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Abstract

The present manuscript consists in a study of the Hypercycle model with error
tail based on previous articles and the original work of Eigen and Schuster. We
have analyzed the nature of the fixed points and periodic orbits using analytic
and numerical methods. A distinction between the symmetric cases and the non-
symmetric ones has been made in order to simplify the study.

Motivation and goals

The original idea for this thesis was to use the Hypercycle as an excuse to learn more
about numerical methods in Dynamical Systems, specifically concerning the study
of periodic orbits. However during the process we have developed an increasing
interest for the biological problem that has led us to give an interpretation of the
mathematical results.
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Chapter 1

Introduction

What is the Hypercycle model?

Understanding the meaning of the Hypercycle model implies being familiar with
many concepts in Biology. It is not our intention to give a detailed explanation of
the biological problem but just a simple version of it so the reader can have an idea
of the importance of the model in the biological context.

The elementary Hypercycle described by Eigen and Schuster in [4] attempts to de-
scribe the evolution of the relative concentrations in a set of self-replicative molec-
ular species {I1, . . . , In} such that every one of them catalyzes the synthesis of the
next one, where the one going after In is I1 (cyclic structure). The most known
example is the one in which I1, . . . , In are strands of RNA (templates). It was ini-
tially conceived by Eigen and Schuster to solve the information crisis in prebiotic
evolution.

The information crisis in prebiotic evolution must be understood in the context of
the quasispecies model (proposed previously also by Eigen and Schuster), which is
another model trying to describe the evolution of macromolecular systems under
Darwinian conditions. Basically what they were trying to do is a mathematical
model for the behavior of certain systems of macromolecules that evolve under the
same conditions as living organisms (Darwinian conditions). The first one they
came up with was the quasispecies model but it has a few limitations, namely it is
unable to describe the coexistence between different molecular species and it also
fails to allow them to have the adequate length. Being unable to model coexistence
means leading all species to extinction except from one (this is not very accurate
because it is not all species but all quasispecies, for a proper version see [4]). The
Hypercycle model seems to solve the coexistence problem, but the length issue has
been avoided in most of the studies and even proved to remain unsolved under
some hypothesis [7]. Although this second problem should not be ignored, in this
work our main interest are the tools used for the study of the system and not the
biological meaning, so we shall only treat the first problem.
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The elementary Hypercycle model

Assume we have n self replicative molecular species {I1, . . . , In}. As we said before,
the ith component catalyzes the next one and the catalytic aid is expressed in
the form of a quadratic term. The differential equation describing the templates
concentration x = (x1, . . . , xn) is of the form

ẋi = Aixi +Kixixi−1 − φ(x), i ∈ {1, . . . , n} , (1.0.1)

where x0 ≡ xn, Ai is the self-replicative rate for the ith template, Ki+1 the cat-
alytic rate (how the presence of the ith template helps to the formation of the
next one) and φ(x) is a dilution term to keep the total concentration constant. It
can be proved as we will do further on in this work for our case of interest that
φ(x) =

∑n
i=1 Aixi +

∑n
i=1 Kixixi−1 keeps the total concentration equal to one (pro-

vided we start at an initial condition which satisfies that the total concentration is
equal to one).

This system satisfies having a stable fixed point with non vanishing components for
n ≤ 4 and for greater values of n stable periodic orbits with non vanishing compo-
nents as well [4]. This means that the model allows the coexistence of molecular
species, which is exactly one of the problems that we wanted to solve from the
biological point of view.

The maximal size of macromolecules is not treatable in this case because we are
assuming perfect replicative accuracy, which brings no condition on the length of
the molecules.

In contrast with the elementary Hypercycle, the Hypercycle model with error tail
enables us to consider mutations, which in the mathematical model are collected
in a new component of the system representing all the mistranslated copies of the
other molecular species. This correction might be seen then as a way to allow
the consideration of mutations in our system without interfering with the catalytic
relation between templates of the elementary Hypercycle.

The equations for this new model are

ẋi = fi(x) = xi(AiQ+Kixi−1Q− Φ(x)), i = 1, . . . , n,

and

ẋe = fe(x) = xe(Ae − Φ(x)) + (1−Q)
n∑
i=1

xi(Ai +Kixi−1),

where x0 ≡ xn, Ki, Ai > 0 ∀i ∈ {1, . . . , n}, Q ∈ (0, 1) and

Φ(x) =
n∑
i=1

xi(Ai +Kixi−1) + Aexe.
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Here Q is the replicative accuracy (probability of correct replication). Notice that xe
represents the concentration of the mistranslated copies (error tail), whose deriva-
tive with respect to time increases for decreasing values of Q. This implies that a
good replicative accuracy will make the error tail smaller and vice versa, exactly as
it is supposed to be. The other constants represent the same as in the elementary
Hypercycle. A detailed study of this model can be found in chapter 4.
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Chapter 2

Basic concepts

In this section we introduce some definitions and results on Dynamical Systems
that will be used in our study of the Hypercycle model. Most of these concepts are
explained in undergraduate courses from the University of Barcelona so many of
the proofs will be omitted. Some of the following results are based on [1] and [2].

2.1 Discrete Dynamical Systems

Consider a discrete dynamical system given by a diffeomorphism F : U ⊆ Rn −→ Rn,
U an open set. Then

Definition 2.1. x0 ∈ U is said to be a fixed point if F (x0) = x0.

Definition 2.2. We say that a fixed point x0 is stable if ∀ε > 0 there exists a δ > 0
such that for any x ∈ B(x0, δ), F

k (x) ∈ B (x0, ε) , ∀ k ∈ N.

Definition 2.3. A fixed point x0 is said to be an attractor if it is stable and there
exists an ε > 0 such that ∀ x ∈ B(x0, ε), limk→∞ F

k(x) = x0.

Definition 2.4. A fixed point x0 is said to be a repelling fixed point if it is an
attractor for F−1.

Definition 2.5. We will say a fixed point p is hyperbolic if |λ| 6= 1, ∀ λ ∈ Spec {DFp}.
Theorem 2.1. Given a linear diffeomorphism A : Rn −→ Rn we denote Spec {A} =
{λ1, . . . , λn}. Then the three following statements hold:

(i) If |λi| < 1 ∀λi ∈ Spec {A} then ~0 is a global attractor.

(ii) If |λi| > 1 ∀λi ∈ Spec {A} then ~0 is a repelling fixed point.

(iii) If for some 1 ≤ m < n we have |λ1| ≤ . . . ≤ |λm| < 1 < |λm+1| ≤ . . . ≤ |λn|,
then there exist two subspaces Es ⊆ Rn of dimension m and Eu ⊆ Rn of
dimension n−m such that A|Eu is an expansion and A|Es is a contraction,
with Es ⊕ Eu = Rn.

Theorem 2.2. Given a diffeomorphism F : U ⊆ Rn −→ Rn, p a fixed point, we
denote Spec {DFp} = {λ1, . . . , λn}. Then the three following statements hold:
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(i) If |λi| < 1 ∀λi ∈ Spec {DFp} then p is an attractor.

(ii) If |λi| > 1 ∀λi ∈ Spec {DFp} then p is a repelling fixed point.

(iii) If for some 1 ≤ m < n we have |λ1| ≤ . . . ≤ |λm| < 1 < |λm+1| ≤ . . . ≤ |λn|,
then locally around p there exist two manifolds

W s
p =

{
x ∈ Rn | lim

k→∞
F k(x) = p

}
, W u

p =

{
x ∈ Rn | lim

k→−∞
F k(x) = p

}
,

of dimension m and n −m respectively such that TpW
s
p = Es

p, TpW
u
p = Eu

p ,
where Es

p, E
u
p are the corresponding subspaces from Theorem 2.1 for the map

DFp : Rn −→ Rn.

We shall now state a theorem to characterize saddle-node bifurcations in dimension
n.

Theorem 2.3. Given the Cr map, r ≥ 2,

F : Rn × R −→ Rn

(x, µ) 7−→ F (x, µ) ,

such that for some (x0, µ0) ∈ Rn × R
(i) F (x0, µ0) = x0.

(ii) DFx (x0, µ0) has eigenvalues λ1 = 1 and |λi| 6= 1, ∀λi ∈ Spec {DFx (x0, µ0)} =
{λ1, . . . , λn} with i ≥ 2. We denote by v1 the corresponding eigenvector to λ1.

(iii) wT (D2Fx (x0, µ0)) (v1, v1) 6= 0, where w is the left eigenvector for λ1.

(iv) wT
∂F1

∂µ
(x0, µ0) 6= 0.

Then there exists a parametrized curve γ

γ : I −→ Rn × R
t 7−→ (x (t) ,m (t))

satisfying γ (0) = (x0, µ0) and F (x (t) ,m (t)) = x (t) ∀t ∈ I. Then the point
(x0, µ0) is said to be a saddle node bifurcation point.

2.2 Continuous Dynamical Systems

We will first collect some results on Ordinary Differential Equations.

Definition 2.6. A function f : Rn −→ Rm is said to be locally Lipschitz if for any
x ∈ Rn there exists a neighborhood U of x and a constant MU > 0 such that for
every y, z ∈ U, ‖f(y)− f(z)‖ ≤MU‖y − z‖.
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Proposition 2.1. A function f : Rn −→ Rm is locally Lipschitz if and only if for
every compact set K ⊂ Rn there exists a constant MK > 0 such that for every
z, y ∈ K, ‖f(y)− f(z)‖ ≤MK‖y − z‖.
Proof. Suppose f is locally Lipschitz. For any K ⊂ Rn a compact set we can
find a cover {Ui}i∈I of K such that f|Ui

is Lipschitz. Since K is a compact set
it accepts a finite cover {Uj}j∈J , J ⊂ I a finite set. Take the maximum value

among the constants
{
MUj

}
j∈J from definition 2.6, MK = maxj∈J

{
MUj

}
. Then

for any z, y ∈ K we have ‖f(y) − f(z)‖ ≤ MK‖y − z‖. The other implication is
straightforward. For any x ∈ Rn we take K a compact set containing an open set
U such that x ∈ U . Then the definition of being Locally Lipschitz is satisfied if we
choose MU = MK . �

Proposition 2.2. Let f : Rn −→ Rm be a map of class Cr, r ≥ 1. Then f is
locally Lipschitz.

The previous results have been written for a function with domain Rn but all of
them are still true for U an open subset of Rn.

