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Abstract 

 

The purpose of this Project is to implement the one-step Q-Learning algorithm and a 

similar version using linear function approximation in a combat scenario in the Real-Time 

Strategy game Starcraft: Broodwar™. First, there is a brief description of Real-Time Strategy 

games, and particularly about Starcraft, and some of the work done in the field of Reinforcement 

Learning. After the introduction and previous work are covered, a description of the 

Reinforcement Learning problem in Real-Time Strategy games is shown. Then, the development 

of the Reinforcement Learning agents using Q-Learning and Approximate Q-Learning is 

explained. It is divided into three phases: the first phase consists of defining the task that the 

agents must solve as a Markov Decision Process and implementing the Reinforcement Learning 

agents. The second phase is the training period: the agents have to learn how to destroy the 

rival units and avoid being destroyed in a set of training maps. This will be done through 

exploration because the agents have no prior knowledge of the outcome of the available actions. 

The third and last phase is testing the agents’ knowledge acquired in the training period in a 

different set of maps, observing the results and finally comparing which agent has performed 

better. The expected behavior is that both Q-Learning agents will learn how to kite (attack and 

flee) in any combat scenario. Ultimately, this behavior could become the micro-management 

portion of a new Bot or could be added to an existing bot.  

 

Keywords: Q-Learning, Reinforcement Learning, Real-Time Strategy, Starcraft, BWAPI, Micro-

Management.  
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1. Introduction 

Since their first appearance in the 1980s Real-Time Strategy (hereafter, RTS) games have 

represented a big challenge for Artificial Intelligence (hereafter, AI) developers, and it remains 

an open problem today. There has been a pleather of research and improvements, especially 

after Buro's call for AI research in RTS games [1], but, unlike other games like chess or checkers, 

even the state of the art RTS game agents are far from playing at human level. Some of the 

problems faced by AI developers in RTS games are the large state space of the game, incomplete 

information, decision making under uncertainty and adversarial planning. These problems can 

also be found in real life situations such as air traffic controlling, automated vehicles, exploration 

with drones or weather prediction to mention just a few. Thus, RTS games are useful as finite 

discrete simplifications of the real world and the achievements in RTS games research are 

beneficial to other fields. 

The goal of this project is to develop an AI agent (also known as a Bot) that can learn an 

efficient way of engaging the enemy in a small combat scenario using Reinforcement Learning 

(hereafter, RL) algorithm Q-Learning and its similar version with linear function approximation. 

In particular, the Bot should learn the ‘Kiting’ technique (also known as ‘hit and run’), a micro-

technique consisting of attacking the enemy and fleeing repeatedly. This technique should 

improve the survival rate of range units compared to the built-in AI survival rate. 

Once the bot is implemented it will play several maps divided into two parts; the training 

period and the test period. All of the learning process occurs during the training period, and it is 

done in a set of training maps. In each map there are hundreds of episodes. After this training 

period, the Bot will play a set of test maps exploiting the acquired knowledge. The results are 

then observed. The behavior after the training period should be more efficient than that of the 

built-in AI. By trial and error the agent is expected to learn how to kite. It will decide when to 

attack and when to flee, making its units become more challenging targets. 

 

1.1 Real-Time Strategy 

Real-Time Strategy is a genre of video games which originated in the 1980s that became 

very popular in the 1990s. Today it has many adepts and there are many companies developing 

new games with important franchises like Company of Heroes™ and Total War™. Most of the 

games of this genre are published for PC. Generally, in an RTS game, two or more players 

compete in a map where they must gather resources to improve their economy, build bases and 

create armies to attack the adversaries and defend from their attacks. In this project, we’ll focus 

only in the combat aspects of a match involving small groups of units. This is known as Micro-

management. 

 

1.2 Starcraft 

StarCraft™ is an RTS game developed by Blizzard Entertainment and published on March 31, 

1998 [2]. It’s set in a fictitious future in a distant sector of the galaxy with three species fighting 
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for dominance. Each of them with unique units, technologies, attributes and abilities:  the 

Terrans, humans with very versatile and good defensive units; the Zerg, a race of insectoid aliens 

that can produce cheap, but rather weak, units in vast numbers; and the Protoss, an advanced 

alien species with very powerful but more expensive units. On November 30th 1998 an expansion 

pack was released, StarCraft: Brood War™, including new units and game updates. Although the 

three playable factions are very asymmetric, the game is very well balanced so that none of the 

factions have advantages over another. Figure 1 shows a battle between a Protoss army and a 

Terran army. 

 

 

 

 

 

 

 

 

 

Figure 1. Combat between Protoss (left) and Terran (right) forces. 
 

Starcraft has become a very extensive test-bed for AI research around the world. Many 

universities have developed Bots that compete against each other in international competitions 

like the Artificial Intelligence and Interactive Digital Entertainment (AIIDE) [3] and the Student 

Starcraft AI Tournament (SSCAIT) [4]. There is a very active community of developers and 

researchers working on many different approaches of AI. 

 

 

2. The problem 

RTS games involve many problems in AI. The environment is dynamic and stochastic, it 

constantly changes and actions have a probability of success. The information about the 

environment is incomplete: players only have information about the areas around their units. 

This is known as the ‘fog of war’. High terrain is also not visible from a lower position. 

