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Abstract: Action potential occurrences (spikes) were inferred from cellular fluorescence signals
acquired through a calcium imaging technique in Dr. Soriano’s laboratory. A peeling algorithm
developed by the Brain Research Institute at the University of Zurich [4] was modified so that,
instead of reconstructing simulated spike trains, it could deal with real signals. In this work, we
reconstructed spike trains from different cultures and conditions. The reconstruction provided an
overview of the collective dynamics of these networks.

I. Introduction

Brain is undeniably the most complex organ in the hu-
man body. Both its morphology and functioning are the
result of numerous biochemical and biophysical processes
interacting in a highly intricate manner across multiple
scales in space and time. Neuroscience is thus a field in
broad expansion, with many unresolved issues and un-
explored approaches. The study of the nervous system
dates back to ancient Egypt. A turning point in its evo-
lution was the development of a staining procedure by
Camillo Golgi during late 1890s, and the use that Santi-
ago Ramón y Cajal [1] made from this technique, which
revealed the morphology of neurons and the structure of
the nervous system with astonishing detail.
Since Ramón y Cajal, there has been an astounding de-
velopment in Neuroscience. However, as stated, there
are many issues awaiting to be tackled. One of the ma-
jor questions that is still not well understood is how the
dynamics of individual neurons shape the collective be-
haviour of the whole network. For this reason, current
research focuses both on the brain dynamics and the ob-
tainment of more controllable networks in the form of
neuronal cultures. The accessibility of the latter allows
the combination of experimental recordings and physi-
cal modeling to understand universal mechanisms of neu-
ronal network behaviour. This leads to the actual goal
of this work, which is to relate the recordings of neu-
rons with their actual firing patterns. Although this may
seem simple, it is actually a very complex problem, and
a target of study for many research groups worldwide.

A. Neuronal cultures

Neuronal cultures in Dr. Soriano’s lab are prepared as
primary cultures from rat embryonic tissues. The tissue
is isolated, dissociated and plated in a biocompatible
substrate [2]. Primary cultures are very versatile and
represent a unique model system for unraveling a wide
range of phenomena in Neuroscience and Physics [3].
Here we deal with two types of neuronal cultures: homo-
geneous cultures (fig. 1A) and aggregated ones (fig. 1B).
The former are dissociated neurons affixed in a substrate
of adhesive proteins, whereas the latter correspond

to neurons platted in absence of such a protein, thus
naturally aggregating and shaping a network of clusters
connected among them. In this essay, we focused on
two homogeneous cultures at DIV=18-19, respectively
labeled HOMO 1 and HOMO 2, and one clustered one
at DIV=14, labeled CLUS 1.

B. Neuronal activity and calcium imaging

Being able to measure the neuronal activity in these
networks is undeniably a big challenge. In this case,
we utilized a fluorescence technique called calcium
imaging which uses either synthetic small-molecules or
genetically-encoded fluorescent calcium indicators [4] to
acknowledge changes in the intracellular calcium concen-
tration. When a neuron fires, it elicits an action potential
and there is an intake of calcium, which binds the fluo-
rescent probe and makes the neuron brighter on the field
of view (fig. 1A).

FIG. 1: (A) Homogeneous culture. The figure scale is 100µm
(B) Clustered culture. The figure scale is 0.5mm (C) Patron
transient, peeling algorithm (D) Sample individual neuronal
traces.

Spikes are inferred from these calcium influxes (fig.1D),
which are converted to fluorescence signals, but due to
the noise and sampling rate, the relation is not straight-
forward. These fluorescence signals are expressed as rel-
ative percentage fluorescence signals after background
subtraction. The transformation between the intracel-
lular free calcium concentration [Ca2+i ] and the fluores-
cence signal is given by:

∆F/F = ∆F/Fmax
[Ca2+]i − [Ca2+]rest

[Ca2+]i +Kd
(1)
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[Ca2+]rest denotes the resting calcium concentration,
Kd the dissociation constant of the calcium indicator,
and ∆F/Fmax the maximal ∆F/F reached upon satura-
tion. As the spiking is sparse and isolated, this relation-
ship may be presumed linear –providing that fluorescence
transients are far from saturation ([Ca2+]i << Kd) – and
thus, eq. 1 can be linearized to:

∆F/F = ∆F/Fmax
[Ca2+]i
Kd

(2)

This linear description is a good approximation in
the low firing regime, where APs evoke stereotype,
elementary calcium transients that can be approximated
with a rapidly rising and exponentially decaying function
(fig.1C). However, at higher AP firing rates, it may reach
levels sufficiently high to cause substantial saturation
of the calcium indicator, the transformation between
the calcium concentration and the relative fluorescence
becoming thus non-linear [4].