Theorem 2.4. Consider a differential equation ẋ = f(t, x), where

f : Ω ⊆ R× Rn −→ Rn

(t, x) 7−→ f(t, x)

is continuous and locally Lipschitz on x. Then the Initial Value Problem


dφ (t)

dt
= f (t, φ (t))

φ(t0) = x0

has a unique and maximal solution. This means there exists a solution φ : I ⊆ R −→ Rn

with I an open interval such that for any other solution of our IVP, ψ : J ⊆ R −→ Rn,
J ⊆ I and ψ(t) = φ(t) ∀t ∈ J .

Usually when we talk about the solution of an IVP we are implicitly making refer-
ence to its maximal solution.

In order to define the flow for an autonomous differential equation it will be useful to
introduce another result on the solutions of differential equations in a more general
manner than we did previously in Theorem 2.4.

Proposition 2.3. Given a differential equation ẋ = f(t, x), where

f : Ω ⊆ R× Rn −→ Rn

(t, x) 7−→ f(t, x)

is Cr (r ≥ 0) and locally Lipschitz on x, there exists a unique maximal Cr function,
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Φ : D ⊆ R× Ω ⊆ R× R× Rn −→ Rn

(t, t0, x0) 7−→ Φ (t, t0, x0) ,

such that

(i) D is an open subset of R× R× Rn.

(ii) Φ (t0, t0, x0) = x0.

(iii) Φ (t, t1, φ (t1, t0, x0)) = Φ (t, t0, x0).

(iv)
dΦ (t, t0, x0)

dt
= f (t,Φ (t, t0, x0)) ∀ (t, t0, x0) ∈ D.

Consider now a dynamical system given by the autonomous differential equation
ẋ = f(x), where f : Ω ⊆ Rn −→ Rn is continuous and locally Lipschitz and Ω is an
open set. Equivalently we can consider

f : R× Ω −→ Rn

(t, x) 7−→ f(x).

We will call the function

φ : D0 ⊆ R× Ω −→ Rn

(t, x0) 7−→ Φ (t, 0, x0)

the flow associated to f , where Φ is the solution of the differential equation from
proposition 2.3 and D0 = {(t, 0, x0) ∈ D}. Defined in this way φ is a continuous
function satisfying the fundamental property of the flow,

(i) φ (t+ s, x) = φ (t, φ (s, x)).

(ii) φ (0, x) = x, ∀x ∈ Ω.

We denote byOx0 = {φ (t, x0) , t ∈ Ix0} the orbit of x0, where Ix0 = {t ∈ R | (t, 0, x0) ∈ D}.

Notice that φ (·, x0) : Ix0 −→ Rn is the solution for the Initial Value Problem:


dφ(t)

dt
= f (t, φ (t))

φ(0) = x0

In the following results we will consider an autonomous differential equation ẋ = f(x),
where f : Ω ⊆ Rn −→ Rn is continuous and locally Lipschitz, and we will denote
its flow by φ.

Theorem 2.5. For all x0 ∈ Ω, if φ (·, x0) : Ix0 −→ Rn is such that R+ ∩ Ix0 =
[0, t∗) with t∗ < ∞ then ∀K ⊂ Ω a compact set there exists a t+k ∈ Ix0 such that
∀ t+k < t < t∗ we have φ (t, x0) /∈ K.
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Definition 2.7. A point p ∈ Ω is a periodic point with (least) period T > 0 provided
φ (T, p) = p and φ (t, p) 6= p, ∀ 0 < t < T . Then the set Op = {φ (t, x0) , 0 ≤ t < T}
is called a periodic orbit.

Proposition 2.4. The solutions φ (·, x0) : Ix0 −→ Rn have one of the three following
forms:

(i) φ (t, x0) = x0 ∀ t ∈ Ix0.

(ii) φ (·, x0) is such that its orbit is periodic.

(iii) φ (·, x0) is a one to one function.

Notice that the three possible types of flow from last proposition are clearly mutually
exclusive.

Definition 2.8. We say x0 ∈ Ω is a fixed point if f(x0) = 0.

Definition 2.9. A fixed point x0 is stable in the Lyapunov sense if [0,∞) ⊆ Ix0
and ∀ε > 0 there exists some δ > 0 such that if x ∈ B(x0, δ) ∩ Ω then φ (t, x) ∈
B(x0, ε), ∀ t ≥ 0 .

Definition 2.10. A fixed point x0 ∈ Ω is an attractor if it is stable and there exists
some ε > 0 such that if x ∈ B(x0, ε) ∩ Ω then limt→∞ φ(t, x) = x0.

Definition 2.11. A point x0 ∈ Ω is a repelling fixed point of f if it is an attracting
fixed point for the differential equation ẋ = g(x) with g = −f .

As we did in the discrete case we will now give a sufficient criteria to decide the
character of a fixed point.

Definition 2.12. We will say a fixed point p is hyperbolic if Reλ 6= 0, ∀ λ ∈
Spec {Dfp}.
Theorem 2.6. Consider a differential equation ẋ = Ax, A ∈ Rn×n, Spec {A} =
{λ1, . . . , λn}. Then the three following statements hold:

(i) If Reλi < 0 ∀λi ∈ Spec {A} then ~0 is a global attractor.

(ii) If Reλi > 0 ∀λi ∈ Spec {A} then ~0 is a repelling fixed point.

(iii) If for some 1 ≤ m < n we have

Reλ1 ≤ . . . ≤ Reλm < 0 < Reλm+1 ≤ . . . ≤ Reλn,

then there exist two subspaces Es ⊆ Rn of dimension m and Eu ⊆ Rn of
dimension n−m such that Es ⊕ Eu = Rn and

∀v ∈ Es φ (t, v) ∈ Es ∀t ∈ R, lim
t→∞

φ (t, v) = ~0,

∀w ∈ Eu φ (t, w) ∈ Eu ∀t ∈ R, lim
t→−∞

φ (t, w) = ~0.

Theorem 2.7. Given the differential equation ẋ = f (x), p a fixed point, we denote
Spec {Dfp} = {λ1, . . . , λn}. Then the three following statements hold:
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(i) If Reλi < 0 ∀λi ∈ Spec {Dfp} then p is an attractor.

(ii) If Reλi > 0 ∀λi ∈ Spec {Dfp} then p is a repelling fixed point.

(iii) If for some 1 ≤ m < n we have

Reλ1 ≤ . . . ≤ Reλm < 0 < Reλm+1 ≤ . . . ≤ Reλn,

then there exist two manifolds

W s
p =

{
x ∈ Rn | lim

t→∞
φ (t, x) = p

}
, W u

p =

{
x ∈ Rn | lim

t→−∞
φ (t, x) = p

}
,

of dimension m and n −m respectively such that TpW
s
p = Es

p, TpW
u
p = Eu

p ,
where Es

p, E
u
p are the corresponding subspaces from Theorem 2.6 for the dif-

ferential equation ẋ = Dfpx.

Recall that the autonomous differential equations in our previous hypothesis are
usually called vector fields. The following results and their proofs are based on the
notes of a master course on Dynamical Systems given by Ernest Fontich.

Definition 2.13. Let ẋ = f(x) and ẏ = g(y) be vector fields defined on the open sets
U and V respectively. If we denote by φ and ψ the respective flows, the two vector
fields are topologically conjugated if there exists a homeomorphism h : U −→ V such
that

h(φ(t, x)) = ψ(t, h(x)), ∀x ∈ U,

for all t ∈ R such that this expression makes sense. In this case we say h is a
conjugation between the two vector fields. If h is a diffeomorphism of class Cr,
r ≥ 1, the two vector fields are said to be Cr conjugated.

Proposition 2.5. Given two vector fields ẋ = f(x) and ẏ = g(y) defined respec-
tively on U and V , a homeomorphism h : U −→ V is a conjugation between both
vector fields if and only if

Dh(x)f(x) = g(h(x)), ∀x ∈ U.

Proof. Suppose first that h is a conjugation between the two vector fields. Then
taking the derivative with respect to t in both sides of the equality

h(φ (t, x)) = ψ(t, h(x)),

for any x ∈ U we obtainDh(φ (t, x))f(φ (t, x)) on the left hand side and g(ψ(t, h(x)))
on the right one. Evaluating both expressions at t = 0 leads to the equality

Dh(x)f(x) = g(h(x)), ∀x ∈ U.
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We will prove the opposite implication by showing that ∀x ∈ U the functions
α(t) = h(φ(t, x)) and β(t) = ψ(t, h(x)), wherever they are defined, satisfy the same
initial value problem. In that case Theorem 2.4 will tell us that h(φ(t, x)) =
φ(t, h(x)) is actually true.{

α
′
(t) = Dh(φ(t, x))f(φ(t, x)) = g(h(φ(t, x))) = g(α(t))

α(0) = h(φ(t, x)) = h(x),

and on the other hand{
β

′
(t) = ψ

′
(t, h(x)) = g(ψ(t, h(x))) = g(β(t))

β(0) = ψ(0, h(x)) = h(x).

�

Next we shall define what the Poincaré map is and prove its existence under certain
conditions.

Definition 2.14. A hypersurface Σ ⊂ Ω ⊆ Rn is called a transversal section of a
vector field f : Ω −→ Rn if

〈f(x)〉 ⊕ TxΣ = Rn, ∀x ∈ Σ.

Lemma 2.1. Let f : Ω −→ Rn be a vector field of class Cr. Then the flow φ of f
is also of class Cr.

Proposition 2.6. Let γ be a periodic orbit of period T of the vector field of class
Cr (r > 0) f : Ω −→ Rn and Σ a transversal section of f of class Cr such that there
exists a point x0 ∈ Σ ∩ γ.

Then there exists a neighborhood U ⊆ Ω of x0 and a Cr map τ : U −→ R satisfying
τ(x0) = T such that φ(τ(x), x) ∈ Σ ∀x ∈ U and the function

P : U ∩ Σ −→ Σ
x 7−→ φ(τ(x), x)

is of class Cr. P is the so called Poincaré map.

Proof. We know that Σ is a differentiable manifold so we can assume that in a
neighborhood V of x0 it is given by the equation ψ(x) = 0, with ψ of class Cr.
It is also true that Tx0Σ = KerDψ(x0). The result will come then from applying
the Implicit Function Theorem to the composition ψ ◦ φ restricted to an open set
W 3 (T, x0) such that φ(W ) ⊂ V (such W exists by lemma 2.1). This function is
clearly of class Cr, satisfies ψ ◦ φ (T, x0) = 0 and also

dψ ◦ φ
dt

(T, x0) = Dψ (x0) · f (φ (T, x0)) = Dψ (x0) · f (x0) 6= 0.

