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Abstract: The aim of this project is to reformulate Kuramoto’s equations for N-coupled oscilla-
tors in a cycle limited boundary, both for the noise-free case (D = 0) and for the noisy one (D 6= 0) .
We will see that solving integro-differential equations is needed to finally get the approximate value
of Kc, which sets the phase transition. To prove this phenomena I will also program a simulation
and compare both results.

I. INTRODUCTION

Synchronization is a phenomenon hugely found in na-
ture and in our daily life. It involves large populations of
units displaying a high level of ”coherence” in their tem-
poral activity. In every case, these feats of synchronicity
befall spontaneously, almost as if nature had a yearning
for order.

Blinking at unison fireflies is probably the example
which motivated the study of synchronization [5]. A huge
amount of fireflies from the Southeast Asia were spotted
blinking at unison. For 300 years travelers from this re-
gion had been returning with tales about this behavior.
However, there was a general disbelief. How could thou-
sands of fireflies blink at synchronicity so precisely and
on such a wide scale? No one could explain this event
until the end of the 1960. Nowadays is known that each
firefly delays or advances its internal clock, or natural
frequency, to finally synchronize with their collective. A
kind of interaction is needed so a firefly could modify its
inner clock. In this particular instance, the interaction is
the sight of their companions flashes.

Nevertheless, fireflies are not the only example of syn-
chronization. A social example could be fads. Fads are
contagious ideas competing for survival, with the win-
ners proliferating through a cultural version of natural
selection. We all have experienced fads, and that is a
phenomenon which will always exist. When something
is new, clothes, technologies, experiences etc, people talk
about it and spread their desire. Finally, this experience
will be a trend and will be synchronized, since a huge
amount of people is doing, wearing or using it.

But, How do they do it? Are these two last examples
related? These are the main questions that I will at-
tempt to answer in my project. A.T.Winfree spent part
of his life studying and modeling different kinds of phase
and frequency synchronization [3]. He was able to for-
mulate a mathematical framework where this collective
behavior could be studied analytically. However, in 1975
Yoshiki Kuramoto brought simplicity to this problem. He
solely considered the specific case of all-to-all interaction
with oscillators synchronized at the same phase and fre-
quency, and proposed the simplest model until that mo-
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ment. What makes the Kuramoto model so interesting
is the theoretical work that can be done with it. Despite
being a non-linear model, it is fully solvable. He was not
only able to prove that there will be a phase transition to
synchronization, but also to find an equation that gives
the critical coupling strength necessary to achieve it. We
found this model to be a certainly good description of
some synchronizing systems.

In the upcoming sections we will travel over the Ku-
ramoto model to finally demonstrate it with a simulation.

II. THE KURAMOTO MODEL

In a further simplification, Kuramoto proposed this
problem to be set with a weakly coupled, nearly identi-
cal and limit-cycle oscillators. These assumptions helped
him to do an easier calculus.

At first, Kuramoto suggested the following approxi-
mated equation [1].

θ̇i = ωi +

N∑
j=1

Γij(θj − θi) (1)

where N is the number of particles, K is the cou-
pling strength, wi are the natural frequencies and Γij
are the interaction functions between each oscillator.
This is the simplest proposal of all-to-all purely sinu-
soidal coupling, the so-called Kuramoto model where
Γij(θj − θi) = K

N sin(θj − θi).
The dynamics of the system will be governed by the

dominating factor of equation (1). In absence of interac-
tions, the population runs incoherently driven by natu-
ral frequencies ωi. On the other hand, the second term
(coupling function) makes the population converge to the
same phase leading to synchronization [9]. For a large
value of the coupling constant K, a phase transition from
incoherence to synchronization emerges spontaneously.

Therefore, the dynamics will be given by the next equa-
tion.

θ̇i = wi +
K

N

N∑
j=1

sin(θj − θi) (2)

To make the physics more understandable, Kuramoto
introduced the order parameter, a value which shows us
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how synchronized the system is. Considering that the
oscillators are running around the unit circle in the com-
plex plane, we can express the order parameter as

rei(Ψ−θi) =
1

N

N∑
j=1

ei(θj−θi) (3)

Where r is the mean module of all positions and its
phase corresponds to the mean phase of all oscillators.
I represented the dynamics of the system for a better
comprehension on Figure 1, where r is represented as a
blue arrow.

r
Ψ

θi

Figure 1: Representation of the order parameter r and the
average phase Ψ

Now, we will rewrite the equation (2) in terms of the
order parameter r and the mean phase Ψ. Therefore,
it will give us a better visualization of the system dy-
namics. Since we can express the exponential function of
equation (3) into sinus and cosinus functions using the
Euler formulation, we will take the imaginary part corre-
sponding to the sinus and will replace it into the equation
(2). Finally we obtain the following expression.