Perhaps the most obvious problem is the very large state and action spaces of an RTS game’s 

match. As estimated by Ontañon et al. [5], the number of possible states in an average map in 

Starcraft is many orders of magnitude bigger than the total states of board games like Chess or 

Go. The number of actions possible at each state is also hard to estimate due to the special 

abilities, different contexts and the internal state of a unit (health, weapons cool down, 

paralyzed, etc.), to tackle this problem some abstraction is necessary to reduce the states and 

actions space. 
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3. State of the art: 

Reinforcement Learning has been successfully applied in RTS games, not only in Starcraft 

but in other games like Wargus [6] or Glest [7]. 

The Q-Learning algorithm along with the SARSA algorithm were studied in a combat scenario 

in Starcraft by Wender and Watson [8]. They compared the one-step version of both algorithms 

and their more sophisticated versions using eligibility traces.  

Q-Learning was also studied by Mestres [9] in a combat scenario in Starcraft. He applied the 

algorithm simultaneously at two levels: squad and unit level. It allowed the units to perform 

complex actions that require units to work together (e.g., surrounding an enemy unit). 

Both Wender and Watson [8] and Mestres [9] did their experiments in small custom maps 

against the built-in AI, which had a simple and highly deterministic behavior. When the built-in 

AI engages in a fight, it selects a target (generally the closest enemy unit), walks towards the 

target until it is inside the weapon’s range and finally, attacks while the unit remains inside the 

weapon’s range or until it has been destroyed. If the enemy unit leaves the weapon’s range, the 

unit controlled by the built-in AI will chase it. A kiting unit can exploit that behavior by fleeing 

repeatedly and only stopping to attack. This technique is particularly efficient when it is used by 

range units against melee units (i.e., units with no range weapons). 

A full StarCraft Bot generally mixes more than one AI technique assigned to different tasks, 

such as economy management, placing buildings, exploration and so on. A good example of a 

full Bot is the UAlbertaBot [10] by Churchill, which separates tasks into modules that are handled 

by different managers. 

 

 

4. Motivation and Goal of this project 

The aim of this project is to test which of these two approaches would be more suitable for 

the micro-management of range units on a full Starcraft Bot: the simple one-step Q-Learning or 

the Approximate Q-Learning using linear function approximation. The final result is measured in 

terms of total accumulated reward, time required to learn and win-rate. 

 

4.1 The reinforcement learning problem: 

In both versions of the algorithm, like in any other RL problem, the agent will interact with 

the environment in order to achieve a goal.  
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Figure 2. Interaction between agent and environment in RL. 

 

As seen in Figure 2, at every time step 𝑡 = 1, 2, 3, … the agent lands in a state 𝑠𝑡 ∈ 𝑆, where 

𝑆 is the set of all possible states. From this state the agent takes an action 𝑎𝑡 ∈ 𝒜(𝑠𝑡), where 

𝒜(𝑠𝑡) is the set of actions available at state 𝑠𝑡. As a result, the agent receives an immediate 

reward 𝑟𝑡+1 ∈ ℛ and lands in a new state 𝑠𝑡+1 ∈ 𝑆. The agent’s goal is to maximize the total 

reward received along all the time steps.  

Although RTS games are perceived by human players to be Real-Time, they have discrete 

time steps. In Starcraft, for example, the game state changes at an average of 24 Frames per 

Second (hereafter, FPS). It means that the state of the game is updated approximately every 42 

milliseconds. An important difference between Starcraft and simple RL problems is that in 

Starcraft some actions take more than one time step to finish. Even the same action, for example 

firing a range weapon, might take longer for some units than for others. 

 

4.2 Markov Decision Processes 

The definition of the task that the agent has to solve isn’t trivial. To guarantee successful 

learning, the signals perceived by the agent at a given time step must retain the important 

information necessary to make its decisions. If all the relevant information from previous states 

is retained in the current state signal it’s said to have the Markov Property [11]. In such case, the 

next state 𝑠𝑡+1 and the immediate reward obtained 𝑟𝑡+1 depend only on the current state 𝑠𝑡 and 

the current action 𝑎𝑡, not on all the sequence of states and actions prior to step 𝑡. 

Pr  { 𝑠𝑡+1 = 𝑠′, 𝑟𝑡+1 = 𝑟′|  𝑠𝑡, 𝑎𝑡  }, 

   

An RL task that satisfies the Markov property is said to be a Markov Decision Process 

(hereafter, MDP). An MDP is defined by the set of states 𝑆, the set of actions 𝒜, the transition 

probabilities  𝒫𝑠 𝑠′
𝑎  (the probability to land from state 𝑠 to state 𝑠′ taking action 𝑎) and the 

expected value of the next immediate reward ℛ𝑠 𝑠′
𝑎 . 
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4.3 Definition of a state  

The state signal is key because that is the only information that the agent will perceive and 

use in order to make its decisions. On the other hand, it’s not possible to keep all the information 

available from the game because the state space would be too large. That would require an 

enormous amount of memory space for storage and the time necessary to explore each state 

would increase exponentially. Some abstraction is necessary. This is why the representation of 

the state is a trade-off between simplifying the states to reduce the state space and avoid 

missing valuable information. 

In this project, the state happens at the unit level, meaning that each of the units owned by 

the Bot have their own current state. During the development of the project, some information 

about the state of a unit was dismissed and some information was added based on the agent’s 

behavior and performance in the tests. The reason to use thresholds to categorize the values 

instead of using the real values is to keep the state space to a reasonable size. 

 

  The state information kept in the final version is: 

- HP: hit points of our unit. The possible values are {High, Normal, Low, Critical}. 