The reason for using calcium imaging in the laboratory
is because it enables both in vitro and in vivo proper
network monitoring with relatively simple and cheap
optical devices. Despite the major drawback of not
being able to discriminate quick or weak spikes because
the typical frame rate during acquisition is slower
than the cell’s firing dynamics, it allows a very high
temporal resolution, as well as an exact identification
of the neurons involved and the capacity to monitor
large populations of neurons, characteristics for which it
emerges as a powerful technique [6].

The most important feature of neuronal cultures is
their connectivity, which, at the same time, defines their
activity. Activity is intimately related to the circuitry of
the network, the type of neurons it contains and its dy-
namics. So to understand how connectivity defines activ-
ity, neuronal cultures constitute an excellent model sys-
tem. At the beginning, the neurons in a culture are iso-
lated, but as the culture grows, neurons start establish-
ing synaptic connections, these networks becoming more
and more complex as the culture grows. For sufficiently
mature cultures, spontaneous millisecond-lasting firing
episodes (bursts) arise, a fraction of the neurons taking
part in the collective activity. These bursts are com-
bined with periods of non-firing, thus leading to many
and diverse activity patterns, as we are going to observe
in further sections (subsec. III C).

C. The peeling algorithm

Among all the algorithms developed to infer the spike
train underlying a particular observed calcium indica-
tor fluorescence trace, we used the peeling algorithm in-
troduced in (Grewe, B.F. et al., 2010) [5], which itera-
tively subtracts a template elementary calcium transient
at event onset times, thus peeling away calcium transients

until a residual noise trace remains [4]. In simple terms,
after having set a carefully parameterized patron tran-
sient (fig. 1C), what it does is searching for similar shapes
all along the signal fluorescence trace provided. This is
why we call it a matching algorithm.

Each fluorescence transient detected is typically fitted
in a two-step procedure with a model function composed
of a rapidly-rising function and a double-exponential
decay (the observed decay has two phases: a rapid
initial phase followed by a slowly decaying one). In
the first step, the onset is fitted in order to determine
the start of the event and the onset time constant, and
then, the entire calcium transient, so that estimates of
amplitudes and time constants for the two decay com-
ponents can be obtained. In this essay, in order to make
the discussion simpler, each AP evoked a stereotype,
elementary somatic calcium transient approximated by
a single-exponential decay –see sec. III.

The peeled signal is what is called the reconstructed
spike train. It may contain false negatives (missed
spikes) and false positives (falsely discovered spikes).
Theoretically, a comparative approach of the spike time
differences (∆t) for all pairs of original and reconstructed
spikes is followed, its outcome leading to the creation
of two parameters condensing such information: the
true positive rate TPRAP (number of correctly detected
spikes divided by the original number of spikes, also
called sensitivity or recall) and the false discovery rate
FDRAP (number of falsely discovered spikes divided
by the number of reconstructed spikes, also referred
to as precision) [4]. In practice, what we did was play
with the model transient amplitude and decay time to
graphically maximize the number of real spikes.

Various methods have been explored for inferring spike
trains from calcium fluorescence measurements: deconvo-
lution techniques [7], template matching [8], model-based
fitting [9] and Monte Carlo methods [10], but what makes
this peeling algorithm so powerful is its ability to resolve
spike times for spikes spaced as close as 40-50ms apart[5].

II. Algorithm modification

As previously stated in the abstract, the goal of this work
was to modify the reconstruction algorithm explained in
section I C so that it could be applied to experimental
data from the Neurophysics laboratory.

The peeling algorithm was written in Matlab, and
so were all subsequent variations of the code and data
analysis carried. In order to modify the original code the
minimum possible, a separate program was developed,
which called ModelCalcium, the main algorithm of the
original code, and used it as a function as well. In the
developed code, some of the basic experimental param-
eters were initialized: the duration of the signal and
the frame rate at which the images in the experimental
setup were taken.
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Not only these parameters were duly initialized at the
beginning, but also those referred to the reconstruction
itself. The most important ones are the following: the
portion of the signal that wants to be reconstructed, the
time constant for the main exponential decay τ1 and the
time constant τ2 for the second exponential decay. We
set τ2 to zero, providing that we decided to model the
spikes with a single-exponential decay for simplification.