θ̇i = ωi −Krsin(Ψ− θi) i = 1, ..., N. (4)

In the last equation we can perceive a clear propor-
tionality of coupling and coherence. As the population
becomes more coherent, r grows and so does the coupling
factor Kr. Simultaneously θi slowly approximates to the
mean phase Ψ. Otherwise, if the population becomes
incoherent r → 0 and θ̇i = ωi, which means that each
oscillator will move with its own natural frequency and
will not be synchronicity.

This phase transition from incoherent to coherent state
is set at a critical value Kc. Thus, we expect a r > 0
when K ≥ Kc, where the population acts like a giant
oscillator, and r ≈ 0 when K ≤ Kc and oscillators are
scattered around the circle. On Figure II we can observe
the evolution of r(t) for both cases synchronization and
incoherence [2].

The speed evolution of r(t) also depends on the density
function g(ω) and the natural frequencies of each oscil-
lator. Remember that a density function is defined as
a function which gives us the number of oscillators with
a natural frequency between ω and ω + δω. This oscil-
lators with its natural frequency near the center of the

Figure 2: Evolution of the order parameter r(t) in front of the
initial coupling parameter K

frequency distribution would be the first ones to lock.
Hence, the natural frequencies belonging to the tails of
the density would be harder to recruit, so we will need
a higher value of the coupling parameter to add them to
the synchronized population.

III. RESOLUTION OF THE KURAMOTO
MODEL

My objective in this section is to go through the differ-
ent steps which lead Kuramoto find the exact expressions
for the critical coupling strength and the order parame-
ter.

From now on, we will consider a large number of oscil-
lators N →∞, so the evolution of the system will be de-
scribed by densities and we will apply what it is called the
continuum limit. The density function ρ(θ, t, w) refers
to the fraction of oscillators with frequency ω placed be-
tween θ and θ+δθ at a time t. We will solve this problem
for two different cases, the deterministic one on which
the density evolution is governed by the continuity equa-
tion ∂ρ

∂t = − ∂
∂θ (ρv), and the non-deterministic where the

density evolution turns to the Fokker-Planck equation
∂ρ
∂t = D ∂2ρ

∂θ2 −
∂
∂θ (ρv) [7]. Notice that the Fokker-Planck

equation change into the continuity equation for D = 0.

A. The deterministic case for D=0

As I introduced in the last section, when the number
of oscillators increase we will not talk about discrete os-
cillators anymore, we will rather operate with densities.

Hence, we will have to rewrite the order parameter
defined at the continuum limit such as

reiΨ =

∫ 2π

0

∫ ∞
−∞

eiθρ(θ, t, ω)g(ω)dωθ (5)

where ρ(θ, t, ω) is the density distribution, and g(ω)
the frequency distribution function. To solve the pre-
view equation, it is necessary to determine the density
distribution function.

First we will consider the deterministic case with the
noise strength in the Fokker-Planck equation D = 0,
consequently we will recover the continuity equation.
Its stationary states are the steady solutions that Ku-
ramoto proposed, where the density distribution do not
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evolves. As we expect, this function satisfies the normal-

ization condition
∫ 2π

0
ρ(θ, t, w)dθ = 1. We notice that

∂ρ/∂t = 0 implies ρv = C(ω). When C(ω) 6= 0 the den-
sity will be inversely proportional to the speed, and ap-
plying the normalization condition over [−π, π] we find

C(ω) = 1
2π

√
ω2 − (Kr)2, and ρ(ω, θ) = C

|ω−Krsinθ| [2].

This result agrees with experience. At the most popu-
lated places the flow is slower, and in free places the flow
does not get interrupted and goes faster. For instance,
this is analogue to the transit flow.

Therefore, after replacing the density distribution
function into the equation (5) and considering the drift-
ing and locked oscillators separately[2], the resulting
equation is

r = Kr

∫ π/2

−π/2
cos2θg(Krsinθ)dθ (6)

After solving this last equation for r = 0 to find the
critical coupling strength, we easily obtain this general
expression

Kc =
2

πg(0)
(7)

where g(0) is a general distribution function evalu-
ated at zero. For a specific distribution, in this case the

Lorentzian, we will get Kc = 2γ and r =
√

1− Kc

K [2].

We can discern that the expression for the order pa-
rameter is consistent with our statements. For K ≥ Kc

it grows reaching values r > 0. Otherwise, with K ≤ Kc

the system has not reached the threshold, so the state
will be in the incoherent state where for definition r = 0.