 

- HP_ENEMIES: sum of the hit points of all the enemies around our unit. The possible 

values are {High, Normal, Low, Critical}. 

 

- DPS: the damage per second that our unit can inflict, calculated as: 

 

𝑑𝑝𝑠(𝑢𝑛𝑖𝑡) =
𝑤𝑒𝑎𝑝𝑜𝑛 𝑑𝑎𝑚𝑎𝑔𝑒 × 𝑓𝑟𝑎𝑚𝑒𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑

𝑤𝑒𝑎𝑝𝑜𝑛 𝑐𝑜𝑜𝑙 𝑑𝑜𝑤𝑛
 

 

The possible values are {High, Normal, Low, Critical}. 

 

- DPS_ENEMIES: the sum of the damage per second that the enemies around our unit 

can inflict, calculated as: 

𝑑𝑝𝑠𝑒𝑛𝑒𝑚𝑖𝑒𝑠 =  ∑ 𝑑𝑝𝑠(

𝑛

𝑖=0

𝑒𝑛𝑒𝑚𝑦𝑖) 

The possible values are {High, Normal, Low, Critical}.  

 

- SPEED: the unit’s top speed. The possible values are {Fast, Medium, Slow}. 

 

 

- DISTANCE: the distance between our unit and the closest enemy unit. The possible 

values are {Far, Medium, Close}.  

 

- COOLDOWN: whether the unit’s weapon is ready to shoot or not. The possible 

values are {Yes, No}.  
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-  ATTACKED: whether the unit is under attack or not. The possible values are {Yes, 

No}. 

As a result, the total size of the space state is 𝑆 =  44 × 32 × 22 = 9216. 

 

4.4 Possible actions 

Something similar to the state space problem happens with the action space. The game gives 

many possible actions to each unit at a given moment. They vary depending on the context, the 

unit type or its internal state at that time. These actions need to be explored several times for 

each state to let the Q-Learning algorithm converge effectively to the optimal policy. 

To keep things simple, only three actions are possible for each unit. These actions are not 

always available depending on the context of the unit at a given time. The possible actions are: 

- Explore: this is the only action available when there are no enemies around. The 

purpose of this action is to encourage the unit to find the enemies. 

 

- Attack: this action, along with ‘Flee’, are the only actions possible when there are 

enemies around the unit. It calls upon the Attack Manager that decides which 

enemy to attack. 

 

- Flee: this action, along with ‘Attack’, are the only actions possible when there are 

enemies around the unit. It calls upon the Flee Manager that decides where to flee. 

 

A further explanation of what these actions do is found later in section 6.4. 

 

4.5 Rewards 

The last main component of the MDP are the rewards. A reward is a signal, it comes as a 

number perceived from the environment by the agent at each time step 𝑟𝑡 ∈ ℜ. The goal of an 

RL agent is to maximize the accumulated rewards in the long run. Rewards can also be negative, 

in which case are usually referred to as penalties. 

Like defining the state, the rewards were modified, added and removed while testing the 

agent. These are the rewards in the final version and their values: 

- Win (100): is received when the match ends in victory for our RL agent. 

 

- Lose (-100): is received when the match ends in defeat for our RL agent. 

 

- Alive (-0.01): is received every time step until the match ends, its purpose is to 

encourage the agent to finish the match as soon as possible. 

 

- Enemy Destroyed (50): when an enemy unit is destroyed, this reward is received by 

the unit who destroyed it. 

 

- Unit Lost (-20): is received when our unit is destroyed. 
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- Unit Damaged (-5): is received when our unit has been hit since the last time step 

but has not been destroyed yet. 

The values are not necessarily optimal and can be modified depending on the desired priorities 

(e.g., finishing the match fast vs. surviving as long as possible). 

 

4.6 Q-Learning 

The Q-Learning algorithm was introduced by Watkins in 1989 [11]. It’s an off-policy TD 

control algorithm. Off-policy means it is independent from the policy being followed, with 

enough exploration (i.e., all the pairs continue to be updated) it’s guaranteed to converge to Q*, 

the optimal action-value function. A policy, denoted 𝜋, is a map that shows the agent which 

action to take at any state. Temporal-Difference (hereafter, TD) means that it approximates its 

current estimate based on previous estimates without waiting for a final outcome (also known 

as bootstrapping). 

Q-Learning uses state-action pairs and calculates the ‘quality’ of these pairs, named Q-

Values. That is, the expected return of taking action 𝑎 from state 𝑠 and thereafter following the 

optimal policy 𝜋. The simple one-step update formula for Q-Learning is:  

 

𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼 [ 𝑟𝑡+1 + max
𝑎

𝑄 (𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡, 𝑎𝑡)] 

 

A Q-Learning agent is not a reflex agent, meaning, it doesn’t have any prior knowledge about 

the environment, it doesn’t have a policy, it doesn’t know the transition function nor the reward 

function. It has to learn by trial and error. 

To keep the number of possible actions very short, the agent doesn’t need to learn who to 

attack, where to flee or how to explore the terrain. It just needs to learn when to attack, flee or 

explore, and the manager modules transform this decision to specific enemies or positions on 

the map. The managers are described in section 6.4. 

 

4.7 Approximate Q-Learning (features based Q-Learning) 

In some cases when the state space is too large, it becomes impossible to keep a table with 

all the Q-Values. It’s also impossible to explore every state-action pair enough times to 

guarantee that the Q-Learning algorithm will converge to the optimal policy. The algorithm 

treats every pair as unique and there’s no relation between pairs regardless of how similar they 

might seem. The idea of the Approximate Q-Learning is to generalize over all this similar states-

action pairs and use this knowledge when the agent lands in a new state that has never been 

explored. This means that the learning becomes faster, since the agent uses the knowledge from 

the visited states to make decisions in the new ones. 

