
Treball final de grau

GRAU D’ENGINYERÍA
INFORMÀTICA

Facultat de Matemàtiques
Universitat de Barcelona

ConnectedFood

Daniel Bautista Miralles

Director: Àlex Pardo Fernández

Created at: Departament de

Matemàtica aplicada i analisi

Barcelona June 27, 2015

Contents

1 Introduction 1

1.1 Motivation . 1

1.1.1 Use case example . 1

1.1.2 Extra personal interest . 1

1.2 Goals . 2

2 Development 3

2.1 Technologies . 3

2.1.1 Python . 3

2.1.2 Python modules . 3

2.1.3 HTML and CSS . 4

2.1.4 MongoDB . 5

2.1.5 JSON . 5

2.1.6 Other technologies . 6

2.2 Graph construction . 7

2.2.1 Ingredients list . 7

2.2.2 Substitutes search . 7

2.2.3 Extra information . 9

2.2.4 Hand work and final graph 9

2.3 Web page development . 13

2.3.1 Persistence . 13

2.3.2 Find a substitute . 13

2.3.3 Find a recipe . 15

2.3.4 Change ingredients . 16

2.3.5 Similar recipe . 17

2.3.6 Error pages . 19

2.4 How to run the project . 23

2.4.1 Prerequisites . 23

2.4.2 Importing the database . 23

2.4.3 Running the project . 23

3 Conclusions and future work 24

4 Especial thanks 26

i

1 Introduction

Nowadays, we have fewer time to dedicate to cooking. A good diet requires an

effort in preparing the plates. Fast food or pre-cooked foods are not the best option.

Because of that, we need some help that allows us to save a precious time.

There are several websites to find recipes from different criteria (e.g. AllRecipes1),

or even to know about the possible substitutes of an ingredient (e.g. MyRecipes2).

But they are simply a large database of recipes or ingredients.

ConnectedFood is an application that lets you find ingredient substitutes and

similar recipes depending on the similarity of its ingredients. It is based on an

ingredients net built from several sources. It means this application adds the new

feature to find ingredient alternatives to your recipes or to help you create recipe

variants.

1.1 Motivation

1.1.1 Use case example

It is Sunday morning. Your friends come home for lunch. You have to cook a dish

that you promised them. But you realize you don’t have a couple of ingredients.

There is no time to go shopping, and you decided to use ConnectedFood.

I like cooking and sometimes I have been in a similar situation, not necessarily

that, but similar. This solution could be a useful one.

1.1.2 Extra personal interest

As I explain at the Development section, I decided to use MongoDB as the per-

sistence layer for the project. I wanted to learn about it because I am interested in

NoSQL databases. At work (I am a J2EE developer) we use MySQL, and everyday

I can see its advantages and inconvenients. So I started to read about a document-

oriented database, and I felt curiosity. In fact, I completed an online course at the

MongoDB University as you can see here3.

1http://allrecipes.com/
2http://www.myrecipes.com/
3https://university.mongodb.com/course_completion/d599259239874e858fcb38b0baf31f49

1

http://allrecipes.com/
http://www.myrecipes.com/
https://university.mongodb.com/course_completion/d599259239874e858fcb38b0baf31f49

1.2 Goals

The original idea was to build a “social network of ingredients” and an application

that exploits this network with a recommender that could learn of the users pref-

erences. As this was very ambitious, while the idea was turning to a project, we

saw that it would be better to develop a prototype instead of an entire application.

Later, if there would be time, I could develop more features from there.

I spent some time trying and researching with that idea in mind. Until, finally,

when it was time to begin the true development we realized that the main task was

to build the ingredients network and one or two examples of exploitation. This was

laborious enough.

2

2 Development

The development process has 2 different parts: the graph construction (and ev-

erything related to the data collection) and the web app’s development. But before

that, I will first explain the technologies used in this project.

2.1 Technologies

When I thought about what would be the end-user interface, I figured that an

Android application would be great, rather than a web page. But then I realized

that I would need a server side. For that reason, and because I would have to spend

extra time learning Android, I decided to develop a simple web page. I am more

familiarized with it than with the Android OS.

2.1.1 Python

Python is an easy to learn, powerful programming language. It has efficient

high-level data structures and a simple but effective approach to object-oriented

programming. Python’s elegant syntax and dynamic typing, together with its in-

terpreted nature, make it an ideal language for scripting and rapid application

development in many areas on most platforms[1].

