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Abstract. Sphingolipids are an important group of biomolecules 

that play important roles in the regulation of many cell functions. 

Many efforts have been made in recent years to design analogs 

suitable for a better understanding of the biological and biophysical 

roles of sphingolipids. In this review, some of the most relevant 

contributions in the field from our group are collected. In particular, 

this review deals with the development of new sphingolipid analogs 

as acid ceramidase inhibitors, and the design of fluorogenic probes 

to screen enzyme activities and to the study of biophysical 

properties. 

 

Introduction 
 

 Sphingolipids (SLs) represent an important group of natural products 

that play crucial roles in cell survival and regulation [1]. Chemically, SLs in  
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mammals contain a lipophilic 2-amino-1,3-diol backbone of eighteen 

carbon atoms, as found in sphingosine (So). Acylation of the 2-amino 

group with fatty acids affords ceramides (Cer), responsible for grow 

inhibition and apoptotis. The so-called complex SLs arise from 

functionalization at the primary hydroxyl group of Cer. In this case, 

glucosylation leads to glucosyl ceramide (GlcCer), the precursor of higher 

glycosphingolipids (GSLs), which play important roles in cell-cell 

recognition events at the outer membrane [2]. Esterification with 

phosphorylcholine leads to sphingomyelin (SM), while both Cer and Sph 

can be also phosphorylated in cells to the corresponding phosphate esters, 

ceramide-1-phosphate (CerP) [3] and sphingosine-1-phosphate (S1P) [4], 

which are important as second messengers and also in cell regulation as 

proliferative agents (Fig. 1).  

 

 
 

Figure 1. Some of the most representative sphingolipids in mammals. 

 
 The effective control of the cellular functions requires a delicate balance 

of SL levels, which is regulated by finely tuned complex metabolic pathways 

with the help of specific enzymes However, the enzymatic processes by 

themselves are not enough to understand this intricate scenario, whose 

operability depends on the cellular compartmentalization of the different 

pathways involved (Fig. 2) [1]. This cellular organization is especially 

relevant for signaling events mediated by SL that are often spatially 

separated in particular organelle. Since the subcellular distribution of lipids 

is not uniform [5], local changes in lipid concentrations can be responsible 

for diverse downstream effects. 



Chemical approaches to sphingolipid research 3 

 
 

Figure 2. Metabolic pathways and compartmentalization in sphingolipid 

biosynthesis. (CERT: ceramide transporter protein; dhCer: dihydroceramide; dhKSo: 

ketosphingosine; dhSo: dihydrosphingosine; GSL: glycosphingolipids; NCDase: 

neutral ceramidase; NSmase: neutral sphingomyelinase; SK: sphingosine kinase; 

FAPP2: GlcCer transfer protein). 

 

 The fact that the expression of SL metabolizing enzymes is deregulated 

in many diseases has boosted the design of SL biosynthesis modulators as a 

rational approach to define new targets and new small molecule chemical 

entities with potential therapeutic applications [6].  

 In recent years, the interest on the biophysical properties of SLs, in 

particular So, Cer and their phosphorylated derivatives, has emerged as a 

major field of research. In this context, So is known to increase membrane 

permeability, while Cer increase lipid chain order, induce “flip-flop” motion 

of lipids and segregate laterally into rigid domains, among other effects [7]. 

Interestingly, it is the ability of these SL to aggregate into microdomains 

what accounts for the formation of high local concentrations of secondary 

messengers that are ultimately responsible for the triggering of some cellular 

effects. 

 

1. Sphingolipid analogs as enzyme inhibitors 
 

 Abnormal SLs metabolism is known to occur in some diseases, such as 

certain sphingolipidoses [6], cancer [8], diabetes [9], and aterosclerosis [10]. 

The cellular contents of the various SLs species are controlled by enzymes 
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involved in their metabolic pathways. In this context, the search for potent 

and selective inhibitors of SL metabolizing enzymes offers new insights for 

the discovery of alternative therapeutic agents. Our interest in SL enzymes 

as potential targets led us to investigate on ceramidases, a type of 

amidohydrolases that catalyze the cleavage of Cer into So and fatty acids. 

