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Abstract

Odor identification is one of the main tasks of the olfactory system. It is performed almost independently from the
concentration of the odor providing a robust recognition. This capacity to ignore concentration information does not
preclude the olfactory system from estimating concentration itself. Significant experimental evidence has indicated that the
olfactory system is able to infer simultaneously odor identity and intensity. However, it is still unclear at what level or levels
of the olfactory pathway this segregation of information occurs. In this work, we study whether this odor information
segregation is performed at the input stage of the olfactory bulb: the glomerular layer. To this end, we built a detailed
neural model of the glomerular layer based on its known anatomical connections and conducted two simulated odor
experiments. In the first experiment, the model was exposed to an odor stimulus dataset composed of six different
odorants, each one dosed at six different concentrations. In the second experiment, we conducted an odor morphing
experiment where a sequence of binary mixtures going from one odor to another through intermediate mixtures was
presented to the model. The results of the experiments were visualized using principal components analysis and analyzed
with hierarchical clustering to unveil the structure of the high-dimensional output space. Additionally, Fisher’s discriminant
ratio and Pearson’s correlation coefficient were used to quantify odor identity and odor concentration information
respectively. Our results showed that the architecture of the glomerular layer was able to mediate the segregation of odor
information obtaining output spiking sequences of the principal neurons, namely the mitral and external tufted cells,
strongly correlated with odor identity and concentration, respectively. An important conclusion is also that the
morphological difference between the principal neurons is not key to achieve odor information segregation.
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Introduction

The olfactory system of animals is continuously exposed to a

large variety of odor stimuli at changing concentrations. In spite of

this variability of conditions, it identifies odorants with great

robustness. This is due to its capability to transform these

environmental stimuli into odor representations of spatiotemporal

neural activity that are invariant to odor concentration [1,2]. This

perceptual ability, however, does not preclude the olfactory system

to recognize the concentration at which odors are presented. It is

apparent that the olfactory system is able to develop along with a

concentration-invariant neural representation another, yet un-

veiled, neural representation that encodes for odor concentration

[3,4,5,6]. To date, the coding mechanism and the anatomical

location that mediates this segregation of information are still

unknown.

Olfactory coding starts at the olfactory epithelium when

airborne odor molecules enter into the nasal cavity and interact

with the olfactory receptors (OR). OR are located on the cilia of

the olfactory receptor neurons (ORNs) that extent on the surface

of the olfactory epithelium. Each ORN expresses a single OR type

that is able to interact with many different odorant molecules, at

the same time, each odorant can bind to several OR types. This

give rise to a combinatorial code that captures odor identity

information as patterns of activation across ORNs [7,8]. Beyond

the olfactory epithelium, the ORNs project their axons into

spherical areas of the olfactory bulb (OB) called glomeruli, where

each glomerulus selectively receives axons from ORNs expressing

the same OR [9,10]. In the OB, odor stimulation evokes odor-

specific temporal patterns of activity at the levels of both, the

olfactory nerve inputs (activation of glomeruli) and outputs

(projection neurons) [11]. These complex spiking patterns are

then sent to the olfactory (piriform) cortex where odor information

is thought to be decoded [11,12,13].

The internal synaptic arrangement found among glomeruli in

the OB has been deeply investigated over the past years

[11,14,15]. Although the functional relevance of this synaptic

arrangement remains to be established, some neuronal microcir-

cuits of the glomerulus and/or OB have been considered to play a

critical role in the olfactory bulb’s information processing [11].

Specifically, the ORN R external tufted (ET) R short axon (SA)

interconnection arrangement is thought to be responsible for

pattern normalization and a first level of contrast enhancement

[16,17]. Whereas the Mitral (MC) R Granular (GC) R MC
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arrangement is thought to mediate a second level of contrast

enhancement [18,19]. Additionally, the presence of two different

projection neurons as output of the OB, and the different behavior

between MCs and ETs have led to the idea that these neurons play

also different roles in the processing of olfactory information

[13,20,21] that may be related to the coding of odor intensity and

identity. However, whether and how the concentration informa-

tion processing occurs at these stages and, in particular, the exact

role of the MCs and ET cells in this respect remains unknown.

In this work, we tested the hypothesis that MCs and ETs are

responsible for coding odor identity information and odor

concentration information respectively. To this end, we developed

a computational model of the glomerular layer based on their

known anatomical and morphological characteristics (Figure 1).

