
UNIVERSITAT DE BARCELONA

FACULTAT DE FÍSICA
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Abstract

We explore biological transport across membrane channels from a
physical point of view. The main objective is to use the tools avail-
able to a physicist from non-equilibrium thermodynamics and apply
them to a concrete biological problem. In this case, we focus our at-
tention in trying to build simple physical models, yet not trivial, that
match the behavior of real channels, or ones that can be synthetically
accomplished.

We start with a brief review of the results we obtained for a model
with multiplicative noise [1] and proceed to study a dichotomic model,
introducing a more realistic description of channel gating, both ana-
lytically and numerically. We also introduce a new different simulation
framework that allows more flexibility in parameter exploration than
the one previously used.

1 Introduction

1.1 Transport and membrane channels

Membrane channels are one of the two main structures1 involved in transport
across the cell membrane. They transport water or specific types of ions and
hydrophilic molecules down their concentration gradient. Such transport
is often called passive transport or facilitated diffusion. Channel proteins
form a hydrophilic pathway across the membrane through which multiple
molecules are allowed to flow through simultaneously [2, 3].

Figure 1: Different examples of membrane proteins. All of these include a
β-barrel structure forming a pathway between both sides of the membrane
(Ref. [2]).

Some channels are open most of the time, these are the so called non-
gated channels, but most of them are usually closed, and only open after an
activation signal, being that signal either an electrical stimuli (like voltage-
gated channels [4]), a ligand-binding process, or simply ATP hydrolysis;

1The other one being pumps.
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hence the name of gated channels. They are also highly selective, existing
specific channels for almost any substance that needs to cross the membrane.

Although being passive transporters, channels are much more than that.
While molecular pumps can transport ions and molecules at rates approach-
ing several thousand ions per second, channels are capable of reaching speeds
up to a thousand times higher, being very close to the speed of free diffusion
[5]. Yet, they are not just tubes that allow diffusion across the membrane,
they are sophisticated molecular machines that respond to changes in their
environment and undergo precisely timed conformational changes.

Figure 2: Cartoon representation of a membrane channel. On the left, its
structure on the closed state. The binding of two ATP molecules closes the
channel. On the right, the open state, no ATP is present (adapted from [6]).

1.2 The Biophysical approach to membrane channels

The introduction of the patch-clamp technique by Erwin Neher and Bert
Sakmann [7] in 1976 made possible the study of single channels. With this
technique one can measure the activity of a single channel. The flow of ions
through a single channel and the transitions between the open and closed
states of a channel can be monitored with a time resolution of microseconds.
Also, the channel can be studied in its native environment, even in an intact
cell. This technique, and newer ones, makes possible a quantitative analysis
of channels. From this point of view, it is also important to theoretically
describe the processes involved in the transport through channels, using
models more accurate than simple diffusion or chemical kinetics, but still
far from molecular dynamics simulations.

A good understanding of channel transport is needed from a medical
point of view. One clear example is the CFTR (Cystic fibrosis transmem-
brane conductance regulator) chloride channel, whose failure causes cystic
fibrosis [6]. Channels, which play an essential role in the nervous system,
are the main target of many toxins attacking the organism, such as poisons
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and venoms, that block the channels. Also, since channels govern the fastest
processes in cellular transport, they are the favorite target in the drug re-
search industry. Creating drugs and compounds that have a high affinity
with channels can improve and speed up the process of drug delivery.

Theoretical models also play an important role on recent advances in the
design and construction of synthetic channels and nanopores [8, 9]. Iden-
tifying and isolating the key components involved in channel transport we
can, later on, produce synthetic compounds that mimic the effects of biolog-
ical channels, and also change them and make them more suitable for other
tasks. Applications in this field range from the biological level, for example,
to replace faulty channels, to the industrial level, allowing for example, to
separate substances in a solution. Properties like the high selectivity, speed,
and the fact that they can be easily controlled at will, makes them specially
interesting for the industry.

1.3 Project Outline

This document is structured in the following way:
In Section 2, we introduce the different models that have been under

study. We start with a brief theoretical introduction of the physics behind
the problem and then proceed with the models. The first model is the most
simple one, the Free Channel. Next we move to the White Noise model,
which was already studied in the previous report. Then we move to the
dichotomic model, which is the core of this project.

