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Abstract

Financial Markets are studied in different ways, in this piece of work we study and
compare two of the most common types of analysis: Technical Analysis and Time Series.

The first one is focused on the evolution of market prices, mainly through the use of
graphics. It tries to find chart patterns, with the purpose of predicting future trends of
prices.

In the second type of analysis we will study the data and we will try to find a model that
adjusts the best possible way to the data given. The purpose is to find a model to with
we can extrapolate the data in the future, and then, make it operational in the market.

The goal of my work is to study Technical Analysis and Time Series separately. Finally,
I intend to compare them and try to choose which one is more productive.
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Chapter 1

Introduction

Financial Markets are studied in different ways, but the most common types of analysis
are Fundamental Analysis, Technical Analysis and Time Series.

The first one pretends to know and evaluate the authentic value of a share, called
fundamental value. It uses the estimation of the share’s future performance, which de-
pends on the assumptions that have been made. If the market price is higher than the
fundamental value, the share is overrated and it is advisable for us to sell. If the market
price is lower than the fundamental value, the share is undervalued and we should prob-
ably buy. Fundamental Analysis can only be used in shares, but Financial Markets also
include bonds, commodities,... So all the types of investing can not be studied by this
kind of analysis, so that is why I rejected to include the study of Fundamental Analysis.

The second one is focused on the evolution of market prices, mainly through the use
of graphics. It tries to find chart patterns, with the purpose of predicting future trends
of prices. It is based on three assumptions: Market action discounts everything, prices
move in trends and history tends to repeat itself.

Time Series is possibly the next step of Technical Analysis. In this part we will study
the data and we will try to find a model that adjusts the best possible way to the data
given. The purpose is to find a model to with we can extrapolate the data in the future,
and then, make it operational in the market.

The most important difference between Time Series and Technical Analysis is that in
the first we found an exact forecast price, while, in the second one we only found the
future movement of the price.

Motivation and goals

The goal of my work is to study Technical Analysis and Time Series separately. Then,
I intend to compare them and try to choose which one is more productive.

First I will study Time Series, from the most common models to GARCH models.
Looking into all the properties and the way to estimate the weights of the models. Later,
I am going to focus on computational finance using R, and I will try to analyze the way
to apply Time Series to data using R.

Then I will move on to Technical Analysis, starting with the philosophical idea behind
this type of analysis. I will study the three most used tools of Technical Analysis: the
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Trend, the Chart Patterns and the Moving Average Indicators. And for every tool, I am
going to use language C to develop a program, that selects the appropriate way to operate
using these patterns and concepts.

Finally, there is a part of practical work. I will examine the data of Repsol, IBEX35,
Euro/Dollar and Gold using Time Series and Technical Analysis. In the part of Time
Series, I will use R and in the part of Technical Analysis I will use the programs that I
will have designed.

To finish the introduction, I would like to explain my personal motivation to choose
this subject as basis for my final project. When I was 5 years old, my mother asked me
what I wanted to be when I grew up. She has always told me that my answer was: ”I
want to be the director of a company”’. Five years later, my teacher asked the students
to draft an essay with the title, What I want to be. In my essay I wrote that I wanted
to be a trader, since that day my objective has been to become a successful trader. And
that is why I chose this subject, in order to begin the long road to become a successful
trader.

2



Chapter 2

Time Series

2.1 Previous Concepts

Definition 2.1.1. Given a probability space (Ω,F ,P). A random variable is a measurable
function X : (Ω,F)→ (Rn ; B(Rn)) that complies

∀B ∈ B(Rn) , X−1(B) ∈ F , with X−1(B) = {w ∈ Ω, X(w) ∈ B}.

Definition 2.1.2. A Stochastic Process Xt, t ∈ T , is a family of random variables,
defined in the probability space (Ω, F, P ). We normally use t ∈ Z.

Note 1. T could be N,R,R+ or other subsets.

Definition 2.1.3. The joint cumulative distribution function (cdf) of a stochastic process
Xt is defined as

Ft1,...,tn(x1, ..., xn) = P (Xt1 ≤ x1, ..., Xtn ≤ xn).

And if t1 < t2 < ... < tn, we have that:

Ftn|tn−1,...,t1(xn|xn−1, ..., x1) = P (Xtn ≤ xn|Xtn−1 = xn−1, ..., Xt1 = x1).

Afterwards, we will assume that the moments exist, if this is not the case, then the
corresponding function is not defined.

Definition 2.1.4. The mean function µt of a stochastic process Xt is defined as

µt = E[Xt].

Definition 2.1.5. The auto-covariance function of a stochastic process Xt is defined as

γ(t, τ) = E[(Xt − µt)(Xt−τ − µt−τ )].