To test our hypothesis, the computational model was exposed to

two odor experiments including pure odors dosed at different

concentrations and binary odor mixtures. The output signals of

the model were analyzed using statistical methods to determine the

structure of the high-dimensional output space and to quantify the

odor identity and odor concentration information.

Materials and Methods

The Odor stimuli
The objective of this work is to analyze the glomerular layer

ability to enhance the classification of distinct odorants (i.e., odor

class identification) and the estimation of odor concentrations (i.e.,

odor quantification). We consider that the role of ORNs to

develop these tasks is not critical for the glomerular mechanisms

and is outside the scope of this study. For these reasons, there is no

explicit ORN model used to provide the glomerular input.

Instead, to generate this input, we have considered the combina-

torial code strategy [7] along with the fact that each glomerulus

receives axons from ORNs expressing the same receptor protein.

Bearing this in mind, we characterize an odorant as a pattern of

activation across glomeruli. Where this pattern reflects the affinity

to this odorant of the receptors corresponding to each glomerulus.

In our model, the input to the glomeruli is introduced as a constant

current injected to the different neurons. Thus, the activation

pattern representing each odorant is a current vector. The model

was formed by 16 glomeruli each representing a different kind of

ORN.

In the first experiment, we exposed the glomerular model to 6

odorants at 6 different concentrations each. We assumed that each

Figure 1. Glomerular layer model. (A) 16 glomerulus connected through SAs. The thick red line represents full connectivity between glomerulus.
b) Architecture of the glomerular unit. The cells depicted are: mitral cell (MC), external tufted cell (ET), periglomerular cell (PG), and short axon (SA).
Black balls represent inhibitory synapses and red balls indicate excitatory synapses. The ORN input synapses into MC, ET and PG cells. MC and PG cells
form a negative feedback loop, where PG cells inhibit MC cells and in turn MC excite PG cells. ET cells contribute to the inhibition of MC through an
excitatory connection to PG cells. Finally, connections between glomerulus are achieved via SA cells, which receive excitatory inputs from ET cells and
transmit its outputs to PG and ET in an excitatory fashion.
doi:10.1371/journal.pone.0109716.g001
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of the 16 classes of ORNs is sensitive to all the odorants but with

different magnitudes, furthermore a linear relationship between

concentration and response exists. Then the response of each class

of ORN, input to its relevant glomerulus, is RORN
odor =

SORNCodor. The quantities SORN were randomly generated from

a uniform distribution ranging from 0 pA to 40 pA. Concentra-

tions (Codor) are dimensionless quantities in the range {0.4, 0.6,

0.8, 1, 1.2, 1.4}. Eventually, 36 vectors of responses were

generated. The magnitude of the response pattern is limited to

40 pA, taking into account the saturation effect of the ORN

response. The 36 vectors are shown in figure 2a.

In the second experiment, we exposed a 16 glomerular model to

a series of 21 binary mixtures. This series mimics the slow

evolution of the odor pattern from odor C to odor E (first

experiment) both with a concentration factor of 1. The odor

patterns of the binary mixtures were obtained as a convex

combination of the constituent odorants.

Mmorphing~a:OdorCz(1{a):OdorE ð1Þ

where a takes 21 values distributed uniformly from the range [0, 1]

with a step of 0.05 (figure 2b).

Neuron Model
The glomerular layer is a complex system that is made up of a

large number of neurons and interconnections, including MC, ET,

periglomerular (PG), and short axon cells, which are morpholog-

ically different. The neurons of the glomerular layer were modeled

by means of the Izhikevich’s model [22], a spiking neuron model

capable of reproducing the spiking and bursting behavior of

different types of neurons. It is able to reduce the complexity of

Hodgking-Huxley neural models maintaining its biological plau-

sibility. Its behavior obeys the following two-dimensional system of

ordinary differential equations:

C: _vv~k v{vrð Þ: v{vtð Þ{uzI tð Þ
_uu~a: b: v{vrð Þ{u½ �

�
ð2Þ

s.t. the following after-spike reset condition:

if v§vpeak, then
v/c,

u/uzd

�
ð3Þ

where the variables v and u are the neuron membrane potential

and the membrane recovery variable, respectively. The parame-

ters in equations 2 and 3 can be interpreted as follows: C is the

membrane capacitance, vr is the resting membrane potential (i.e.

the membrane voltage at which the network membrane current is

equal to zero), vt is the instantaneous threshold potential, vpeak is

the spike peak voltage, a is the recovery time constant, b is the

recovery variable depending on the sub-threshold fluctuations of

the membrane potential, c is the after-spike reset value of the

membrane potential, d describes the after-spike reset of the

recovery variable, and I(t) represents the total input current on the

membrane neuron. For further details about this model the reader

is referred to [22].

