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Abstract: We consider white dwarfs to be composed by a degenerate electron gas at zero temperature and

study the underlying physics.  The electron pressure can only balance the gravitational  force up to a

maximum mass of the white dwarf, the so-called Chandrasekhar mass. By writing our own code, we have

found the value of this limiting mass to be  1.417 solar masses, in accordance with most observations.

However, recent discoveries of overluminous type Ia supernovae explosions suggest white dwarf masses

above the Chandrasekhar limit. Motivated by recent literature, we show in this work that the presence of

an intense magnetic field in the star leads to a higher value of the maximum mass, which could explain

these new observations.

I. INTRODUCTION

White dwarfs (WDs) are the remnants of ordinary stars

which  are  unable  to  continue  with  the  nuclear  fusion

processes in their cores. After all the hydrogen is burnt up to

helium in the  core  of  a  star,  the  latter  shrinks due  to  the

gravitational  force  not  being  balanced  by  the  nuclear

reactions in the core. This shrinking leads to an increase in

temperature until it is high enough for helium nuclear fusion

to  occur,  returning  the  star  to  a  state  of  hydrostatic

equilibrium where the inward gravitational force is balanced

by the outward force due to the thermal pressure gradient.

Similar processes can take place for heavier elements as long

as the star mass is above a certain value. For masses lower

than  about  8M0,  where  M0 stands  for  solar  mass,  the

gravitational force is too weak to reach the minimum density

and temperature needed for carbon burning, as, before this

happens,  the  degeneracy  pressure  of  electrons  becomes

important  enough to counteract  the core shrinking.  At this

point,  the outer  layers  of  the  star  are  blown away due  to

strong stellar winds, and what remains is a hot compact core

made of carbon and oxygen, or what we know as a WD.

Due to the high densities that can be reached in WDs, the

pressure  in  this  kind  of  objects  can  be  assumed  to  come

entirely from the degenerate electrons. Two fermions can not

have the same quantum state,  and thus in a  WD electrons

have  to  move  to  higher  energy  states  by  increasing  their

momenta,  giving  origin  to  what  is  called  a  degeneracy

pressure.  Due  to  its  specific  dependence  with  density,

electron  degeneracy  pressure  can  only  balance  the

gravitational force up to a maximum WD mass, known as the

Chandrasekhar mass [3].

A WD in a close binary system can accrete matter from

its companion star, increasing its mass in the process. This

mass income results in an increase in the star  temperature

and,  if  it  is  high  enough,  a  point  is  reached  where

temperature allows for carbon fusion in the core. The weakly

temperature dependent electron pressure is unable to cool the

star by expanding it just as happens with ordinary stars. This

leads to a runaway fusion reaction that ends up blowing up

the whole star in a type Ia supernova explosion. Due to the

existence of a maximum WD mass, type Ia supernovae have

a  very  well  defined  luminosity  peak  and  can  be  used  as

standard  candles  [9].  These  explosions  were  of  prime

importance in the discovery of the accelerated expansion of

the universe, awarded with the Nobel Prize in 2011.

However, recent observations [1, 10] of peculiar type Ia

supernovae with exceptionally high luminosities suggest the

existence  of  Super-Chandrasekhar  WDs,  i.e.  WDs  with  a

higher  mass  than  the  Chandrasekhar  limit.  One  proposed

explanation to these observations is the presence of a strong

magnetic  field  in  the  star,  which  would  increase  the

maximum possible mass [7, 9].

In  this  work,  the  physics  concerning  WDs is  studied.

Section  II  provides  the  structural  equations  of  a  star  in

hydrostatic equilibrium. The equation of state for both non-

and  highly-  magnetized  WDs are  discussed  in  section  III.

Section IV focuses on the obtained numerical results and we

conclude with a summary and outlook in section V.

II. STRUCTURE EQUATIONS

II.1. Newtonian gravity

There are two main forces acting on a star. One of them

is the inward directed gravitation and the other one results

from a  pressure  gradient.  In  hydrostatic  equilibrium these

two forces are equal in magnitude, giving the first structure

equation of the star [4]. For Newtonian gravity we have:
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dP
dr

=−
G ε(r )m(r)

c2 r 2
,                       (1)

where  P  is  the  pressure,  G the  Newton's  gravitational

constant,  c the speed  of  light  and  r the distance  from the

centre of the star. m(r) is the mass contained within a radius r

and  ε(r)=ρ(r)c2 is  the  energy density,  with  ρ(r) being  the

mass  density.  The  second  structure  equation  comes  from

mass conservation:

dm
dr

=
4π r2ε(r)

c2
.                          (2)

II.2. General relativity corrections

When the star is very compact, general relativity effects

must be taken into account. In this case, eq. (1) is replaced by

the Tolman-Oppenheimer-Volkoff (TOV) equation [2]:

dP
dr

=−
G ε(r )m(r)

c2r 2 [1+
P (r)
ε(r) ][1+ 4 πr 3 P (r)

m(r )c2 ][1− 2G m(r )

c2 r ]
−1

.

