are going to save the index of the last search done. And at each new call to the function, we
will use that value. Graphically:

a1 a2 a3 a4 a5 a6 a7 a1

pidx

pt a1 a2 a3 a4 a5 a6 a7 a1

pidx

new pidx

pt

a1 a2 a3 a4 a5 a6 a7 a1

pidx

new pidx

pta1 a2 a3 a4 a5 a6 a7 a1

pidx

pt

1 2

43

pointer

index of

unused

usedAssumption a1 < · · · < a7 auxiliary

new pidx

Figure IV.6. The search space is smaller in each call to the function get jet in Script IV.5.

The conclusion is that the search that we need to do has a complexity ofO(log2(plen−pidx)).
It is true that one can wonder why we need to save all the previous interval if we can reuse the
memory in that indexes smaller than pidx. Well, the answer is fast. We need to save it because
we must interpolate and if we want to do that in a balanced way, we will need points enclosing
the point indexed by pidx.

3.1.2. Sharing data. The memory strategy thought in Delayed Runge-Kutta does not work
in Delayed Runge-Kutta-Fehlberg. The reason is that the real data used in the previous data
interval pt, px and the current data interval ct, cx have not a constant size because the step h is
non-constant. Therefore, a fixed number of times and points are allocated in the initialization
of the struct in the Script IV.4.
Let us explain the Figure IV.7 when the delay τ is equal to 1.

1: Let us assume that the initial interval has been introduced with plen − 1 elements in
px, pt. The memory of uplen and x1 is shared and the computation of x1 in cx puts the
result in that shared memory. The other imposed condition is that the last time in pt
is the first time in ct.
Now, let us suppose that the method goes on up the updated time t+ h is bigger than
the boundary of the interval (in the Figure that means t+ h > 1).

2: As t+ h > 1, we replace the value h with a smaller h such that t+ h = 1.
After that, px with cx and pt with ct will be swapped.

3: uplen points to u1 and u1 points to xclen.
At the same time that the last time on pt (now 1) will be the first time on ct.

4: Finally, the value u1 will be computed with the data of the previous interval. As a
consequence, the value xplen will also be modified because it shares memory with u1.
And the process goes on up to a final time given by the user.

The procedure explained for Figure IV.7 has been chosen for a specific reason, the interpolation.
Indeed, if we are in a boundary of the interval, let us say t = 0, then the Equation (4.5) tells us
that the values t+aih−τ is needed. As the step size is not constant, the points are interpolated
by the data in px. But if we want to compute the value xclen, the value uplen, which is exactly
the same that x1, will be required by the interpolation.
Thus the boundary of the intervals has to be shared and the implemented paradigm has only
been “tail-head” in contrast to the relation “head-tail and tail-head” used in the Delayed Runge-
Kutta method.
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Figure IV.7. Previous interval allocation px, pt and current interval allocation cx, ct for a Delayed
Runge-Kutta-Fehlberg implementation.
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3.2. Example. Let us do the same example that in Section 2.2. That is the Equation (4.4).
First of all, we must fix the Butcher’s Tableau of the Delayed Runge-Kutta-Fehlberg. We decided
to implement when p = 7 and q = 8. It has Table IV.8.

0
8 32800
12 12300 36900
18 18450 0 55350
45 184500 0 −691875 691875
54 22140 0 0 110700 88560
90 −102500 0 0 512500 −1066000 1025000
18 45756 0 0 0 120048 −98400 6396
72 885600 0 0 −3911400 6927360 −5264400 329640 1328400
36 −373100 0 0 94300 −3201280 2550200 −140220 1254600 −36900
108 257364 0 0 −920700 1942272 −1625400 230364 243000 121500 194400
0 6480 0 0 0 0 −64800 −6480 −32400 32400 64800 0

108 −191916 0 0 −920700 1942272 −1560600 236844 275400 89100 129600 0 442800
41 0 0 0 0 272 216 216 27 27 41
0 0 0 0 0 272 216 216 27 27 0 41 41

Table IV.8. Butcher’s Tableau of explicit Runge-Kutta-Fehlberg 78.

· 1
840

· 1
442800

· 1
180

After the memory allocation control of our implementation we propose the declaration of
drk78 function in Script IV.6 whose arguments are:

� Struct dde rkf initialized.
� Dimension n of the problem.
� Pointer to the time t whose next value will be t+ h.
� Pointer to the current x.
� The lowest allowed step hmin, pointer to the step h and the largest allowed step hmax.
� Pointer to the final time tf .
� Tolerance tol.
� Delay r, i.e. τ in (4.4).
� Pointer to the function of the Delay Differential Equation.
� Pointer to the interpolation function.
� Pointer to the k’s and the number of k’s used.
� Auxiliary pointer for the interpolated polynomial with inter len points.

int drkf78 ( struct dde rk f ∗ const dde ,
int n ,
double ∗ const t ,
double ∗ const x ,
double hmin , double ∗ const h , double hmax ,
double ∗ const t f ,
double to l ,
double r ,
void (∗F) ( int , int , double ∗const , double , double ∗const ,

double , double ∗const , double ∗∗const ) ,
int (∗ i n t e r ) ( int , int , double , double ∗const , double ∗∗

const , double ∗const , double ∗const ) ,
int nK, double ∗∗ const K,
int i n t e r l e n , double ∗ const i n t e r p o l )

Script IV.6. Declaration of the implemented function for the Delayed Runge-Kutta-Fehlberg 78
in C.

As one can observe in Table IV.8, some ai’s have the same value. That means, in partic-
ular, that some interpolated polynomials can be reused. The result of the integration of the
Equation (4.4) with arguments

hmin = 10−22, h =
τ

29
, hmax = 1 and tol = 10−16

has been plotted in Figure IV.8.
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ẋ(t) = x(t− 1)− sin(t)− cos(t− 1)
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Figure IV.8. Plot of (4.4) without interpolation in the left hand side and with interpolation using
P points in the other side.

In order to show the range of the non-constant step size we can saved the lowest and the
largest values used in the computation of Figure IV.8.

minh maxh CPU time in seconds
without interpolation 1.599807e− 03 2.599525e− 01 0.00
P = 2 2.082941e− 03 2.518526e− 01 0.00
P = 4 2.109375e− 03 2.595972e− 01 0.01
P = 8 2.109375e− 03 2.159917e− 01 0.00
P = 16 2.109375e− 03 2.263812e− 01 0.01

Table IV.9. Range of the step h in the computation of Figure IV.8.

4. Taylor’s method

Ordinary case. The method assumes that our initial map is smooth enough in the sense
that there is the Taylor’s expansion near to any point in the integration domain up to a prefixed
truncation. That is, the solution of our Initial Value Problem can be expressed by

x(t+ h) ≈ x(t) + x[1](t)h+ · · ·+ x[p](t)hp, with x[j] =
x(j)

j!
.

Thus the iterative scheme becomes to

xm+1 = xm + x[1]m (tm)hm + · · ·+ x[p]m (tm)hpm
tm+1 = tm + hm.

whenever m ≥ 0. The hm is called the m-th step and it should be a smaller value than a radius
of convergence of a local Taylor’s expansion at tm of the solution x(t).