To generalize over state-action pairs some relevant features must be extracted, these 

features are real numbers (e.g., number of enemies around the unit). Similarly to the state 

representation in exact Q-Learning, selecting the features that represent a state-action pair is 
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key because this is the only information that the algorithm will use to learn. The result of 

extracting these features is a vector of real numbers (to simplify things, all features are integer 

numbers in this project). 

The goal is to give these features a weight, so that we have a weights vector with the same 

length as the features vector. After every time step, when a feature is present 

(𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑣𝑎𝑙𝑢𝑒 ≠ 0) the weight of this feature is updated. They are a measure of how good 

or bad that feature is, if the rewards are high, the features that lead to that reward are increased, 

if the rewards are negative, the features are decreased.  

Instead of updating the Q-Values, like in exact Q-Learning, only the weights vector is 

updated.  

𝑤𝑖 ← 𝑤𝑖 + 𝛼[(𝑟 + 𝛾 max
𝑎′

𝑄(𝑠′, 𝑎′)) − 𝑄(𝑠, 𝑎)] × 𝑓𝑖(𝑠, 𝑎) 

 

The Q-Value of a state-action pair is calculated as the dot product of the features vector and 

the weights vector. 

𝑄(𝑠, 𝑎) ← 𝑤0𝑓0(𝑠, 𝑎) + 𝑤1𝑓1(𝑠, 𝑎) + ⋯ + 𝑤𝑛𝑓𝑛(𝑠, 𝑎) 

 

The features are extracted from state-action pairs, which means they have information not 

only about the state but also about the possible outcome of the action taken. Those features 

are generally binary, their value is 1 if they are present and 0 otherwise. These are the features 

defined for this project: 

These features are extracted from the current state: 

- 𝒇𝟎(𝒔, 𝒂): the Hit Points of our unit. 

- 𝒇𝟏(𝒔, 𝒂): the sum of Hit Points of all the enemies around our unit. 

- 𝒇𝟐(𝒔, 𝒂): the Damage per Second that our unit can inflict. 

- 𝒇𝟑(𝒔, 𝒂): the Damage per Second of all the enemies around our unit. 

- 𝒇𝟒(𝒔, 𝒂): the speed of our unit. 

- 𝒇𝟓(𝒔, 𝒂): the distance to the closest enemy. 

- 𝒇𝟔(𝒔, 𝒂): the number of enemies around the unit. 

- 𝒇𝟕(𝒔, 𝒂): the number of allied units around our unit. 

- 𝒇𝟖(𝒔, 𝒂): the unit’s weapon cool down frames. 

- 𝒇𝟗(𝒔, 𝒂): whether the unit is under attack or not. 

These features are assumptions based on the current state and the action taken: 

- 𝒇𝟏𝟎(𝒔, 𝒂): action 𝒂 takes our unit most likely closer to an enemy. 

- 𝒇𝟏𝟏(𝒔, 𝒂): action 𝒂 takes our unit most likely away from an enemy. 

- 𝒇𝟏𝟐(𝒔, 𝒂): action 𝒂 will most likely hurt an enemy. 

- 𝒇𝟏𝟑(𝒔, 𝒂): action 𝒂 will most likely destroy an enemy. 

- 𝒇𝟏𝟒(𝒔, 𝒂): action 𝒂 will most likely cause us damage from an enemy. 

- 𝒇𝟏𝟓(𝒔, 𝒂): action 𝒂 will most likely cause us death from an enemy. 

- 𝒇𝟏𝟔(𝒔, 𝒂): action 𝒂 takes our unit most likely closer to an enemy. 
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5. BWAPI 

The Brood War Application Programming Interface (hereafter, BWAPI) is an API for 

interacting with Stacraft: Broodwar (1.16.1) [12]. It is a free and open source C++ framework 

that allows developers to interact with the game and control its units like a human player 

would do. The cheating options, such as human input or complete map visibility, are disabled 

by default so that the AI agents have to work under partial information conditions.  

The Brood War Application Programming has become very popular for AI researchers and 

AI developers as it is well documented and has a very active community. A list of academic 

works using BWAPI can be found in [13]. This Project has been developed using BWAPI 4.1.1 

and MS Visual studio 2013. The Project is written in the C++ programming language. 

Our RL agent’s goal is to solve a problem in form of an MDP. This is a brief description of 

some of the most relevant aspects of BWAPI used in this project. It helps to show how the MDP 

can be modeled using this framework. 

 

5.1 Interfaces 

5.1.1 AIModule: is the main class that initializes BWAPI. It has to be implemented or 

inherited by a custom class. Its member functions are used to handle the game 

events. A description of the events is found in section 5.2. 

 

5.1.2 Game: contains all the information available from the game state, including units, 

players, terrain, fog of war, regions, etc.  

 

5.1.3 Player: represents a player in the match, every player has a Player instance. This 

interface allows us to get all the information about our own units and control 

them (when player = self) or to get all the information available about the enemy 

(when player = enemy). 

 

5.1.4 Unit: is used to issue commands to individual units, like attack or move, and 

provides all the information about a specific unit, like ID, exists, hit points, unit 

type, position, etc. 