B. Continuum limit for D6=0

In this section I will aboard the problem for D 6= 0.
Instead of the continuity equation now we will require the
Fokker-Planck equation. To solve this problem we will
study the stability of the incoherent state [4]. First we
rewrite ρ(θ, tω) = 1

2π +εη(θ, t, ω), where ε� 1 , η(θ, t, ω)
is a perturbation function and the first term corresponds
to the density at the incoherent state. This density is
easily found just replacing r = 0 into the density function
expression from the deterministic case. The perturbation
function can be rewritten as a Fourier series, on this wise
η(θ, t, ω) = c(t, ω)eiθ + c.c + η⊥(θ, t, ω). From this last
expression c(θ, t, ω), the fundamental mode, is the only
term which contributes to the system [2].

After substituting this last expression into the Fokker-
Planck equation, we obtain the following integro-
differential equation for the fundamental mode.

∂c

∂t
= −(D + iω)c+

K

2

∫ ∞
−∞

c(t, ω)g(ω)dω (8)

This last equation has both a discrete and continuous
spectrum. Therefore, on the following sections I will solve
each of them separately.

1. Discrete Spectrum

To solve the discrete spectrum we will propose solu-
tions such as c(t, ω) = b(ω)eλt, where λ is the eigenvalue.
As we can see in this last expression, this eigenvalue gov-
erns the linear stability of the system. To make this mode
stable, λ must be negative, since the exponential will de-
cay and when t → ∞ =⇒ c(ω, t) → 0. Hence, the
unstable case comes when λ is positive. After replacing
the proposed solution we get the following equation.

λb = −(D + iω)b+
K

2

∫ ∞
−∞

b(ω′)g(ω′)dω′ (9)

Paying attention to the equation (9), we can prove that
has at most one solution for λ, and if it exists must be
necessary real [8]. The second term in the RHS of the
equality do not depends on ω, so its is a constant. Thus,
isolating b(ω) and replacing it again into the constant
expression we obtain [2]

1 =
K

2

∫ ∞
−∞

λ+D

(λ+D)2 + ω2
g(ω)dω (10)

It is important to notice that λ must always satisfy
λ > −D. Otherwise the value of the coupling strength
K would be negative, and as known, K must be positive
by definition. Taking into account this last issue, for
D = 0 we notice that the system will be unstable, since
λ must be positive, and if λ > 0 the fundamental mode
diverges. Thus, the critical point, in which the stability
is bifurcated, is set at λ = 0. After substituting it into
the expression (10) we get

Kc = 2

[∫ ∞
−∞

D

D2 + ω2
g(ω)

]−1

(11)

To prove that for the free-noise case the incoherent
solution goes unstable with K > Kc = 2/[πg(0)], as con-
jectured by Kuramoto, we set D=0 and let λ → 0+.
If we first solve the integral by the residues method,
just considering the positive pol (iλ), we finally obtain
1 = (K/2)πg(0) since λ > 0 for K > 2/[πg(0)].

2. Continuous Spectrum

To find the continuous spectrum we apply the operator
L to the equation (8) as follows.

Lb = −(D + iω)b+
K

2

∫ ∞
−∞

b(ω)g(ω)dω (12)
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Notice that the continuous spectrum of L is defined
as the set of complex numbers λ such that the operator
L − λI is not surjective. Recall that for surjective we
mean inversible, so Det | L − λI |= 0 [6]. Thus, the
spectrum of L consists of all non regular values or neutral
modes. This modes can be interpreted by imagining the
perturbation of one part of the oscillators population, for
instance these with ω = ω0 and leaving the rest in their
perfectly incoherent state. The corresponding amplitude
would be c(0, ω) = 0 for all ω 6= ω0, and we can choose
c(0, ω0) = 1. The point is that the integral from the
equation (8) vanishes for this perturbation and it reduces
to ∂c

∂t = iω0c. Hence, c(0, ω) is an eigenfunction with pure
imaginary eigenvalue iω0 [1].

Now, adding −λb at each side of the equality we get

−(λ+D + iω)b+
K

2

∫ ∞
−∞

b(ω)g(ω)dω = f(ω) (13)

where f(ω) is an arbitrary function that satisfies (L−
λI)b = f(ω). If λ + D + iω = 0 for ω in the support of
g(ω), then the equation is not solvable in general. Hence,
the continuous spectrum contains the set {−D− iω : ω ∈
Support(g(ω))}. This last set is all of the continuous
spectrum just supposing that λ is not in the support
of g(ω), then the equation is solvable. Substituting the
integral by A, isolating b(ω) and replacing again in the
A equation we get

A

(
1− K

2

∫ ∞
−∞

g(ω)

λ+D + iω
dω

)
= (14)

−−K
2

∫ ∞
−∞

f(ω)g(ω)

λ+D + iω
dω (15)

By assumption, λ is not in the discrete spectrum, and
A 6= 0 (we do not consider the trivial solution). Thus,
equation (14) can be solved for A. Hence, the set consid-
ered before is the continuous spectrum. We notice that
if D = 0 the spectrum lies in the imaginary axis, and if
D < 0 it is set in the left-plane. This continuous and
imaginary spectrum are related with other kind of mo-
tion waves that would need more accurate study. This
is not the aim of my project, therefore I will not focus
deeper on that issue.