In Section 3, we detail the numerical tools and the simualtion framework
used to study the different models.

In section 4, we present and explain all the obtained results (for all the
models). We compare the results for each model, giving special emphasis
on the similarities and on the most characteristic features of each.

In sections 5 and 6, we finish by explaining the conclusions obtained in
this study, and also detail a possible follow-up study.

2 Models

2.1 Introduction

In this section we introduce the different models that have been under study
in the present work. All the models are created following the same procedure
and under the same theoretical framework. We start with a brief theoretical
review of the physics involved in this study and then analyze each of the
models in detail.

The first model (Free Channel) is a purely diffusive system. The second
model (White Noise) is a symmetric linear sawtooth potential with multi-
plicative white noise. The third and fourth models are based on a dichotomic
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noise to include the effects of channel gating.
After each model has been described and solved, we compare each of

them, both analytically and with numerical simulations.

2.2 Theoretical framework

Each channel is modeled as a one-dimensional symmetric potential V (x) of
length L. The channel is connected with two infinite particle reservoirs with
fixed concentrations, ρ0 and ρ1.

The dynamics of particles inside the channel are governed by a Langevin
equation in the overdamped regime [10, 11] (low Reynolds number)

γẋ = −V ′(x, t) + g(x, t)η(t), (1)

where γ is the friction coefficient (which we take γ = 1 from now on for
simplicity2), g(x, t) a function yet to be determined (but related to a possi-
ble spatial component of the noise), η(t) a stochastic process (noise term),
and V ′(x, t) a time dependent force. But since we are interested in statisti-
cally averaged observables we focus on the evolution of probability and its
conservation [12]

∂

∂t
P (x, t) = − ∂

∂x
j(x, t), (2)

where P (x, t)dx is the probability of finding one particle between x and
x + dx at time t, and j(x, t) is the probability flux, which we will define
later on, since its exact expression will depend on the model and on the
interpretation [13] of the stochastic process.

Considering the global behavior of the channel as the sum of N indepen-
dent single-particle processes we can safely move from probabilities P (x, t)
to concentrations ρ(x, t) (also from probability fluxes j(x, t) to particle fluxes
J(x, t)) and forget about the probability normalization condition.

We are mostly interested in steady-state non-equilibrium solutions, in
which the flux is just a constant J , and the concentration does not change
in time. In that regime, we expect to relate the fluxes and the concentrations
to the concentrations of the reservoirs.

2.3 The Free Channel

The most simple model for a channel is to consider it as just a hole in
the membrane, in which particles can move freely. This is a too simplistic
description, but we include it in here since it serves as a baseline for more
complex models.

2The only effect friction has on this system is to change the time scale. This is equiv-
alent to making the substitution t′ = γ−1t.
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As stated in the introduction, the channel has a length L and connects
two infinite reservoirs with concentrations ρ0 and ρ1. A representation of
the scheme can be seen on Fig. 3.

x

ρ0

0 L

ρ1

ρ(x)

J

Figure 3: Structure of the free channel. The channel is modeled as a region
of free diffusion against two fixed concentrations ρ0 and ρ1. The dashed line
represents the expected density profile.

Following the previous theoretical description (1) we can model this
channel as

γẋ = η(t), (3)

where now η(t) is a Gaussian white noise with autocorrelation 〈η(t)η(t′)〉 =
2γkBTδ(t − t′). From the associated Fokker-Planck equation one can get
the flux in the steady-state,

J = −kBT
γ

∂

∂x
ρ(x), (4)

whose solution (after applying boundary conditions) is

J =
kBT

γ

ρ0 − ρ1

L
, (5)

and from the fluctuation-dissipation theorem we have that D = kBT/γ, and
the previous relation is nothing more than Fick’s law for diffusion.

We can also associate the flux with a certain membrane conductance K,
and to the unitary concentration ’gradient’ φ ≡ ∆ρ/L

J = −K0φ, (6)

where K0 = D is the membrane conductance associated to this model.
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2.4 The White Noise Model

This is the model we developed on the first part of the project, and a detailed
analysis can be found on the already published material [1]. Here we briefly
review it and include new analytical results.