Initial time Intermediate times Final time

tmt0 tj

hj

Figure IV.9. Idea of the Taylor’s integration from an initial point to a final point.
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In fact, there are two parameters that are needed to achieve a given level of accuracy. At
the same time, that one try to minimize the total number of arithmetic operations so that the
resulting computation ought to be as fast as possible.

4.1. Optimal selections. Step and Order size. According to [15] and [1], let us explain

how we can estimate the step and order size of the Taylor’s method. Let x
[j]
m (tm) be the jet of

normalized derivative at tm of the solution of our Initial Value Problem. It satisfies

x[0]m (tm) = xm(tm) = xm.

We want to choose a small enough value of hm and a large enough value of pm such that the
values

xm+1 = xm + x[1]m (tm)hm + · · ·+ x[pm]
m (tm)hpmm

tm+1 = tm + hm

satisfy

‖xm(tm+1)− xm+1‖ ≤ ε
with ε a given level of accuracy. We also look for efficiency, i.e. the computational cost over the
unit of time has to be minimum.
Let us assume that the total cost is proportional to p2. In fact, we showed that applying auto-
matic differentiation each operation in Table III.3 has a complexity O(p2). So the assumption
is not a really restriction.
Let us suppose that our solution x(t) is locally analytic. Hence give an initial data (t0, x0), then

x(t0 + h) =
∑
j≥0

xjh
j , xj ∈ Rn. (4.6)

with a radius of convergence r. By Cauchy’s inequality, the series (4.6) is convergent if

∀ ρ < r, ∃M > 0; ∀ j ≥ 0, ‖xj‖ ≤
M

ρj
.

If we require ‖xp‖hp ≤ ε, then

h

ρ
≤
(
ε

M

) 1
p

. (4.7)

Renaming the two fractions, ĥ ≤ ε̂
1
p is obtained. Thus the function that has to be minimized is

ψ(p) =
Computational cost

Cost per unit of time
=
ap2

ε̂
1
p

with a a suitable positive constant. Applying logarithmic derivative, the critical point is close
to

d logψ

dp
(p) ≈ 2

p
+

log ε̂

p2
= 0⇒ p ≈

⌈
− log ε̂

2

⌉
.

Applying now logarithm in both sides of (4.7), then

log ĥ =
1

p
log ε̂ = − 2

log ε̂
log ε̂⇒ ĥoptimal = e2 ⇒ hoptimal =

ρ

e2
.

Moreover, the remainder of the series (4.6) can be bounded by that values. Indeed,∥∥∥∥∥∥
∑
j>p

xjh
j

∥∥∥∥∥∥ ≤
∑
j>p

‖xj‖|h|j ≤M
∑
j>p

1

ρj
ρj

e2j
= M

∑
j>p

(
1

e2

)j
= M

e−2(p+1)

1− e−2 ≤ ε
e−2p

e2 − 1
.

The Proposition IV.1 sums up the obtained results.
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proposition IV.1. Let x(t) be the solution of an Initial Value Problem such that z 7→ x(tm+ z)
is analytic on a disk of radius rm. Then for any ρm < rm, there is Mm > 0 such that

‖x[j]m‖ ≤
Mm

ρjm
, j ≥ 0. (4.8)

If the required accuracy ε tends to 0, the values pm and hm that required the accuracy and
minimize the global number of operations tend to

hm =
ρm
e2

and pm = −1

2
log

ε

Mm
− 1. (4.9)

Noteworthy comments are found in [1]:

• The values in (4.9) are optimal only when the bound in (4.8) can not be improved. If,
for instance, Mm can be reduced, the previous values are not optimal, i.e. other values
of hm or pm could still deliver the required accuracy.
• The optimal step size does not depend on the level of accuracy and the optimal order

guarantees the required tolerance once the step size has been selected.

4.1.1. Strategies and estimations of order and step size. Let us give different ways of that
estimations.

Naive estimations: Fix the order p and the step h constants in all the integration.
Estimation of the Order: Given the absolute εa and the relative εr tolerances. Let us

define

ε =

{
εa if εr‖x[0]m ‖∞ ≤ εa
εr otherwise.

Then the order is ⌈
−1

2
log ε+ 1

⌉
≤ pm.

N.B.: In fact, that pm can be independent of m, let us called it p.
Time-step estimation: Given an order p, absolute εa and relative εr tolerances. Let

ρ(j)m =



(
1

‖x[j]m‖

) 1
j

if εr‖x[0]m ‖∞ ≤ εa

(
‖x[0]m ‖
‖x[j]m‖

) 1
j

otherwise.

If ρm = min{ρ(p−1)m , ρ
(p)
m }, then the estimated time-step is

hm =
ρm
e2
.

Time-step estimation using absolute error: Given an order p and a tolerance ε. Let

ρ0 =

(
ε

‖x[p]m ‖

) 1
p

and ρ1 =

(
ε

‖x[p−1]m ‖

) 1
p−1

.

Then hm = min{ρ0, ρ1}.
Time-step estimation using relative error with respect to the 1st order: Given

an order p and a tolerance ε. Let us define

ρ0 =

(
ε‖x[1]m ‖
‖x[p]m ‖

) 1
p

and ρ1 =

(
ε‖x[1]m ‖
‖x[p−1]m ‖

) 1
p−1

.

Then hm = min{ρ0, ρ1}.
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Time-step estimation using absolute error and relative with the 1st order: Given
an order p and a tolerance ε. Let us define

ρ0 =

(
ε

‖x[p]m ‖

) 1
p

and ρ1 =

(
ε‖x[1]m ‖
‖x[p−1]m ‖

) 1
p−1

.

Then hm = min{ρ0, ρ1}.
It will depend on the function of our differential equation that we ought to choose one of the
previous estimations (or others).

Delayed case. When we have a Delay Differential Equation with a constant delay τ , we
can try to apply the Taylor’s method in each interval of size τ . The boundary values are the
only thing that has to be considered. Indeed, since ẋ means the right-hand derivative of x, the
Taylor’s method computes that values up to the upper bound boundary value. In the interior
of the interval the solution is as smoother as our Delay Differential Equation is. And in the
boundary the smooth degree increases in each new computed interval.
As a consequence, in an implementation we should save the right-hand derivative and the left-
hand derivative of any interval boundary value.
A graphical example of the method has been drawn in Figure IV.10. The values in [−τ, 0] are
the discretised initial condition of our Initial Value Problem. Given the initial data, the ordinary
Taylor method can be applied up to time τ , up to 2τ and so on. In fact, it is not exactly the
ordinary Taylor method because our Delay Differential Equation has the form

ẋ(t) = f(t, x(t), x(t− τ))

and the computed values of the previous interval has to be saved in order to be used in the
computation of a new value. Consequently, we will need to look for values of the previous data.

t

x(t)

xm

x0

−τ 0 τ

Initial data Intermediate data Final dataBoundary data

Figure IV.10. Graphical example of the Delayed Taylor method.

Let us also observe that the disks estimated by the radii ρj are in the time-line of the
Figure IV.10.