 

 

5.2 Events 

There are many events that the BWAPI extracts from the game. The AIModule catches these 

events and they can be handled writing their respective callback methods. All the events should 

be handled in a full Starcraft Bot to benefit from their information. Here, only the events used 

in this project are described. For a list of all the events, please check the BWAPI’s class diagram 

available in [14]. 

5.2.1 OnStart: this event is triggered only once at the beginning of the match. It’s not 

possible to keep information in memory from one match to the next so this 

event is ideal to load files from disk (e.g., the table containing the Q-Values). 
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5.2.2 OnEnd: this event is triggered only once at the end of the match. It is ideal to store 

information to disk. In our MDP, this event represents the final state and its only 

possible action is EXIT. It has a Boolean parameter isWinner which is true when 

our agent has won the match and false otherwise. This event is very useful to give 

our agent a final reward. 

 

5.2.3 OnFrame: this happens every game frame. It could be considered as a time step 

in our MDP but further considerations need to be done because not all actions 

require the same time to be finished. Treating every frame as a time step has 

another complication explained in section 5.3. 

 

5.2.4 OnUnitDestroyed: this event is triggered every time a unit is destroyed, 

regardless of who its owner was. The Unit interface can then be used to know the 

former owner. It is useful to return positive rewards when the unit was an enemy 

and negative rewards when our agent lost a unit. 

 

 

5.3 Frames 

Usually, the game runs at 24 frames per second, which means that the state of the game 

changes approximately every 42 milliseconds. It seems reasonable to treat every game frame as 

a time step of our MDP but there is another important concept to take into account, the Latency 

Frames.  

The Latency Frames are the number of frames before a command can be processed. Issuing 

commands to soon 𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝐹𝑟𝑎𝑚𝑒𝑠 < (𝑁𝑒𝑥𝑡𝐶𝑜𝑚𝑎𝑛𝑑𝐹𝑟𝑎𝑚𝑒 − 𝑙𝑎𝑠𝑡𝐶𝑜𝑚𝑚𝑎𝑛𝑑𝐹𝑟𝑎𝑚𝑒) 

would result in undesired behavior of the units (e.g., units get blocked and are unable to move 

or attack), this is known as ‘spamming commands’. This problem can be solved by simply 

skipping the frames in between. 

𝑖𝑓 ( 𝐹𝑟𝑎𝑚𝑒𝐶𝑜𝑢𝑛𝑡 % 𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝐹𝑟𝑎𝑚𝑒𝑠 ≠ 0) 𝑟𝑒𝑡𝑢𝑟𝑛; 

 

 

5.4 Tiles & Pixels 

The map coordinates can be represented in pixels (Position) or in tiles (TilePosition) which 

are squares of 32x32 pixels. The pixels are very useful to calculate the exact distance between 

two positions or to measure a unit’s speed, to name a few. They are not very good 

representatives of a unit’s state, though. The average size of a map in Starcraft: Broodwar is 128 

x 128 pixels. It means that there are approximately 16384 different positions where a unit can 

be at a given time. This information isn’t very practical, at least not in exact Q-Learning, because 

there are too many different values. Using tiles could be a way to reduce the possible values. 

Section 6.2 describes the implementation of a simple MDP using BWAPI. The state is 

represented as the x and y coordinates (in tiles) of a unit. As described in section 6.4.1, the flee 

manager also uses tiles, named blocks, to calculate an influence map around the unit and pick 

the safest block to escape. 
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6. Implementation 

 

6.1 Serialization 

It’s not possible for BWAPI to keep data in memory from one match to another. However, 

it’s possible to load this data from a file at the beginning of a match and save it back to the disk 

when the match ends. This is done respectively when the events onStart and onEnd are 

triggered. 

The Q-Values are the only information relevant to the agent that needs to be stored. A Q-

Value is just a real number linked to a state-action pair as explained in section 4.6. A map seemed 

like a good choice for this task. The Boost C++ Libraries [15] contains many useful data structures 

including unordered maps that accept custom classes as key. So, the Q-Values are stored in a 

unordered_map: the key is a custom class that contains the state-action pair and the value is 

simply the Q-Value of this pair. The map is created during the first match and then serialized and 

saved to the disk when the match ends, ready to be loaded at the beginning of the next match. 

 

6.2 Gridworld 

This first experiment was made to test the viability of the Q-Learning algorithm using BWAPI. 

As shown in Figure 3. the agent has to learn the path to a goal state where a big positive reward 

awaits (100), the other final states (the blue areas north, south and west) cause the agent to 

lose and receive a negative reward (-100). Apart from the final rewards, there is a living penalty 

(-0.5) every time step that the agent makes a transition to a non-final state. It’s a small negative 

reward that encourages the agent to finish the task as quickly as possible. 

  

 
Figure 3. Gridworld experiment. 

 

In this simple task the state of our only unit can be represented by its position on the map. 

Using tiles, instead of pixels, the state space is reduced to approximately 60 different states. As 
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the agent updates the Q-Values, the one with the highest value is displayed on the map; that’s 

the value of the state-action pair that the greedy agent would choose. 

 

 

Figure 4. Exploration, the highest Q-Value of each state is displayed in the grid. 

 

After 500 episodes with an exploration rate 𝜀 = 0.4 (meaning that 40% of the time the agent 

acts greedy and 60% randomly) the Q-Values have propagated enough throughout the map. 