Table 1 illustrates the parameters used to implement the

different neurons utilized in our model, which were chosen based

on previous experimental evidence to match the experimental

frequency-current responses. Specifically, the parameters of the

MCs and ET cells were selected by following data reported in [22].

The parameters of PG cells were obtained from [23,24], whereas

the SA cell parameters were taken from [25]. Figure 2c shows the

time evolution of the membrane potential of the MC obtained

with the Izhikevich’s model and the parameters of Table 1 of a 16-

glomeruli model.

Network Model
The interconnections between neurons in our model follow

those found in the glomerular layer as described in [16,17] and

[26]. The glomerular model is built as an ensemble of

interconnected glomerulus, which are composed of four different

types of neurons, including two principal neurons called MCs and

ET cells, and two interneurons PG cells and SA cells. Figure 1b

illustrates the schematic structure of the artificial glomerulus. The

axons of the ORNs expressing the same type of odorant in the

olfactory epithelium make excitatory synapses with the MCs, the

ET and the PG cells. The MC synaptically excites PG cell, which

in turn inhibits the MC forming a negative feedback loop. The ET

Figure 2. Input odor patters and MC output activity. (A) Scores plot of the first two principal components of the input odors used to analyze
the glomerular layer model. The directions of the arrows indicate increasing concentration. (B) Relative composition of odor C and E on the series of
binary mixtures that simulate the morphing between the two odors. The y-axis shows the relative composition of odor C and odor E in each one of
the 21 mixtures. (C) Example of mitral cell responses of a 16-glomeruli model. Different colors identify different mitral cells.
doi:10.1371/journal.pone.0109716.g002
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cells form excitatory connections with PG cells contributing

indirectly to the inhibition of MCs. The connections across

glomeruli are achieved through the SA cells, which receive inputs

from ET cells and project their outputs into PG and ET cells. Note

that ET cells along with SA cells form a sub-network that is

isolated from MC and PG cells. So the activation of ET cells is

determined only by the external input and the activity shared

between them through SA cells.

Aungst et al. found that SAs in the OB play a critical role in the

inter-glomerular connection, and, contrary to their name, they

send interglomerular axons far away to form excitatory synapses

with inhibitory PG neurons even up to 20–30 glomeruli away [16].

Considering these long-range connections, we provided our 16-

glomeruli model with full connectivity between glomeruli. The

network model is shown in Figure 1a where the full connectivity is

represented by the thick red connection along the glomeruli. The

model was implemented in MATLAB [27] using fourth-order

Runge-Kutta ODE integration [28] with a time step of 0.1 ms.

Initial conditions for all neurons were set to the resting potential.

Objective Functions
Fisher’s Discriminant Ratio [29,30] and the Pearson’s Corre-

lation Coefficient [31] were used to provide a quantitative measure

of the separability of odors and the correlation with odor

concentration respectively. The Fisher’s Discriminant Ratio

(FDR) is defined as the ratio of the variance between classes

and the variance within classes noted by

FDR~
tr SBð Þ
tr SWð Þ ð4Þ

SB and SW being the between scatter and within scatter

matrices, respectively, defined according to

SB~
XN

i~1

mi{mð Þ mi{mð ÞT ð5Þ

SW~
XN

i~1

SWi
ð6Þ

SWi
~

X
x[Odori

x{mið Þ x{mið ÞT ð7Þ

where x are the experimental values or samples, m is the mean

value of all data, mi is the mean of the samples of the ith odor, N is

the total number of odor classes, and Odori is the set of the samples

of the ith odor. Following this definition, the FDR then increases

proportionally to the separability of the classes, i.e. when the

distance between the classes (SB) increases and, simultaneously, the

dispersion of each class (SW) decreases. In our experiments, x is the

mitral or tufted firing rate vector (one dimension per glomerulus)

computed during the 0.5 second of odor presentation.