4.2. Comments for an implementation. Like all the previous methods explained, the
initial condition of an Initial Value Problem has to be discretised and the discretisation procedure
will be depend on each Delay Differential Equation.
The Delayed Taylor method requires all the normalized derivatives at each point up to a prefixed
order, that implies a triple pointer variable for the previous and current data.
If we want to work with a non-constant step size, we will need two new variables plen and clen
which values means, respectively, the length of previous and current data.
Hence let us decide to use the Script IV.7 which is quite closed to the Script IV.4. The
differences are in the triple pointers of px, cx, the new variable N and pidx for efficient searches
(see Section 3.1.1).
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struct dde tay l o r
{

/∗∗
∗ n Dimension o f our problem
∗ N Number o f Taylor c o e f f i c i e n t s
∗ n j e t s Number o f j e t s
∗ p len Length o f the p r e v i o u s data
∗ p idx Index o f the l a s t j e t used
∗ c l e n Length o f the curren t data
∗ pt Previous time array
∗ px Previous x ’ s array
∗ c t Current time array
∗ cx Current x ’ s array
∗/

int n , N, n j e t s , plen , pidx , c l en ;

double ∗pt , ∗∗∗px , ∗ ct , ∗∗∗ cx ;
} ;

Script IV.7. Struct for an implementation of Delayed Taylor method in C.

Now the memory allocation can not be reused. The only issue that we can force is the final time
of pt (i.e. indexed by plen) has to be the same that the first time in the current time ct. The
procedure of the Figure IV.11 is the next:

? Given a previous data with length plen.
• Compute the current data searching on the previous data (see Section 3.1.1) up to the

time is either the final time or the upper bound of the boundary time-values.
• In the latter case, do:

– px↔ cx and pt↔ ct (swapping).
– ct1 ← ptclen.
– plen← clen and clen← 0.

• If at some moment the clen is equal to njets, reallocate the memory.

px1 pxplen

pt1 ptplen

· · ·· · ·

· · · · · ·

px11

pxn1

px1plen

pxnplen

...
...

px[0]px[p] · · ·

px[0]px[p] · · · px[p]px[0] · · ·

px[p]px[0] · · ·

cx1 cxclen

ct1 ctclen

· · ·· · ·

· · · · · ·

cx11

cxn1

cx1clen

cxnclen

...
...

cx[0]cx[p] · · ·

cx[0]cx[p] · · · cx[p]cx[0] · · ·

cx[p]cx[0] · · ·

px

pt ct

cx

single pointer triple pointerdouble pointer

cxnjets

ctnjets

pxnjets

ptnjets

same value

Figure IV.11. Previous interval allocation px, pt and current interval allocation cx, ct for a
Delayed Taylor implementation.
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Another important difference with the Delayed Runge-Kutta and Delayed Runge-Kutta-
Fehlberg is that the interpolation is not needed because the convergence of the Taylor expansion
can be used in order to obtain the next jet. Moreover, automatic differentiation and Horner’s
method are strictly recommended in this part. Indeed, let us consider the map

ϕ(h) = c0 + c1h+ · · ·+ cN−1hN−1

with cj ∈ Rn. Since ϕ can be expressed by n polynomials, the evaluation procedure works and
an implementation of complexity O(nN) is obtained by the Horner’s method. The Script IV.8

codifies a possible implementation using the Theorem III.5 and storing ϕ[j] in the variable x.

void d i f f t a y l o r e x p a n s i o n ( int N, int n , double ∗∗ const x , double h ,
double ∗∗ const C)

{
typeof (N) k , i ;
typeof (n) j ;
typeof (∗∗x ) s , t ;

for ( j = 0 ; j < n ; j ++)
{

x [ j ] [ 1 ] = C[ j ] [ N−1] ;
x [ j ] [ 0 ] = x [ j ] [ 1 ] ∗ h ;

for ( k = 2 ; k < N; k ++)
{

x [ j ] [ 0 ] += C[ j ] [ N−k ] ;

t = x [ j ] [ 0 ] ;
x [ j ] [ 0 ] ∗= h ;
for ( i = 1 ; i < k ; i ++)
{

s = x [ j ] [ i ] ;
x [ j ] [ i ] = s ∗ h + t ;
t = s ;

}
x [ j ] [ i ] = t ;

}
x [ j ] [ 0 ] += C[ j ] [ 0 ] ;

}
}

Script IV.8. Differentiation of a Taylor expansion in C.

4.3. Example. Let us consider again the example of the Equation (4.4), that is,

ẋ(t) = x(t− 1) + r(t)

with r(t) a suitable map such that if the initial condition is x0 ≡ cos, the solution is x(t) = cos(t).
The initial input of the delayed Taylor method is a finite collection of jets with all the values at
that points and, in addition, all the derivatives at that points until some prefixed order N . At
least, the input size must have two jets and the latter has to be the left-hand derivative of the
right-hand boundary interval (in our case, the left-hand derivative at t = 0).
Since the initial condition is an analytic function our discretisation has only two jets. One at
t = −1 with a step size h = 1 and the second at t = 0.
In the delayed Taylor method, we need to be able to compute all the derivatives until some
prefixed order N . In particular, the Taylor expansion of r(t) can be computed using the Ta-
ble III.3, i.e. the C++ class defined in Script III.1.
As the solution of the Initial Value Problem is known, the error can be computed. It has been
plotted in Figure IV.12 with an input absolute and an input relative error of 10−15.
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ẋ(t) = x(t− 1)− sin(t)− cos(t− 1) with N = 23

Figure IV.12. Logarithmic error of the delayed Taylor integration of the Equation (4.4).

5. Mackey-Glass equation

The Mackey-Glass equation is a non-linear time Delay Differential Equation with a constant
delay τ > 0. It has some parameters α, β, γ > 0 and it is defined by

ẋ = β
x(t− τ)

1 + x(t− τ)α
− γx.

We want it to be integrated and compared with a well-known solution. Let us do the same
strategy that in the Equation (4.4). Adding a new map r(t). If the solution is x(t) = cos(t),
then

r(t) = − sin(t)− β cos(t− τ)

1 + cos(t− τ)α
+ γ cos(t). (4.10)

verifies that

ẋ = β
x(t− τ)

1 + x(t− τ)α
− γx+ r(t)

has solution x(t) = cos(t). Hence the initial condition isẋ = β
x(t− τ)

1 + x(t− τ)α
− γx− sin(t)− β cos(t− τ)

1 + cos(t− τ)α
+ γ cos(t)

x0 ≡ cos .
(4.11)

DRK4 of the Mackey-Glass equation. Since the solution of the Equation (4.11) is
cos(t), a first approach is to suppose that the interpolation step uses that fact, i.e. if some value
needs to be interpolated at time t, then cos(t) will be the interpolated value. Thus, the error of
the integration without interpolation has been plotted in Figure IV.13.
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Figure IV.13. Delayed Runge-Kutta 4 with constant step h = 1
N of the Equation (4.11).
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On the other hand, in Figure IV.14 can be found the logarithmic error with different values
of the step size and different interpolation sizes.
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Figure IV.14. Delayed Runge-Kutta 4 of the Equation (4.11) with P interpolation size and h = 1
N

step size.