Straightaway, a reading function was needed so that
any kind of file in “.txt”, “.dat” or “.mat” format
(selected by the user) could be read. Afterwards, a
function called fitting was created, with a triple purpose:
firstly, to calculate the average signal over all the
neurons in the culture and, secondly, to normalize the
stored data while trying to correct the baseline. It is of
utmost importance to normalize accurately and correct
the possible drift in the baseline in order to rectify two
factors that may be affecting the data: the fact that,
as time goes by, cells find it more difficult to eliminate
the inner calcium when bursting, and the fact that the
fluorescent molecule degrades due to the permanent
exposure to light excitation (a phenomenon known as
photo-bleaching).

To properly normalize, the first step taken was get-
ting rid of all those points above the standard deviation.
Then, we considered the 5% of those in order to calculate
the average noise amplitude F0. Immediately after, we
found the coefficients of a polynomial of degree n fitted
using a least squares fit to the data. In this case, n = 3
was found optimal enough so that the spikes could be
well preserved, i.e. their shape was not altered after the
correction. Finally, the fit was subtracted from the origi-
nal signal to correct for global drifts, and the fluorescence
trace normalized to correct for the background brightness
level. Mathematically, it is expressed as follows [11]:

F̃ (%) =
(F − F0) × 100

F0
=

(C − fit) × 100

F0
(3)

with C corresponding to the initial fluorescence data
F, fit the polynomial adjusting the data C, and F0 the
average amplitude of the background fluorescence, as
previously defined.
The fitting procedure also facilitated another relevant
parameter, which is the minimum amplitude of the
fluorescence signal to consider an AP (in %), set as
twice the width of the signal noise. For a more clear
understanding of the signal being treated, we displayed
a plot of some representative traces (figs. 2A, B & C).
Systematically, the program also provides the signal
average over all the neurons. Then, the ModelCalcium
function was called inside a loop in order to obtain the
spike times of all the neurons in the selected file. These
time values were saved in a new file and then plotted.
This final plot is very clarifying in terms of the activity,
as one is able to visually discern whether the firing is
simultaneous or scattered.

III. Results and discussion

As previously stated, our goal was to reconstruct differ-
ent signals after having assessed the parameters needed
for a good reconstruction. These parameters were later
included in the ModelCalcium function for the actual re-
construction. We analysed three files with different char-
acteristics, as summarized in table I. HOMO 1 is an ho-
mogeneous culture with very strong bursting, HOMO 2
is also a homogeneous culture, but with very weak burst-
ing (i.e. a bad signal) and CLUS 1 is a clustered culture:

File # neurons fps duration (s) data size

HOMO 1 25 30 900 29 958

CLUS 1 28 100 1790 179 736

HOMO 2 101 33.33 900 29 987

TABLE I: main characteristics of the files. ‘Data size’ indi-
cates the number of points for each neuron. ‘Fps’ refers to
frames per second.

In order to have a clearer idea of the signals’ behaviour,
we plotted the fluorescence traces belonging to the first
12 neurons in each file. Figs. 2A, B & C display the
results.

FIG. 2: Fluorescence traces from neurons 1-12 in (A)
HOMO 1 (B) CLUS 1 (C) HOMO 2. The vertical axes are

F̃ (%) for each neuron, but vertically shifted for clarity.

As one may observe, especially in the first two culture
–see figs. 2A & B–, activity is, regardless of the exhibited
activity pattern, characterized by episodes of intense
bursts and silent periods between these.
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A. Analysis limitations

The peeling algorithm used in the ModelCalcium
function is to be used for accurate experimental sig-
nals, that is to say, traces in which the fluorescence
levels return to the baseline after the neuron fires.
When the noise amplitude is high, the reconstruction
process becomes extremely difficult, and, even if one
is able to adjust the parameters in a way that it can
be finally performed, the false discovery rate FDRAP

is so high that the reliability of such a result is really low.

With the implementation made when correcting the
baseline -removal of all those points above the standard
deviation of the fluorescence values–, reconstruction of
noisy signals becomes definitely impossible. In this case,
the std is so low -there is almost no dispersion from the
average– that if one eliminates all those points above this
statistical parameter, there are no values left. So, in file
HOMO 2, reconstruction was not possible if this proce-
dure was taken. However, if normalization and baseline
determination were done taking directly the first 5% of
fluorescence values without the std treatment, one could
get to a reconstruction (of questionable quality, though).
Thus, taking into account that, for this file, the std treat-
ment had been omitted, we found interesting to include
such example in the analysis.