The last expression is different from zero because
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Tx0Σ = KerDψ(x0)
f(x0) /∈ Tx0Σ

}
⇒ f (x0) /∈ KerDψ (x0) .

Therefore we can apply the IFT to prove that there must be a neighborhood U of x0

and a function τ : U −→ R of class Cr such that τ(x0) = T and ψ (φ (τ(x), x)) = 0,
∀ x ∈ U . This last equation means, since φ (τ(x), x) ∈ V because of our choice
of the initial domain, that φ (τ(x), x) is also in Σ. We conclude that P defined as
above is a map resulting from the composition of Cr maps (so it is itself of class
Cr) and that the image of this map is contained in Σ (so it exists as we had defined
it). �

Finally we are going to give a definition of stability for periodic orbits, the easiest
one we can give with our background (there exists at least another definition that
we will not use). First notice that given a transversal or Poincaré section Σ and
PΣ the corresponding Poincaré map (where it is defined), if for some x0 ∈ Σ we
have PΣ(x0) = x0 then Ox0 is a periodic orbit. This result can be proved using
proposition 2.4.

Definition 2.15. Given a Poincaré section Σ and x0 ∈ Σ such that PΣ (x0) = x0,
we will say the periodic orbit Ox0 is stable if x0 is a stable fixed point for PΣ. In
general we say that Ox0 has the same character as x0 as a fixed point.

13



Chapter 3

Numerical tools

In this section we will discuss the numerical methods we have used in the study of
the Hypercycle model. All the algorithms explained have been programmed in C
and used to produce the numerical results given in section 4. In order to simplify
the implementation some functions related to linear algebra such as solving systems
of linear equations or calculating eigenvalues have been taken from the GSL-GNU
Scientific Library (https://www.gnu.org/software/gsl/).

3.1 Numerical Integrators

For integrating ODEs we have used the well-known Runge-Kutta Fehlberg Method,
which is a particular case of an error-control method using two one-step methods of
order one a unit higher than the other. We assume the reader is familiar with basic
methods for approximating solutions of differential equations. All these contents
can be found in [3], as well as any previous definition on the matter the reader may
need to know. The only difference will be that we generalize to the nth dimensional
case.

3.1.1 Error control using one step method Integrators

Consider a continuous and locally Lipschitz function f : Ω→ Rn, where Ω ⊆ R×Rn.
By Theorem 2.4 we know that there exists a unique maximal solution φ : (a, b)→ Rn

for the initial value problem:


dφ(t)

dt
= f(t, φ (t))

φ(t0) = x0

with (t0, x0) ∈ Ω.

14



Any one-step method
{
φi
}
i

to approximate φ is defined by:

φi+1 = φi + hi · ψ(ti, hi, φi),

with hi = ti+1 − ti, t0 = t0 and φ0 = x0. ψ depends on the specific method.
Examples of these methods are the Euler method, Higher-Order Taylor methods
and Runge-Kutta methods.

Recall that a one step method
{
φi
}
i

is said to be of order n if:

φ(ti+1) = φi + hi · ψ(ti, hi, φi) +O(hn+1
i ),

assuming φi = φ(ti). This implies

lim
h→0

‖φ(ti+1)− φi − hi · ψ(ti, hi, φi)‖
hni

= 0.

Then we know that for an nth-order one-step method, given ε > 0 ∃ hi > 0 such
that

error(i) = ‖φi+1 − φ(ti + hi)‖ ≤ ε · hni .

The previous formula shows these methods will work fine locally as long as we take
hi (step length of the ith step) small enough, but we don’t have a way to know how
small hi must be in order to obtain a specific bound for the local error. To reach a
better control of the error and make our numerical study more consistent, we can
use a method of integration with error control. We shall explain how they work in
general.

Imagine we have two one step methods of order n and n + 1, say
{
φn,i
}
i

and{
φn+1,i

}
i
. Our goal is to obtain an approximation of τn(hi) =

φn,i+1 − φ(ti + hi)

hi
.

This last expression gives us the idea of how big is the local error for the n-th order

method compared to the step size.

τn(hi) =
φn,i+1 − φ(ti + hi)

hi
=
φn,i+1 − φn+1,i+1 +O(hn+2

i )

hi
=
φn,i+1 − φn+1,i+1

hi
+O(hn+1

i ).

If we denote τ̃(hi) =
φn,i+1 − φn+1,i+1

hi
, the last equality implies

lim
hi→0

‖τn(hi)− τ̃(hi)‖
hni

= 0⇒ lim
hi→0

τ̃(hi)

hni
= lim

hi→0

τn(hi)

hni
= ~l 6= ~0 (3.1.1)

for a certain ~l ∈ Rn. This is the reason why we consider ‖τ̃(hi)‖ as a good approx-
imation for ‖τn(hi)‖ when taking hi small.
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Now that we have the approximation of the error for the nth order one step method
depending on the step length, we are able to use it in order to modify hi whenever
‖τ̃(hi)‖ is not below a certain tolerance. When this happens, we can calculate the
new step size multiplying hi by a certain q ∈ R, which is chosen using the following
criteria. We know

lim
hi→0

τn(qhi)

qn · hni
= lim

qhi→0

τn(qhi)

(qhi)n
= ~l = lim

hi→0

τ̃n(hi)

hni
,

where in the last equality we use (3.1.1). Therefore

lim
hi→0

τn(qhi)

hni
= lim

hi→0

qn · τ̃n(hi)

hni
.

This last equality tells us that qn · ‖τ̃n(hi)‖ is a good approximation for ‖τn(qhi)‖
when hi is small, so if we want to impose ‖τn(qhi)‖ ≤ ε we can do it by choosing
q such that

q ≤ n

√
ε

‖τ̃n(hi)‖
.

Then we recalculate φn,i+1 with our new h
′
i = q ·hi, and we keep on with the process.

Notice that this method will require to recalculate many times the step length during
the whole process of integration, namely every time that the inequality ‖τ̃(hi)‖ ≤ ε
doesn’t hold. In the next section we specify the Algorithm for the method we have
used.

3.1.2 The Runge-Kutta-Fehlberg 4-5 method

In this section we present the algorithm for the Runge-Kutta-Fehlberg 4-5 method,
which is an error control method using Runge-Kutta of order 4 and 5 as one-step
methods.

The notation we have used corresponds to the following IVP:
dφ(t)

dt
= f(t, φ(t))

φ(t0) = x0

for a ≤ t ≤ b.

In order to avoid the problem of recalculating h too many times Algorithm 1 pre-
vents the possible failure of the next step by changing the value of h every time.
We will not justify the specific values for the coefficients Ki, i ∈ {1, . . . , n}.
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Algorithm 1 RKF 4-5

function rkf(a, b, x0)
set: t = a, flag = 1, tol, hmax, hmin, h
while flag = 1 do

function RKF-step(τ , t, x0, x1, h)

if τ ≤ tol then
t = t+ h
output (t, x1)
x0 = x1

δ = 0.84 4

√
tol
τ

if δ ≤ 0.1 then
h = 0.1h

else if δ ≥ 4 then
h = 4h

else
h = δh

if h > hmax then
set h = hmax

if t ≥ b then
flag = 0

else if t+ h > b then
h = b− t

else if h < hmin then
flag = 0, output error message

Algorithm 2 One step RKF

function RKF-step(τ , t, x0, x1, h)
K1 = h · f(x0)
K2 = h · f(t+ 1

4
h, x0 + 1

4
K1)

K3 = h · f(t+ 3
8
, x0 + 3

32
K1 − 9

32
K2)

K4 = h · f(t+ 12
13
h, x0 + 1932

2197
K1 − 7200

2197
K2 + 7296

2197
K3)

K5 = h · f(t+ h, x0 + 439
216
K1 − 8K2 + 3680

513
K3 − 845

4104
K4)

K6 = h · f(t+ 1
2
h, x0 − 8

27
K1 + 2K2 + 3544

2565
K3 + 1859

4104
K4 − 11

40
K5)

x1 = x0 + 25
216
K1 + 1408

2565
K3 + 2197

4104
K4 − 1

5
K5

τ = 1
h
‖ 1

360
K1 − 128

4275
K3 − 2197

75240
K4 + 1

50
K5 + 2

55
K6‖
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3.2 A numerical computation of the Poincaré map

Consider we are in the same hypothesis as in section 3.1.1, with the only difference
that now we have an autonomous differential equation. A theoretical definition and
study of the Poincaré map properties can be found in section 2.2.

Suppose the Poincaré section is a hyperplane. We will build the Poincaré map
P associated to the vector field ẋ = f(x) numerically (whenever it is possible,
because it is not even sure it exists) by using the Runge-Kutta Fehlberg Method
and Newton’s Method. Firstly, we can assume that the Poincaré section is of the
form Σ = {(x1, · · · , xn) ∈ Rn| xj = c} for some c ∈ R, j ∈ {1, . . . , n}. If that was
not the case we could always make a linear change of variables in order to obtain the
desired expression for Σ. We can also assume that fj(a) is either strictly positive
or negative because we have assumed that Σ is transversal to φ in a.

The idea of the method is to start iterating our numerical integrator at some point
x0 on the Poincaré section Σ and check when does

{
φi
}
i

cross the section again
(in the same direction). The point where it does so will not be found precisely in
this way, so we will adjust it by applying Newton’s method. This means that once
we have crossed the section (how to check it is specified in Algorithm 3) we will
recalculate the new step length h used by the function RKF-step in Algorithm 2
using the formula

h =
c− φji
fj(φi)

, (3.2.1)

where we are supposing that we have crossed the section at the ith step. Next we
iterate formula (3.2.1) until convergence to Σ is achieved (or not, then we stop and
return an error message) at some kth step, where

|φjk − c| < tol,

with tol the maximal distance we allow between our final point and Σ. If the Newton
Method converges, the point where it does will then be considered a numerical
approximation of P (x0).

Here
{
φi
}
i

is the Iterative method we are using to solve the Initial Value Prob-
lem, which in our case is RK-Fehlberg but in general it could be any method for
integrating ODEs.