Note 2. The auto-covariance function is symmetrical.

Definition 2.1.6. A stochastic process Xt is weakly stationary if

3



• µt = µ.

• γ(t, τ) = γτ .

Note 3. For weakly stationary, the term covariance stationary is often used.

Definition 2.1.7. A stochastic process Xt is strictly stationary if for any t1, ..., tn and
for all n, s ∈ Z it holds that

Ft1,...,tn(x1, ..., xn) = Ft1+s,...,tn+s(x1, ..., xn).

Definition 2.1.8. The auto-correlation function ρ of a weakly stationary stochastic pro-
cess is defined as

ρτ = γτ
γ0

.

Definition 2.1.9. The partial auto-correlation function of k-th order is defined as

α(k) = φkk = Corr(Xt − P (Xt|Xt+1, · · · , Xt+k−1), Xt+k − P (Xt+k|Xt+1, · · · , Xt+k−1))

where P (W |Z) is the best linear projection of W on Z (using the squared error
minimization). In other words P (W |Z) =

∑
WZ

∑−1
ZZ Z where

∑
ZZ = V ar(Z) as the

covariance matrix of the regressors and
∑

WZ = Cov(W,Z) as the matrix of covariances
between W and Z.

Note 4. There are two special cases depending on k:

α(0) = 1

α(1) = Corr(Xt, Xt+1)

Definition 2.1.10. A stochastic process Xt is a white noise if the following holds

• µt = 0.

• If τ = 0, γτ = σ2.

• If τ 6= 0, γτ = 0.

Definition 2.1.11. A stochastic process Xt follows a random walk, if it can be represented
as

Xt = c+Xt−1 + εt.

With c a constant and εt a white noise.

Note 5. If c is not zero, we can build Zt = Xt−Xt−1 = c+εt, so we will have a non-zero
mean. We usually call it a random walk with a drift.

Note 6. At the beginning of the last century, the random walk was the first to represent
the development of stock prices, so it is a historical stochastic process.
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Note 7. We will simply assume that the constant c and the initial value X0 are set to
zero. And it is simple to demonstrate that, with these conditions, we have:

• Xt = εt + εt−1 + ...+ ε1.

• µt = 0.

• V ar(Xt) = tσ2.

• γ(t, τ).

γ(t, τ) = Cov(Xt, Xt−τ ) = Cov(
∑t

i=1 εi,
∑t−τ

j=1 εj) =
∑t−τ

j=1

∑t
i=1Cov(εi, εj) =∑t−τ

j=1 σ
2 = (t− τ)σ2.

• ρ(t, τ).

ρ(t, τ) = (t−τ)σ2√
tσ2(t−τ)σ2

= (t−τ)√
t(t−τ)

=
√

1− τ
t .

Definition 2.1.12. A stochastic process has the Markov property if for all t ∈ Z and
k ≥ 1

Ft|t−1,...,t−k(xt|xt−1, ..., xt−k) = Ft|t−1(xt|xt−1).

Note 8. That property means that a specific moment, the distribution of the process is
absolutely determined by the conditions of the system at the previous moment.

Definition 2.1.13. The stochastic process Xt is a martingale if the following holds

E[Xt|Xt−1 = xt−1, ..., Xt−k = xt−k] = xt−1

for every k > 0.

Definition 2.1.14. The stochastic process Xt is a fair game if the following holds

E[Xt|Xt−1 = xt−1, ..., Xt−k = xt−k] = 0

for every k > 0.

Note 9. If Xt is a martingale, then Zt = Xt −Xt−1 is a fair game.

Definition 2.1.15. The lag operator operates on an element of a Time Series to produce
the previous element. Given some Time Series, and L the lag operator: X = X1, X2, ...,
then LXt = Xt−1 for all t > 1. We also have L−1Xt = Xt+1.

5



2.2 Introduction to Time Series

Time Series models provide a sophisticated method for the extrapolation of Time Series.
They are a bit different to the simple extrapolation. The difference is that in the series
that we will predict, the model will be generated by a stochastic process. So, Time
Series Models are more sophisticated than simple extrapolation. We will first study the
Deterministic Models of Time Series.

2.2.1 Deterministic Models of Time Series

We start explaining how the simple models can be used to predict the future performance
of the Time Series, using the observed performance in the past of the series. Most of the
Time Series are not continuous, usually observations consist in discrete regular intervals,
like closing prices. We denote by yt the series values, and our objective is to build a model
that describes the series. The models we will introduce, are frequently used for making
informal long term predictions, like GDP or GNI.

Model 1: Linear trend model

If we believe the series will increase by a constant amount over every time period, we
can predict the future with the following model:

yt = c1 + c2t

With t referring to time and c1, c1 ∈ R.