This model, based on the work by A. Gomez-Marin and J. M. San-
cho [14], consists on a symmetric linear sawtooth potential modulated by a
stochastic process. The modulation of the potential takes the form

V (x, t) = V (x) (1 + χ(t)) , (7)

where χ(t) is a gaussian white noise with autocorrelation 〈χ(t)χ(t′)〉 =
2Qδ(t− t′). A scheme of the potential can be see in Fig. 4.

x

ρ0

0 L

V (x, t)

L/2

V0

ρ1

J

Figure 4: Structure of the white noise model. The channel is modeled as a
symmetric flashing potential V (x, t), the barrier height fluctuates as a white
noise with strength Q.

Merging the two random processes η(t) and χ(t) one can express the
Langevin equation associated to this system as we did in (1),

γẋ = −V ′(x) + g(x)ζ(t), (8)
g(x) =

√
γkBT +QV ′(x)2, (9)

where ζ(t) is another gaussian white noise with unit variance.
Now, if we work under Itô interpretation of the stochastic process, the

flux is given by [13],

γJ(x, t) = −V ′P (x, t) +
∂

∂x

[
g2(x)P (x, t)

]
, (10)

and after lengthy calculations [1, 14], one finally obtains an expression for
the flux as a function of the model parameters and the boundaries

J =
kBT

γ

v

ev − 1
ρ0 − ρ1

L
, (11)
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with

v ≡ V0

kBT + 4Q V 2
0

γL2

, (12)

where V0 is the barrier height. We also introduce the dimensionless param-
eters α = QKBT/(γL2), and v0 = V0/kBT for later use. We can see how
the flux still depends on the concentration difference ρ0 − ρ1, but with a
new factor that involves the barrier height and the noise strength. But even
now, we can still express it as we did in the previous model

J = −K1φ, (13)

K1 = K0
v

ev − 1
, (14)

and we can see how for very small values of V0, and hence of v, the conduc-
tances coincide (ev ' 1 + v +O(v2)).

2.5 The Dichotomic Model

This model is an adaptation of the Two-state flashing molecular pump [15]
developed by A. Gomez-Marin and J. M. Sancho, focusing on the particular
case of a symmetric potential.

As with the previous models, we start with a generic Langevin descrip-
tion (1),

γẋ = −V ′(x, t) + η(t), (15)

where V (x, t) now also depends on time, and η(t) is a Gaussian white noise
with autocorrelation <η(t)η(t′)>= 2γkBTδ(t − t′). To include the gating
dynamics of the channel we model the potential as

V (x, t) = V (x)ζ(t), (16)

where V (x) is a symmetric sawtooth potential of length L and height U
given by (see Fig. 5),

VL(x) =
2U
L
x, x ∈ (0, L/2),

VR(x) =
2U
L

(L− x), x ∈ (L/2, L), (17)

and ζ(t) is a stochastic variable that can take the values ζ0 = 0 and ζ1 = 1.
This stochastic variable represents the open (ζ0) and closed (ζ1) states of
the channel, since the barrier V (x) is only present in the closed state. The
variable switches from one state to the other with rates ω0 (open to closed)
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and ω1 (closed to open). This corresponds to the well known dichotomic
Markov process [12, 16] with mean value and autocorrelation

〈ζ(t)〉 =
ω1

ω0 + ω1
, (18)

〈∆ζ(t)∆ζ(t′)〉 =
ω0ω1

(ω0 + ω1)2
exp

(
−(ω0 + ω1)

∣∣t− t′∣∣) , (19)

where ∆ζ(t) ≡ ζ(t) − 〈ζ(t)〉. A scheme of the whole system can be seen in
Fig. 5.

x

ρ0

0 L

ω0 ω1

V (x)ζ1

V (x)ζ0 = 0

L R

L/2

U

ρ1

Figure 5: Structure of the channel. The channel is modeled as a two state
potential V (x)ζi flipping between open and closed states with rates ωi, and
working between fixed concentrations ρ0 and ρ1.