Notice that in Algorithm 3, b is an upper bound for the integration time, that is,
if we have not crossed the hyperplane again before b then we stop the process (it
could happen that we never get to cross the section so we must stop at some point),
whereas in Algorithm 1 we do the whole integration from a to b. Furthermore in
this case the differential equation is autonomous so we could use always a = 0.
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Algorithm 3 Poincaré map

function pmap(a, b, x0)
set: t = a, flag = 1, flag2 = 0, flag3 = 0, flag4 = 0, countmax,
tol, hmax, hmin, h
while flag = 1 do

function RKF-step(τ , t, x0, x1, h)

if τ ≤ tol then
t = t+ h
if flag3 = 1 or Condition1 or Condition2 then

. Condition1 is (xj0 > c and xj1 < c ) and flag2 = 0

. Condition2 is (xj1 > c and xj0 < c ) and flag2 = 1

h =
c−xj1
fj(x1)

flag3 = 1
count = count+ 1
if |xj1 − c| < tol then

flag = 0, flag4 = 1

x0 = x1

if count > countmax then
flag = 0

if flag3 = 0 then

δ = 0.84 4

√
tol
τ

if δ ≤ 0.1 then h = 0.1h
else if δ ≥ 4 then h = 4h
else h = δh
if h > hmax then

set h = hmax
if t ≥ b then

flag = 0
else if t+ h > b then

h = b− t
else if h < hmin then

flag = 0, output error message

if flag4 = 0 then
output error message
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3.3 The Euler-Newton Continuation Method

Let us give first some previous results on parametric curves and the arc length
parametrization.

Definition 3.1. A parametric curve is a differentiable map α : I −→ Rn, with I
an open interval of R.

Definition 3.2. Let α : I −→ Rn be a parametric curve. The arc length map
s : I −→ R with origin t0 ∈ I is defined as:

t 7−→ s(t) =

∫ t

t0

‖α′
(t)‖dt

Definition 3.3. The parameter t from a parametric curve α is said to be the arc
length parameter if ‖α′

(t)‖ = 1, ∀t ∈ I. In this case α is said to be parametrized by
the arc length.

Definition 3.4. A parametric curve α : I −→ Rn is said to be 1-regular if
‖α′

(t)‖ 6= 0 ∀t ∈ I.

Definition 3.5. Let α : I −→ Rn be a parametric curve. Any diffeomorphism
h : I −→ J , with J an open interval of R is said to be a reparametrization of α.
We call α ◦ h−1 : J −→ Rn the reparametrized curve.

Proposition 3.1. Any 1-regular parametric curve α : I −→ Rn can be reparametrized
by the arc length. In fact for every t0 ∈ I, the reparametrized curve given by com-
posing α with the inverse of the arc length function s with origin in t0 is a curve
parametrized by the arc length.

Assume we are given some function f : U → Rn, U ⊆ Rn+1 an open set, f of class
Cr, r ≥ 1. Suppose that we have an initial point x0 ∈ U such that f(x0) = ~0 and
rank(Df(x0)) = n.

Our goal is to find a numerical expression for a function

g : J −→ Rn

t 7−→ (g1(t), . . . , gn(t))

such that f(g(t)) = ~0 ∀t ∈ J and g(t0) = x0 for a certain t0 ∈ J . We will now
describe a first attempt to solve the problem.

We know by means of the Implicit Function Theorem (IFT) that our solution does
exist near x0 = (x0

0, x
1
0, · · · , xn0 ), that is that there exists an open interval J ⊆ R,

xi0 ∈ J for some i ∈ {0, 1, . . . , n} and a function

x : J −→ Rn

xi 7−→ (x1(xi), . . . , xn(xi))

such that f(x1(xi), . . . , xi, · · · , xn(xi)) = ~0, ∀ xi ∈ J and x(xi0) = x0.
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If we compute the derivative of the last function with respect to xi we will be able
to apply one step of the Euler Method in x0 and then apply Newton’s Method to
obtain a new point in {x ∈ Rn+1|f(x) = 0}. From this new point we could repeat
the process.

This procedure is fine except for two facts. The first is that it is difficult to compute
if we do not have a way to know with respect to which variable is the IFT going to
work. The second problem is that the function f goes from Rn+1 to Rn, which is
not the right setting for applying the Newton method (the two spaces should have
the same dimension). In the following we shall give an explanation based on [9]
of how Euler-Newton’s Continuation method really works, which consists basically
in the same process but solving these problems. We know from f(x(xi)) ≡ 0 that
Df(x(xi0))x

′
(xi0) = 0. Developing this last equation :


∂f1(x(xi0))

∂x0
. . .

∂f1(x(xi0))

∂xn−1

∂f1(x(xi0))

∂xn

∂fn(x(xi0))

∂x0
. . .

∂fn(x(xi0))

∂xn−1

∂fn(x(xi0))

∂xn


 x0′(xi0)

...
xn

′
(xi0)

 =

 0
...
0

⇒


∂f1(x(xi0))

∂x0
. . .

̂∂f1(x(xi0))

∂xi
∂f1(x(xi0))

∂xn

∂fn(x(xi0))

∂x0
. . .

̂∂fn(x(xi0))

∂xi
∂fn(x(xi0))

∂xn


︸ ︷︷ ︸

Di


x0′(xi0)

x̂i′(xi0)

xn
′
(xi0)

 = −xi′(xi0)·


∂f1 (x(xi0))

∂xi
...

∂fn (x(xi0))

∂xi



We also know that rank(Df(x0)) = n, so there exists i ∈ {0, 1, · · · , n} such that
det(Di) 6= 0. If this is the i we are considering, we know the previous linear system
has a unique solution. Denoting

Aj =

∣∣∣∣∣∣∣∣∣∣∣∣

∂f1(x(xi0))

∂x0
· · ·

̂∂f1(x(xi0))

∂xj
· · · ∂f1(x(xi0))

∂xn

∂fn(x(xi0))

∂x0
· · ·

̂∂fn(x(xi0))

∂xj
· · · ∂fn(x(xi0))

∂xn

∣∣∣∣∣∣∣∣∣∣∣∣
and using Cramer’s rule we have this solution is given by

xj
′
(xi0)

xi′(xi0)
· = (−1)j−i · Aj

det(Di)
= (−1)j−i · Aj

Ai
.
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Since xi
′
(xi0) = 1 this leads us to the equality

xj
′
(xi0) = (−1)j−i · Aj

Ai
j ∈ {1, · · · , n} . (3.3.1)

We would like to find the derivative of our function x parametrized by the arc length
if the reparametrization with respect to the arc length is possible. Let’s prove this
is actually the case. Since xi

′
(xi) = 1, ∀xi ∈ J ⇒ ‖x′

(xi)‖ ≥ 1 ,∀xi ∈ J . Then x
is a regular curve so using proposition 3.1 we get the desired result.

Now to be able to compute the reparametrized curve we only need to find its
derivative. We know by definition of the arc length s that:

s
′
(xi0)2 =

j=n∑
j=0

(xj
′
(xi0))2 =

∑j=n
j=0 A

2
j

A2
i

⇒ s
′
(xi0) =

√∑j=n
j=0 A

2
j

Ai
, (3.3.2)

where we are using (3.3.1). Notice that s
′
(xi0) 6= 0. We finally find, using equalities

(3.3.1) and (3.3.2):

dxj

ds
(s(xi0)) =

xj
′
(xi0)

s′(xi0)
= (−1)j−i · Aj√∑k=n

k=0 A
2
k

, ∀j ∈ {1, · · · , n} . (3.3.3)

This last formula gives us a way to compute the derivatives of xj with respect to
the arc length for every j. This turns out to be very helpful in the sense that we
don’t need to worry at each step about with respect to which variable the IFT is
applicable.

Remark. If we want to continue the curve in the opposite direction we just have
to change all signs in (3.3.3).

We still need to solve our second problem though. Remember that now what we
should do is calculating a first approximation x

(1)
0 of the next point of the curve

applying one step of the Euler method, and after that we should find some way to

generate a sequence
{
x

(k)
0

}
k

converging to a point in {x ∈ Rn+1 | f(x) = 0}. A way

to find an adequate recurrence for this sequence is through considering the problem
of minimizing ‖∆x‖2 subject to the constraint f(x) + Df(x)∆x = 0. The idea of
the method is to find a point on the curve (imposed by the constraint at first order)
as close as possible to the first approximation (minimizing ‖∆x‖2). The Lagrangian
function associated to this conditioned extrema problem is:

L(∆x, λ) = ‖∆x‖2 + λT · (f(x) +Df(x)∆x).

To find its solution we must solve the system given by the equations:
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
0 =

dL

d∆xi
= 2∆xi +

∑j=n
j=1 λj

dfj
dxi

, i ∈ {1, . . . , n}

f(x) = −Df(x)∆x.

From the first one we automatically get ∆xi = 1
2

∑j=n
j=1 λj

dfj
dxi

. By substituting into
the second equation we have

f(x) = −−Df(x)(λTDf(x))T

2
⇒ λ = (−2Df(x)Df(x)T )−1f(x),

and finally coming back to the former expression of ∆xi we obtain the equality
∆x = −Df(x)T (Df(x)Df(x)T )−1f(x), which gives us the desired recurrence

x(k+1) = x(k) −Df(x(k))T (Df(x(k))Df(x(k))T )−1f(x(k)).

There is a proof of the convergence of this sequence to {x ∈ Rn+1 | f(x) = 0} in [8].

This ends one step of the procedure. Iterating the process we can continue the curve
as long as the required condition on the rank of the differential of f at the following
points is satisfied. Let us summarize the whole process by giving the corresponding
algorithm.

Algorithm 4 Euler-Newton Continuation method

function ENCmethod(x0, maxiter, h)
set: s = 0, countmax, count = 0, tol
for i = 0 to i = maxiter do

x0 = x1

Calculate Df(x0)
Calculate Aj, j ∈ {1, . . . , n}
for j = 0 to j = n+ 1 do

dxj
ds

= (−1)j · Aj√∑k=n
k=0 A

2
k

x1 = x0 + h · dxj
ds

while count < countmax or |f(x1)| > tol do
x0 = x1

x1 = x0 −Df(x0)T (Df(x0)Df(x0)T )−1f(x0)
count = count+ 1

if count = countmax then
output error message

output x1

count = 0, i = i+ 1
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Chapter 4

The Hypercycle with error tail

4.1 The general case

In this section we define the Hypercycle model with error tail and discuss some of its
basic properties. For the sake of simplicity and since we only treat this case there is
no possible misunderstanding, we will name it also as the Hypercycle model. Many
of the ideas in this chapter and the definition of the model have been taken from
[6].

Definition 4.1. We will call a Hypercycle model of dimension n the dynamical
system defined by the following differential equation:

ẋi = fi(x) = xi(AiQ+Kixi−1Q− Φ(x)), i = 1, . . . , n (4.1.1)

and

ẋe = fe(x) = xe(Ae − Φ(x)) + (1−Q)
n∑
i=1

xi(Ai +Kixi−1)

where x0 ≡ xn, Ki, Ai > 0 ∀i ∈ {1, . . . , n}, Q ∈ (0, 1) and

Φ(x) =
n∑
i=1

xi(Ai +Kixi−1) + Aexe.