Model 2: Exponential model

If we consider series will increase by a constant percentage, and not with absolute
increases, we use:

yt = aert

With a, r ∈ R.

Model 3: Auto-regressive trend model

In this model we consider the previous observation.

yt = c1 + c2yt−1

Model 4: Auto-regressive logarithm model

In this model we consider the previous observation, but we introduce a logarithm to
the observation.

yt = c1 + c2 log yt−1

Model 5: Moving average model

A simple example of this model type is a monthly Time Series. We can use this model:

f(t) = 1
12(yt−1 + yt−2 + ...+ yt−12)

6



A future prediction will be:

ŷt+1 = 1
12(yt + yt−1 + ...+ yt−11)

This model is used when we think that the value of our series next month will be a
weighting of the past twelve months. But it is not a common condition.

Model 5.1: Exponential weighted model

We usually think that the recent values are more important.

ŷt+1 = αyt + α(1− α)yt−1 + α(1− α)2yt−2 + ... = α
∑∞

τ=0(1− α)τyt−τ

With α ∈ [0, 1].

Note 10. In the case of α = 1 we have ŷt+1 = yt.

2.2.2 A First Stochastic Time Series Model

In the models that we are going to study in this chapter, Time Series will be generated
by a stochastic process. The first stochastic Time Series process we will study is random
walk. Not a lot of processes are random walks , but these are a good approach for a lot
of processes.

Random Walk with c = 0

Firstly, we study the process when c is zero, it means that we ignore the trend. So the
process is:

Xt = Xt−1 + εt.

With εt a white noise.

A prediction will be

X̂t+1 = E[Xt+1|Xt, ..., X1]

With Xt+1 = Xt + εt+1, and εt+1 is independent of Xt, ..., X1. So the prediction will
be

X̂t+1 = Xt + E[εt+1] = Xt

For the next period, the prediction will be:

X̂t+2 = E[Xt+2|Xt, ..., X1] = E[Xt+1 + εt+2|Xt, ..., X1] = E[Xt + εt+1 + εt+2|Xt, ..., X1] =
Xt

For all the periods is Xt.

Study of prediction error and variance

The prediction for all the periods will be Xt, but the prediction error and the variance
will be different, so, we study this now:

7



e1 = Xt+1 − X̂t+1 = Xt + εt+1 −Xt = εt+1

With variance E[ε2t+1] = σ2
ε .

For the next prediction:

e2 = Xt+2 − X̂t+2 = Xt + εt+1 + εt+2 −Xt = εt+1 + εt+2

With variance E[(εt+1 + εt+2)2] = E[ε2t+1] + E[ε2t+2] + 2E[ε2t+1ε
2
t+2] = σ2

ε + σ2
ε = 2σ2

ε .

So for the time period l ∈ N:

el = εt+1 + ...+ εt+l

And variance equal to lσ2
ε .

Random Walk with c 6= 0

With this process we consider an increasing, or decreasing, trend. It means that the
new process is:

Xt = c+Xt−1 + εt.

On average, the process will increase with a c > 0, and it will decrease with a c < 0.

The prediction for the next period is

X̂t+1 = E[Xt+1|Xt, ..., X1] = Xt + c

And for the l ∈ N time period will be:

X̂t+l = Xt + lc

The prediction error will be the same as in c = 0.

2.3 Auto-regressive Processes

In this model Xt is generated by a weighted average of previous observations, exactly of
the last p periods.

Xt = δ + φ1Xt−1 + φ2Xt−2 + ...+ φpXt−p + εt

With φi ∈ R and εt a white noise for i = 1, ..., p, δ is a constant.

Using the Lag operator, we can rewrite:

(1− φ1L− φ2L
2 − ...− φpLp)Xt = δ + εt.

And

8



φ(L) = 1− φ1L− φ2L
2 − ...− φpLp.

We have:

φ(L)Xt = δ + εt.

2.3.1 Properties of AR(p)

• Stationary

The process will be stationary if its mean is invariant, E[Xt] = E[Xt−1] = ... = µ,
and if γ <∞.

µ = E[Xt] = E[δ+φ1Xt−1 +φ2Xt−2 + ...+φpXt−p+ εt] = δ+φ1µ+φ2µ+ ...+φpµ.

If we isolate µ:

µ = δ
1−φ1−φ2−...−φp

And µ will be finite if 1−φ1−φ2− ...−φp 6= 0, but this is only a necessary condition,
not a sufficient condition. The necessary and sufficient condition of AR(p) stationary
is often expressed by saying that the roots of the characteristic equation

φ(L) = 0

must lie outside the circle of unit radius, you can look for the proof in [4].