Assuming that the values are optimal, the agent can now follow an optimal policy 𝜋∗ by setting 

𝜀 = 1 (acting greedy), the agent becomes a reflex agent and exploits the knowledge from the 

learning episodes. The experiment worked as planned and proved that Q-Learning can be 

applied in Starcraft using BWAPI. The implementation of this experiment can be used as a 

starting point for more complex MDPs. 

 

 

Figure 5. Following the optimal policy 𝜋∗ in the grildworld. 

 

 

6.3 Kiting 

Kiting is a technique used in RTS games’ micro-management. It consists of attacking and 

fleeing repeatedly in order to avoid being exposed to the enemy weapons for too long. It’s 

particularly useful when it’s used by fast range units against slow melee units. If it’s well 

performed, a single unit could deal with a much bigger force and remain unharmed. 

The definition of the states, actions and rewards of an MDP to learn how to kite in Starcraft 

have been explained in sections 4.3, 4.4 and 4.5. Here, we can see the resultant class diagram 

of the two different implementations of a Kiting Bot and a short description of their classes. 
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6.3.1 Exact Q-Learning 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Class diagram of the Q-Learning Kiting Bot. 

 

 

6.3.1.1. AIModule: inherits from BWAPI::AIModule, this is the main class of the Bot. It 

handles the events, loads and saves the information from disk and initializes 

the AgentManager. 

 

6.3.1.2. AgentManager: is the owner of the QTable, a custom class that contains the 

map with all the Q-Values. It initializes a set of agents associated to each 

existing own unit in the game. 

 

6.3.1.3. QAgent: is associated to a unit in the game, it has a reference to the QTable 

passed by its parent class AgentManager. It interprets the unit’s state, takes 

actions and updates the Q-Value of the last state-action pair visited. Note: due 

to the simplicity of the attack method this class also includes the instructions 

of the AttackManager, there’s no separate manager module for the attack. 

 

6.3.1.4. QTable: is a custom class that contains the unordered map with all the Q-

Values. The keys are the visited state-action pairs and the values are the 

current estimated value of that state-action pair, the values are initialized to 

0. It provides the QAgent class with methods to update, insert and access the 

Q-Values in the map. 

 

6.3.1.5. QState: represents a state-action pair. 

 

6.3.1.6. State: is the representation of the current state of a unit in the game. 
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6.3.1.7. FleeManager: is called by the QAgent class when the ‘flee’ action is taken. It 

executes the instructions to flee from the enemy units. Section 6.4.1 has more 

details about how the agent flees. 

 

6.3.1.8. ExploreManager: is called by the QAgent class when the ‘explore’ action is 

taken. It executes the instructions to perform the exploration of the terrain. 

Section 6.4.3 has more details about the way the exploration is performed. 

 

6.3.1.9. Block: is a class used by the FleeManager class to create a grid around the unit 

and estimate which cell, or block, is the safest at a given time. 

 

 

6.3.2. Approximate Q-Learning 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Class diagram of the Approximate Q-Learning Kiting Bot. 

 

6.3.2.1. AIModule: instead of loading the unordered map, it loads the weights vector 

at the beginning of the match and saves it to a file at the end. 

 

6.3.2.2. QTable: no longer has a map of all the Q-Values visited. Instead it has methods 

to extract the features from a State. It also keeps the vector with the weights 

of the features and methods to update them, as explained in section 4.7. 

 

All the other classes are the same as in the exact Q-Learning implementation in section 6.3.1.  

 



 

18 

 

6.4 Managers 

The managers are the code executed when the RL agent wants to perform an action (i.e., 

attack, flee and explore). Their purpose is to release the RL agent from the details of those 

actions, so that the state space of the MDP stays small. 

 

6.4.1 Flee Manager 

 

This module is called by the agents when the action Flee is selected. Initially the idea was to 

use a simple fleeing method. The method originally tested was to run from the enemy whose 

position was the closest to our unit. This method proved to perform very poorly and the unit 

usually ended up running straight to another enemy or getting itself trapped between the enemy 

and obstacles.  

 

 

 
Figure 8. Fail case of fleeing from the enemy to the opposite direction. 

 

 

The Next approach tested was to calculate the mean point of all the enemy positions near 

the agent, then run away from this point. There are many counter examples where this solution 

won’t work as expected because the information about the current position of the enemy units 

is lost, many enemy distributions can compute the same mean point and be completely 

different. Finally, the solution that proved to perform better than the others and still remain 

simple in concept and computational cost was using Influence Maps to calculate the safest 

position around the agent in a given state. At every time step the safest position is updated while 

the agent continues to flee. 
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Figure 9. Vulture fleeing using an influence map. 

 

The value 𝑣 of a cell tells the agent how dangerous that cell is. The higher the value, the 

more dangerous it is. It’s computed using the formula: 

𝑣(𝑐) = ∑ (100/𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛(𝑐, 𝑖) + 1)𝑛
𝑖=0 . 

 

Where n are the enemies in the grid and 𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛(𝑐, 𝑖) is the distance from a cell 𝑐 to 

enemy 𝑖. The agent chooses the cell with the lowest 𝑣. 

𝑓𝑙𝑒𝑒_𝑐𝑒𝑙𝑙 =  arg min
𝑐

(𝑣(𝑐)). 

 

 

Figure 10. Three examples of the safest current position using influence maps. 

 

6.4.2 Attack Manager 

Deciding which enemy to attack when there are many options is another topic that has 

been widely researched. In this project two greedy solutions are used to keep things simple. The 

first greedy method tested was attacking the closest enemy. This method minimizes the distance 
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that the unit has to walk if the enemy is out of the weapon’s maximum range; however, when 

mixed with kiting technics the unit can change its target, spreading the inflicted damage among 

the enemies. 