In the Figure III B 2 is represented the discrete and
continuous spectrum for a frequency density g(ω) with
support [−γ, γ]. Notice that the eigenvalue is born at
λ = −D, which follows the definition λ > −D.

For the specific case of the Lorentzian distribution, the
exact solution for the eigenvalue is λ = K

2 −D−γ, whose
consistency can be easily checked. We will consider the
free-noise case with D = 0, so the eigenvalue must be
absorbed by the continuous spectrum at λ = 0. Since the
eigenvalue must satisfy λ > −D, in this particular case
λ > 0. Finally, replacing Kc = 2γ in this last expression
we recover λ = 0 [2].

Figure 3: Continuous and discrete spectrum for the linear
operator from equation (12) for the noisy case D > 0. (a)
K > Kc, the fundamental mode is unstable since λ > 0. The
continuous spectrum lies in the left-plane. (b) K = Kc we are
in the critical point, so λ = 0 (c) K∗ < K < Kc. Here the
fundamental mode is stable since λ < 0 (d) K∗ = K. K∗ is
the value at which λ = −D, and where the discrete value is
absorbed by the continuous spectrum.

IV. NUMERICAL RESULTS

To demonstrate the Kuramoto theory for the determin-
istic case with D = 0, I implemented a Python program
which simulates oscillators interaction in a unit circle. In
this specific example I used the forth order Runge-Kutta
method with an uniform density between [π+0.5, π−0.5].
In Figures IV and IV I represented the order parameter
evolution for K > Kc and K < Kc with a population of
N = 1000.

Figure 4: Evolution of the order parameter r(t) for K = 0.8
for a population of N = 1000 oscillators and a uniform dis-
tribution

This results show the validity of the theory. We can
observe in Figure IV that above the critical point, set
over Kc ≈ 0.6, the order parameter increases until its
saturation value r∞. The critical value is determined
thanks to the equation (7), where in this specific case
g(0) = 1.

On the other hand, in Figure IV we can observe that
withK < Kc the order parameter keeps constant at r ≈ 0
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Figure 5: Evolution of the order parameter r(t) for K = 0.4
for a population of N = 1000 oscillators and a uniform dis-
tribution

describing fluctuations of size O( 1√
N

).

For its simplicity, the initial condition is set at the
incoherent state ρ(t, ω). If we impose a larger restriction
over the initial positions, the starting r would be higher
and we would see a quick decay until r ≈ 0.

We also have solved the stochastic version of the model,
with D 6= 0, by considering θ̇i = ωi −Krsin(Ψ − θi) +
ηi(t). This last expression is the Kuramoto model with an
additional white noise function which satisfies 〈ηi(t)〉 = 0
and 〈ηi(t)ηj(t′)〉 = 2Dδijδ(t− t′). To solve this differen-
tial equation we have implemented a first order Euler
method. The results are the same except for the critical
coupling Kc, which is higher due to the additional im-
pediment caused by the white noise function. I have not
added these results due to the lack of space.

V. CONCLUSIONS

Observing spontaneous synchronization in nature is
not only beautiful but enigmatic. In 1960s, thanks to the
Kuramoto model scientists were able to finally uncover
this mystery. A mathematical description was proposed,
and it was not only beautiful by its good description of
this phenomena, but for its simplicity. With a few sim-
plifications Kuramoto was able to predict the exact con-

dition at which synchronization would emerge.
In this project I attempted to solve the Kuramoto

model analytically to finally find the critical coupling
constant, which sets the phase transition from the in-
coherent state to synchronization. To archive it we had
to solve a non-linear differential equation, which in this
specific case it is completely solvable. That is one of the
reasons that makes this model so fascinating.

I solved the problem for both situations, the determin-
istic case governed by the continuity equation and the
non-deterministic with D 6= 0. To determine the solution
of the non-deterministic case, ruled by the Fokker-Planck
equation, I studied the stability of the incoherent state
solving an eigenvalue problem.

To finally test the veracity of the theory, I programmed
a simulation and compared the numerical results. As we
expected, I found concordance with the model’s predic-
tions. The order parameter tends to a constant value
when K > Kc, which means synchronization, and decays
to zero at K < Kc for the incoherent state. After testing,
I am able to verify that the critical value also agrees with
the theoretical one ruled by equation (7) for an specific
density function.

Overall, the Kuramoto model provides a large mathe-
matical realm to explore. Therefore, synchronization for
different varieties of interactions would be a stimulating
innovation for a further research.
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