• Covariance and auto-correlation function:

The covariance with k delays is (we consider µ = 0, it does not change anything if
we consider it instead of µ 6= 0, it only increases the calculus):

γk = E[Xt−k(φ1Xt−1 + φ2Xt−2 + ...+ φpXt−p + εt)].

For k = 0, 1, ..., p :

γ0 = φ1X1 + φ2X2 + ...+ φpXp + σ2
ε

γ1 = φ1X0 + φ2X1 + ...+ φpXp−1 + σ2
ε

...

γp = φ1Xp−1 + φ2Xp−2 + ...+ φpXp + σ2
ε

And for k > p :

γk = φ1Xk−1 + φ2Xk−2 + ...+ φpXk−p

9



Now, the auto-correlation function is:

ρ1 = φ1 + φ2ρ1 + ...+ φpρp−1

...

ρp = φ1ρp−1 + φ2ρp−2 + ...+ φp

And for k > p

ρk = φ1ρk−1 + φ2ρk−2 + ...+ φkρk−p

So now we know that the auto-correlation function of an auto-regressive process
has, mainly, infinite nonzero terms.

2.3.2 Yule-Walker equations

These equations come from multiplying the AR(p) process by Xt−τ and then take expec-
tations.

E [XtXt−τ ] = φ1E [Xt−1Xt−τ ] + ...+ φpE [Xt−pXt−τ ] .

We know that E [XtXt−τ ] is the auto-covariance function γt, so for τ = 1, 2, ..., p we
obtain:

γ1 = φ1γ0 + φ2γ1 + ...+ φpγp−1

γ2 = φ1γ1 + φ2γ0 + ...+ φpγp−2

...

γp = φ1γp−1 + φ2γp−2 + ...+ φpγ0

Now if we divide it by γ0 we have:

ρ = Γφ

With ρ = (ρ1ρ2...ρp)
T , φ = (φ1φ2...φp)

T and the auto-covariance matrix:

Γ =


1 ρ1 · · · ρp−1

ρ1 1 · · · ρp−2
...

...
. . .

...
ρp−1 ρp−2 · · · 1


These are the Yule-Walker equations.
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2.3.3 Partial auto-correlation function of AR(p)

If we use the notation φ = (φp1φp2...φpp)
T in the Yule-Walker equations, the last coeffi-

cient, φpp is the partial auto-correlation of order p.

If we are only interested in this coefficient, we can solve using Cramer’s Rule, so we
obtain

φpp = |Γ∗|
|Γ|

where |Γ| is the determinant of matrix Γ, and Γ∗ is equal to Γ replacing the k-th
column by ρ.

If we apply this for various orders p, we will have the partial auto-correlation function
(PACF).

φ11 = ρ1

φ22 =

∣∣∣∣∣∣ 1 ρ1

ρ1 ρ2

∣∣∣∣∣∣∣∣∣∣∣∣ 1 ρ1

ρ1 1

∣∣∣∣∣∣
=

ρ2−ρ21
1−ρ21

φ33 =

∣∣∣∣∣∣∣∣
1 ρ1 ρ1

ρ1 1 ρ2

ρ2 ρ1 ρ3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 ρ1 ρ2

ρ1 1 ρ1

ρ2 ρ1 1

∣∣∣∣∣∣∣∣
For an auto-regressive process of order p, the partial auto-correlation function φkk will

be non-zero for k ≤ p and zero for k greater than p. So, it has a cutoff after lag p.

2.3.4 Example AR(1)

In this example we study the easier AR process, that is, the case p = 1.

Xt = φ1Xt−1 + δ + εt

Properties of AR(1)

• The mean is:

µ = δ
1−φ1

The process will be stationary if φ1 < 1.

• If we assume that the process is stationary and δ = 0, the variance is:

11



γ0 = E[(φ1Xt−1 + εt)
2] = E[φ2

1X
2
t−1 + ε2t + 2φ1Xt−1εt] = φ2

1γ0 + σ2
ε .

And

γ0 = σ2
ε

1−φ21
.

• The covariances are:

γ1 = E[Xt−1(φ1Xt−1 + εt)] = φ1γ0 = φ1σ2
ε

1−φ21

γ2 = E[Xt−2(φ2
1Xt−2 + φ1εt−1 + εt)] = φ2

1γ0 =
φ21σ

2
ε

1−φ21

...

And for k delays:

γk = φk1γ0 =
φk1σ

2
ε

1−φ21

• The auto-correlation function is simple, it starts with ρ0 = 1, and then it decreases
with a geometric progression:

ρk = γk
γ0

= φk1

This process has an infinite memory. The current value of the process depends on
all past values, although the dependence decreases with time.