DRKF78 of the Mackey-Glass equation. As we have done with DRK4, the solution of
the Equation (4.11) is cos(t), so the interpolation can be done with the exact solution. Then
different size in the interpolation step can be used in order to compare which has smaller error.
The logarithmic error of the integration of the Equation (4.11) with arguments

hmin = 10−22, h =
τ

29
, hmax = 1 and tol = 10−16.

has been plotted in Figure IV.15.
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Figure IV.15. Delayed Runge-Kutta-Fehlberg 78 of the Equation (4.11) with P interpolation size
and tolerance tol = 10−16.

Furthermore, the maximum and the minimum step size used in that integration can be found
in the following Table.
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minh maxh CPU time in seconds
without interpolation 5.716693e− 04 6.688708e− 02 0.01
P = 2 1.722493e− 04 6.089603e− 03 0.12
P = 4 2.235153e− 04 4.956693e− 02 0.02
P = 8 7.705297e− 04 6.758960e− 02 0.00
P = 16 2.109375e− 03 6.744259e− 02 0.02

Table IV.10. Range of the step of h in the computation of Figure IV.15.

DTaylor of the Mackey-Glass equation. Finally, we can integrate the Equation (4.11)
using the Delayed Taylor method with an input absolute and an input relative error of 10−15

and with an order in the local Taylor’s expansion of N = 23 (see Figure IV.16). Again we can
use Automatic Differentiation in the suitable r(t) of (4.10) and using the Script III.1.
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Figure IV.16. Logarithmic error of the Delayed Taylor method of the Equation (4.11).





CHAPTER V

Computation of periodic orbits

1. Ordinary periodic orbits

In Ordinary Differential Equations Theory the Poincaré map of an ODE

ẋ = f(t, x),

which has periodicity ω > 0 with respect to the first variable, i.e. f(t, x) = f(t + ω, x), can be
constructed using a suitable transversal section.
Firstly, let us recall the previous concept:

• A subvariety Σ ⊂ Rn is the image of a smooth map υ : U → Rm such that
i. Dυ(x) is injective for all x ∈ U ⊂ Rn.
ii. υ : U → Σ is an homeomorphism.

• A transversal section Σ ⊂ Rn−1 at x is a subvariety given by υ : U → Σ such that
i. x ∈ Σ.
ii. f(υ(s)) and ImDυ(s) are a basis of Rn for all s ∈ U .

The Poincaré map at the transversal section Σ of the equation ẋ = f(t, x) is the map

P : Σ −→ Rn

x0 7−→ x(ω; 0, x0).

being x(·; 0, x0) the flow of the differential equation with initial condition x(0) = x0. Using the
Inverse Function Theorem and the Implicit Function Theorem, the Poincaré map is, in fact, a
diffeomorphism. If the differential equation is defined for all x ∈ Rn and the solutions for all
0 ≤ t ≤ ω, then P defines a discrete dynamical system. A fixed point of P is the initial condition
of a periodic solution of period ω, and a periodic point of period k is the initial condition of a
periodic solution of period kω.

Rn

Σ ⊂ Rn−1

υ

x(t)

U

Rn

Figure V.1. A Poincaré map.

A fixed point of the Poincaré map can be tried to find it using the Newton’s method which
has an iterative scheme (

DP (xk)− Id
)
hk = xk − P (xk)

xk+1 = xk + hk

beginning with a closed point x0 to the zero desired.
By the way, the eigenvalues of DP (xk) gives us the stability of the found periodic orbit.

67



68 V. COMPUTATION OF PERIODIC ORBITS

2. Delayed periodic orbits

Let us begin considering a Delay Differential Equation with a constant delay τ

ẋ(t) = f(t, x(t), x(t− τ))

which has periodicity ω > 0 with respect to the first variable, i.e.

f(t, x(t), x(t− τ)) = f(t+ ω, x(t), x(t− τ)).

The delayed Poincaré is also defined in a transversal section Σ which covers whole a subset of
possible initial conditions. It is defined by

P (t0) : C −→ C

u 7−→ xt0+ω(t0, u)

being C = C([−τ, 0],Rn) and x(t0, u) the solution of the Delay Differential Equation with initial
condition xt0 ≡ u.
The strategy that we pose is quite similar that in the ordinary case, a fixed point of the delayed
Poincaré map may be a delayed periodic orbit of the Delay Differential Equation. Hence, the
Newton’s method may be used too.
Since we want to give numerical results, let us focus on how the differential used in the Newton’s
method. Firstly, the initial condition must be discretised obtaining a table of values. After that,
an integration until t0 + ω would be computed and for any of these discretised points and the
Newton’s method may be applied in order to search an initial discretised condition of a periodic
orbit closed to the first seed used in the Newton’s method. Graphically,

Rn

Σ

Figure V.2. Looking for fixed discretised points by a Delayed Poincaré map.

The Newton iterative scheme is, in that case,(
D(P (t0))(uk)− Id

)
hk = uk − P (t0)(uk)

uk+1 = uk + hk

If the discretisation size is m, then uk represents a matrix m-by-n and D(P (t0)) has dimension
m-by-m-by-n. The idea is that we are going to solve independently in each of the n coordinates.
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2.1. Computation of the differential of a discretised delayed Poincaré map. Let
u be a discretised initial condition of size m+ 1. That is, the values

u0, . . . , um.

Let x(t0, u) be the solution of the Delayed Differential Equation. In particular, xt0(t0, u) ≡ u,
at least in the discretised points. If v ≡ xt0+ω(t0, u), then

D(P (t0)) =


∂v0
∂u0

· · · ∂v0
∂um

...
...

∂vm
∂u0

· · · ∂vm
∂um

 ∈ R(m+ 1,m+ 1).

That differential may be computed easily using automatic differentiation, in particular, the
Table III.4. Concretely, we introduce symbols s0, . . . , sm and the computation starts with

u0 + s0, . . . , um + sm.

After the integration, the discretised xt0+ω(t0, u) and the transposed differential are obtained by
Gradient propagation. That propagation can be implemented overloading the arithmetic, such
as doing use of the Script III.2.

3. Comments for an implementation

A first implementation approach is to use one of the integration methods exposed in the
Chapter IV. Consequently, the Delayed Runge-Kutta 4 (see Chapter IV) is one of the most
natural in a first stage. Nevertheless, that chosen implies that some objections must be made
for an easier possible implementation

• the constant step must be h = τ
m .

• ω must be a divisor of τ .