The Pearson’s Correlation Coefficient (PCC) is defined as the

level of correlation (or similarity) between two random variables

calculated by
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PCC~

P
i xi{mxð Þ yi{my

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i xi{mxð Þ2
P

i yi{my

� �2
q ð8Þ

where mx, my are the mean values of all the samples of variables x
and y, respectively, and xi and yi being the samples.

Results

Simulation Results
We have performed two experiments to determine how odorant

information is segregated into identity and intensity in our

computational model of the glomerular layer. In the first

experiment, glomeruli were exposed to an odor stimulus dataset

composed of six different odorants each one dosed at six different

concentrations. In the second experiment, we tested the ability of

the model to segregate odor information in the presence of an

interfering odor. To do so, we reproduce the odor morphing

experiments performed by [32] in rats where a sequence of binary

mixtures going from one odor to another through intermediate

mixtures was used (see Materials and Methods).

In both experiments we consider the mean activity of the

principal neurons (MC, ET) during the experiment as the readout

of the model. After an exposure of 0.5 seconds to each one of the

36 odors of the first experiment, we collect the output of MCs and

ETs as a set of 36 16-dimensional vectors per each one of the

output cells.

Odors-concentrations experiment
The exposure to six odors at six concentrations produced a data

matrix of 36 (data) * 16 (glomeruli) for both the output of MCs and

the ETs. We analyzed the results of this experiment using principal

components analysis (PCA). Figure 3a shows the scores plot of the

first three principal components of the MCs’ output. This plot

illustrates the two main processing outcomes of MCs: contrast

enhancement and normalization of the input.

Specifically, the evident clustering of the odorants observed in

Figure 3a disregarding odor concentration shows the normaliza-

tion effect. On the other hand, the fact that odor clusters are better

separated than the input data of Figure 2a shows the contrast

enhancement effect of the MCs.

Specifically, the normalization effect is evidenced by the fact

that odors are correctly clustered irrespective of their concentra-

tion. It is worth to compare figure 3a with figure 2a showing the

PCA of the input stimuli to the model. It is also interesting to note

the differences in the explained variance in the PCA plots of input

and output data. The more sparse distribution of variance in the

MCs output indicates the un-correlation of data in the output

space. This supports the contrast enhancement function of MCs.

Figure 3b shows the scores plot of the first two principal

components of the ET cells’ outputs. This results show that ET

have the opposite behavior than MC, in the sense that odorants in

the ET output space are more correlated than in the input space.

In this particular case, the first principal component captures more

than the 95% of the variance, indicating that it is possible to

estimate odor concentrations along the first principal component.

This correlation is clearly shown in Figure 3c where the scores of

the first principal component of the ET output are represented

versus the stimulus concentration. At the same time, it is more

difficult to identify the different odorants.

A comparison of MCs and ET cells output signals indicates that

the information about odor identity and odor concentration that

was encoded together in the input stimuli (Figure 2a) is

decomposed in the glomeruli layer. The output of MCs represents

odor identity while odor concentration is found in the tufted cells

output. The separation of information can explain also the

different actual dimension of the output spaces of the two cells.

Identification requires a large space to accommodate the different

odors, probably according to some chemical proximity, while the

quantification only requires a single direction where concentra-

tions can be ordered.

To confirm this qualitative results obtained with PCA, we have

quantified the identity and concentration coding ability of the

glomerular layer using two objective functions: Fisher’s discrim-

inant ratio (FDR) and Pearson’s correlation coefficient (PCC). The

FDR measures the degree of separation of the representations for

different odors taking into consideration two elements: first, how

close the representations belonging to the same odor are and;

second, how far the representations of different odors are from

each other. Thus, FDR allow us to measure the encoding of the

identity of the odor. On the other hand, PCC give us the

correlation between the representations for different concentra-

tions of certain odor and the actual concentration value.

Figure 3. MCs and ET cells output in the 6 odors - 6 concentrations experiment. (A) Scores plot of the first three principal components of
the MCs output. The output of MC is obtained as the mean firing rate during exposure of 0.5 s to the odors. (B) Scores plot of the first two principal
components of the ET cells output. The output of ET cells is also obtained as the mean firing rate during the same experiment. Arrows indicate
increasing concentration. (C) Scores of the first principal component of the ET output versus the stimulus concentration.
doi:10.1371/journal.pone.0109716.g003
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Therefore, PCC quantifies the ability of encoding for odor

concentration.