2.3.5 Example AR(2)

Xt = φ1Xt−1 + φ2Xt−2 + δ + εt

Properties of AR(2)

• The mean is:

µ = δ
1−φ1−φ2

The process is stationary if φ1 + φ2 < 1.

• The variance is:

γ0 = E[Xt(φ1Xt−1 + φ2Xt−2 + εt)] = φ1γ1 + φ2γ2 + σ2
ε .

• Covariances are:

γ1 = E[Xt−1(φ1Xt−1 + φ2Xt−2 + εt)] = φ1γ0 + φ2γ1.

12



γ2 = E[Xt−2(φ1Xt−1 + φ2Xt−2 + εt)] = φ1γ1 + φ2γ0.

...

And for k delays:

γk = φ1γk−1 + φ2γk−2.

Now, we solve the system of the first two equations and the last.

The second one can be written as follows:

γ1 = φ1γ0
1−φ2

And replacing the third equation with the first equation:

γ0 = φ1γ1 + φ2φ1γ1 + φ2
2γ0 + σ2

ε

Now replacing γ1 with its value:

γ0 = (1−φ2)σ2
ε

(1+φ2)[(1−φ2)2−φ21]

• The auto-correlation function is simple, we use the previous equations:

ρ1 = φ1
1−φ2

ρ2 = φ2 +
φ21

1−φ2

Now, using γk = φ1γk−1 + φ2γk−2 for k ≥ 2:

ρk = φ1ρk−1 + φ2ρk−2.

• If we use the Yule-Walker equations:

ρ1 = φ1 + φ2ρ1

ρ2 = φ1ρ1 + φ2

And we solve for φ1 and φ2

φ1 = ρ1(1−ρ2)
1−ρ21

φ2 =
ρ2−ρ21
1−ρ21

13



2.4 Moving-Average Processes

In this model Xt is generated by a weighted average of random perturbations with q delay
periods. We denote this process MA(q).

Xt = µ+ εt + θ1εt−1 + ...+ θqεt−q

With θi ∈ R for i = 1, ..., q, and εj a white noise for j = t, ..., t− q, µ is the expectation
of Xt (often assumed equal to 0).

2.4.1 Properties of MA(q)

• The MA(q) process is stationary, because it is formed by a linear combination of
stationary processes.

• If µ = 0 the mean function is simply E[Xt] = 0, in other cases is E[Xt] = µ.

• The variance is:

V ar(Xt) = γ0 = E[(Xt − µ)2] = E[ε2t + θ2
1ε

2
t−1 + ...+ θ2

qε
2
t−q − 2θ1εtεt−1 − ...] =

σ2
ε + θ2

1σ
2
ε + ...+ θ2

qσ
2
ε = σ2

ε (1 + θ2
1 + θ2

2 + ...+ θ2
q).

• The covariances, with µ equal to zero, are:

γτ = Cov(Xt, Xt−τ ) = Cov(
∑q

i=0 θiεt−i,
∑q

j=0 θjεt+τ−j) =∑q
i=0

∑q
j=0 θiθjCov(εt−i, εt+τ−j) =

∑q−|τ |
i=0 θiθi+|τ |σ

2.

For |τ | ≤ q.

• The Auto-Correlation Function is:

1. For k = 1, ..., q

ρk =
−θk+θ1θk+1+...+θq−kθq

1+θ21+θ22+...+θ2q

2. For k > q

ρk = 0.

The auto-correlation function of a moving average process has a cutoff after lag q.

• The Partial Auto-Correlation Function is:

In order to calculate the Partial Auto-Correlation function of a moving average
process, we have to express the MA(q) process as an AR(∞) process. We will see
that an invertible MA process needs the roots of θ(L) = 0 lie outside the unit circle.
The extended conditions are in the invertibility part of MA(q).

θ−1(L)Xt = εt

14



If we use the notation θ−1(L) = π(L) = 1−π1L−· · ·−πkLk−· · · , and the coefficients
of π(L) are obtained imposing π(L)θ(L) = 1.

If we use what we know about the PACF of an AR(p) process, we have that MA(q)
process is equivalent to an AR(∞) process. So, we conclude that the PACF of an
MA(q) is non-zero for all lags. This happens, because in AR(p) process we have
that α(k) = 0 for k > p, but if p is ∞, α(k) will be non-zero for all k. The PACF
of a MA(q) has the same structure as the ACF of an AR(q) process.

2.4.2 Example MA(1)

In this example we study the easier MA process, when q = 1.

Xt = µ+ εt + θ1εt−1.

Properties of MA(1)

• The variance is γ0 = σ2
ε (1 + θ2

1).