In addition to that, Python is one of the best choices to develop using graphs

and document databases. It was the first language I learned on this degree and,

in my opinion, it is the most appropriate language to learn programming; not only

for its simplicity and intuitiveness , but also because it forces you to write properly

indenting. Moreover, Python is not a compiled language, it is interpreted; which

makes easier the evolution of the project structure. For those reasons, and because

I just like it, Python is the language I have chosen for the project. With it, you can

have things running very quickly.

2.1.2 Python modules

pymongo

Pymongo is a Python distribution containing tools for working with MongoDB,

and is the most recommended way to work with MongoDB from Python[2]. It

contains the basic MongoDB shell commands and several high-level functions.

3

bottle

Bottle is a fast, simple and lightweight Web Server Gateway Interface micro web-

framework for Python[3]. With bottle, it is very easy to develop a quick and simple

web application.

networkx

NetworkX is a Python language software package for the creation, manipulation,

and study of the structure, dynamics, and functions of complex networks[4]. It

allows to create graphs of several ways and export them into different formats.

requests

Requests is an HTTP library. It allows you to send HTTP/1.1 requests. You

can add headers, form data, multi-part files, and parameters with simple Python

dictionaries, and access the response data in the same way[5].

re

This module provides regular expression matching operations. The functions in

this module let you check if a particular string matches a given regular expression[6].

lxml

The lxml XML toolkit is a Pythonic binding for the C libraries libxml2 and

libxslt. It is unique in that it combines the speed and XML feature completeness of

these libraries with the simplicity of a native Python API[7]. Lxml provides tools

for parsing XML and HTML documents.

json

json module exposes an API to users of the standard library marshal and pickle

modules[9]. It is very useful to convert JSON files into Python dictionaries.

2.1.3 HTML and CSS

HTML (HyperText Markup Language) is a markup language that web browsers

use to interpret and compose text, images and other material into visual or audible

web pages.

4

Default characteristics for every item of HTML markup are defined in the browser,

and these characteristics can be altered or enhanced by the web page designer’s

additional use of CSS[8].

Cascading Style Sheets (CSS) is a style sheet language used for describing the

look and formatting of a document written in a markup language like HTML[10].

2.1.4 MongoDB

MongoDB is an open-source document database that provides high performance,

high availability, and automatic scaling[11].

The advantages of using documents are[12]:

• Documents correspond to native data types in many programming languages.

The documents that MongoDB uses have the structure of JSON docu-

ments. This means it is very convenient to use Python because of its data

type called “dictionary”. These dictionaries has the same structure than a

JSON document, so it is very easy to retrieve and save data in MongoDB

using Python. So much so, that the mapping of a response of a MongoDB

query is almost direct; even entirely direct with the help of pymongo.

• Embedded documents and arrays reduce need for expensive joins.

In order to improve performance, data can be nested to avoid the creation

of an extra collection or unnecessary operations to retrieve what we need. In

addition, MongoDB does not guarantee the referential integrity, so with the

embedded documents we can ensure the data consistency.

• Dynamic schema supports fluent polymorphism.

As we don’t have the need to define how our collections will be , we can

save documents with different structure and only worry about the existence

of the important fields. We always need to think about what our applications

need.

2.1.5 JSON

JavaScript Object Notation is an open standard format that uses human-readable

text to transmit data objects consisting of attribute–value pairs. It is used primar-

5

ily to transmit data between a server and web application, as an alternative to

XML[13]. As a value, you can set other documents, a list of data or simply a

primary value. The list can be formed by any of the data type supported by JSON.

2.1.6 Other technologies

PyCharm

PyCharm is an IDE used for programming in Python. It provides code analysis,

a graphical debugger, an integrated unit tester and integration with version control

systems.

Notepad++

Notepad++ is a free source code editor that supports several languages[14]. It is

very useful to modify large text files thanks to the column editor and the regular

expressions replacement.

Git

Git is a free and open source distributed version control system designed to handle

everything from small to very large projects with speed and efficiency.[15] I decide

to work with this because I usually use it, not only at work, also by my own. It is

very comfortable to use and I like it.

Bitbucket

Bitbucket is a hosting site for the distributed version control systems (DVCS)

Git and Mercurial[16]. It offers free accounts with an unlimited number of private

repositories (which can have up to five users).

SourceTree

SourceTree is a Git client that helps you manage your work and your repositories.