We computed the objective functions for the MC and ET

outputs as a function of the synaptic efficiency of the SA. The

synaptic connection of the SA is a key parameter that mediates the

spread of activity across glomeruli. This parameter balances the

contribution to each glomerulus of the external input and the

lateral input from other glomeruli. For small values of the

parameter, the external input dominates resulting in almost

isolated glomerulus, whereas for large values of the parameter the

lateral interaction dominates.

Figure 4a shows the FDR for MC and ET versus the SA

synaptic weight. The FDR of the MC starts at a value close to that

of the input stimuli for a synaptic connection weight of 10. It

increases afterwards reaching a maximum in 19 and dropping

subsequently until values close again to the input FDR. A small

inhibition makes the glomerulus independent; therefore, the

discrimination of the MC output is similar to that of the receptor

layer. As the lateral interaction increases the inhibitory effect via

PG cells modulates the output of the MC to cluster together odors

at different concentrations. When the SA weight is greater than

19, the inhibitory effect becomes too large and a reduction of the

activity of MC is observed. As a consequence the separation of

odors decreases. The behavior of the FDR of the ET is simpler.

Starting from a value similar to that of the input, the FDR

degrades rapidly to reach a null value beyond 19. A strong lateral

interaction enforces the contribution of the mean activity across

glomeruli with respect to the specific activity received from the

external stimuli by each glomerulus.

The correlation of MC and ET outputs with respect to the SA

weight is shown in figure 4b. As in the FDR analysis, the results of

the MC present an inflexion point for a SA weight value of 19. It

reaches a minimum of correlation with the input concentration.

Whereas the correlation of the ET cell responses with odor

concentration sharply increases with the short axon weights up to

an equilibrium stage. In particular, after a SA synaptic weight of

19 the PCC becomes almost completely independent from the SA

weights.

These results clearly demonstrate that for SA weight of 19

[a.u.], the separability of the odor classes in the mitral cell output is

maximized while simultaneously picking up the correlation

between the ET cell’s output and the odor concentrations. The

FDR sharp maximum point shown in Figure 4a also explains the

importance of the inhibition for the discrimination task.

Morphing Experiment
In the morphing experiment, we expose the glomerular layer

model with a series of 21 binary odor mixtures. This series of

mixtures evolves from pure odor C (odor 1) to pure odor E (odor

21) going through 19 intermediate mixtures of both odors that

slowly change from odor C to odor E (Figure 2b). The outputs

obtained in the morphing experiment have been conveniently

analyzed with hierarchical cluster analysis based on k-means [33].

This clustering method allows us to study the structure of the high-

dimensional MCs and ETs output space in terms of the proximity

of the different odors. Particularly, this algorithm performs an

iterative clustering that provides a hierarchy of clusters. It starts

clustering single odors and it ends up with a single cluster where all

odors are merged. In this experiment we used the morphing odors

along with the set of 36 combinations of odor-concentrations of

the first experiment for comparative purposes.

We applied first the hierarchical clustering to the input odors.

The results are shown as a dendogram in figure 5. We can see that

there is no evident grouping of the odors in the input space. Odors

at different concentrations do not group all together. High (solid

line) and low (dashed line) concentrations of odors do not seem to

cluster together either. So clearly odor identity and odor

concentration information are mixed up at the input space.

Figure 4. Quantitative measure of odor identity and concentration information in the 6 odors - 6 concentrations experiment. (A)
Fisher’s discriminant ratio of MC outputs, ETs cells outputs and input odor patterns in the 6 odors - 6 concentrations experiment. It is computed for
different values of the short axon cell synaptic weights, which regulates the connection strength between glomeruli. (B) Pearson’s correlation
coefficient between MC, ET outputs, input odor patterns and the input odor concentrations for different short axon cell synaptic weights. The error
bars show the standard deviation of the Pearson’s correlation coefficient across different odors.
doi:10.1371/journal.pone.0109716.g004
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Figures 6 and 7 show the hierarchical clustering obtained for