• The covariance with one delay is:

γ1 = E[(Xt − µ)(Xt−1 − µ)] = E[(εt − θ1εt−1)(εt−1 − θ1εt−2)] = −θ1σ
2
ε .

• The covariance with k delays (k > 1) is:

γk = E[(εt − θ1εt−1)(εt−1 − θ1εt−2)] = 0.

So MA(1) has only one period memory, every Xt is only related with Xt−1 and
Xt+1.

• The auto-correlation function is:

1. For k = 1, ρ = −θ1
1+θ21

.

2. For k > 1, ρ = 0.

2.4.3 Example MA(2)

Xt = µ+ εt + θ1εt−1 + θ2εt−2

Properties of MA(2)

• V ar(Xt) = γ0 = σ2
ε (1 + θ2

1 + θ2
2).

• The covariances are:

γ1 = E[(εt − θ1εt−1 − θ2εt−2)(εt−1 − θ1εt−2 − θ2εt−3)] = −θ1σ
2
ε + θ2θ1σ

2
ε = −θ1(1−

θ2)σ2
ε .

γ2 = E[(εt − θ1εt−1 − θ2εt−2)(εt−2 − θ1εt−3 − θ2εt−4)] = −θ2σ
2
ε .

γk = 0 for k > 2.

15



• The auto-correlation function is:

ρ1 = −θ1(1−θ2)
1+θ21+θ22

ρ2 = −θ2
1+θ21+θ22

ρk = 0 for k > 2

MA(2) has a two period memory, every Xt is only related with Xt−2, Xt−1, Xt+1

and Xt+2.

2.5 Relation among AR(p) and MA(q)

2.5.1 From MA(q) to AR(∞)

MA(q) process with µ = 0 is:

Xt = (1− θ1L− θ2L
2 − · · · − θqLq)εt = θ(L)εt

with θ(L) = 1− θ1L− θ2L
2 − · · · − θqLq. So, we obtain:

θ(L)−1Xt = εt.

The only condition we have to take into consideration is that the roots of θ(L) = 0
must lie outside the circle of unit radius. If this is not true the reversal is not possible.

2.5.2 From AR(p) to MA(∞)

Given an AR(p) process:

Xt = φ1Xt−1 + φ2Xt−2 + · · ·+ φpXt−p + εt

Using L operator we get

φ(L)Xt = εt

with φ(L) = 1− φ1L− φ2L
2 − · · · − φpLp. So,

Xt = φ(L)−1εt.

2.6 Mixed Auto-regressive-Moving Average Models

There are a lot of processes for which we can not build a model using only AR or MA,
this happens because the process has characteristics of both. When this happens, we use
ARMA models, which include auto-regressive and moving average models. The equation
is simple, we join both models:

Xt = δ + φ1Xt−1 + φ2Xt−2 + ...+ φpXt−p + εt − θ1εt−1 − ...− θqεt−q

16



2.6.1 Properties of ARMA(p,q)

• Stationary

If the process is stationary, the mean is constant

E (Xt) = δ + φ1µ+ φ2µ+ ...+ φpµ

And if we isolate µ

µ = δ
1−φ1−φ2−...−φp

So, we need the following condition to have a stationary process

φ1 + φ2 + ...+ φp < 1

• From ARMA to MA (or AR)

Using Lag Operator, the ARMA(p,q) process can be written as

φ(L)Xt = θ(L)εt

with φ(L) = 1− φ1L− φ2L
2 − · · · − φpLp and θ(L) = 1− θ1L− θ2L

2 − · · · − θqLq.
Now, we can rewrite the process:

Xt = φ(L)−1θ(L)εt.

So ARMA(p,q) is equivalent to a moving-average process with p+q independent
coefficients, but in order to have these, the process must satisfy some conditions.

The convergence condition is that the roots of φ(L) = 0 must lie outside the circle
of unit radius.

We can also rewrite the process as

θ(L)−1φ(L)Xt = εt.

This equation shows that ARMA(p,q) is equivalent to auto-regressive process with
p+q independent coefficients.

The convergence condition is that the roots of θ(L) = 0 must be outside the circle
of unit radius.

• Auto-correlation function

If we multiply Xt = δ + φ1Xt−1 + φ2Xt−2 + ...+ φpXt−p + εt − θ1εt−1 − ...− θqεt−q
by Xt−k, and we take expectations, we have

γk =
φ1γk−1 +φ2γk−2 + ...+φpγk−p+E[Xt−kεt]− θ1E[Xt−(k−1)εt]−· · ·− θqE[Xt−(k−q)εt]
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Now we will focus on the possible variations of k.

For k > 0, we have E[Xt−kεt] = 0.

For k > 1, we have E[Xt−kεt] = 0 and E[Xt−kεt−1] = 0.