It simplifies the use of Git , but without losing the power of this VCS.

6

2.2 Graph construction

The kernel of the application, the graph, is composed by names of ingredients as

the nodes, and similarity relationships between those ingredients as the edges.

The most important workload of the graph construction and almost of the whole

project is the data collection fase. There are four steps.

2.2.1 Ingredients list

First of all, I needed a list of ingredients, a large one. So we (Àlex and me) started

to search for the internet until we found a GitHub repository with an ontology of

many ingredients and more things. Here4 you can see the ontology.

The next step was to merge all the files in the ontology to obtain one single file

with all the ingredients. Then I had to purge the file with regular expressions to

have only a list of ingredients. There was much extra text.

2.2.2 Substitutes search

Once I had my list of ingredients, I needed to search information about the

possibles substitutes of each one. We found a web page (GourmetSleuth5) with

many articles describing many ingredients, including their possible substitutes.

Here is where Python comes into play. In order to extract the information of the

GourmetSleuth web page I wrote a script to read each article (web scraping) of each

ingredient in the list. I used the result of this to create a first prototype of the graph,

adding edges to it with every substitute found of each ingredient. The problem here

was that not every ingredient in the list were found by the script; maybe because

the page had no information about it or because it had some difference in the

name. Moreover, it is also possible that the substitute found were not in the list of

ingredients.

The appearance of the graph at this point was like shown in figure 1

4https://github.com/JoshRosen/cmps140_creative_cooking_assistant/tree/master/ontology
5http://www.gourmetsleuth.com/ingredients

7

https://github.com/JoshRosen/cmps140_creative_cooking_assistant/tree/master/ontology
http://www.gourmetsleuth.com/ingredients

Figure 1: First prototype graph

8

Figure 2: Islands detail

As you can see in figures 1 and 2, there are many islands where ingredients are

connected to only a single other ingredient or to themselves. This means that

this graph is poorly connected and there are very few nodes. So we need more

information.

2.2.3 Extra information

Searching again for a web page to find substitutes to ingredients, so we can

complete the prototype graph, we found a useful one: MyRecipes6. In this case,

we have a table with several ingredients and its substitutes. Once again I wrote a

script in Python to scrap the page and extract all the table rows. This time I did

not create a graph, instead I saved the information in a text file.

2.2.4 Hand work and final graph

It is known that the web scraping is a technique that collect so much “garbage

information”. It is so difficult to extract only what you need. Because of that is

very common to do a post processing with the collected data. And this is exactly

what I did.

6http://www.myrecipes.com/how-to/ingredient-substitutions

9

http://www.myrecipes.com/how-to/ingredient-substitutions

First of all, I cleaned the text file using regular expressions, search and replace

function, column editor, and reading the file to catch any strange character or

word without sense. Once I had the file properly formatted (I decided to use the

form “ingredient:susbstitute1,substitute2,...”), the next step was to merge the graph

edges and the file in order to add all the information in the graph that was not in

the file. So, one by one, I was adding ingredients until I completed the work. The

result was a number of ingredients around 500, where every single ingredient had

at least one substitute, and none of them was themselves.

Having the formatted and completed text file, I wrote another Python script to

read the file and create a second graph version. This time, the result was more

satisfying, as you can see in figure 3.

10

Figure 3: Enhanced graph

In this graph, we have more nodes, better connection, zero alone nodes and

interesting groups as seen in figure 4.

11

Figure 4: Enhanced graph detail

Each group represents types of food, like flours, pasta, cereals or spices, among

others. It is normal that these groups are formed and not to have a fully connected

graph, that does not make sense.

There is a file in the code folder of the project named “level 2 graph.py”. This

script reads this final graph and creates a new one weighted and more connected

than the first version. Basically, for every neighbour of every node, it creates a

weighted edge between the node and its neighbours with weight 1. For the neigh-

bours of the neighbours of every node, it creates a weighted edge between the node

and the neighbours of its neighbours with weight 2. For example, imagine I1” means

it is similar to I1’, which is already similar to I1, so I1 and I1” are less similar than

I1 and I1’ are, but there is a degree of similarity. This graph is not currently being

used because it requires a functionality of the web app that I have not implemented,

but which I will explain later.

12

2.3 Web page development

The next task to do was to exploit the graph. As I said earlier, I decided to do a

simple web page using the explained technologies. So, let’s see the features of this

application.