Notice that f = (f1, . . . , fn, fe) is a polynomial on x = (x1, . . . , xn, xe) so it is of
class C∞ and therefore locally Lipschitz by proposition 2.2. Thus by Theorem 2.4
for any IVP there exists a unique continuous maximal solution. The component xe
is clearly the one representing the error tail.

Proposition 4.1. The hyperplane H = {x ∈ Rn+1|
∑n

i=1 xi + xe = 1} is invariant
under the action of the hypercycle model.
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Proof. Consider the solution x(·) = x(·, x0) : I −→ Rn+1 for the hypercycle
model with initial condition x0 ∈ H and maximal domain I ⊆ R. Then y(t) =∑n

i=1 xi(t) + xe(t) satisfies the differential equation ẏ = F (t, y), where

F : I × R −→ R
(t, y) 7−→ Φ(x(t))(1− y).

The result comes from the equality

dy

dt
=

n∑
i=1

fi(x(t)) + f(xe(t)) =
n∑
i=1

xi(t)(AiQ+Kixi−1(t)Q− Φ(x(t)))+

+ xe(t)(Ae − Φ(x(t))) + (1−Q)
n∑
i=1

xi(t)(Ai +Kixi−1(t)) =

= xe(t)(Ae − Φ(x(t))) +
n∑
i=1

xi(t)(Ai +Kixi−1(t))−
n∑
i=1

Φ(x(t))xi(t) =

= Φ(x(t))− Φ(x(t)) (xe(t) +
n∑
i=1

xi(t))︸ ︷︷ ︸
y(t)

= Φ(x(t))− Φ(x(t))y(t).

This allows us to find y(t) as the solution for the initial value problem:


dy(t)

dt
= F (t, y(t)) = Φ(x(t))(1− y(t))

y(0) = 1.

(4.1.2)

But it turns out that the solution of this IVP is precisely ỹ(t) ≡ 1, because for any
t ∈ I we have

F (t, ỹ(t)) = Φ(x(t))− Φ(x(t)) = 0 =
dỹ(t)

dt
.

Notice that F is continuous and locally Lipschitz on y. Then using Theorem 2.4 we
obtain that ỹ(t) ≡ 1 is the only solution of (4.1.2), so

n∑
i=1

xi(t) + xe(t) = 1, ∀t ∈ I.

�

From now on we will restrict our study to the solutions in H, and we will often
omit the term xe because it is given implicitly by xe = 1−

∑n
i=1 xi. It is clear then

that studying the differential equation
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ẋi = f̂i(x) = xi(AiQ+Kixi−1Q− Φ̂(x)), i = 1, . . . , n,

where Φ̂(x) =
∑n

i=1 xi(Ai +Kixi−1) + Ae(1 −
∑n

i=1 xi) with x = (x1, . . . , xn) ∈ H
is enough to understand the dynamics of our system inside H.

The following proposition can be seen as a consequence of this fact and it will be
useful later when we study the existence of fixed points.

Proposition 4.2. A point x∗ ∈ H is a fixed point of the general Hypercycle model
if and only if fi(x

∗) = 0, ∀i ∈ {1, . . . , n}.
Proof. From proposition 4.1 we know any point x ∈ H satisfies

∑n
i=1 fi(x) + fe(x) = 0.

Then we have fi(x
∗) = 0, ∀i ∈ {1, . . . , n} ⇒ fe(x

∗) = −
∑n

i=1 fi(x
∗) = 0⇒ x∗ is a

fixed point. The other implication is true by definition of fixed point. �

Proposition 4.3. The set

S =

{
(x1, . . . , xn, xe) ∈ H | xi ∈ [0, 1] ∀i ∈ {1, . . . , n} ,

n∑
i=1

xi ≤ 1

}
is positively invariant under the action of the Hypercycle model.

Proof. Notice that S = {(x1, . . . , xn, xe) ∈ H | xe, xi ∈ [0, 1], ∀i ∈ {1, . . . , n}}. Imag-
ine we have a solution x(t) of our IVP with initial condition in S such that for
a certain t∗ ∈ J , t∗ ≥ 0, (where J is the maximal domain of our solution)
x(t∗) = (x1(t∗), . . . , xn(t∗)) is such that xi(t

∗) = 0 for some i ∈ {1, . . . , n}. Con-
sider now the solution of the new differential equation of dimension n given by the
equations of the Hypercycle model except from the ith one and taking xi ≡ 0.{

ẋj = fj(x), ∀j ∈
{

1, . . . , î, . . . n
}

ẋe = fe(x).

This is a continuous and locally Lipschitz function so it still has a unique maximal

solution x̃(t) =
(
x̃1(t), . . . , ̂̃xi(t), . . . , x̃n(t), x̃e(t)

)
for the IVP with initial condition

x̃0 =
(
x1(t∗), . . . , x̂i(t∗), . . . , xn(t∗), xe(t

∗)
)

. Then x(t) = (x̃1(t), . . . , 0, . . . , x̃n(t), x̃e(t))

solves the original IVP and by Theorem 2.4 it is the unique solution. This implies
we cannot cross the hyperplane {x ∈ Rn+1 | xi = 0}. Informally any solution on it
will stay there, and no solution can reach it from outside.
We must check as well that we cannot cross {(x1, . . . , xn, xe) ∈ Rn+1 | xe = 0}. So
imagine now that we have a solution of our IVP with starting point in S such
that for a certain t∗ ∈ J , t∗ ≥ 0, x(t∗) = (x1(t∗), . . . , xn(t∗), xe(t

∗)) is such that
xe(t

∗) = 0. This implies

fe(x(t∗)) = xe(t
∗)(Ae − Φ(x(t∗))) + (1−Q)

n∑
j=1

xj(t
∗)(Aj +Kjxj−1(t∗)) =

= (1−Q)
n∑
j=1

xj(t
∗)(Aj +Kjxj−1(t∗)) > 0,
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so it is clear we cannot cross {(x1, . . . , xn, xe) ∈ Rn+1 | xe = 0} from S. Notice that
we could cross it from outside S! This is why S is positively invariant and not
invariant.

The cases xi(t
∗) = 1 for some i ∈ {1, . . . , n} or xe(t

∗) = 1 are included in the
previous ones. Notice

∑n
i=1 xi(t

∗) + xe(t
∗) = 1 holds by proposition 4.1, so if one

variable is equal to 1 the rest must be 0. �

Corollari 4.1. For any x0 ∈ S the Hypercycle solution x(·, x0) is defined ∀t ∈
[0,∞).

Proof. Suppose the opposite. Since the closure of S is a compact set in Rn+1 we
know by Theorem 2.5 that if x(·, x0) is such that R+ ∩ Ix0 = [0, t∗) with t∗ < ∞
there exists tS < t∗ such that ∀t > tS x (t, x0) /∈ S, in contradiction with S being
positively invariant by proposition 4.3. �

Definition 4.2. We will say that a fixed point x∗ = (x∗1, . . . , x
∗
n) in S is a chain of

dimension m+ 1 with 1 ≤ m < n− 1 and initial component xi if it satisfies x∗j 6= 0
for j ∈ {i, . . . , i+m} and x∗j = 0 for j /∈ {i, . . . , i+m}.

In the following sections we will assume n > 2, K = 1 in order to simplify the
model. We also restrict our study of the model to the dynamics of the Hypercycle
inside S, where it is physically meaningful. This is the reason why proposition
4.3 turns out to be useful, it tells us that the region in which we are interested is
positively invariant. Notice that, as we said before, we will often note the points in
S as x = (x1, . . . , xn) instead of x = (x1, . . . , xn, xe).

4.2 The symmetric case

In this section we consider the Hypercycle model assuming that Ai = a = Ae
∀i ∈ {1, . . . , n}, for some a > 0. We call it the symmetric Hypercycle model.

4.2.1 Existence and nature of the fixed points

Lemma 4.1. The symmetric Hypercycle model has no fixed points x∗ = (x∗1, . . . , x
∗
n)

in S such that x∗i 6= 0 and x∗i−1 = x∗i+1 = 0 for any i ∈ {1, . . . , n}.
Proof. Suppose x∗ is such a fixed point for some i ∈ {1, . . . , n}. Inserting x∗i−1 = 0
in the equation fi(x

∗) = 0 gives us aQ = Φ(x∗). Then looking at fe(x
∗) we obtain

fe(x
∗) = x∗e(a− aQ) + (1−Q)

n∑
j=1

x∗j(a+ x∗j−1) > 0,

where we are using that 0 < Q < 1 implies both terms in the last sum are positive.
On the other side x∗ is a fixed point so we should have fe(x

∗) = 0. Therefore x∗

cannot be a fixed point. �
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Lemma 4.2. The symmetric Hypercycle model has no chains in S.

Proof. Suppose x∗ is a chain with initial component i ∈ {1, . . . , n}. We know x∗i 6=
0 and x∗i−1 = 0 together with fi(x

∗) = x∗i (aQ+ x∗i−1Q− Φ(x∗)) imply aQ = Φ(x∗).
Now using 0 = fi(x

∗) = x∗i+1(aQ+x∗iQ−aQ) we obtain x∗i+1x
∗
iQ = 0, which implies

either x∗i+1 or x∗i must be 0, leading to a contradiction (the dimension of the chain
must be at least 2!). �

Proposition 4.4. The symmetric Hypercycle model has no fixed points x∗ 6= ~0 such
that x∗i = 0 for some i ∈ {1, . . . , n}.
Proof. If the opposite is true, we can assume x∗ has at least two components x∗i = 0
and x∗j = 0 with i > j and x∗k 6= 0 for j < k < i. If we had just one component
equal to 0 we would be in contradiction with lemma 4.2 (x∗ would be a chain). If
the condition x∗k 6= 0 for j < k < i did not hold we could always take a bigger j
and/or a smaller i. We can also assume j− i > 2, because the opposite would be in
contradiction with lemma 4.1. Then the proof ends finding a contradiction exactly
as in the last lemma. �

Proposition 4.5. The symmetric Hypercycle model has no fixed points on ∂S except
from (x1, . . . , xn) = ~0.