For k > 2, we have E[Xt−kεt] = 0, E[Xt−kεt−1] = 0 and E[Xt−kεt−2] = 0.

· · ·
For k > q, we have E[Xt−kεt] = 0, E[Xt−kεt−1] = 0, E[Xt−kεt−2] = 0, · · · ,
E[Xt−kεt−q] = 0.

So for k > q, we have E[Xt−kεt]− θ1E[Xt−(k−1)εt]− · · · − θqE[Xt−(k−q)εt] = 0, and

γk = φ1γk−1 + φ2γk−2 + ...+ φpγk−p

Obviously, if we divide by γ0

ρk = φ1ρk−1 + φ2ρk−2 + ...+ φpρk−p.

That is:

φ(L)ρk = 0 for k > q.

So for an ARMA(p,q) process we have q auto-correlations, ρ1, · · · , ρq, whose values
depend of the parameters of φ and θ.

To sum up, the ACF has q − p + 1 initial values with a structure that depends on
the parameters, the ACF decay start after lag q as a mixture of exponential and
other oscillations.

The structure of the PACF is similar to the ACF,but the decay starts after lag p, if
you are interested in this part of the work, you can look for more information about
it in [2].

• The variance is:

γk =
φ1γk−1 +φ2γk−2 + ...+φpγk−p+E[Xt−kεt]− θ1E[Xt−(k−1)εt]−· · ·− θqE[Xt−(k−q)εt]

And it depends on the value of q, as we have explained in Auto-correlation function.

2.6.2 Example ARMA(1,1)

This is one of the easiest ARMA processes:

Xt = φ1Xt−1 + εt − θ1εt−1

This can be rewritten as

(1− φ1L)Xt = (1− θ1L)εt
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Properties of ARMA(1,1)

• Stationary and invertibility conditions

The process will be stationary if φ1 ∈ (−1, 1).

The process will be invertible if θ1 ∈ (−1, 1)

• Covariances

Using the formula of the ARMA(p,q) process explained before, we obtain

γ0 = φ1γ1 + σ2(1− θ1ψ1)

γ1 = φ1γ0 − θ1σ
2

γk = φ1γk−1, for k ≥ 2

And if we solve the system with the first two equations we obtain

γ0 =
1+θ21−2φ1θ1

1−φ21
σ2

γ1 = (1−φ1θ1)(φ1−θ1)
1−φ21

σ2

γk = φ1γk−1, for k ≥ 2

• The Auto-correlation function is

ρ1 = γ1
γ0

= (1−φ1θ1)(φ1−θ1)
1+θ21−2φ1θ1

And for k ≥ 2 we have

ρk = φ1ρk−1

2.7 Non-stationary Models

We have just studied the stationary processes, but in practice we normally have non-
stationary processes, that happens for example when we have a trend. The principal idea
of the procedure is to transform the non-stationary process to a stationary process to
applying what we have studied about the stationary processes.

The principal reasons to have non-stationary processes are:

• The presence of a trend.

• The variance is not constant.

• There are variations in the stationary conditions, an that is because the mean of
the process changes.
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2.7.1 Non-stationary homogenous processes

• When the series have a lineal trend we can transform it using

Xt −Xt−1 ≡ (1− L)Xt ≡ Zt

If Xt has a linear trend, then, Zt will not incorporate this trend. We usually say
that these Time Series are homogeneous of first order.

• If Xt has a quadratic trend, we should make a double transformation

Wt = ∆Xt

Zt = ∆Wt

In the case of Zt being stationary, we say that Xt is homogeneous of second order.

We can also write Zt = ∆2Xt.

Note 11. If we have a cubic trend, it will be the same case, although we will need
to make a triple transformation.

Note 12. In practice it is really difficult to know if we have done the correct number
of transformations. We usually decide on the number of transformations by making
a visual study of the graphic.

• If Xt has an exponential trend, we can transform it using

lnXt − lnXt−1 ≡ Zt

Now Zt does not have a trend.

2.7.2 ARIMA Model

As we have already seen, a lot of series can be transformed into approximately stationary
series after making one or more differences.

If Xt is homogeneous of order d, then

∆dXt = Zt

is stationary.

If Zt is MA(q) we say that Xt is an Integrated Moving Average Process, IMA(d,q).

If Zt is ARMA(p,q):

Zt = φ−1(L)θ(L)εt.

Then

Xt = ∆−dφ−1(L)θ(L)εt.
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And we say thatXt is an Auto-regressive Integrated Moving Average Process, ARIMA(p,d,q).

Note 13. In this case, φ(L) is called the auto-regressive operator, while θ(L) is called the
moving average operator.