2.3.1 Persistence

We have the graph, the main information source for this application. Now we

need to store it somewhere. As you know, the persistence layer of this project is

MongoDB. With a simple Python script I save the graph into the “ingredients”

collection.

Throughout the application, Python connects to MongoDB thanks to pymongo

to retrieve the desired data. The structure of the database schema is simple; we

only have 2 collections: ingredients and recipes. The first one contains the graph

(being possible to use other graphs if wanted). The second one stores the recipes.

These documents have been entered manually to avoid wasting time and to test the

application.

Just for the record, Àlex found an API useful to retrieve thousands of recipes

(BigOven API7). I wrote a python file to request recipes and store it on MongoDB. It

worked fine, but the recipes needed a thorough processing to match the ingredients

of those recipes with my list of ingredients. So I decided not to use it.

2.3.2 Find a substitute

This feature reads the graph and shows to the user all the ingredients stored.

Then the user can select one of them and search for its substitutes (figure 5). When

the user clicks the Search button, then the page shows the list of substitutes of

the selected ingredient. Each of them is selectable to perform a new search from it

(figure 6).

This is the basic operation of exploitation of the graph. This part of the web

page took practically longer than the others because it included everything related

to HTML and CSS, plus bottle.

7http://api.bigoven.com/

13

http://api.bigoven.com/

Figure 5: Home page of the web app

Figure 6: The result of the search

14

2.3.3 Find a recipe

If the user clicks on the Recipes button of the menu, the application shows a page

similar to the ingredients list, but with recipes this time (figure 7). When the user

selects a recipe from the drop down list, a new page is load with the information

of the recipe (figure 8). Here we can see the name of the recipe, the list of its

ingredients and a similar recipe suggested by the application.

The list of ingredients, in the database, is embedded in the recipe document, but

every ingredient of this list exists in the graph. This way, when the application

receive the request to show a recipe, it searches the ingredients of that recipe in the

graph.

Figure 7: The recipes page

15

Figure 8: The information of the recipe

2.3.4 Change ingredients

Each one of the ingredients in the recipe information page is a drop down list

where you can see the similar ingredients pre-calculated by the server. The way

to do it is to search every ingredient from the recipe document obtained from the

database in the graph, and retrieve its neighbours. The utility of this feature is to

give ideas to the user of what to use instead of a concrete ingredient, if don’t have

it. You can see an example in figure 9.

16

Figure 9: Ingredient change

2.3.5 Similar recipe

Similar to the above, before the application shows the recipe information page,

the server calculates a similar recipe of the selected one in order to show it to the

user in the Similar recipe section, as you can check in figure 10.

The algorithm that calculates the similarity between two recipes compares the

ingredients of each one and gives points to the recipe depending on whether is the

same ingredient, is a similar one or if is different. The recipe with the best score is

selected to be shown.

17

Figure 10: Similar recipe

For exmaple, consider the recipe R1 that we want to compare with the recipes

R2 and R3. R1 have the ingredients I1 and I2. R2 have the ingredient I1’ (which is

similar to I1). And R3 have the ingredients I1, I2’, and I3. If we run the algorithm,

it will give 1 point to the recipe R2 and 3 points to the recipe R3, so the recipe R3

will be the similar recipe to be shown. I summarize this on the following formulas.

18

IR1 = IR2 → 2p (1)

IR1 ≈ IR2 → 1p (2)

IR1 6= IR2 → 0p (3)

ScoreR2 =
0∑
i

ScoreIi (4)

In case 1 the ingredient of R2 is the same ingredient of R1, so R2 will gain 2

points. As the ingredient of R2 of case 2 is similar but not the same that the one

of R1, R2 will gain only 1 point. If the ingredient of R2 is not similar neither the

same of the ingredient in R1, R2 will gain no points for this comparison (case 3).

Formula 4 means that the total sum of the points of every ingredient comparison

of the recipe is the final score of that recipe.

Finally, and returning to the recipe page, if the user clicks on the See button, the

application loads the recipe page of the similar recipe selected.

2.3.6 Error pages

If someone attempts to load a page without setting the correct parameter (e.g.

load the /recipe page without selecting a recipe), the application raises a 405 http

error. ConnectedFood catches this error and shows a custom page like the one in

figure 11.

19

Figure 11: 405 error page

Also, if the user writes a path to a page that not exists in the server (e.g.

/fakepage), the application raises a 404 error that catches and shows a custom

page (figure 12).