(3)

This  equation  adds  three  correction  factors  to  Newtonian

gravity.  As  the  three  factors  are  greater  than  1,  they

strengthen the effect of gravity on the star. The importance of

these corrections will be evaluated numerically in section IV.

III. EQUATIONS OF STATE

III.1. Non-magnetized WDs

In order to be able to solve the previous equations we

need to find a relation between the pressure and the energy

density, i.e. an equation of state (EoS) of the matter. Matter

in WDs can be considered to be composed by atomic nuclei

and an ideal Fermi gas of degenerate electrons. The energy

distribution  of  the  electrons  is  given  by  the  Fermi-Dirac

statistic, where we can set the temperature to zero [4],  even

when WDs core temperatures can be as high as 107 K [5],

due to the huge densities present in the star.

Ignoring  the  electrostatic  interactions,  the  number

density of electrons has the following expression [4]:

ne=∫
0

pF

2

(2π ħ)3
d3 p=

pF
3

3π2 ħ3
,              (4)

where pF is the Fermi momentum.

We can  now write  the expression for  the total  energy

density:

ε= ne mN
A
Z

c2+εelec(k F) ,                 (5)

where mN is the nucleon mass and A and Z are the mass and

atomic numbers, respectively. The first term in this equation

corresponds to the contribution to the energy density of the

rest mass of the nucleons assuming electrical neutrality in the

star. The second term is the energy density of the electrons

themselves. We do not include here the kinetic energy of the

nucleons as it is very low compared to their rest mass. As a

consequence, nucleons do not give a significant contribution

to the pressure of the system and we can consider it to come

entirely from the fast moving electrons. On the other hand, as

we  will  see  in  the  next  section,  electrons  do  not  give  an

important contribution to the mass density of the star unless

extremely  high  central  densities  are  attained,  where  their

Fermi momentum becomes very large.

With the electron energy

E ( p)= √ p2 c2+me
2c4 ,                     (6)

we can write εelec as follows [4]:

εelec( pF)=
8 π

(2 πħ)3
∫
0

p F

E ( p) p2 dp

=
ε0

8
[(2 x3+x)√1+x2 − ln(x+√1+x2)]

,       (7)

where we have defined ε0 and x as:

ε0=
me

4 c5

π2 ħ3
,                             (8)

x=
pF

me c
 .                             (9)

The  pressure  of  an  electron  gas  with  an  isotropic

distribution of momenta is given by [4]:

P ( pF)=
1
3

8π

(2π ħ)3 ∫
0

pF

p2 c2

E ( p)
p2 dp

=
ε0

24
[(2 x3−3x)√1+x2 − 3ln (x+√1+x2)]

.  (10)

Eqs. (7) and (10) relate the energy density and pressure with

the Fermi momentum, and thus, they provide the equation of

state.

III.2. Magnetized WDs

If a magnetic field is considered, the electron motion in

the plane perpendicular to it becomes determined by the field

and quantized into Landau orbitals (see [6] or [7] for more

details). For sufficiently high magnetic fields, the cyclotron

energy,  ħωc= ħ(eB/mec),  is comparable to the electron rest

mass,  mec
2,  and  the  electrons  become  relativistic.  This
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defines a critical magnetic field:

Bc=
me

2c3

ħe
= 4.414 × 1013G .              (11)

The  Fermi  energy  of  the  electrons  now  gets  an  extra

contribution due to the magnetic field, such that for a Landau

level ν it has the following expression [6]:

E F
2 = pF (ν)2 c2 + me

2 c4 (1+2 ν B D) ,        (12)

where a dimensionless field BD= B/Bc is introduced.

The  upper  limit  for  ν is  obtained  by  introducing  the

condition  pF(ν)2 ≥  0 in eq. (12). Defining the dimensionless

maximum Fermi energy of a system (in our case the value of

the Fermi energy at the centre of the star) εFmax= EFmax/mec2,

we get:

νm=
εFmax

2 −1

2BD

,                           (13)

where the nearest  lowest  integer  must  be taken.  Note that

εFmax≥1, since the Fermi energy of the electrons is larger than

their rest mass energy  mec2. Thus, for a given  EFmax value,

the  stronger  the  magnetic  field,  the  lower  the  number  of

Landau levels that can be occupied.