According to their optimal pH, ceramidases fall into three groups, acidic 

(aCDase), neutral (NCDase) and alkaline ceramidases (alkCDase). While 

aCDase is ubiquitously expressed, NCDase is highly expressed in the small 

intestine along the brush border, where it is involved in the catabolism of 

dietary sphingolipids thus regulating the levels of bioactive sphingolipid 

metabolites in the intestinal tract. On the other side, alkaline ceramidases are 

expressed in the endoplasmic reticulum, where three different types have 

been identified, based on their localization and the encoding genes [11].  

 The role of CDases in human disease is well documented. In general, 

increased CDase activity leads to reduced levels of ceramides and increased 

amounts of S1P, which results in increased resistance to cytotoxic signals. 

This situation is often found in cancer progression and resistance to 

treatments. On the other hand, a decrease of ceramidase activity provokes 

cell death. A number of reports point to important roles of ceramidases, 

mainly aCDase, in the initiation and progression of cancer, and the response 

of tumours to therapy [12]. Overexpression of aCDase is found in several 

cancer cell lines and cancer tissues [13], which appears to contribute to 

decreasing the levels of Cer and increasing those of S1P, thereby resulting in 

resistance to cell death and enhancement of cell proliferation. In most cases, 

aCDase inhibition induces apoptosis. Multiple reports confirm the 

relationship between aCDase activity and radio- or chemotherapy resistance, 

as well as the interest of aCDase inhibitors as anticancer drugs, either alone 

or in combination with other therapies [11]. The research in this field has led 

to implicate an over-expression of acid ceramidase (aCDase) in metastatic 

prostate cancer [14]. Many tumor types express high levels of acid 

ceramidase (aCDase). Specifically, the expression levels of aCDase in 

prostate cancer have been reported to be elevated relative to normal prostate 

tissue [15]. With these considerations in mind, a rational design of an 

aCDase inhibitor was undertaken. Taking into account that aCDase is a 

cysteine hydrolase, a small family of Cer analogs modified at the amide 

linkage with thiol reactive functions was generated and tested. These 

compounds were inspired in reported cysteine protease inhibitors [16] and 

included two β-haloamides and several α,β–unsaturated amides as Michael 

acceptors, as shown in Fig. 3. 
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Figure 3. New acid ceramidase inhibitors. 

 

 The best inhibitors in intact cells were compounds RBM1-12, RBM1-13, 

RBM1-18 and SABRAC, with percentages of inhibition ranging from 50 to 

70%. Compounds RBM1-12, RBM1-13, and SABRAC were selected for 

further studies and were shown to be selective aCDase inhibitors in light of 

their lack of activity on NCDase, the enzyme that hydrolyses Cer in the cell 

membrane. In vitro dose-response determinations showed that SABRAC 

was the best inhibitor, with an IC50 value of 52 nM, followed by RBM1-12 

(IC50 = 0.53 µM) and RBM1-13, which exhibited the lowest potency (IC50 = 

11.2 µM). Furthermore, in the presence of SABRAC and RBM1-12, the 

enzyme activity showed an exponential decay versus incubation time at two 

protein concentrations, this indicating an irreversible type of inhibition. The 

above observations confirmed aCDase as a therapeutic target in advanced 

and chemoresistant forms of prostate cancer and suggested that our new 

potent and specific inhibitors could act by counteracting critical growth 

properties of these highly aggressive tumor cells. 

 

2. Sphingolipid analogs as fluorogenic probes 
 

 The perception that SL metabolism is composed of a highly intricate, 

interrelated system of enzymes, whose relative activities determine the 

intracellular concentration of SLs and, ultimately, the cell fate, has boosted 

the development of methods to monitor SL enzyme activity. In this context, 

the use of fluorogenic substrates (substrates that give rise to a fluorescent 

readout subsequent to a particular enzymatic reaction) represents a 

breakthrough in the design of probes suitable for determining enzyme 

activities. Guided by these interests, our group has been working actively in 

the development of new fluorogenic probes for the development of HTS 

methods for the screening of several SL metabolizing enzymes. With our 

focus on aCDase, the fluorogenic coumarinic substrates RBM14 (Fig. 4) 
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were designed. After the enzymatic hydrolytic amide cleavage of the above 

substrates, oxidation of the resulting vicinal amino diol renders an 

intermediate aldehyde AL (Fig. 4), whose subsequent β-elimination under 

basic conditions liberates the fluorescent reporter (Fig. 4) [17,18]. 