In addition, a linear system solver and an eigenvalue problem solver are needed. For this reason
we have decided to use the next library:

LAPACK library. Linear Algebra PACKage is a standard software library for numerical
linear algebra which has been written in Fortran 90 (version 3.2 and on). It provides routines
for solving systems of simultaneous linear equations, eigenvalue problems, . . .
However, a little bit drawback in a possible implementation is that the memory allocation of any
matrix has to be pointed by a pointer instead of a double pointer. As a consequence, the shared

memory used in Figure IV.3 can not be applied. Let A = (ka
j
i ) and B = (kb

j
i ) be (m + 1)-by-

(m+ 1)-by-n 3D matrices contiguously allocated. Thus, the suggested memory allocation is in
Figure V.3. We impose that the last values of px and pt are equals to the first values of cx and ct.

u0

−τ 0

...
...

px

pt

um

double pointerpointer

· · ·

· · · x0

0 τ

...
...

cx

ct

xm

· · ·

· · ·

x1
m

· · ·
s0 sm

xn
m

· · ·
s0 sm

u1
m

· · ·
s0 sm

un
m

· · ·
s0 sm

xn
0

· · ·
sm s0

x1
0

· · ·
sm s0

u1
0

· · ·
sm s0

un
0

· · ·
sm s0

1a001a0m

na00 na0m nam0 namm

1amm1am0 1b001b0m

nb00 nb0m nbm0 nbmm

1bmm1bm0

Figure V.3. Memory allocation when the LAPACK library is used.
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The next code, written in C++, allows us to codify a Delay Runge-Kutta 4 overloading the
arithmetic is in the Script V.1. It is quite similar to the Scripts IV.1 and IV.2 but in a fancy
codification in Object Oriented Programming (OOP) paradigm.

template<class X, typename T=double>
class Drk
{
private :

unsigned int n , n j e t s , idx , nK;
T ∗pt , ∗ ct ;
X ∗∗px , ∗∗cx , ∗∗K;

/∗ P r i v a t e methods ∗/
. . .

public :
/∗ Constructors , p u b l i c methods and d e s t r u c t o r ∗/
. . .

int drk4 (T &t , X ∗ const x , T h , T r ,
void (∗F) ( int , int , X ∗ const , T, X ∗ const , T, X ∗ const ) ,
int (∗ i n t e r ) ( int , int , T, T ∗ const , X ∗∗ const , T ∗ const ,

X ∗ const ) ,
int i n t e r l e n , T ∗ const i n t e r p o l ) ;

} ;

Script V.1. Delayed Runge-Kutta class in C++.

Therefore an initialization of an object of the class Drk using the Script III.2 is just

Drk< Gradient<double> > dde ;

Script V.2. An initialization of Script V.1 using the Script III.2 in C++.

3.1. Example. Let us consider the next linear Delay Differential Equation with a constant
delay τ = π,

ẋ(t) = x(t− π)− sin(t)− cos(t− π).

If the initial condition is x0 ≡ cos, the solution will be x(t) = cos(t) which is a 2π-periodic
solution.
We want to change a little bit the initial condition such that the Newton’s method gives us the
initial condition x0 ≡ cos. Therefore, let{

ẋ(t) = x(t− π)− sin(t)− cos(t− π)

x0 ≡ cos +10−2 sin

be Initial Value Problem. Applying the delayed Poincaré map with ω = 2π using the Delayed
Runge-Kutta 4 with step h = π

N and a tolerance 10−14 in the Newton’s method. We have
obtained the next Tables by different interpolation sizes P .

N Newton error Newton iterations
16 3.330669e− 16 1
32 9.992007e− 16 1
64 9.992007e− 16 1
128 1.443290e− 15 1

Table V.1. Execution summary with P = 4.

N Newton error Newton iterations
16 4.440892e− 16 1
32 2.220446e− 16 1
64 6.661338e− 16 1
128 2.442491e− 15 1

Table V.2. Execution summary with P = 8.

The logarithmic error with the initial condition x0 ≡ cos has been plotted in Figure V.4.
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Figure V.4. Logarithmic error of the initial condition computed by the Newton’s method with
respect to the cosine initial condition.

By the way, the eigenvalues of the last discretised delayed Poincaré map have also computed
and they have been plotted in Figure V.5 when P = 8. In particular, all of them have modulus
< 1 except one which is > 1. So the Corollary II.14 does not work in that case.
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Figure V.5. Eigenvalues of the Delayed Poincaré plotted in the complex plane and their loga-
rithmic moduli for different values of N .
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Conclusions

The main goal of the current project, which was to understand a first approach of the Delay
Differential Equation (DDE) Theory, has been achieved.

Firstly, we have showed that the DDE Theory is more general than ODE Theory and, al-
though, some Theorems are closed to the ordinary corresponding version, the proofs of them
are quite different. Basically, because we are working in an infinite Banach space and, of course,
the closed unit ball is not a compact set.
Furthermore, the linear Floquet Theory, exposed in Chapter II, has allowed us to use more
Functional Analysis tools like Spectral Theory. However, we must say that the Delayed Floquet
Theory is, nowadays, incomplete because there are cases which the Theory can not work.

Secondly, in all the rest Chapters III to V an exhaustive numerical development such as
integrators of a DDE with a constant delay (Chapter IV) and a brief introduction to Automatic
Differentiation Theory (Chapter III) have allowed us to introduce ourselves in a numerical com-
putation usually used in some parts of dynamical systems. In addition, the tests with a known
solution have allowed us to check if the integrator methods work well, at least, for our tests.

Thirdly, the meetings with my advisor have generated some new ideas. For instance, we have
shown that Hermite’s interpolation is not a good method to interpolate jets of smooth functions
because it propagates huge errors in higher orders. That empirically facts have been proved by
interval computations on a specific example in the last part of Chapter III. The second main
new idea has been how a periodic orbit of a DDE with a constant delay may be computed using
a Delayed Poincaré map, Chapter V. In addition, its stability can be studied easily. Currently,
that method has not been found in any publication related with Delay Differential Equations
and it looks like to be a good method according to some first results.

Personally, the project has allows me to learn a lot of in numerical computing and in dy-
namical systems. Moreover, a future work might be oriented in the next items:

• New numerical methods to compute periodic orbits and their stability.
• Delayed Poincaré maps implemented with different integrators.
• Integrators of DDE with multiple delays.
• Delayed Poincaré maps version with multiple delays.
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APPENDIX A

Ascoli-Arzela’s Theorem

Ascoli-Arzela’s Theorem has been used in some subjects but in any of them has been proved,
so the aim of this Appendix is to give a proof. Firstly, we need to fix some definitions and
remember some previous well-known results (see [2]):

definition A.1. Let X be a metric space X.

• X is precompact when for any ε > 0, there is a finite covering of X with diameters < ε.
• A subset A of X is relatively compact when A is compact.

lemma A.2. Let X be a metric space. There is equivalence between:

i. X is compact.
ii. Any sequence of X has at least a convergent subsequent.
iii. X is precompact and complet.

Moreover,

i. If A ⊂ X is relatively compact, it is precompact.
ii. If X is complete and A ⊂ X is precompact, it is relatively compact.

definition A.3. Let H be a family of mappings from a metric space X to a metric space Y .

• H is equicontinuous at a point x0 ∈ X when

∀ ε > 0, ∃ δ > 0; ∀u ∈ H, d(x, x0) < δ ⇒ d
(
u(x), u(x0)

)
< ε.

• H is equicontinuous when it is equicontinuous at any point of X.

Ascoli-Arzela’s Theorem A.4. Let H be a family of continuous maps from a compact metric
space X to a Banach space Y . There is equivalence between:

i. H is relatively compact.
ii. H is equicontinuous and for any x ∈ X, H(x) = {u(x) : u ∈ H} is relatively compact.

Proof.

i⇒ii) By compactness,

H ⊂ B(u1; ε) ∪ · · · ∪B(un; ε)

with u1, . . . , un ∈ H. We can assume that u1, . . . , un ∈ H. Indeed, if for instance
u1 ∈ H \H, then vk → u1 with vk in H. By triangular inequality, B(u1; ε) ⊂ B(vk; 2ε)
for some k. So by arbitrariness of ε > 0, we can assume

H ⊂ H ⊂ B(u1; ε) ∪ · · · ∪B(un; ε)

with u1, . . . , un ∈ H.
In particular, for any x ∈ X,

H(x) ⊂ B(u1(x); ε) ∪ · · · ∪B(un(x); ε).