As with the other models, now we use the continuous representation of
the system. Being Pi and Ji the probabilities and fluxes associated to the
state i we can write [16]

∂tP0 + ∂xJ0 = −ω0P0 + ω1P1,

∂tP1 + ∂xJ1 = ω0P0 − ω1P1, (20)

which is just the total conservation of probability. The creation and de-
struction of probability in any state (∂tPi + ∂xJi 6= 0) can only happen due
to the probability coming from or leaving to the other state3. The fluxes Ji
have to satisfy the associated Fokker-Planck equation

Ji = − 1
γ

(
kBT∂xPi + PiV

′
i (x)

)
, (21)

although this set of equations can already be solved analytically, the result
is quite cumbersome, involving third order non-homogeneous differential
equations [15].

3In other words, the Master equation for a closed two state system
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2.5.1 Transition rates: The ATP hydrolysis

Until now we haven’t said anything about how we model the transition rates.
We consider the channel gating process to be governed by an enzymatic
reaction, in which the channel is the enzyme, ATP the substrate and ADP
the product. We consider the channel to open upon ATP binding to the
channel, and to close after ATP hydrolysis and unbinding [6]. We model the
process via Michaelis-Menten kinetics [17] such that the opening rate can
be expressed as

ω1 = ω0
[ATP ]

kM + [ATP ]
=

ω0

1 + 1/σ
, (22)

where ω0 is the closing rate. We can see that the only relevant parame-
ters are the closing rate ω0 and the ratio between ATP concentration and
the Michaelis-Menten constant σ ≡ [ATP ]/kM . This is a good model to
introduce the fact that the rate of the reaction is known to saturate with
increase of substrate (ATP) concentration. Hence, ω1 is always bound by
ω0. Although the Michaelis-Menten kinetics model is based on the Mass
Action Law, we consider it to be still valid for our stochastic description.

Figure 6: Experimental data showing a single channel state evolution
(open/closed) in time (adapted from [6]).

2.5.2 Zero order approximation

Now we perform what we call the zero order approximation. We consider
that the channel can still be in its two states, open and closed. While open,
particles diffuse freely, but when the channel is closed, now we consider that
the particles have completely stopped moving, rendering the whole system
inactive. This approximation corresponds to the full dichotomic model when
the mean-life of the states is much larger than the time it takes a particle
to diffuse inside the channel. In this limit, the fluxes are

J0 = − 1
γ
kBT∂xP0, (23)

J1 = 0, (24)
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so J ≡ J0 + J1 = J0. Looking back at eq. (20) we see that in the steady
state we have

P1(x) =
ω0

ω1
P0(x). (25)

If we now integrate eq. (24) we obtain

P0(x) = −J γ

kBT
x+ C, (26)

where C is a constant yet to be determined. If we now impose P (0) ≡
P0(0) + P1(0) = ρ0 and combine eqs. (25) and (26) we find

C = ρ0
ω1

ω0 + ω1
, (27)

and from this relation we obtain the final solution

J =
kBT

γ

ρ0 − ρ1

L

ω1

ω0 + ω1
. (28)

Proceeding as with the other models we get

J = −K2φ, (29)

K2 = K0
ω1

ω0 + ω1
, (30)

which can also be expressed in terms of ATP by using eq. (22)

K2 = K0
σ

1 + 2σ
. (31)

We can again see the similarities with the previous models, but now the flux
is modulated by the rates, in such a way that the flux is the flux of the free
channel times the fraction of time the channel is open.

2.5.3 Complete solution

As we have previously stated, a solution for the complete model can be
solved analytically [15]. But it is quite cumbersome, at the end one has to
deal with a system of third order differential equations that involve solving
a 7× 7 linear system.

Instead of going that path, we will focus on the next section on imple-
menting a simulation framework for this system (and similar ones), which
was not done in [15], and is the natural continuation.
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3 Numerical analysis

3.1 Simulation framework

When we studied the white noise model [1] we implemented a simulation
framework based on the introduction of additional elements to the channel.
Creating a closed (periodic boundary condition) system consisting of the
channel, a pump (modeled as a constant force) and big reservoirs we man-
aged to create fluxes and were able to study the behavior of the channel.

The main problem we encountered with the previous framework was that
by closing the system, we could not study the fluxes at will. Closing the
system means imposing a new boundary condition, and thus, varying any
parameter of the system, implies a change both in fluxes and concentrations
at the same time.