The main effect of the magnetic field is to modify the

available density states for the electrons ne, and consequently

the EoS. The new expression for ne is [7]:

ne=
BDε0

2me c2∑
ν=0

νm

gν x(ν) ,                   (14)

where ε0 and x have been defined in eqs. (8) and (9), and gν is

the degeneracy of that level, such that gν=1 for ν=0 and gν=2

for ν>0.

The additional factor in eq. (12) due to the field modifies

the  electron  energy  density  at  zero  temperature,  and

subsequently the  pressure  exerted  by the  electrons.  In  the

presence of a magnetic field, eqs. (7) and (10) are replaced

by these new expressions [6]:

εelec( pF )=
B D ε0

4 ∑
ν=0

νm

gν(1+2 ν BD)η+( x(ν)

√1+2 νB D ) ,   (15)

P ( pF)=
BD ε0

4 ∑
ν=0

νm

g ν(1+2 ν B D)η−( x(ν)

√1+2 νB D) ,    (16)

where η±(z )= z √1+z 2 ± ln (z+√1+ z2) .

IV. NUMERICAL RESULTS

We  have  written  numerical  codes  to  compute  several

physical relations for WDs using the structure equations (1)-

(3) and the EoS for non-magnetized and magnetized WDs.

IV.1. Non-magnetized WDs

In  this  work,  a  fourth-order  Runge-Kutta  method  has

been  implemented  to  integrate  numerically  the  structure

equations.  Starting with the initial  conditions for  the mass

and the Fermi momentum at the centre of the star, m(r=0)= 0

and x(r=0)= x0, we can compute iteratively the value of these

two magnitudes at a radius r+dr, where dr is the integration

step that we choose. We can find the dependence of x with

the radius as dx/dr= dx/dP*dP/dr, where the first derivative

can  be  computed  analytically  from  eq.  (10).  As  pressure

decreases  with radius,  we will  reach a point  where P, and

thus  x, will become zero or negative. This point determines

the radius R of the star and its mass M= m(r=R).

The  central  Fermi  momentum  x0 also  determines  the

central density of the star, according to eqs.  (4), (5) and (7).

Table 1 illustrates the variation of the central density, central

pressure, mass and radius of the WD as a function of x0. We

have  set  A/Z=2  in  (5),  as  corresponds  to  a  WD made  of

carbon and oxygen, and taking into account general relativity

corrections (TOV eq. (3)).

As seen in Fig. 1, for the TOV equation the mass-density

relation  shows  a  maximum  at  x0=23  where  the  mass  is

MCh=1.417M0. This is what we know as the Chandrasekhar

limit.  If  we do  not  take  into  account  GR corrections,  the

curve behaves slightly different, and this difference becomes

very  clear  at  high  central  densities.  For  the  “Newtonian

gravity” case, the Chandrasekhar mass is MCh=1.438M0 and

corresponds to a central Fermi momentum x0=34. We will be

working with the TOV equation from now on.

Note  that  the  solutions  in  Fig.  1  for  central  densities

beyond  the  Chandrasekhar  limit  correspond  to  unstable

cases. For a discussion about stability we refer the reader to

[4]. We highlight, however, that this relation shows a strict

maximum because  the  contribution  to  the  density  coming

from the kinetic energy of the electrons has been taken into

account.This contribution becomes more important for high

densities  and  makes  gravitational  effects  stronger  (i.e.  the

mass decreases for a fixed density with respect to the case

where only the nucleon mass has been taken into account). If

we  neglect  εelec(pF) in  (5),  a  maximum  mass  is  never

achieved,  although  similar  results  may  be  obtained  by

discarding non-realistic solutions.
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x0 ρ0  (g/cm3) P0 (erg/cm3) M/M0 R(km)

0.1 1.95·103 9.57·1017 0.022 31716

1.0 1.95·106 7.38·1022 0.510 9701

5.0 2.44·108 7.23·1025 1.268 3510

10 1.95·109 1.19·1027 1.384 2069

23 2.38·1010 3.35·1028 1.417 1021

100 1.99·1012 1.20·1031 1.345 258

Table 1. Calculated values for different central Fermi momenta

Fig. 1. Computed masses for C-O WDs as a function of central density.

 We have studied the mass-radius relation of WDs in Fig.

2, where each point in the curve represents the solution for a

specific x0. The effect that the star composition may have on

its mass is also studied in Fig. 2, where we have considered a

C-O WD (with A/Z=2) and a star composed by iron (with

A/Z=56/26=2.15), which is the last step that can be reached

in a core fusion chain. We see that the Chandrasekhar mass

for the Fe case is lower than for the C-O WD, due to the

gravitational contribution of the extra neutrons. Specifically,

for an iron WD, MCh=1.223M0.