MC outputs and ET outputs respectively. The results show that

MCs and ET cells naturally managed to group the data in clusters

according to their odor identity and concentration. Specifically,

the dendrogram of Figure 6 illustrates how MCs grouped the six

pure odorants into six clearly identifiable clusters. Additionally, the

binary mixtures are partitioned into the clusters corresponding to

the two component odors, demonstrating once again that the MC

outputs are highly correlated with the odor identity. Also note that

mixtures are not grouped as new odors, but rather as the more

abundant odor component in the mixture. This outcome of our

study is consistent with the psychophysical experimental results

obtained by Uchida et al. [3]. Finally, the morphing series allows

us to determine that the MC output to odor mixtures evolve slowly

from odor C to odor E. This is clearly observed in Figure 8 where

the PCA scores of MC outputs show the transition of the mixtures

from the cluster of one odor to the other cluster. This behavior

reproduces the experimental results obtained by Khan et al. [32]

in rats. Additionally, other groups have performed morphing

experiments with either similar [34] or slightly different results

[35]. Figure 7, on the other hand, shows that tufted cells separate

data into groups according to the odor concentration indepen-

dently of the odor classes. This behavior is more noticeable when

considering the morphing data; in this case, the total concentration

of the mixture is kept constant whereas the odor identity

progressively changes from odor C to odor E, once again, the

ET cells manage to classify the whole set of the morphing data into

the same concentration cluster.

Discussion

In this work, we have investigated the processing of information

related to odor identity and odor concentration in the glomerular

layer of the olfactory bulb. The recognition of odors irrespective of

their concentration while preserving odor concentration informa-

tion is a fundamental task developed by the olfactory system. We

have built a computational model of the first stage of the olfactory

bulb to investigate its ability to segregate odor identity and odor

concentration information. Our findings illustrate that the

processing of odor information at the glomerular layer can be

the origin of the olfactory system ability to identify different

odorants while still preserving information about their concentra-

tion. This is achieved by means of its two principal neurons the

MCs and the ETs that encode odor identity and odor

Figure 5. Hierarchical clustering of input patterns in the odor
morphing experiment. We performed hierarchical clustering based
on k-means on a sequence of binary mixtures going from odor C to
odor E through intermediate mixtures (morphing) along with the odor
patterns of the 6 odors - 6 concentrations experiment. Clustering results
are presented as a dendogram in terms of the distance to the k-means
nearest cluster. Odors are identified by color, where high concentra-
tions are plotted in a solid line and low concentrations are plotted in a
dashed line.
doi:10.1371/journal.pone.0109716.g005

Figure 6. Hierarchical clustering of MC outputs in the odor
morphing experiment. In this hierarchical clustering, MC outputs are
grouped according to their identity in the case of pure odors. Mixtures
cluster together and also with the different concentrations of pure
odors C and E, which are the two components of the mixtures.
doi:10.1371/journal.pone.0109716.g006

Figure 7. Hierarchical clustering of ET cells output in the odor
morphing experiment. The hierarchical clustering of ET output
patterns show a clear separation between high concentration odors
(red lines) and low concentration odors (blue lines). Mixture odors lie
within the high concentration cluster but not far from low concentra-
tions. This is consistent with a proper disposition of concentrations
since mixtures are formed by two components of concentration factors
of 1 multiplied by mixing factor that sum up to 1 in all cases.
doi:10.1371/journal.pone.0109716.g007
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concentration information respectively, projecting this information

afterwards to higher brain areas of the olfactory pathway.

Previous work by Cleland et al. [5,6] have already shown the

ability of the glomerular layer to perform several odor information

processing tasks such as contrast enhancement, activity normal-

ization, and extending dynamic range. They have also proposed

that to cope with the high dimensionality of the olfactory input

space, along with the lack of clear olfactory primitives (basis), the

olfactory bulb relies on non-topographic strategies that makes this

architecture different to other sensory systems. Their work,

however, do not address the important issue of odor information

segregation in the way it is done in the present work.