The diameter of any of these balls is lesser than 2ε. So H(x) is precompact and since
Y is complete, it is relatively compact.
On the other hand, each ui ∈ H is uniformly continuous because X is compact, i.e.

∀ ε > 0, ∃ δ > 0; ∀x, y ∈ X, d(x, y) < δ ⇒ ‖ui(x)− ui(y)‖ < ε.
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We already know that given u ∈ H, then ‖u− ui‖ < ε for some i. So

‖u(x)− u(y)‖ ≤ ‖u(x)− ui(x)‖+ ‖ui(x)− ui(y)‖+ ‖ui(y)− u(y)‖
≤ ‖u− ui‖+ ‖ui(x)− ui(y)‖+ ‖ui − u‖ < 3ε

and H is equicontinuous.
ii⇒i) It is enough to prove that H is precompact because the set of continuous maps from X

to Y is complete with the uniform convergence.
Take ε > 0. Since H is equicontinuous, for any x ∈ X, there is δx > 0 such that

∀x ∈ X, ∃ δx > 0; ∀u ∈ H, d(x, y) < δx ⇒ ‖u(x)− u(y)‖ < ε.

By compactness, X ⊂ B(x1; δ1) ∪ · · · ∪B(xn; δn). In particular, for any u ∈ H,

x ∈ B(xi; δi)⇒ ‖u(x)− u(xi)‖ < ε.

Now, since, H(xi) is relatively compact, then K = H(x1)∪· · ·∪H(xn) is also relatively
compact. Therefore, there are y1, . . . , ym ∈ K such that

K ⊂ B(y1; ε) ∪ · · · ∪B(ym; ε).

For any map ϕ : {1, . . . , n} → {1, . . . ,m}, let us define

Hϕ = {u ∈ H : u(xi) ∈ B(yϕ(i); ε) for all i = 1, . . . , n}.
It is clear that there are a finite number of ϕ’s and the union of Hϕ’s is a covering of H.
We will finish the proof if we show that the diameter of Hϕ is bounded by ε. Indeed,
given u, v ∈ Hϕ and x ∈ X, then x ∈ B(xi; δi) for some i and

‖u(x)− v(x)‖ ≤ ‖u(x)− u(xi)‖+ ‖u(xi)− yϕ(i)‖
+ ‖yϕ(i) − v(xi)‖+ ‖v(xi)− v(x)‖

< 4ε.

So ‖u− v‖ < 4ε and H is precompact. By Lemma A.2, it is relatively compact. �

proposition A.5. Let X be a compact metric space, Y be a Banach space and (un) be an
equicontinuous sequence in C(X,Y ).

If un → u pointwise on X, then un → u uniformly on X.

Proof. By equicontinuity assumption, given ε > 0 and x ∈ X,

∃ δx > 0; ∀n, d(x, y) < δx ⇒ ‖un(x)− un(y)‖ < ε.

By compactness, X = B(x1; δ1) ∪ · · · ∪B(xk; δk). Since un → u pointwise on X,

∃n0; ∀n ≥ n0 and ∀i, ‖un(xi)− u(xi)‖ < ε.

Therefore for each n ≥ n0 and for each x ∈ X, we have

‖un(x)− u(x)‖ ≤ ‖un(x)− un(xi)‖+ ‖un(xi)− u(xi)‖+ ‖u(xi)− u(x)‖ < 3ε. �

corollary A.6. Any uniformly bounded equicontinuous sequence of continuous maps from a
compact metric space X to a Banach space Y has a uniformly convergent subsequence on X.

Proof. If (un) is such sequence, by Ascoli-Arzela’s Theorem A.4, {un} is compact and it
has a convergent subsequence. By Proposition A.5, it converges uniformly on X. �



APPENDIX B

Fixed point Theorems

Schauder’s Fixed Point Theorem B.1. Let X be a real Banach space and K be a compact
and convex subspace of X.

If u : K → K is continuous, u has a fixed point in K.

Proof. We will prove it in three steps:

• Fixed ε > 0. By compactness, let us consider

K ⊂ B(x1; ε) ∪ · · · ∪B(xn; ε). (2.1)

Let Kε be the closed convex hull of x1, . . . , xn. That is,

Kε =

{ n∑
i=1

λixi : 0 ≤ λi ≤ 1 and
n∑
i=1

λi = 1

}
.

By convexity, Kε ⊂ K. Now, let us consider Pε : K → Kε defined by

x 7→
∑n

i=1 d(x,K \B(xi; ε))xi∑n
i=1 d(x,K \B(xi; ε))

By (2.1), the denominator is non-zero. So Pε is continuous. Moreover,

‖Pε(x)− x‖ ≤
∑n

i=1 d(x,K \B(xi; ε))‖xi − x‖∑n
i=1 d(x,K \B(xi; ε))

≤ ε.

for any x ∈ K.
• Let us consider uε : Kε → Kε defined by

uε(x) = (Pε ◦ u)(x)

Since Kε is homeomorphic to the closed unit ball in Rm for some m ≤ n and by
Brouwer’s fixed point Theorem, there is xε such that

uε(xε) = xε.

• By compactness, xεj → x in X for some subsequence εj → 0 and x ∈ K. Then

‖xεj − u(xεj )‖ = ‖uεj (xεj )− u(xεj )‖ = ‖(Pεj ◦ u)(xεj )− u(xεj )‖ ≤ εj .
By continuity, u(x) = x. �

definition B.2. Let U be a subset of a real Banach space X. A continuous map u : U → X is
compact when for any bounded set K ⊂ U , u(K) is compact.

corollary B.3. Let K be a closed bounded and convex subset of a real Banach space X.

If u : K → K is compact, it has a fixed point.

Proof. Let W the convex closure of u(K). By convexity of K, W ⊂ u(K) ⊂ K. By

compactness of u(K) ⊂ K, W is also compact. Then

W ⊂ K ⇒ u(W ) ⊂ u(K) ⊂ K.
By Schauder’s Fixed Point Theorem B.1, there is a fixed point in W . �
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APPENDIX C

Uniform contractions

The aim of this part is to give a proof of differentiability of some types of contraction
mappings under apparently easy conditions.
We assume that the contraction mapping principle is well-known, so the proof will be omitted
(for details see [2] or [6]):

Contraction mapping principle. Let U be a closed subset of a complete metric space.

If u : U → U is a contraction, it has a unique fixed point in U .

definition C.1. Let X,Y be Banach spaces, U ⊂ X be open subset and V ⊂ Y . A map
u : U × V → V is a uniform contraction when there is 0 < λ < 1 such that

i. u is continuous.
ii. For all x ∈ U and for all y, z ∈ V ,

‖u(x, y)− u(x, z)‖ ≤ λ‖y − z‖.

lemma C.2. Given u : U × V → V a uniform contraction with λ. If u is differentiable in the
second variable, then

‖D2u(x, y)‖ ≤ λ ∀ (x, y) ∈ U × V.
In particular, id−D2u(x, y) is invertible.