The new approach to simulating the system consists on eliminating most
of the external setup. We only keep small reservoirs at both ends of the
channel, and we impose a fixed number of particles inside each reservoir at
(almost) any given time. We keep the reservoirs small enough so that it can
be considered as a zone of constant concentration, but we still keep them
wide enough so that particles are able to diffuse freely for some time steps.

Although the introduction of reservoirs might not seem optimal, as com-
pared to a pure particle injection [18], it already prevents the formation of
spurious boundaries while keeping the simulation simple enough that we do
not need to know the full probability distribution of the system beforehand.

3.2 Algorithm

For the dynamics of the particles we proceed as we did in the previous study.
Instead of using complex stochastic algorithms [19, 20], we are going to stick
with Euler’s first order expansion [21], since it already works quite well, and
in some models, we are dealing with non-standard noises.

Integrating eq. (1) between t and t+ dt we obtain 4

x(t+ dt) = x(t)− V ′[x(t)]dt+ g[x(t)]X(t), (32)

where X(t) is the numerical representation of the stochastic integral

X(t) =
∫ t+dt

t
η(t′)dt′ =

√
2dtα, (33)

where α is a random number sampled from a normal distribution with zero
mean and unit variance (the function g(x) already carries the strength of
the noise).

The previous algorithm is for the dynamics of the particles, but in the
dichotomic model we also need to simulate the opening and closing of the

4We eliminate the friction again, t′ = γ−1t.
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channel. Simulating the dynamics of the transition rates is quite straight
forward, since they are always the same and do not change in time. We
only need to calculate the time that will take the channel to change state
with an exponential distribution with mean ω−1

i , and update accordingly. In
the same way as one does with the Gillespie algorithm [22, 23] for chemical
kinetics. Basically we proceed as follows: let’s consider that at t = 0 we are
in state i, then we calculate the time to jump from this state5 by choosing
a random number from an exponential distribution with mean ω−1

i

P (t) = ωie
ωit, (34)

which can be generated from a uniform distribution X ∈ [0, 1) with the
transform

tr = − logX
ωi

, (35)

or in our case, via the ziggurat algorithm [24]. Also lets call the obtained
time tr. Then we keep running the simulation for the particles until time
tr, in which we change the channel’s state and again calculate the time to
the next transition.

4 Results

4.1 Concentration profiles

In this section we show the first and most basic results of the simulations,
the concentration profiles in a steady state.

4.1.1 Free Channel and White Noise Model

The concentration profile for the Free Channel is already well known, and
it is linear between the fixed concentrations. On Fig. 7 we show all the
concentration profiles stacked. As we can see, for the free channel, we obtain
pure diffusion.

For the concentration profile of the white noise model, it is clear the
big difference respect to the free channel. Now the concentration decays
exponentially as it goes further inside the channel. The discontinuities on
the boundaries are to be expected, and are fully explained in the previous
report. The discontinuities appear because the function g(x) takes different
values inside and outside the channel.

5Since we only have two states, we define the rate ωi as the rate to leave i.
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0
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ρ

 

 

free channel

white noise

dichotomic

Figure 7: Simulation output for the concentration profiles associated to the
different models, ρ1/ρ0 = 1/2.

4.1.2 Dichotomic Model

For the dichotomic model we only simulate the complete version, since the
results associated with the zero order approximation are the same ones as
with free diffusion, but with a different conductance. As we can see on
its profile, (still on Fig. 7), it is similar to the one from the white noise
model, but now there are no discontinuities, and the profile is smoother in
the boundaries.

4.2 Fluxes and conductances

Now we study the flux dependence with the different parameters of the mod-
els: concentrations, barriers, noises, etc. We start with the analytical results
we’ve previously obtained, and then we compare them with the simulation
for the complete dichotomic model.

4.2.1 Analytical

As we have seen in the previous section, all the fluxes depend linearly with
the concentration difference. So for now, we forget about the concentrations
and focus on the conductances. The first interesting result can be seen on
Fig. 8, where we plot the conductances for the zero order dichotomic model
and the white noise model.
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Figure 8: Left figure: Normalized conductance against σ = [ATP ]/kM (zero
order dichotomic model). Right figure: Normalized conductance against
α = QKBT/(γL2) (white noise model).