Interestingly, the specificity of the substrates towards ceramidases could be 

modulated by choosing an appropriate acyl chain length. Thus, for aCDase, 

the highest rate of hydrolysis was observed for the probe with a dodecanoyl 

group (RBM14-12). The recombinant human neutral ceramidase preferred 

the hexadecanoyl derivative (RBM14-16), while the tetradecanoylamide 

(RBM14-14) was preferentially hydrolyzed by lysates of neutral 

ceramidase-null mouse embryonic fibroblasts at pH 8.5 in the presence of 

Ca
+2

. It is worth mentioning that this fluorogenic method is currently used 

for the diagnosis of Farber disease, a rare disease characterized by the 

deficiency of aCDase [18]. 

 The in situ generation of umbelliferone as a fluorescent reporter to 

monitor SL enzyme activity was also been applied for the development of a 

HTS protocol for sphingosine-1-phosphate lyase (SPL). This enzyme plays 

an important role in cellular functions linked to tumor progression and 

immunosuppression [19]. It catalyzes the retroaldol cleavage of long chain 

base phosphates into phosphoethanolamine and a fatty aldehyde (Fig. 5). 

Since both saturated and unsaturated, as well as truncated base phosphates 

are transformed by SPL and the reaction is highly stereoselective for the 

d-erythro isomer [20], we reasoned that compound RBM13 contained the 

required structural features to behave as a suitable SPL substrate. 

 

 
 

Figure 4. Fluorogenic coumarinic fluorogenic probes to determine CDase and SPL 

activities. 
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Figure 5. Retroaldol reaction catalyzed by SPL. 

 

 Upon enzymatic cleavage, aldehyde AL (Fig. 4) is first produced to 

render the fluorescent umbelliferone reporter after β-elimination under 

alkaline conditions [21]. In our optimized protocol, the assay can be 

performed in microtiter wells, and can be easily adapted to HTS formats. 

 The above substrates were inspired in the pioneering works by Reymond 

and co-workers for the development of a fluorogenic assay for hydrolytic 

enzymes [22]. 

 The synthesis of the above probes can be carried out starting from 

Garner’s aldehyde, following the approach indicated in Fig. 6. The common 

intermediate B, obtained from acidic hydrolysis of A, arising, in turn, from 

Garner’s aldehyde in five synthetic steps [17], was selectively 

phosphorylated at the primary hydroxyl group, to give C, and further 

deprotected in a one-pot two-step process to the required amino phosphate 

RBM13. Alternatively, Boc removal from intermediate B, followed by 

standard N-acylation afforded the required RBM14 probes. 

 

 
 

Figure 6. Synthesis of the fluorogenic coumarinic probes RBM13 and RBM14. 
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3. Azidosphingolipids as probes to study membrane 

organization 
 

 The use of synthetic lipid probes for biophysical applications is a 

well-recognized strategy in lipid research [23]. In particular, the use of 

fluorescent tags is useful for the visualization of the membrane architecture 

and the study of its dynamic properties. The suitability of the substrate is 

determined by its ability to afford a fast and sensitive detection and also to 

behave similarly as its untagged counterpart. These two requirements are 

somehow contradictory when large aromatic fluorescent moieties are used. 

Because natural membrane lipids do not have such bulky fluorescent tags, 

dramatic effects on the properties of the resulting probes can be expected, 

especially as far as trafficking, sorting and/or domain formation is concerned 

[24]. Ideally, a suitable probe should be structurally similar to its natural 

counterpart and allow an efficient in situ chemoselective functionalization 

with a suitable fluorescent reagent in a natural environment. These 

requirements can be envisaged by a judicious use of bioorthogonal chemical 

reporter strategies, a technique that has become common place for the 

labelling of biomolecules [25,26]. Based on these premises, and aiming to 

widen the scope of our research, we undertook the synthesis of the α- and 

ω-azido probes RBM2-79 and RBM 2-77 shown in Fig. 7. As sphingolipid 

analogs, these probes are amenable to incorporation into natural or artificial 

membranes. In addition, due to the presence of the terminal azido group, the 

possibility of a bioorthogonal alkyne-azide cycloaddition “click” reaction 

with the fluorogenic tag D [27] was considered. 

 

 
 

Figure 7. Design of bioorthogonal “click” reactions with azido sphingolipid probes 

RBM2-77 and RBM2-79. Doble enlace en triazol 
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 In this context, the recent advances in the development of bioorthogonal 

reactions have boosted their applications in chemical biology [28]. In 

particular, those involving the Cu(I)-catalyzed Huisgen [3+2] cycloadditions 

of terminal alkynes with azides [29] (CuAAC, the paradigm of “click 

chemistry” [30]) have become attractive to researchers due to their 

simplicity and high reactivity. In order to avoid the potential toxicity of 

Cu(I) salts, several modifications have been developed to reduce Cu(I) 

concentration, as the use of water-soluble Cu(I) ligands [31,32] or 

Cu(I)-chelating azides [33]. 