Proof. By the mean value Theorem,

‖u(x, y)− u(x, z)‖ = ‖D2u(x, y)(ξ)‖‖y − z‖ ≤ λ‖y − z‖.
Then ‖D2u(x, y)‖ ≤ λ < 1. Indeed, since D2u(x, y) is linear and continuous, by definition,

‖D2u(x, y)‖ = sup
‖ξ‖≤1

‖D2u(x, y)(ξ)‖.

Let us distinct two possible cases:

• ‖ξ‖ ≤ 1. Clearly ‖D2u(x, y)‖ ≤ λ.
• ‖ξ‖ > 1. From λ

‖ξ‖ < λ.

Finally, by Neumann’s series, id−D2u(x, y) is invertible because λ < 1. �

theorem C.3. Let U be a subset of a Banach space, V be a closed subset of a Banach space.
If u : U × V → V is a uniform contraction and g(x) is the unique fixed point of the mapping
u(x, ·) : V → V . Then

i. g is continuous.
ii. If u is C1, then g is locally Lipschitz.
iii. If u is Cp, then g is Cp. Moreover,

Dg(x) =
(
id−D2u(x, g(x))

)−1 ◦D1u(x, g(x)).

N.B. The conditions C1 and Cp are in open sets with closures contained in U × V .

Proof.

i. By continuity of u

∀ ε > 0, ∃ δ > 0; ‖x− y‖ < δ ⇒ ‖u(x, g(x))− u(y, g(y))‖ < ε.
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By definition of g,

‖g(x)− g(y)‖ = ‖u(x, g(x))− u(y, g(y))‖
≤ ‖u(x, g(x))− u(x, g(y))‖+ ‖u(x, g(y))− u(y, g(y))‖
≤ λ‖g(x)− g(y)‖+ ‖u(x, g(y))− u(y, g(y))‖.

So
‖g(x)− g(y)‖ ≤ (1− λ)−1‖u(x, g(y))− u(y, g(y))‖ < (1− λ)−1ε

and g is continuous.
ii. Fixed x0 ∈ U , we choose ε > 0 and C > 0 such that

‖x− x0‖ < ε
‖y − g(x0)‖ < ε

}
⇒ ‖D1u(x, y)‖ ≤ C.

By continuity of g, there is 0 < δ < ε such that

‖x− x0‖ < δ and ‖g(x)− g(x0)‖ < ε.

Thus, if ‖x− x0‖ < δ and ‖y − x0‖ < δ, by the mean value Theorem,

‖g(x)− g(y)‖ ≤ (1− λ)−1‖u(x, g(y))− u(y, g(y))‖ ≤ (1− λ)−1C‖x− y‖.
Therefore g is locally Lipschitz.

iii. Since g(x) = u(x, g(x)), by chain’s rule,

Dg(x) = D1u(x, g(x)) +D2u(x, g(x))Dg(x)

Let A(x) =
(
id−D2u(x, g(x))

)−1
D1u(x, g(x)). We must show that A(x) = Dg(x), that

is

lim
h→0

g(x+ h)− g(x)−A(x)h

|h| = 0.

Indeed, the numerator is equal to

u(x+ h, g(x+ h))− u(x, g(x))−D1u(x, g(x))h−D2u(x, g(x))A(x)h

=u(x+ h, g(x+ h))− u(x+ h, g(x))−D2u(x, g(x))A(x)h

+ u(x+ h, g(x))− u(x, g(x))−D1u(x, g(x))h

= (g(x+ h)− g(x))

∫ 1

0
D2u

(
x+ h, g(x) + s(g(x+ h)− g(x))

)
ds

−D2u(x, g(x))A(x)h+ h

∫ 1

0
D1u(x+ sh, g(x)) ds−D1u(x, g(x))h

= (g(x+ h)− g(x))

∫ 1

0
D2u

(
x+ h, g(x) + s(g(x+ h)− g(x))

)
−D2u(x, g(x)) ds

+D2u(x, g(x))
(
g(x+ h)− g(x)−A(x)h

)
+ h

∫ 1

0
D1u(x+ sh, g(x))−D1u(x, g(x)) ds.

Therefore, ‖g(x+ h)− g(x)−A(x)h‖ is bounded by

(1− λ)−1
[
|h| sup

0≤s≤1
‖D1u(x+ sh, g(x))−D1u(x, g(x))‖

+(g(x+ h)− g(x)) sup
0≤s≤1

‖D2u(x+ h, g(x) + s
(
g(x+ h)− g(x)

)
−D2u(x, g(x))‖

]
.

Since g is locally Lipschitz, then ‖g(x+ h)− g(x)‖ ≤ C|h|. If |h| is small enough, then

‖g(x+ h)− g(x)−A(x)h‖ ≤ (1− λ)−1ε(C + 1)|h|.
So Dg(x) = A(x).
Now if p = 1, g is C1 because A is continuous. By induction, if u is Cp, g is Cp. �



APPENDIX D

Review of spectral theory

This section aims to fix notation and to give a fast review of an elemental spectral theory for
linear and continuous maps between normed spaces with maybe some extra conditions. Some
results are not going to prove. They can be found in [16, ch. VII] and [2, ch. XI].

1. Spectrum

definition D.1. Let X be a complex normed space and u : X → X be a linear and continuous
map. Then

• A λ in C is a regular value when u− λ · id is a linear homeomorphism.
• A λ in C is a spectral value when it is not a regular value.
• The spectrum of u is defined by

σ(u) = {λ ∈ C : λ is a spectral value}.
• The point spectrum of u is the set of its eigenvalues, i.e.

σp(u) = {λ ∈ C : ker(u− λ · id) 6= {0}}.
• The eigenspace of an eigenvalue λ is the set of its eigenvectors and the 0, i.e.

E(λ;u) = ker(u− λ · id).

Remark D.2. Clearly, σp(u) ⊂ σ(u). If X is finite dimensional, then σp(u) = σ(u).

notation. σ∗(u) := σ(u) \ {0} and σ∗p(u) := σp(u) \ {0}.

2. Compact linear mappings

definition D.3. A linear map u : X → Y between normed spaces is compact when for any
bounded subset K ⊂ X, u(K) is relatively compact.

As immediate result:

corollary D.4. A linear map u : X → Y is compact when for any (xn) bounded sequence of
X, it has a subsequent (xnk

) such that (u(xnk
)) converges in Y .

corollary D.5. Any compact linear map is continuous.

Proof. If u : X → Y is compact linear map, then ‖u‖ < +∞ and it is continuous. �

proposition D.6. Given u and v linear maps. u◦v is compact map whenever u or v is compact.

Proof. We distinct two cases:

• u is compact. Given K a bounded set, v(K) is bounded by linearity. So u(v(K)) is
relatively compact.
• v is compact. Given K a bounded set, v(K) is relatively compact. So u(v(K)) is

relatively compact by linearity. �

The next result tells us that any compact linear map whose infinite dimensional domain is
not invertible.
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corollary D.7. If u : X → X is an invertible compact linear map, then X has finite dimension.
In particular, if u is compact linear map and X is infinite dimensional, 0 ∈ σ(u).