One of the interesting results obtained in this study is that there

exists a minimum SA weight value for the glomerular layer to

perform odor information segregation. As for odor intensity

information, ET cells are able to maintain the performance even

for values of the SA weight larger that this minimum. In the case of

the odor identity information in the MCs, this value is a maximum

beyond which the glomeruli loose their ability to capture odor

identity. This behavior can be understood looking at the network

architecture of the glomerular layer. The subnetwork of excitatory

ET R SA R ET R SA is isolated from the rest of the glomerular

network and receives inputs exclusively from ORNs. As a

consequence, it shares the intensity level of all input ORNs

among ET cells. So the stronger the link between ETs and SAs the

better ETs capture the intensity information of the odor, which

has contributions from all ORNs. The network that captures odor

identity is more complex since we have the inhibitory effect of PG

cells over the MCs. This inhibition is what mediates the

normalization effect of the model by removing the concentration

level from the MC response. The MC response is a balance

between the excitatory effect of ORNs and the inhibitory effect of

PG cells, which in turn are excited by ET and PG (odor intensity

information). This is why the SA weight is critical and beyond

certain value the inhibitory effect is too strong and the MCs

responses do not capture odor identity so effectively. Another

interesting result is that this minimum value of SA weight to obtain

a maximum of performance is similar for odor intensity and odor

identity. This could be an effect of using the same neuron model

for MC and ET. However, this point has to be furthered studied.

Additionally, our results show that the glomerular layer is able

to achieve odor segregation using the same neuron model (same

parameters of Izhikevich’s model) for MCs and ETs. These results

demonstrate that the segregation of information in MCs and ET

cells is due to network interactions and not to the different

morphology of the projection neurons.

The information segregation capability of our model has been

tested utilizing two different experiments; the first one involved a

set of six odors at six concentrations, and the second involved a

sequence of binary mixtures with composition slowly changing

from one odor to the other. Our results in the first experiment

conclusively demonstrated that the MCs portray information only

about odor identity, whereas the ET cells’ responses are much

more correlated with odor concentration information (Figure 3a

and Figure 3b). Notice that the scores of the tufted cells’ output are

stretched out along the first principal component capturing more

than 95% of the total variance (Figure 3b). These different roles

were confirmed in the presence of an interfering odor in the

second experiment where a clustering method was used to study

the structure of the MC and ET output space. Our results show

that MC and ET can successfully segregate identity and

concentration information with an odor mixture.

The morphing experiment allows us to validate our model with

experimental results of neural activity in rats. Khan et al. [31]

found that the response of rat MCs to a morphing sequence of

binary odors is a neural representation that changes smoothly with

the stimuli. Our results reproduce this behavior as shown in

figure 8, where the MC output of the morphing series travels

continuously from one of the components of the mixture to the

other component. Uchida et al. [3] reported that rats are able to

identify the more abundant component in a binary mixture. In this

case two different classifications were obtained using the MC and

ET cells’ responses. The MCs’ outputs allow classification of the

input as a function of their identity; as a result, the data were

Figure 8. Smooth evolution of mixture odors in the morphing experiment. The figure represents the score plots of the 3 principal
components of the MCs outputs in the morphing experiment. The 21 mixtures evolve smoothly from the initial odor C to the final odor E.
doi:10.1371/journal.pone.0109716.g008
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naturally clustered as a function of the odor, and the mixtures were

classified by taking into account the intensity of the dominant

odorant in the mixture (Figure 6). Finally, the ETs’ outputs

separated the data as a function of their concentrations. Figure 7

clearly demonstrates that different odors at same concentration are

classified in the same cluster.

Recent findings have unveiled new anatomical and physiolog-

ical aspects of the glomerular layer. Liu et al. [36] found that the

synaptic connection SARET is biphasic instead of been plain

excitatory. The synapsis goes through a GABAergic inhibitory

phase followed by a slower dopaminergic transmission. Gire et al.

[37] have found that MC do not receive direct excitation from

ORNs, instead they receive indirect external stimulus from ET

cells. We have implemented these changes in our glomerular

model to determine if the odor segregation ability is affected.

Preliminary results show that the effect of the biphasic SA synapse

is to synchronize the MC spikes whereas the global behavior is to

degrade the odor segregation function. On the 6 odor 6

concentrations experiment, the FDR on Mitral cells goes from

0.50 in the unchanged model to 0.25 in the modified model (input

odors 0.10). Furthermore, the PCC on ET drops from 0.82 in the

unchanged model to 0.63 in the modified model (input odors

0.58). In any case, these are preliminary results and these

modifications of the network need to be furthered studied.

In conclusion, the results obtained in this study are computa-

tional evidence that the architecture of the glomerular layer

mediates the segregation of odor identity and odor concentration.

This two pieces of odor information that are contained in the input

stimuli are extracted and separated by the processing effect of the

glomerular layer to provide odor identity information at the output

of MCs and odor concentration information at the output of ETs.

This neural mechanism may explain the ability of the olfactory

system to recognize odors regardless of their concentration and at

the same time identify their concentration level.
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