 In our case, the probes shown in Fig. 7 have been designed to mimic the 

behaviour of natural ceramides in artificial membranes [34]. Membrane 

ceramides are important metabolic signals [35,36] that are known to separate 

laterally to give rise to gel-like ceramide-enriched domains [37–39]. Because 

of their structural similarity, our probes RBM2-77 and RBM2-79 were able 

to orient in lipid bilayers in parallel with the phospholipids, and eventually to 

give rise to domains similarly to natural ceramides. Gratifyingly, our in situ 

synthetic method allowed the observation of ceramide domains in living 

cells.  

 Click reactions required the use of an in situ generated Cu
+
 catalyst by 

ascorbate promoted reduction of a Cu
2+

 salt. The photoactivation of the 

probes was checked by microscopy experiments using giant unilamellar 

vesicles (GUVs) of ePC:1 and ePC:2 (10 mol% of clickable probe in both 

cases). When GUVs were treated with the labeling solution, a clear 

fluorescence intensity was collected in both cases between 450-500 nm, 

which was attributed to the formation of the corresponding fluorescent click 

cycloadducts shown in Fig. 7. This fluorescence was not observed when 

GUVs were incubated under control conditions (in the absence of the Cu
2+

 

salt catalyst precursor) after 3h incubation. These results constitute a proof 

of principle that fluorescent ceramide derivatives may be formed within lipid 

membranes starting from minimally modified non-fluorescent azido 

sphingolipids. This technique can be extended to the study of 

ceramide-enriched domains by fluorescent confocal microscopy and also to 

the study of the so-called ceramide platforms [40]. Finally, despite Cu
2+

 may 

be toxic to cells, localization of ceramide-rich domains in cell membranes 

can be performed on fixed cell preparations. In any, case, the use of Cu-free 

click chemistry protocols [41] is also considered as a natural evolution of 

this technique.  

 The above probes were synthesized following standard protocols, as 

exemplified for RBM2-77 in Fig. 8. Thus, the cross methathesis [42,43] of 

11-bromo-1-undecene with vinyl alcohol E, obtained from Garner’s 

aldehyde following a reported protocol [44], afforded bromide F in moderate  
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Figure 8. Synthesis of probe RBM2-77; a: 11-bromo-1-undecene, Grubb’s 2nd 

generation, CH2Cl2, 45 ºC, 59%; b: NaN3, DMF, 80 ºC (93%); c: ClCOCH3, MeOH, 

rt, 1h (84%); d: C15H31COOH, EDC. HOBt, Et3N, CH2Cl2, 65%. 

 

yield and excellent E-selectivity. Reaction of F with excess NaN3 in DMF at 

80 ºC, followed by the simultaneous deprotection of the oxazolidine and 

N-Boc groups of intermediate azide G under acidic conditions, afforded 

RBM2-31 in excellent yield. Acylation with palmitic acid, using EDC/HOBt 

as coupling system, afforded probe RBM2-77. 

 

4. Conclusions 
 

 In this review we have tried to show the potential of the chemical 

modifications of sphingolipids by means of a selection of some of our recent 

results in this area. Thus, the biochemical functions of natural sphingolipids 

can be efficiently modulated by the judicious design of analogs addressed at 

interfering with specific enzymes of key sphingolipid metabolic pathways. 

In this account, this approach has been illustrated with the design of a new 

family of aCDase inhibitors, which have also allowed the identification of 

this enzyme as a therapeutic target in chemoresistant forms of prostate 

cancer. In a conceptually different approach, chemical modifications of 

sphingolipids have also been used to design chemical probes with specific 

applications in structural and cell biology. This is the case of the fluorogenic 

probes RBM13 and RBM14, designed to develop HTS protocols to monitor 

the activity profiles of SPL and CDases, respectively. In a related context, 

the azido sphingolipids RBM2-77 and RBM2-79 have found applications in 

structural biology for their ability to visualize the membrane organization of 

natural ceramides after a biorthogonal click reaction with a suitable 

fluorogenic reporter. 
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