Proof. We know ∂S =
⋃n
i=0 {x ∈ H | xi = 0} ∪ {x ∈ H | xe = 0} ⊂ S. Proposition

4.4 tells us there can be no fixed points in
⋃n
i=0 {x ∈ H | xi = 0} different than

(x1, . . . , xn) = ~0.
Suppose we had a fixed point x∗ ∈ {x ∈ H | xe = 0}. This would lead to

fe(x
∗) = (1−Q)

∑
x∗i (a+ x∗i−1) > 0.

We already know by definition of fixed point that this is not possible, so there are
no fixed points in {x ∈ H | xe = 0}.
The only point left on ∂S is (x1, . . . , xn) = ~0, which is actually a fixed point. It is
easy to check that x = (x1, . . . , xn, xe) = (0, . . . , 0, 1) ⇒ (f1(x), . . . , fn(x), fe(x)) =
(0, . . . , 0). �

Now that we have already found where the fixed points cannot be, we would like
to give some result on where are the fixed points of the symmetric Hypercycle and
for which values of the parameters a and Q these are actually in S.

Proposition 4.6. For the values of (a,Q) such that Q2

1−Q ≥ 4na there are two fixed

points x∗,+ and x∗,− in S given by:

x∗,+i =
Q+

√
Q2 − 4na(1−Q)

2n
(4.2.1)

x∗,−i =
Q−

√
Q2 − 4na(1−Q)

2n
(4.2.2)

∀i ∈ {1, . . . , n}. Furthermore, when they exist these are the only fixed points in S
apart from ~0.
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Proof. Imposing the condition of being a fixed point of the symmetric Hypercycle
different from ~0 on x∗ = (x∗1, . . . , x

∗
n) ∈ H is the same as imposing fi(x

∗) = 0 and
x∗i 6= 0 ∀ i ∈ {1, . . . , n}. This comes from proposition 4.2 and proposition 4.4.

Therefore we have, imposing that x∗ 6= ~0 is a fixed point in H,

0 = fi+1(x∗) = x∗i+1(aQ+x∗iQ−Φ(x∗))⇔ aQ+x∗iQ−Φ(x∗) = 0⇔ x∗i =
Φ(x∗)− aQ

Q
,

for all i ∈ {1, . . . , n}. In particular this implies x∗i = x∗j ∀i, j ∈ {1, . . . , n}. So using
Φ(x∗) =

∑n
i=1 x

∗
i (a+ x∗i−1) + ax∗e and x∗e = 1−

∑n
i=1 x

∗
i we obtain

x∗i =

∑n
i=1 x

∗
i (a+ x∗i−1) + ax∗e − aQ

Q
= . . . =

n(x∗i )
2 + a(1−Q)

Q
⇔

⇔ n(x∗i )
2 −Qx∗i + a(1−Q) = 0⇔ x∗i =

Q±
√
Q2 − 4na(1−Q)

2n
.

We will denote these points as x∗,+ and x∗,− respectively. We consider them only if
Q2

1−Q ≥ 4na. Otherwise the discriminant is negative and they are not real, so not in
S.
Suppose Q2

1−Q ≥ 4na holds. Then x∗,+ and x∗,− are fixed points of the symmetric
Hypercycle model, but we still shall proof they are in S. As we only have obtained
conditions on x∗i for i ∈ {1, . . . , n} nothing is in contradiction with our assumption
x∗,+, x∗,− ∈ H. At the same time since 0 < Q < 1 and Q >

√
Q2 − 4na(1−Q) ≥ 0

we have

0 <
Q±

√
Q2 − 4na(1−Q)

2n
<

1

n
⇒


∑n

i=1 x
∗,s
i ≤ 1

x∗,si ∈ [0, 1], i ∈ {1, . . . , n}

 ⇒ x∗,s ∈ S

∀s ∈ {+,−}. This ends the proof, the only two fixed points in S for the symmetric

Hypercycle model are the ones given by (4.2.1) and (4.2.2) when Q2

1−Q ≥ 4na. �

4.2.2 Circulant Matrices

In this section we give the definition of circulant matrix and characterize its eigen-
values. The results given are based on [5].

Definition 4.3. A circulant matrix (ai,j) = A ∈ Rn×n is a matrix satisfying

ai,j = a(i−j)mod n,

so that it only has n different coefficients and looks like:
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A =


a0 a1 . . . an−2 an−1

an−1 a0 a1 an−2
... an−1

. . . . . .
...

a2
. . . a1

a1 a2 . . . an−1 a0

 .

The useful property of the circulant matrices is that there exists a formula giving
its eigenvalues and eigenvectors. This will play a crucial role when we study the
stability of the fixed points in the next section.

Lemma 4.3. Given ρ 6= 1 a root of unity then
∑n−1

k=0 ρ
k = 0.

Proof. We just need to use that this sum is a geometric progression so

n−1∑
k=0

ρk =
ρn − 1

ρ− 1
= 0,

where in the second equality we are using that ρ is a root of unity different from 1
(otherwise the denominator would be 0). �

Theorem 4.1. Every circulant matrix A diagonalizes and has eigenvectors

~vj =
1√
n

(1, e2πij/n, . . . , e2πij(n−1)/n)

with corresponding eigenvalues λj =
∑n−1

k=0 ake
2πijk/n, j ∈ {1, . . . , n}.

Proof. Given a circulant matrix A = (ai,j) any of its eigenvectors v must satisfy

Av = λv

for some λ ∈ C. This gives us the following system of equations:

n−m−1∑
k=0

akvm+k +
n−1∑

k=n−m

akvk−n+m = λvm, m ∈ {0, . . . , n− 1} .

Now we simply realize that taking ρ an nth root of unity and v = 1√
n

(1, ρ, . . . , ρn−1)
the last equality becomes

n−m−1∑
k=0

ak
1√
n
ρm+k +

n−1∑
k=n−m

ak
1√
n
ρk−n+m = λ

1√
n
ρm.

Here we can simplify the terms 1√
n

and ρm on both sides and we also have ρ−n = 1,
so we obtain

λ =
n−m−1∑
k=0

akρ
k +

n−1∑
k=n−m

akρ
k =

n−1∑
k=0

akρ
k. (4.2.3)
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Since for this λ and v the system of equations is satisfied, v = 1√
n
(1, ρ, . . . , ρn−1) is

an eigenvector of A with eigenvalue the λ from (4.2.3) for any ρ ∈
{
e2πij/n

}n−1

j=0
.

So for any j ∈ {0, . . . , n− 1} we have that λj =
∑n−1

k=0 ake
2πijk/n is an eigenvalue of

A with corresponding eigenvector

~vj =
1√
n

(1, e2πij/n, . . . , e2πij(n−1)/n).

It can be seen using lemma 4.3 that the inverse of B = (~v0 | ~v1 | . . . | ~vn−1) is CT ,
where C = (~v0 | ~vn−1 | ~vn−2 | . . . | ~v1). Notice that

~vTj ~vl =
1

n

n−1∑
k=0

e2πik = 1, l, j ∈ {1, . . . , n− 1} , j + l = n,

and

~vTj ~vl =
1

n

n−1∑
k=0

e2πi
(j+l)

n
k = 0, l, j ∈ {1, . . . , n− 1} , j + l 6= n.

where in the first equation we use Euler’s formula and in the second one lemma 4.3.
This implies that ~v0, . . . , ~vn−1 are linearly independent vectors, so they form a basis
of eigenvectors of the matrix A. Therefore A is diagonalizable. �

4.2.3 Stability of the fixed points

In this section we will classify the character of the fixed points. Let us first introduce
the notation

fi(x) = xiFi(x), i ∈ {1, . . . , n} ,

where Fi(x) = a(Q− 1) +Qxi−1 −
∑n

j=1 xjxj−1. We can calculate the derivative of
Fi with respect to xj,

∂Fi
∂xj

(x) =


Q− xi−2 − xi, j = i− 1
−xj+1 − xj−1, j /∈ {i− 1, i}
−xi+1 − xi−1, j = i

(4.2.4)

and it is straightforward to see that the Jacobian of f verifies

∂fi
∂xj

(x) = δijFi(x) + xi
∂Fi
∂xj

(x),

so using (4.2.4) we get
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∂fi
∂xj

(x) =


xi(Q− xi−2 − xi), j = i− 1
xi(−xj+1 − xj−1), j /∈ {i− 1, i}
Fi(x) + xi(−xi+1 − xi−1), j = i

(4.2.5)

We already know that the stability of the fixed points is given by the eigenvalues
of Df(x∗). We will start by x∗ = 0. Substitution into (4.2.5) leads to

Df(~0) =


a(Q− 1) 0 . . . 0

0 a(Q− 1)
...

...
. . . 0

0 . . . 0 a(Q− 1)

 .

Therefore the eigenvalues of Df(~0) are all equal to a(Q − 1) < 0 ⇒ x∗ = ~0 is
an attracting fixed point independently of the parameter values (a,Q), a > 0,
Q ∈ (0, 1) by Theorem 2.7.

In the same way we will analyze the stability of the fixed points x∗,+ and x∗,−

from Proposition 4.6. We will take advantage of the fact that these points have all
components equal.

x∗,±1 = x∗,±i =
Q±

√
Q2 − 4na(1−Q)

2n
, ∀i ∈ {1, . . . , n} .

Using again equation (4.2.5) together with the fact that all the components are
equal we obtain the following expression for the Jacobian matrix:

∂fi
∂xj

(x∗,±) =


x∗,±1 (Q− 2x∗,±1 ), j = i− 1
−2(x∗,±1 )2, j /∈ {i− 1, i}
Fi(x

∗,±)− 2(x∗,±1 )2, j = i
(4.2.6)

Notice that F (x∗,±) = a(Q− 1) +Qx∗1− n(x∗1)2 = 0 because the components x∗1 are
found by proposition 4.6 exactly as the solutions of n(x∗i )

2 − Qxi + a(1 − Q) = 0.
Therefore

Df(x∗,±) =


−2(x∗,±1 )2 . . . −2(x∗,±1 )2 x∗,±1 (Q− 2x∗,±1 )

x∗,±1 (Q− 2x∗,±1 ) −2(x∗,±1 )2 . . . −2(x∗,±1 )2

−2(x∗,±1 )2 ...
...

. . .

−2(x∗,±1 )2 . . . x∗,±1 (Q− 2x∗,±1 ) −2(x∗,±1 )2

 ,

which is clearly a circulant matrix. Then we can use formula (4.2.3) given in
Theorem 4.1 to find its eigenvalues

λ±j =
n−2∑
k=0

−2(x∗,±1 )2e2πijk/n + x∗,±1 (Q− 2x∗,±1 )e2πij(n−1)/n, j ∈ {0, . . . , n− 1} .
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If j 6= 0 we know by lemma 4.3 that
∑n−1

k=0 e
2πijk/n = 0 so we can simplify the term

−2(x∗,±1 )2
∑n−1

k=0 e
2πijk/n to obtain

λ±j = x∗,±1 Qe2πij(n−1)/n, j ∈ {1, . . . , n− 1} .