20

Figure 12: 404 error page

There is another error page which catches the 500 errors. This error means that

server has thrown an internal error. This could be probably caused by an error on

the database. Is not very common. You can see an example in figure 13.

21

Figure 13: 500 error page

In any case, you can return to the Ingredients page or to the Recipes page by

clicking the corresponding menu button.

22

2.4 How to run the project

2.4.1 Prerequisites

This project uses Python version 2.7.8 plus the Python modules explained previ-

ously. I highly recommend to download the Anaconda distribution8, wich contains

most of the modules. To download the rest of the modules I used the pip command.

Regarding the database, it is necessary to install MongoDB (you can download

it here 9) and configure it. If you are using Windows, you can enter here 10 and

follow the instructions to set up the MongoDB environment. This project connects

to “localhost”, at the 27017 port.

2.4.2 Importing the database

Once you have MongoDB installed and configured as well as Python, the only

thing you have to do to fill the database with the testing data source, is to run the

“create database.py” Python file. This script reads the resources from the proper

project folder and creates the database and collections needed, and saves the data

too.

2.4.3 Running the project

Finally, in order to run the application, just run the Python file named “app.py”.

Then, use a web browser to surf to the “http://localhost:8080/” url.

8https://store.continuum.io/cshop/anaconda/
9https://www.mongodb.org/downloads

10http://docs.mongodb.org/manual/tutorial/install-mongodb-on-windows/

23

https://store.continuum.io/cshop/anaconda/
https://www.mongodb.org/downloads
http://docs.mongodb.org/manual/tutorial/install-mongodb-on-windows/

3 Conclusions and future work

At the beginning I did not thought that the graph creation were to be so difficult.

I wanted to focus on the user interface and the functionality of the application, but

I had to sacrifice that part to provide an acceptable graph. However, today I think

that the most important work of the project is, in fact, the graph. The rest of

the features could be developed in the future. These functionalities could be the

following.

Collaborative

The final application could be collaborative and, for example, the users could

propose better relationships between ingredients or new recipes. The text file with

the ingredient substitutions that I mentioned above is an easy way to change the

graph before running the script to re-generate it from that source.

Smartphone or tablet app

A Rest API could be developed in order to provide the information to the apps.

This kind of platforms, the apps for Android or iOS, are the most extended nowa-

days.

Machine learning

The application could learn to relate ingredients and to recommend recipes to

the users according to their activity.

Adding information

The ingredients and the recipes could store more “metadata” like calories or

quantities respectively.

Best web app

Right now, the web page is extremely simple. It could be implemented with

better technologies like Django or even with another programming language more

powerful and scalable, like Java.

Database performance

The additions to the ingredient information or the recipes cause the database

to grow. This means that, with the current design of the database, it could lose

24

effectivity. In other words, it could affect to the database’s scalability. So, include

a better design or indexes on certain fields may improve performance.

BigOven API

Previously I mentioned the BigOven API. The application could feed the recipes

collection with it or with any other useful API like this. Obviously, developing the

relevant features to do so would be needed.

Search from list of ingredients

It could be another feature to let the user select one or more ingredients and

perform a search of recipes according to if it has those ingredients or a similar ones.

Search excluding ingredients

Like the previous one, it could make a search from a list of ingredients but, this

time, avoiding them (e.g. sugar, if the user is diabetic).

Search from properties

If the ingredients had information about their properties, the user could do a

search of, for example, the recipes that are lower in fat.

2 level graph

As I explained before, there is a weighted graph which lets the user decide to see

the similar ingredient depending on the weight of the edges. Unfortunately, this

function is not yet implemented on the web application, because it meant a lot of

changes and little time to do them. However, it could definitely be a good feature.

Quite possibly, in the future, I dedicate myself to perform any of these tasks. Or

reuse any of the parts of the project.

Although there is a lot of work and lots of hours spent in things that I finally

won’t use in the current state of the project, the best of all is the amount of new

knowledge that I have acquired and that I will be able to certainly benefit on my

professional life.

25

4 Especial thanks

I would like to thank to my girlfriend Kat and all my family, my work companions

and friends for their support.

Also thanks to Daniel Villatoro for giving me the original idea, to Oriol Pujol

for trying to put me on my way in the project and to Àlex Pardo for finally doing

it.