It is clear from the plots that the ATP concentration and the noise
strength (Q ∝ α) have the same effect on the flux. An increase on them also
implies an increase on the flux, until it saturates.

This result is easily understood in the dichotomic model. Basically, when
there are small quantities of ATP, that is the limiting factor on the channel
gating, and heavily influences the flux. But when the ATP concentration is
high, the system saturates, and now the limiting factor becomes the intrinsic
rate of the system. For the dichotomic model, when it saturates the flux is
half the one from free diffusion, since the channel is open half the time.

The result obtained in the white noise model is harder to interpret from
a gating point of view. Basically what is happening is that for small values
of the noise, all the particles can see is a barrier, and the flux is small.
But when the strength is large, the barrier can fluctuate so heavily that
it basically becomes useless, and the flux saturates to the values of free
diffusion.

4.2.2 Simulation

Now we focus exclusively on the complete dichotomic model and the sim-
ulation results. The first thing we need to check is that the fundamental
relation of flux being proportional to the concentration’s gradient still holds.
The results are shown on Fig. 9. It is clear that the linear relation between
flux and concentration gradient is still valid.

Another result that is worth checking again is the dependence of the flux
with the ATP concentration, to see if the result is compatible with the one
obtained from the zero order approximation. It can be seen on Fig. 10. The
different curves on the figure correspond to different simulation parameters,
the difference being the barrier height V0. It is smaller for the red curve



4.2 Fluxes and conductances 16

0 500 1000 1500 2000 2500 3000
0

100

200

300

400

500

600

700

800

(ρ
0
−ρ

1
)/L

J/
K

0

 

 

v
0
 = 10

v
0
 =  5

Figure 9: Flux against the concentration gradient for the complete di-
chotomic model for two different barrier heights. f0 = 50, σ0 = 5, ρ1 = 200,
where fi = ωiγL

2/kBT .

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

σ

J
/J

0

 

 

v
0
 = 10

v
0
 =   5

Figure 10: Normalized flux J/J0 against σ for different simulation param-
eters, f0 = 100. J0 being the flux of free diffusion. See text for further
explanation.

(circles). The black (dashed) curve is the zero order prediction, rescaled by
one half for ease of view. It normally saturates at J/J0 = 1/2.

Again, the results share the behavior with the zero order prediction. The
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system still has the same dependence with the ATP concentration, but when
it saturates it has a smaller flux value due to the presence of the barrier.
Increasing the barrier height decreases the flux. It is important to note that
the flux is only one order of magnitude smaller than the one expected from
free diffusion, well in the limits of real biological channels.

Looking again at Fig. 10 we expect to obtain close to a linear relation if
we plot the inverse of the flux against the inverse of σ (what biologists like
to call a Lineweaver-Burk plot). The results of this new plot can be seen in
Fig. 11.
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Figure 11: Lineweaver-Burk plot for J(σ).

We can see how it fits quite well with a linear fit. From this plot we
arrive to the conclusion that the flux dependence on the ATP concentration
still follows a Michaelis-Menten law, but with new effective parameters that
can be extracted form the linear regression.

In the complete dichotomic model we now have two parameters that
cannot be compared with the zero order approximation. The first one being
the barrier height V0 and its effect, which can be seen in Fig. 12.

As expected, as the barrier increases the flux decreases, but now it does
not decay to zero, as one would expect if there was only a barrier (the dashed
line). It saturates, and its value depends on the parameters of the model. In
the figure, the main difference between the blue and the red curves (squares
and circles respectively) is the closing rate ω0, being higher on the blue one.
The green one (stars) has the same rate as the blue one, but with a much
higher ATP concentration. We can again see that the ATP concentration
has a big impact on the flux. Specially for high barriers.

The other new parameter is the closing rate ω0. The zero order limit
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Figure 12: Normalized flux J/J0 against V0 for different simulation param-
eters. See text for further explanation

shows no dependence on it, but the complete model depends on it. The
results of the simulation can be seen on Fig. 13.
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Figure 13: Normalized flux J/J0 against closing rate f0 for different simu-
lation parameters, v0 = 5.