For j = 0 we get

λ±0 = x∗,±1 (Q− 2x∗,±1 )− 2(n− 1)(x∗,±1 )2 = Qx∗,±1 − 2n(x∗,±1 )2.

It is easy to see now that λ±0 = 0 ⇔ x∗,±1 = 0 or x∗,±1 = Q
2n

, which looking at the

expression of x∗,±1 automatically leads to λ−0 ≥ 0 and λ+
0 ≤ 0.

Having an expression for the eigenvalues allows us to analyze the character of the
fixed points using Theorem 2.7.

For n > 4 ∃ j ∈ {1, . . . , n− 1} such that Reλ±j > 0 so x∗,± will be an unstable
fixed point.

If x∗,+ 6= Q
2n

for the case n < 4, Df(x∗,+) will always have all eigenvalues with
negative real part, so x∗,+ is in that case an attracting fixed point. On the other
hand Reλ−0 > 0, so x∗,− is an unstable fixed point whenever x∗,− 6= x∗,+.

In the cases n = 4 and x∗,±1 = Q
2n

for n < 4 the fixed points are hyperbolic so
Theorem 2.7 cannot help us, we should know more about central manifolds to
discuss these cases.

Remark. If we are in the case (iii) from Theorem 2.7 we know that our fixed point
is unstable because there exists a manifold where it behaves as a repelling fixed
point, so the condition of stability from definition 2.9 cannot hold.

4.2.4 Symmetry and periodic orbits

The symmetry of our equations in this specific case is transfered to the dynamics
of our system in a remarkable way.

Proposition 4.7. The linear map R : Rn −→ Rn defined by the matrix:

R =


0 . . . 0 1
1 0 . . . 0
0 1 0 . . . 0
...

. . . . . .
...

0 0 1 0


is a conjugation between the Hypercycle symmetric model and itself.

Proof. Using proposition 2.5 we only need to prove DR(x)f(x) = f(R(x)), ∀x ∈
Rn, which using DR(x) = R turns out to be the same condition as

R(f(x)) = f(R(x)) ∀x ∈ Rn.
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This last equality holds because of the structure of our equations. �
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Figure 4.1: Attracting periodic orbit for a = 0.5, Q = 0.99, n = 5. xi(t) for
i ∈ {0, . . . , 4} are represented in different colors.

The last result is important in the sense that conjugations are known to send fixed
points to fixed points and periodic orbits to periodic orbits. Since the only fixed
points we have for the symmetric case have equal components this is not very
helpful, but in the case of periodic orbits it tells us that if there is a periodic
orbit going through ~x = (x1, . . . , xn) then there is a periodic orbit going through
Rk~x, ∀ k ∈ {1, . . . , n− 1}. It would seem a plausible conjecture then that R
sends some periodic orbit to itself, because using the numerical computation of the
Poincaré map in section 3.2 we have found the attracting periodic orbit shown in
Figure 4.1 (in fact we have only found this one).

Remark. To find periodic orbits we have implemented a program that given a
Poincaré section takes random values on it and iterates the Newton method for the
Poincaré map to see if it converges to a fixed point. All the fixed points we find
correspond to periodic points and therefore their orbit is periodic (as we explained
in chapter 2), but this program does not necessarily find all the periodic points on
the section.

An interesting thing to do now is trying to continue this periodic orbit (represented
as a fixed point of the Poincaré map) with respect to Q. This can be done by
applying Algorithm 4 to the function f(x,Q) = P (x,Q)−x, where P is the Poincaré
map with Poincaré section Σ = {x = (x0, . . . , x4) ∈ R5 | x1 = 0.002} with the only
difference that we let it depend also on Q. The choice of the section is based on
the observation that periodic orbits in this model always get very close to 0 at
some time for any component, so we expect the flow to cross this hyperplane. The
results of this continuation are shown in Figure 4.2. We observe that a saddle
node bifurcation appears, indicating the existence of an unstable periodic orbit in
a certain interval of Q.
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Figure 4.2: Continuation of stable periodic orbit with respect to Q for a = 0.5,
n = 5. On the y axis the components specified and Q on the x axis. The attracting
periodic points are in green, the unstable ones in red.

Remark. Although the geometric behavior of the curve around the turning point
in Figure 4.2 is exactly the one expected for a saddle node bifurcation, we have only
verified (i) and (ii) from Theorem 2.3.

The character of the periodic orbits in the sense of definition 2.15 has been numeri-
cally verified by calculating the eigenvalues of DP all along the curve. We have also
represented one of the unstable periodic orbits for a specific value of Q in Figure
4.3.

Remark. When we integrate the unstable periodic orbit we see there is a tran-
sient state where the approximated solution is close to the orbit because of the flow
being continuous with respect to initial conditions but after a while it becomes com-
pletely different. Notice that numerical errors are less important when we integrate
attracting periodic orbits.

It can also be numerically verified that for values of Q below 0.916, which is
the approximated value for which the bifurcation occurs, ~0 becomes a global
attractor in S (except in a set of measure zero). This has been checked by
integrating the solutions corresponding to several different initial conditions on S
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Figure 4.3: Unstable periodic orbit for a = 0.5, Q = 0.92139, n = 5. xi (t) for
i ∈ {0, . . . , 4} are represented in different colors.

and observing that all tend to ~0 when t → ∞, but of course this is far from being
a mathematical proof. Nevertheless, it turns the non-existence of stable periodic
orbits for Q < 0.916 into a very plausible conjecture. In general for any value of a
the same behavior is expected for a different Q.
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4.3 The non-symmetric case

In this section we consider the case a = A1 6= Ai = Ae = A, ∀i ∈ {2, . . . , n}. We
call it the non-symmetric Hypercycle model.

4.3.1 Existence and nature of the fixed points

Proposition 4.8. The non-symmetric hypercycle model has no fixed points x∗ =
(x∗1, . . . , x

∗
n) in S such that x∗i 6= 0 and x∗i−1 = x∗i+1 = 0, i ∈ {2, . . . , n}.

Proof. Suppose that such a fixed point exists. Then we have:

0 = fi(x
∗) = x∗i (AQ+ x∗i−1Q− Φ(x∗))⇒ AQ+

0︷ ︸︸ ︷
x∗i−1Q−Φ(x∗) = 0⇒ AQ = Φ(x∗),

and on the other hand

fe(x
∗) = x∗e(A− Φ(x∗)) + (1−Q)(

n∑
i=2

x∗i (A+ x∗i−1) + x∗1(a+ x∗n)) =

= (A− AQ)x∗e + (1−Q)(
n∑
i=2

x∗i (A+ x∗i−1) + x∗1(a+ x∗n)) > 0.

This leads to a contradiction because a fixed point must satisfy fe(x
∗) = 0.

�

Proposition 4.9. The non-symmetric hypercycle model has no chains in S with
initial component different than x1. Furthermore, these chains can only exist if
a > A.

Proof. Suppose we have a chain x∗ with initial component xi with i /∈ {1, n}. Since
x∗i 6= 0 we have

0 = fi(x
∗) = x∗i (AQ− Φ(x∗)) = 0⇒ AQ = Φ(x∗),

and at the same time we know

0 = fi+1(x∗) = x∗i+1(AQ+ x∗iQ− Φ(x∗)) = x∗i+1(x∗iQ).

So x∗i+1 = 0 must hold, which leads to a contradiction because of the definition of
chain, specifically concerning the fact that the chain dimension must be at least 2.

Suppose a > A, and also that our chain has initial component xn. In this case
we also have AQ = Φ(x∗) from fn(x∗) = 0. From x∗1(aQ + x∗nQ − Φ(x∗)) =
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f1(x∗) = 0 and x∗n 6= 0 we deduce aQ + x∗nQ − AQ = 0, which is the same as
x∗n = A− a < 0⇒ x∗ /∈ S.

If a < A and we have initial component x1, we see that x∗1(aQ + x∗nQ − Φ(x∗)) =
f1(x∗) = 0 together with x∗n = 0 imply aQ = Φ(x∗), which inserted into the

equation x∗2(AQ+ x∗1Q− Φ(x∗)) = f2(x∗) = 0 leads to x∗1 = Q(a−A)
Q

= a−A < 0⇒
x∗ /∈ S.
Suppose then that the initial component is xn (still in the case a < A). Then we
have fn(x∗) = 0 ⇒ AQ = Φ(x∗), and from x∗1(aQ + x∗nQ − AQ) = f1(x∗) = 0,
x∗1 6= 0, we know x∗n = A − a. But then using Φ(x∗) = AQ we get x∗2(x∗1Q) =
f2(x∗) = 0⇒ x∗2 = 0. So the chain is at most of dimension 2. Also using Φ(x∗) = Q
we find the equality

x∗1 =
A(Q− 1 + x∗n)

(a− A) + x∗n
,

which leads to a contradiction because since (a−A) + x∗n = a−A+A− a = 0 we
have either x∗1 =∞ or x∗1 = 1. It is clear why the first one is not possible, and the
second one would lead to x∗1 + x∗n > 1 ⇒ x∗ /∈ S. We conclude that there are no
chains in the case a < A.

�

We would like to find an expression for the chains and the space of parameters
where they exist. As we have already proved this discussion only makes sense in
the case a > A and for chains with initial component x1.

Proposition 4.10. There exists an m-dimensional chain x∗ of the non-symmetric

Hypercycle model in S if and only if A < a ≤ 1 +A and Q ≥ Qm = (m−1)(a−A)2+A
a

.
It can be expressed as a function of a and Q as

x∗ = (x∗1, . . . , x
∗
m, . . . , x

∗
n) =

(
a− A, a− A, . . . , Qa− A− (m− 1)(a− A)2

a− A
, 0, . . . , 0

)
.

Proof. We know that if x∗ is an m-dimensional chain in H we have fi(x
∗) = 0 ∀i ∈

{1, . . . , n} and x∗j = 0 ∀j ∈ {m+ 1, . . . , n}. Obviously we also have the condition
that the point must be in H, but as we will only obtain restrictions on (x∗1, . . . , x

∗
n)

we will always be able to choose x∗e such that x∗ is inH. Imposing the first conditions
we obtain

0 = fi+1(x∗) = x∗i+1(AQ+Qx∗i − Φ(x∗))⇔ AQ+ x∗iQ− aQ = 0⇔ x∗i = a− A

∀i ∈ {1, . . . ,m− 1}, where we are using x∗i+1 6= 0 ∀i ∈ {1, . . . ,m− 1} and also
Φ(x∗) = aQ (deduced as usual from f1(x∗) = 0 and x∗n = 0).