Proof. By Proposition D.6, id is compact. Then the unit ball is compact and X is finite
dimensional. �

proposition D.8. Let u : X → Y be a compact linear map and E ⊂ X be a vector subspace.
Then

u � E : E −→ u(E) is compact.

Proof. Let K be a bounded subset of U . Then u(K) is relatively compact in Y . Since

u(K) ⊂ u(E), then u(K) is relatively compact in u(E). �

proposition D.9. Let (un) be a sequence of compact maps from a normed space X to a Banach
space Y . If un → u, then u is compact.

Proof. Let K be a bounded subset of X. Since Y is complete, it is enough to show that
u(K) is precompact (Lemma A.2). By hypothesis,

K ⊂ B(0; ε).

By convergence, there is n such that ‖un − u‖ < ε. Since un(K) is precompact,

un(K) ⊂ B(x1; ε) ∪ · · · ∪B(xr; ε).

So u(K) ⊂ B(x1; 2ε) ∪ · · · ∪B(xr; 2ε). Indeed,

‖u(x)− xi‖ ≤ ‖u(x)− un(x)‖+ ‖un(x)− xi‖ < 2ε. �

proposition D.10. Let u : X → X be a linear map between a complex normed space. Given a
polynomial p(x) = anx

n + · · ·+ a0. Then

i. p(u) : X → X is a linear map.
ii. σ(p(u)) = p(σ(u)). That is, σ(p(u)) = {λ : p(µ) = λ for some µ ∈ σ(u)}.

Proof.

i. Clearly, p(u) = an · un + · · ·+ a0 · id and it is linear if u is linear.
ii. Let us suppose that n ≥ 1. Fixed λ, let the zeros of p(x)− λ be α1, . . . , αn, so that

p(u)− λ · id = (u− α1 · id) · · · (u− αn · id). (4.1)

If u−α1 ·id, . . . , u−αn ·id have continuous inverses defined on all of X, then p(u)−λ ·id
also has continuous inverse defined on all of X. We must show two inclusions:
⊂) If λ ∈ σ(p(u)), there must be some αk such that αk ∈ σ(u). Since p(αk) = λ, this

proves the inclusion.
⊃) Suppose now that some αk is in σ(u). Let us distinct two possible cases:

• u− αk · id has inverse. Its inverse is not continuous. So the inverse (when it
exists) of p(u)− λ · id is not continuous by the relation (4.1). So λ ∈ σ(p(u)).
• u− αk · id has no inverse. Exchanging it with u− αn · id in (4.1), we obtain

that p(u)− λ · id also has no inverse, so λ ∈ σ(p(u)). �

3. Topological direct sum

Any normed space is a topological vector space in the sense that the mappings of “sum of
vectors” and “product by a scalar” are continuous with the topology induced by the norm. The
assumption that a normed space is a vector space allows us to consider the direct sum of vector
subspace. However, when we want to consider it a subtle notion appears and one should distinct
the topological and algebraic point of views.

definition D.11.

• Z is an algebraic direct sum of vector subspaces X and Y when
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i. X ∩ Y = {0}.
ii. X + Y = Z.

It will be denoted by Z = X ⊕ Y .
• Z is a topological direct sum of vector subspaces X and Y when

i. X ∩ Y = {0}.
ii. X + Y = Z.

iii. The map1 X × Y → X + Y defined by (x, y) 7→ x+ y is a linear homeomorphism.
It will also be denoted by Z = X ⊕ Y .

proposition D.12. Let X and Y be subspaces of a common normed space. There is equivalence
between:

i. X ⊕ Y topologically.
ii. The projection map π : X + Y → X is linear, surjective and continuous.

Proof. Since any normed space is a topological vector space, the map ρ : X × Y → X + Y
is always continuous. It is also linear and ‖ρ‖ ≤ 2. Its inverse is

ρ−1 = (π, id− π).

Therefore it remains to distinct if ρ has continuous inverse or π is continuous.

⇓) ρ−1 is continuous. So ‖π‖ ≤ ‖ρ−1‖.
⇑) We have ‖ρ−1‖ ≤ ‖π‖+ 1, so ρ−1 is continuous. �

corollary D.13. Let X and Y be subspaces of a common normed space. If X⊕Y topologically,
then X and Y are closed.

Proof. By Proposition D.12, the projection π : X+Y → X is linear and continuous. Then
X = ker(id− π) is closed by continuity of π. �

theorem D.14. Let X and Y be closed subspaces of a Banach space. Then

X ⊕ Y algebraically⇒ X ⊕ Y topologically.

Proof. We will apply the open map Theorem. First of all, X and Y are also Banach space
because they are closed in a Banach space. Let us consider two different norms in X × Y .

(X × Y )1 with norm ‖(x, y)‖1 = ‖x‖+ ‖y‖.
(X × Y )∞ with norm ‖(x, y)‖∞ = sup{‖x‖, ‖y‖}.

Let us consider now

(X × Y )∞
id−→ (X × Y )1

ρ−→ X + Y.

The assumption X ⊕ Y algebraically tells us that ρ is an isomorphism. Since ρ is always linear
and continuous with ‖ρ‖ = 1, then ρ is a linear homeomorphism. On the other hand, id is
bijective and continuous because ‖·‖1 ≤ 2‖·‖∞. Thus, id is also a linear homeomorphism. �

4. Spectrum of a compact linear map

theorem D.15. Let u : X → X be a compact linear map between a complex normed space. Then

i. σ(u) is either finite or numerable in C. Moreover, each element of σ∗(u) is open.
ii. σ∗(u) = σ∗p(u).

iii. For each λ ∈ σ∗(u), there are vector subspaces such that
a) X = N(λ)⊕ F (λ) topologically.
b) N(λ) is finite dimensional and F (λ) is closed.
c) u

(
N(λ)

)
⊂ N(λ) and there is an integer called rank of λ such that

k = min{k ∈ Z : k ≥ 1 and (u− λ · id)k
(
N(λ)

)
= {0}}.

1Of course, X × Y is endowed with the supremum norm, that is, ‖(x, y)‖ = sup{‖x‖, ‖y‖}.
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d) u
(
F (λ)

)
⊂ F (λ) and (u− λ · id) � F (λ) is an homeomorphism.

e) E(λ;u) ⊂ N(λ).
f) σ(u � N(λ)) = {λ} and σ(u � F (λ)) = σ(u) \ {λ}.

iv. If λ 6= µ are in σ∗(u), then N(µ) ⊂ F (λ).

notation. dimE(λ;u) is called geometric multiplicity and dimN(λ) algebraic multiplicity.

By Proposition D.10 and Theorem D.15 we deduce:

corollary D.16. Let u : X → X be a linear map between a complex normed space so that un

is compact for some n. Then

i. σ(u) is either finite or numerable in C. Moreover, each element of σ∗(u) is open.
ii. σ∗(u) = σ∗p(u).
iii. For each λ ∈ σ∗(u), there are vector subspaces such that

a) X = N(λ)⊕ F (λ) topologically.
b) N(λ) is finite dimensional.
c) u

(
N(λ)

)
⊂ N(λ) and u

(
F (λ)

)
⊂ F (λ).

d) σ(u � N(λ)) = {λ} and σ(u � F (λ)) = σ(u) \ {λ}.
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