 

 

 

 

 

 

 

 

Figure 11. Vulture switching target as the second Dragoon gets closer. 

 

The second greedy method tested was to attack the weakest enemy. This method 

focuses all of our agents’ fire power in destroying the enemy with least hit Points, thus, reducing 

the enemy’s number. The drawback of this method is that our agents become blind and focus 

only in reaching the weakest target, even if it means exposing itself to other enemy units. 

Another problem with this method is known as ‘over killing’ an enemy, when all the units focus 

their fire power on an enemy that could be easily destroyed with fewer units. 

One method with effective and simple results was mixing these two previous methods. 

Using the reciprocal value of the closest enemy’s distance and the reciprocal value of the 

weakest enemy’s hit points, each value weighted 0.5. The agent picks the enemy unit 𝑖 with the 

highest value 𝑣(𝑖). 

𝑡𝑎𝑟𝑔𝑒𝑡 = arg max
𝑖

(𝑣(𝑖)); 

𝑣(𝑖) = (0.5 ∗
1

𝑑𝑖𝑠𝑡(𝑖)
+ 0.5 ∗

1

ℎ𝑝(𝑖)
) 

 

6.4.3 Explore Manager 

This module is called by our agents when the action Explore is selected. The purpose of 

this module was not to develop efficient exploration of the map. Given the lack of complete 

information in RTS games, exploration itself is a very wide problem and it is beyond the purpose 

of this project. This module aims to give the agent some behavior to find the enemies and 

therefore prevent the match from playing indefinitely. 

To explore the map our agents will follow a random pattern while no enemies are 

spotted. If the agent changes direction every time step the movement becomes very erratic and 

the agent generally stays in a small area. Always going straight would be very inefficient after 

facing any obstacle or the edge of the map. Mixing these two actions turns into a very basic and 

relatively efficient exploration method. Specifically, the agents change direction randomly 20% 
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of the time steps and continue straight the other 80%. These percentages were picked after 

testing different values. 

 What happens when one unit doesn’t see any enemy but another unit does? In this case 

the exploration manager module is also called but the behavior is very different. As seen in the 

Figure 12, the module uses the built-in path-finding algorithm to go to the location where the 

closest enemy was spotted, producing a call effect to all the agents that run to help their ally. 

 

 

Figure 12. Two Marines find the Ultralisk, the other Marines head to where it was seen. 

 

 

7. Results 

The agents were trained in 8 different maps during 1200 episodes. The training was divided 

into groups of 200 episodes (25 episodes on each map). After each of these groups, the Bots 

played four test maps (courtesy of Alberto Uriarte). In these four maps the Bots played 100 

episodes each map exploiting the knowledge from the training part. The maps are shown in 

sections 7.1 to 7.4. The following graphs show the win-rate of both Bots (exact and approximate 

Q-Learning) in the testing maps. 

 

 

Figure 13. Q-Learning win-rate 
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Figure 14. Approximate Q-Learning win-rate. 

 

In Figure 13 it is visible that the Q-Learning Bot improved its win-rate in two of the maps 

while it continued to fail in the other two. The Approximate Q-Learning Bot (Figure 14) also 

improved at first in those two maps but then worsened towards the last part of the test. The 

maps RC1-A-1V9Zg.scx and RC1-A-V6Z.scx are still beyond the Bots’ capabilities. Only a few 

victories were achieved in RC1-A-1V9Zg.scx while both Bots failed 100% of the time in map RC1-

A-V6Z.scx. It is worth mentioning that the win-rate of the built-in AI in these maps was always 

0%. 

Apart from the win-rate, the total accumulated reward achieved during each episode was 

recorded to a file and displayed using histograms in sections from 7.1 to 7.4. The horizontal axis 

represents the reward’s values and the vertical axis represents the frequency of these values. 

 

7.1 Map RC1-A-VZ.scx 

This map is a small battleground surrounded by a wall. Our Bot controls one Vulture (fast 

range unit), the enemy controls a Zealot (melee unit). 

 

 

Figure 15. testing map RC1-A-VZ.scx 
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Figure 16. Q-Learning, histogram of map RC1-A-VZ.scx 

The results show that the accumulated rewards were higher for the Bot with more training. 

The Bot collected higher rewards after training 1200 episodes (green) and 1000 episodes (dark 

blue). Only the first bar shows negative rewards meaning that the Bot lost on that episode. This 

happens mostly when the Bot had only trained during 200 (light blue) and 400 (orange) episodes. 

 

 

Figure 17. Approximate Q-Learning, histogram of map RC1-A-VZ.scx 

 

Similarly to the Q-Learning counterpart, the Bot improved the accumulated rewards as the 

training episodes increased. Something interesting is that the episodes ended faster than the Q-

Learning Bot and only three different values of accumulated rewards were obtained. 
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7.2 Map RC1-A-V6Z.scx 

This map is a small battleground surrounded by a wall. Our Bot controls one Vulture (fast 

range unit), the enemy controls six Zealots (melee units). 

 

 

Figure 18. testing map RC1-A-V6Z.scx 

 

 

Figure 19. Q-Learning, histogram of map RC1-A-V6Z.scx 

 

 

Figure 20. Approximate Q-Learning, histogram of map RC1-A-V6Z.scx 
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In this map, both Bots, Q-Learning and approximate Q-Learning, failed to achieve victory in 

all the episodes. It’s not unexpected considering the superiority of the enemy force. 