B. Parameters values and limitations

Next, we present another table –tab. II– which sum-
marizes the parameters describing the reconstruction:
the portion of data selected for the reconstruction, the
decay time constant τ1 and the amplitude A1. Notice
that, instead of taking the whole signal, we only used a
fraction of it in order to reduce the computational time
required. The first value was conveniently chosen around
200s, τ1 was by trial and error graphically set after having
analysed values in a range [0.5-3], and A1 was calculated
as indicated in the previous section II: as twice the am-
plitude of the signal noise. In most cases, 1.5 times the
value of the background amplitude should be enough so
that the program does not miss events or detects false
ones, but 2 was estimated a reasonably safer value.
As we took the decision to model the transients with a
single-exponential decay function, A2 was consequently
set to zero, but, for some internal issue, the ModelCal-
cium gave errors when setting τ2 also to zero. For this
reason, we initialized τ2 to a not null value of 0.5.

File simulation duration (s) A1 τ1 (s)

HOMO 1 200 4.52 1

CLUS 1 200 2.09 1

HOMO 2 200 0.69 1

TABLE II: reconstruction parameters and values

After having initialized the parameters just described,
we used the peeling algorithm from ModelCalcium to
exemplify some reconstructions, in which we compared
the original fluorescence trace with the extracted spike
trains:

FIG. 3: Reconstructed signal for: (A) Neuron 20 in file
HOMO 1 (B) Neuron 14 in file CLUS 1 (C) Neuron 20 in
file CLUS 1.

In HOMO 1, as the spikes are clear, a really successful
reconstruction was performed. CLUS 1 happens to be a
much more interesting focus of discussion. As a cluster,
the activity pattern, as we will see in further subsec.
III C, is more diverse. By now, we may say that, whereas
in neuron 20 reconstruction was satisfactory, in neuron
14, as the level of noise is considerable, and despite not
being able to quantify the reconstruction quality, it is
visible that one can not take it as a good result. As
mentioned before, we include below the reconstruction
of the data from ’bad’ file HOMO 2:

FIG. 4: Reconstructed signal for: (A) Neuron 14 in file
HOMO 2 (B) Neuron 20 in file HOMO 2.
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In this example, the situation is similar to that of file
CLUS 1, despite some differences. A few neurons fire
high, others do not. Therefore, there are optimal recon-
structions (fig. 4A) and disastrous ones (fig. 4B), in
which the program found some spikes that could well be
noise.

C. Cultures dynamics and activity patterns

The electrical brain activity has an externally-induced
component and an internally-generated spontaneous one.
Despite many of the physiological mechanisms that ini-
tiate and regulate this spontaneous activity remain un-
known, it has been seen that this activity determines
important structural and functional features of neuronal
circuits. In neuronal cultures, the spontaneous activity
patterns depend on the neurons dynamics and the con-
nections among them. The range of patterns one may
have is extremely wide. In homogeneous cultures, neu-
rons typically show a coherent activity. As can be seen in
the following spike reconstruction raster plots (figs. 5A
& B), belonging to homogeneous cultures HOMO 1 and
HOMO 2, most of the neurons of the culture fire together
in a short time window:

FIG. 5: Spike reconstruction raster plots for networks in ho-
mogeneous cultures HOMO 1 and HOMO 2.

This coherent activity is associated with a high syn-
chrony degree among neurons. Besides, in fig. 5B there is
another observation worth being made: not all the neu-
rons fire; an important fraction of them remain silent.
What is relevant about these two activity behaviours is
that they correspond to neurons located in the same spa-
tial regions, a fact that reinforces the above-stated affir-
mation pointing out the link between neurons’ dynamics,
activity and connectivity. Note that there are scattered
points in the white regions corresponding to neurons that
do not fire. They belong to bad reconstructions (i.e. fig.

4B), so these should not be taken into account.

Other interesting dynamical patterns one may have
are those of clustered cultures, in which there is a
tendency for small groups of aggregates to fire together,
rather than the entire network at unison. In the example
of fig.6, the 28 neurons in culture CLUS 1 form three
clearly distinguishable activity groups:

FIG. 6: Spike reconstruction raster plot for clustered network
CLUS 1.

IV. Conclusions

Transient adjustment with high parametrization is of ex-
treme complexity. Also of great difficulty is it to correct
the signal baseline when normalization is attained. Nev-
ertheless, the peeling algorithm was found to be a good
tool for extracting the spike trains from experimental cal-
cium data with relatively few parameters. Unluckily, it
only works reliably for data with high signal-to-noise ra-
tio and low FDRAP .

Spike reconstruction raster plots allowed to study cul-
ture dynamics and spontaneous activity patterns of these
cultures: homogeneous cultures showed a synchronous
response, whereas clustered networks fired simultane-
ously by aggregation regions. Inferring culture dynam-
ics after the connectivity networks is relatively easy, but
trying to figure out the connectivity patterns from fluo-
rescence traces –this is definitely a daunting task.
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