To find the value of x∗m we use equations aQ = Φ(x∗) and x∗e = 1−
∑n

i=1 x
∗
i , taking

into account that x∗j = 0 ∀j ∈ {m+ 1, . . . , n} by definition of chain. This is the
way we find

x∗m =
Qa− A− (m− 1)(a− A)2

a− A
.
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Reciprocally, with these values for the components of x∗ (and 0’s on the rest) we
obtain that x∗ satisfies fi(x

∗) = 0 ∀i ∈ {1, . . . , n}, so x∗ is an m-dimensional chain
in H if and only if

x∗ =

(
a− A, a− A, . . . , Qa− A− (m− 1)(a− A)2

a− A
, 0, . . . , 0

)
.

But is it in S? In general this is not true, we need to impose some restrictions on
a and Q. In particular we know these conditions are:

0 ≤ x∗i ≤ 1, ∀i ∈ {1, . . . , n} , (4.3.1)
n∑
i=1

x∗i ≤ 1. (4.3.2)

Condition (4.3.1) for i ∈ {1, . . . ,m− 1} leads to 0 ≤ a− A ≤ 1⇔ A ≤ a ≤ 1 + A.
For m we have

x∗m ≥ 0⇔ Q ≥ (m− 1)(a− A)2

a
+
A

a
= Qm,

whereas x∗m ≤ 1 is always true because Qa−A
a−A < 1 and (m− 1)(a− A) > 0.

The fact that
∑m

i=1 x
∗
i = Qa−A

a−A < 1 implies condition (4.3.2) is always satisfied, so
it does not give extra conditions on a and Q. Therefore

x∗ =

(
a− A, a− A, . . . , Qa− A− (m− 1)(a− A)2

a− A
, 0, . . . , 0

)
is an m-dimensional chain of the non-symmetric Hypercycle model if and only if
A < a ≤ 1 + A and Q ≥ Qm.

�

Remark. In the same way it has been done in the previous proposition we can also
prove

x̂ =

(
aQ− A
a− A

, 0, . . . , 0

)
is a fixed point in S of the non-symmetric Hypercycle model when Q >

A

a
is

satisfied.

Letting aside the case x∗ = ~0, which also in this case turns out to be a fixed point
(this can be proved exactly as we did it in the symmetric case), we must study the
remaining fixed points.

Proposition 4.11. Any fixed point in S of the non-symmetric Hypercycle model
which is neither ~0, x̂ or a chain has all components different from 0.
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Proposition 4.12. Let x∗ be a fixed point in S of the non-symmetric Hypercycle
which is neither ~0, x̂ or a chain. Such a point will exist if and only if P (Q) ≥ 0
and either (i) or (ii) hold, with

(i) a < A and Q ≥ A− a,

(ii) A < a and Q ≥ Qn,

where Qn = A
a

+ 1
a
(n− 1)(a− A)2 and P (Q) = (Q+ a− A)2 − 4n(1−Q)A.

Then x∗ will be either x∗,+ or x∗,−, where x∗,s = (x∗,s1 , . . . , x∗,sn ) with s ∈ {+,−} is
given by the equations

x∗,si =
Q+ a− A±

√
(Q+ a− A)2 − 4n(1−Q)A

2n
, i ∈ {1, . . . , n− 1} , (4.3.3)

x∗,sn = x∗,s1 − (a− A). (4.3.4)

Proof. Assuming x∗ is such a fixed point by proposition 4.11 we have fi(x
∗) = 0

and x∗i 6= 0 ∀i ∈ {1, . . . , n}, which implies that x∗ satisfies the equations

AQ+ x∗iQ− Φ(x∗) = 0, i ∈ {1, . . . , n− 1} (4.3.5)

aQ+ x∗nQ− Φ(x∗) = 0 (4.3.6)

Then x∗n = x∗1 − (a− A) is obtained directly from the relation between (4.3.5) and
(4.3.6), and using the expression of Φ given in the definition of the Hypercycle
together with the fact that the n− 1 first components are equal (from (4.3.5)) one
obtains that equation (4.3.5) is the same as

n(x∗i )
2 − (Q+ a− A)x∗i + A(1−Q) = 0, i ∈ {1, . . . , n− 1} . (4.3.7)

This proves a fixed point different from ~0, x̂ or a chain is given by the equations
(4.3.3) and (4.3.4).

Now we still have to discuss when are these points in S. We need to impose once
more conditions (4.3.1) and (4.3.2).

The first thing we must verify is when x∗1 ∈ R, and that is exactly when the
discriminant P (Q) of (4.3.7) is positive.

Finally we analyze conditions (4.3.1) and (4.3.2) independently for the cases a < A
and a > A.

(i) Suppose a < A. First of all condition x∗,s1 ≥ 0 in (4.3.1) will hold if and only
if Q ≥ A − a. Suppose this last condition is satisfied. Then we see (4.3.2)
holds if and only if

n∑
i=1

x∗,si = nx∗,s1 + A− a ≤ 1⇔ x∗,s1 ≤
1− (A− a)

n
,
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which is true because

√
(Q+ a− A)2 − 4n(1−Q)A < Q+ a− A < 1 + a− A.

Notice that here we are using many things implicitly, mainly that for the
last inequality to be true we need Q + a − A > 0 (we have already assumed
this), and also that one has to look at formula (4.3.3) to realize that this
last inequality implies the first one. The rest of conditions in (4.3.1) hold

automatically because x∗,s1 < 1−(A−a)
n

⇒ x∗,s1 < 1 − (A − a) ⇒ x∗,s1 ≤ 1 and
also 0 < x∗,s1 < x∗,sn = x∗,s1 + A− a ≤ 1.

(ii) Suppose a > A. From imposing (4.3.2) we get again that x∗,s1 ≤ 1+a−A
n

must
hold. One can prove this inequality is true exactly as in the last case with the
only difference that in this one Q + a − A > 0 (so we don’t need to impose
this condition now).

The inequalities in (4.3.1) contain x∗,sn ≥ 0, which is the same as x∗,s1 ≥
a − A. Developing this inequality one gets Q ≥ Qn. Once we impose this
condition x∗,sn ≥ 0 and we obtain automatically x∗,s1 ≥ x∗,sn ≥ 0. The other
two inequalities in (4.3.1) (x∗,s1 and x∗,sn less or equal than 1) come from x∗,s1

and x∗,sn being positive together with (4.3.2). More explicitly:∑n
i=1 x

∗,s
i ≤ 1

x∗,si ≥ 0, ∀ i ∈ {1, . . . , n}

⇒ x∗,si ≤ 1, ∀ i ∈ {1, . . . , n} .

This means that the only condition we need to impose for x∗,s to be in S for
s ∈ {+, s} is Q ≥ Qn (apart from the discriminant to be positive).

�

An important idea of this section is that when we change the self replicative rate
for the first template (A1) new fixed points appear with respect to the symmetric
case (all the chains).

4.3.2 Stability of the fixed points

In the non-symmetric case it is not possible to obtain a formula for the eigenvalues of
Df as we did in the symmetric one, where we used properties of circulant matrices.
Nevertheless for any fixed point x∗ one can always approximate the eigenvalues of
Df(x0) numerically. The case x∗ = ~0 is the only in which this is not needed. In the
same way we did it for the symmetric case we find now

Df(~0) =


aQ− A 0 . . . 0

0 A(Q− 1)
...

...
. . . 0

0 . . . 0 A(Q− 1)

 .
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Theorem 2.7 implies then that the origin will be an attracting fixed point if aQ < A,
and unstable for aQ > A. Notice that the other eigenvalues have always negative
real part, so it is the first one that determines the character of x∗ = ~0 as a fixed
point.

The stability for the rest of the fixed points can be studied numerically. As an
example fixing a = 0.5, n = 5, we have verified that for the values of (A,Q) where
they exist the fixed points from proposition 4.12 are always unstable according to
Theorem 2.7, because at least one of the eigenvalues of their corresponding Jacobian
matrices has real part greater than 0. This seems to agree with the result for the
fixed points from proposition 4.6 in the symmetric case.

We have not done it but it could be interesting to see in detail which is the character
of the chains.
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4.3.3 Breaking the symmetry for periodic orbits

In this section we present a numerical illustration of what happens with periodic
orbits when we change the parameter A1 = a to pass from the symmetric hypercycle
model to the non-symmetric one, restricting ourselves to the case n = 5. We have
applied the Euler-Newton Continuation method to f (x, a) = P (x, a) − x starting
at A = a = 0.5 for the stable periodic orbit shown in Figure 4.1, section 4.2.4. In
this example the Poincaré section we are using is Σ = {x ∈ R5 | x1 = 0.499}. The
result is shown in Figure 4.4. Numerical evaluation of the DP eigenvalues shows
the stability of the orbit is preserved.
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(d) x4 : a

Figure 4.4: Continuation of attracting periodic orbit with respect to a for Q = 0.99,
n = 5. On the y axis the components specified and a on the x axis

Although the ending points of this curve seem to correspond to possible bifurcation
points in fact they correspond to points where the periodic orbit becomes tangent
to the Poincaré section. This can be seen by integrating the periodic orbits for these
periodic points. As an example we can see in Figure 4.5 the corresponding orbit to
x∗ = (x0, x1, x2, x3, x4) = (0.38192, 0.49900, 0.02761, 0.00204, 0.01504). Recall that
x0 ≡ xn.
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Figure 4.5: Attracting periodic orbit; x1 (t) for a = 0.16371, Q = 0.99, n = 5

In order to continue the curve further we could take a different Poincaré section
where maybe this will not occur or it will occur later.
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Chapter 5

Conclusions

From all the results found during this thesis we would like to remark that in section
4.2.4 for a specific value of a in the case n = 5 we have found a stable coexis-
tence state for all the templates in the form of an attracting periodic orbit. This
coexistence state is preserved when we change the self-replicative rate for the first
template (at least in a certain interval, as it was shown in section 4.3.3). The fact
that when we decrease Q the periodic orbit disappears and ~0 becomes a global
attractor indicates that when the replicative accuracy decreases the coexistence be-
comes impossible. This result makes sense in the biological context because if the
molecular species mutate easily then this will have a negative effect on the stability
of the system.
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