26

References

[1] Python Software Foundation. The Python Tutorial [online]. Last updated on

May 23, 2015 [consulted on June 21, 2015]. Introduction. Available here:

https://docs.python.org/2.7/tutorial/index.html

[2] MongoDB, Inc.. PyMongo 3.0.2 Documentation [online]. [consulted on June

21, 2015]. Overview. Available here:

http://api.mongodb.org/python/current/

[3] Marcel Hellkamp. Bottle: Python Web Framework [online]. Last updated on

June 21, 2015 [consulted on June 21, 2015]. Introduction. Available here:

http://bottlepy.org/docs/dev/index.html

[4] NetworkX Developers. NetworkX documentation [online]. Last updated on

September 20, 2014 [consulted on June 21, 2015]. Overview. Available here:

https://networkx.github.io/documentation/latest/overview.html

[5] Python Software Foundation. requests 2.7.0, Python HTTP for Humans [on-

line]. [consulted on June 21, 2015]. Introduction. Available here:

https://pypi.python.org/pypi/requests

[6] Python Software Foundation. 7.2. re — Regular expression operations [online].

Last updated on May 23, 2015 [consulted on June 21, 2015]. 7.2.1. Regular

Expression Syntax. Available here:

https://docs.python.org/2/library/re.html

[7] Marcin Kasperski. Processing XML and HTML with Python [online]. Last

update on April 25, 2015 [consulted on June 21, 2015]. Introduction. Available

here:

http://lxml.de/

[8] Wikipedia. HTML [online]. Last update on June 21, 2015 [consulted on June

21, 2015]. Development. History. Available here:

https://en.wikipedia.org/HTML

[9] Python Software Foundation. 18.2. json — JSON encoder and decoder [online].

Last updated on May 23, 2015 [consulted on June 26, 2015]. Introduction.

Available here:

https://docs.python.org/2/library/json.html

27

https://docs.python.org/2.7/tutorial/index.html
http://api.mongodb.org/python/current/
http://bottlepy.org/docs/dev/index.html
https://networkx.github.io/documentation/latest/overview.html
https://pypi.python.org/pypi/requests
https://docs.python.org/2/library/re.html
http://lxml.de/
https://en.wikipedia.org/HTML
https://docs.python.org/2/library/json.html

[10] Wikipedia. Cascading Style Sheets [online]. Last update on June 20, 2015 [con-

sulted on June 21, 2015]. Introduction. Available here:

https://en.wikipedia.org/wiki/Cascading_Style_Sheets

[11] MongoDB, Inc.. Introduction to MongoDB [online]. [consulted on June 21,

2015]. What is MongoDB. Available here:

http://docs.mongodb.org/manual/core/introduction/

[12] MongoDB, Inc.. Introduction to MongoDB [online]. [consulted on June 21,

2015]. Document Database. Available here:

http://docs.mongodb.org/manual/core/introduction/

[13] Wikipedia. JSON [online]. Last update on June 16, 2015 [consulted on June

21, 2015]. Introduction. Available here:

https://en.wikipedia.org/wiki/JSON

[14] Don Ho. Notepad++ [online]. [consulted on June 21, 2015]. About. Available

here:

https://notepad-plus-plus.org/

[15] Bryan Goines. git –local-branching-on-the-cheap [online]. Last update on May

19, 2015 [consulted on June 21, 2015]. Introduction. Available here:

https://git-scm.com/

[16] Sarah Maddox, Dan Stevens. Bitbucket Documentation [online]. Last update

on October 20, 2014 [consulted on June 21, 2015]. Bitbucket Documentation

Home. Available here:

https://confluence.atlassian.com/display/BITBUCKET/

28

https://en.wikipedia.org/wiki/Cascading_Style_Sheets
http://docs.mongodb.org/manual/core/introduction/
http://docs.mongodb.org/manual/core/introduction/
https://en.wikipedia.org/wiki/JSON
https://notepad-plus-plus.org/
https://git-scm.com/
https://confluence.atlassian.com/display/BITBUCKET/

	Introduction
	Motivation
	Use case example
	Extra personal interest

	Goals

	Development
	Technologies
	Python
	Python modules
	HTML and CSS
	MongoDB
	JSON
	Other technologies

	Graph construction
	Ingredients list
	Substitutes search
	Extra information
	Hand work and final graph

	Web page development
	Persistence
	Find a substitute
	Find a recipe
	Change ingredients
	Similar recipe
	Error pages

	How to run the project
	Prerequisites
	Importing the database
	Running the project

	Conclusions and future work
	Especial thanks