Now we can appreciate how there is a maximum in the flux for a given
closing rate f0, and how it decays for very high rates. We can see that
there is a small range of parameters for which the flux is maximized, and
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the channel operates at its maximum efficiency. It seems that the position
of the maximum does not depend on σ, and probably neither on the barrier
height, but it is unclear at this point. The current working hypotheses is
that the position of the maximum depends on the relationship between the
closing rate and the characteristic diffusive length during that time.

We also expect biological channels to operate on this regime. Due to
evolution, we expect these systems to have evolved until they work close to
the most optimal regime.

5 Conclusions

The implementation of the dichotomic model has given us the ability to
model the channel gating, which was lacking in the previous model. Also,
the specific form used for the transition rates allows a direct connection to a
more biochemical approach, either via Michaelis-Menten kinetics or through
a different model, as will be seen in the next section.

One of the interesting results seen with this model is that now we can
control the flux across the channel by just playing with the rates and the
Michaelis constant, since the barrier height is not as important as in other
models. The flux already saturates6 for barriers that are only of the order
of 10kBT .

Also important is the finding of a region where the flux is maximum
for the closing rate ω0. Since we have considered the parameters ω0 to be
intrinsic to the system, and depend mostly on things like its biochemical
structure, we can predict that most biological channels will operate in this
regime. Operating on this regime also implies a minimum in energy con-
sumption, since one needs to open the channel less times to transport any
amount of material. Due to this fact, we theorize that biological channels,
being part of living beings, have evolved until archiving this regime.

6 Perspectives

The modeling of the transition rates via Michaelis-Menten kinetics allow us
to characterize the energetics of the system. In connection with biological
channels it gives us an upper limit to the input energy the system can receive,
since it cannot be greater than the energy liberated by ATP hydrolysis. The
next step would be to calculate the exact power input the channel receives
when it closes, since in this model, the channel requires energy to close the
gate, not to open it.

Also we have to take into account that we have used the Mass Action
Law to model the transitions, which are only valid on the continuous limit,

6Does not really saturate, but becomes more or less independent of the barrier height.
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and here we are dealing with just one channel, and maybe a very small
amount of ATP. The problem could be extended by using a different kind
of temporal distribution to model the transition probabilities [25].

Another future approach, is to fully study the dynamics of the system,
the whole temporal evolution of the system, not just the study state. A com-
prehensive study of the temporal evolution of the channel between the closed
and open transitions might give more clues on why is there a maximum on
the flux for a specific set of parameters.

The framework used to model a channel driven by ATP hydrolysis can
also be used to model other types of channels, like voltage-gated ones, but
using a different procedure to model the transition rates.

6.1 Modeling a voltage-gated channel

Based on experimental evidence [4] we can use the dichotomic model to
analyze voltage-gated channels, but now we need to use a different approach
to characterize the transition rates. We still consider that the closing rate
ω0 is a characteristic time of the system, and has to do with the specific
structure of the channel and conformational changes. Also, we know that if
the channel is in equilibrium (for the transition rates), the probability ratio
between open and closed states has to satisfy a relation of the form

P0

P1
= e
− ∆G

kBT ≡ k, (36)

where ∆G is the free energy difference between the open and closed states
(in the grand canonical ensemble) of the system. But these probabilities are
also related to the transition rates

P0

P1
=
ω1

ω0
. (37)

Also, following Kramer’s work [26], we can consider that applying a voltage
difference to the channel will modify the rates accordingly

P0(V )
P1(V )

= e
−∆G+qV

kBT = ke
− qV

kBT , (38)

where q is the typical membrane gating charge and V the applied voltage.
Also, since P0 + P1 = 1 we obtain

P1(V ) =
1

1 + ke
− qV

kBT

, (39)

which matches very well experimental data [4].
Now that we have described the new rates we could proceed as we did

with the ATP-driven channel and fully study the system.
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turned chloride channel whose failure causes cystic fibrosis. Nature,
440(7083):477–83, Mar 2006.

[7] O Hamill, A Marty, E Neher, B Sakmann, and F Sigworth. Improved
patch-clamp techniques for high-resolution current recording from cells
and cell-free membrane patches. Pflügers Archiv European Journal of
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