Nevertheless, an optimal Kiting behavior should be able to take advantage of the Vulture’s speed 

and range weapon to defeat the six Zealots unharmed. 

 

 

 

7.3 Map RC1-A-3V6Z.scx 

This map is a small battleground surrounded by a wall. Our Bot controls three Vultures (fast 

range units), the enemy controls six Zealots (melee units). 

 

 

Figure 21. testing map RC1-A-3V6Z.scx 

 

 

Figure 22. Q-Learning, histogram of map RC1-A-3V6Z.scx 
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Figure 23. Approximate Q-Learning, histogram of map RC1-A-3V6Z.scx 

 

The map configuration is the same as in section 7.2 adding two more Vultures to our force. 

This maps shows that a small force of three Vultures can achieve victory roughly half of the time. 

It is not optimal but it is much better than the results from one single Vulture in 7.2. Like in the 

previous maps, the frequency of rewards received by the Q-Learning Bot is more diverse than 

the rewards received by the approximate Q-Learning Bot.  

 

 

7.4 Map RC1-A-1V9Zg.scx 

This map is a small battleground surrounded by a wall. Our Bot controls one Vulture (fast 

range unit), the enemy controls nine Zerlings (fast melee units). 

 

 

Figure 24. testing map RC1-A-1V9Zg.scx 
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Figure 25. Q-Learning, histogram of map RC1-A-1V9Zg.scx 

 

 

Figure 26. Approximate Q-Learning, histogram of map RC1-A-1V9Zg.scx 

 

The results from map RC1-A-1V9Zg.scx are very interesting because of the big number of 

enemies and their speed of movement. Here, a Vulture has to engage a force of nine Zerlings, 

weak but fast melee units. The win-rate in this map is very low for both Bots (under 10%). The 

histogram does not show a clear improvement between the low trained version of the Bots and 

the high trained versions. The frequency of rewards shown in the histograms are very diverse as 

well. With so many threats, the result is highly stochastic. The Vulture only won when it had 

‘good luck’. 
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8. Conclusions 

 

Both approaches highly improved the behavior of the units in terms of combat skills 

comparing to the built-in AI. The built-in AI doesn’t include Kiting as part of its micro-

management. In that sense, both Bots learnt to attack when the conditions were good (i.e., an 

enemy is damaged and/or alone) and when to flee (i.e., outnumbered by the enemy force, when 

the weapon is not ready to shoot or when being under a heavy attack). 

The approximate Q-Learning Bot proved to learn much faster than the Q-Learning Bot, 

usually reaching its peak of success after the first 200 episodes of training. This could be useful 

when the time designated to learn is short. In the other hand, this approach can result in 

unexpected behavior if the features are not chosen well, particularly those based on 

assumptions (see section 4.7). The use of features can also result in the Bot ‘de-learning’ from 

state-action pairs that it already knew well. For example, if the Bot is good in one map where 

attacking is the best choice, then it is exposed to a long learning period in a very different map 

where fleeing is the only good choice, and finally tested back in the first map. The Bot might still 

think that fleeing is the best choice because the weight of the features have changed. 

The Q-Learning Bot proved to not be as good as its approximate counterpart when the 

training period was short, but it improved considerably after many episodes of training. Unlike 

the approximate Q-learning approach, the Q-Learning Bot never forgot a good action from a 

particular state because its Q-Value is stored in its internal table. 

As mentioned in section 7, neither of the Bots performed the Kiting in an optimal way. One 

of the reasons for that is that the fleeing manager, the code in charge of moving the unit away 

from the enemy, is not optimal. That code is not part of the Q-Learning implementation but it is 

critical to Kite. The next section talks about the future work, including how the fleeing manager 

could be improved. 

The definition of a state can always be improved to achieve better results. The code was 

made very modular so that it could be done by modifying only the State class. Unfortunately, if 

the state definition changes, the previous serialized files containing the agent’s knowledge 

become invalid. Every time the State definition changes, the learning process has to start from 

scratch. 

Finally, this rather small project proves that RL techniques can be applied to RTS games’ AI 

and videogames in general. It only requires that companies be willing to dedicate more 

resources to bring this to big commercial games. 
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9. Future work 

 

Potential Fields: using this method instead of Influence Maps, the unit could compute a 

safe route instead of a safe point to flee, as shown by Uriarte and Ontañon [16]. 

 

Angle of attack: this problem appeared during the kiting test with Vultures. In some 

occasions the vulture selected a target located behind. It had to stop, turn around, shoot and 

accelerate again. Sometimes that gave other enemies necessary time to reach and attack our 

unit. This didn’t happen when it selected a target in front, with a margin of about 20°. In that 

case the Vulture could shoot while escaping at top speed. A Bot that keeps that information into 

account could perform a better kiting. 

 

Overkill: as mentioned before in section 6.4.2, this problem appears when too many of our 

units attack a weak or damaged enemy unit simultaneously. In a battle this means that all these 

units have to wait for their weapons to cool down before they can attack again, making them 

vulnerable to other enemy units. Solving this problem would prevent the Bot from wasting fire 

power unnecessarily and thus, focusing in other threats. 

 

Add to an existing Bot: including the achievements of this project in an existing Bot with 

simple micro-management should improve its efficiency. 

 

Explore Macro-Management: it would be interesting to explore the capabilities of RL in 

other areas of RTS games, like placing buildings or resource management. 
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