It is also interesting to see the density profile inside of

the star. Fig. 3 shows how density decreases with the radial

coordinate  for  different  central  values.  Even  with  small

variations in the central Fermi momentum, the difference in

density  becomes  much  more  important.  This  can  be

explained by the cubic dependence of density with pF seen in

eqs. (4) and (5).

IV.1. Magnetized WDs

We have also written a code to solve the case where a

strong magnetic field is present in the WD. For that purpose,

we need to use the EoS provided by eqs. (15) and (16). In

this  work,  we  want  to  prove  the  possibility  for  a  highly

magnetized WD to exceed the Chandrasekhar mass limit, as

Fig. 2. Mass-radius relation of WDs for different compositions

Fig. 3. Density profile

suggested in the literature [7, 9].  For this reason, we have

studied  the  case  where  only  the  ground  Landau  level  is

occupied, and thus νm in (13) is set to νm<1 (implying ν=0).

This condition ensures that, for a given EFmax at the centre of

the star, we will have a high enough magnetic field such that

from the centre to the surface of the WD it only allows the

ground Landau level  to  be  filled.  This  field  is  considered

constant throughout the whole star.

Taking all the above considerations into account, we can

compute the central Fermi momentum x0 from eq. (12) and

proceed as we did in the non-magnetized WD case, but with

the use of eqs. (15) and (16), to obtain the mass and radius of

the star. Fig. 4 shows the radius-mass relation for WD with

different central Fermi energies. Note that in this figure BD is

a lower limit to the field strengths that ensure that only the

ground Landau level is populated, as  BD has been obtained

by setting νm=1 following the discussion by Lai and Shapiro

[6]. This guarantees that, for any value of the field higher

than BD, the right hand side of eq. (13) is between 0 and 1,
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and thus only the ground Landau level can be occupied.

It  is  clear  from Fig.  4  that,  in  a  wide  range  of  εFmax

values,  the  mass  of  the  star  greatly  exceeds  the

Chandrasekhar limit. The largest achieved mass in the plot

corresponds  to  a  maximum  dimensionless  central  energy

εFmax= 20 and has a value of 2.487M0 (the magnetic field is

8.81·1015 G).  This  mass  is  compatible with the calculated

masses for the peculiar type Ia supernovae explosions, which

lie in the range 2.1-2.8 M0, depending on the chosen model

to estimate the nickel mass [9, 10].

As  we  mentioned,  the  mass  observed  in  the  plot  for

εFmax= 20 is not necessarily the limiting mass for BD= 199.5,

but the mass that a WD would have when only the level ν=0

is  totally filled  for  this  field.  Increasing the Fermi energy

from that  point  (and  thus  exceeding  εFmax associated  with

ν=0) would start filling higher Landau levels for  BD= 199.5

and, if enough of these levels are occupied, one would expect

a strict maximum in the M-R relation for this  BD  (a similar

comment applies to other field values), as happens in Fig. 2.

Fig. 4. Radius-mass relation for different central Fermi energies. We recall

that BD=B/Bc, with Bc= 4.414·1013 G.

The WD radius evolution observed in Fig. 4 shows a fast

increase  for  low  masses  and  then  remains  practically

constant.  However,  for  higher  energies  (εFmax>100),  a

bending towards lower radii can be observed, suggesting that

a maximum mass may be reached eventually.

V. SUMMARY AND CONCLUSIONS

Considering  WDs  to  be  electron-pressure  dominated

unequivocally  leads  to  a  maximum mass  for  this  kind  of

stars. Up to now, most observations of type Ia supernovae are

in  very  good  accordance  with  the  Chandrasekhar  mass

obtained in section IV.1, with a value of 1.417M0.

However,  recent  discoveries  of  overluminous  peculiar

type Ia supernovae suggesting higher WD masses have led us

to consider the effect that a magnetic field would have on the

limiting mass of the WDs. Without actually having searched

for a new maximum mass, we have shown that the presence

of an intense field can increase the mass of  the WD well

above the Chandrasekhar limit, with values compatible with

the ones that are inferred from the peculiar supernovae.

Motivated  by  Das  and  Mukhopadhyay  work  [8],  we

leave  for  future  study calculations  accounting  for  Landau

levels above the ground level, as well as the inclusion of a

radial profile for the magnetic field in the star and the free

field  contributions  to  the  pressure  and  energy density [7].

With all these considerations, we would expect to find a new

limiting mass for highly magnetized WDs.
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