Note 14. We can replace ∆−1 with Σ, because

∆−1 = (1− L)−1 = (1 + L+ L2 + · · · ) ≡ Σ.

Special Cases of ARIMA Model

The three special cases of ARIMA models that are usually used in practice are

• ARIMA(0,1,1) or IMA(1,1)

∆Xt = εt − θ1εt−1 = (1− θ1L)εt

• ARIMA(0,2,2) or IMA(2,2)

∆Xt = εt − θ1εt−1 − θ2εt−2 = (1− θ1L− θ2L
2)εt

• ARIMA(1,1,1)

∆Xt − φ1∇Xt−1 = εt − θ1εt−1 = (1− θ1L)εt

We can always write this:

(1− φ1L)∆Xt = (1− θ1L)εt

2.8 The Box-Jenkins method

This method was developed by Box and Jenkins to find the best fit of a Time Series model
to past values of a Time Series, i.e. with this method we decide the best approximation
ARIMA model in accordance with the method conditions.

This method comprises three stages.

• Model identification and model selection. We should know if the series is
stationary or not and then, by using ACF and PACF, to delimit the value of d,p
and q, which we will use in ARIMA model.

• Parameter estimation. When we know p, d and q, we have to estimate the
parameters of the model.

• Model checking. It consists of checking if the errors of the model are white noise.
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2.8.1 Model identification and model selection

When we have a Time Series and we want to adjust an ARIMA(p,d,q), we usually have
the problem of choosing the correct p,d and q. I.e. specify the model ARIMA. The
selection problem is solved by using the ACF and PACF of the Time Series.

First we have to select the best d, i.e. the correct number of differentiates that we
have to apply to the model to obtain a stationary process. We rely on the fact that
the auto-correlation function, ρk, of a stationary process, is approximately zero when we
increase k.

We know that in ARMA(p,q) models, the auto-correlation function associated with the
Moving average part is zero for k > q, because the process only has a q period memory.
So, for a MA(q) process, we have ρk = 0 for all k > q.

The Auto-regressive part of a stationary ARMA(p,q) is attenuated with a geometrical
progression, so the auto-correlation plot will decay slowly.

The process to find the correct d is easy, we only have to study the auto-correlation
function, and do the convenient checking to know if it is stationary or not. If it is
stationary, the model will have d = 0. If it is non-stationary, we should make a first
differentiate. Then we examine the auto-correlation function of ∆Xt. If it is stationary,
we will have d = 1. If it is not, we will repeat the process increasing the number of
differentiates. The process ends when we find a d that makes ∆dXt stationary. If the
series have a trend, we probably have a non-zero d.

Now we have the correct d, so the process we have to study is Zt = ∆dXt. Fortunately,
the models in practice have lower p and q, so the estimation is often done with the visual
checking. But when the order of p and q is not low, the process of identification is very
difficult and we must apply AIC, which is explained later.

Note 15. In the Box-Jenkins method, once we have detected the stationary, the next step
is to detect seasonality. But we are studying Time Series in Financial Markets, so the
day price of the stocks can not be relevant with any seasonal past values. For example,
in order to have seasonality, stock prices on Wednesday need to be related to the ones on
last week’s Wednesday. Another example could be 1st of March, which has to be related
to 1st of February. However, this does not occur in practice. This happens when we have
a monthly Time Series, but this is not the case, so we are doing to overlook it.

Now, we know d, so we will work with a stationary model. The next step is to select
the order of p and q. For every ARMA(p,q) , MA(q) and AR(p) model, we know the
ACF and PACF. We can summarize:

• AR(p)

1. The auto-correlation function has infinite nonzero terms.

2. The partial auto-correlation function has a cutoff after lag p.

• MA(q)

1. The auto-correlation function has a cutoff after lag q.

2. The partial auto-correlation function has infinite nonzero terms.
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• ARMA(p,q)

1. The auto-correlation function has a slow decay after q lags.

2. The partial auto-correlation function has a slow decay after p lags.

In cases with low p and q, the method is the analysis of ACF and PACF. We have
to plot ACF and PACF and identify the correct p and q. In financial Time Series, we
usually have the option of choosing the orders with the visual identification. We must
take into account that Time Series do not offer only one model that allow us to estimate
them correctly. The reason is that models are not perfect. What we have to try is to
select the most correct model. At the end of the method, in the model checking, we will
decide if the model is correct or not. If it is not correct, we will return to the first step to
choose a better model.

Now we can make a table with the optimum decisions for every case of ACF.

1. Exponential decaying to zero or alternating positive and negative decaying to zero

It is an AR, the order p is given by the cutoff of the PACF.

2. One or more spikes, and the rest are insignificant

It is a MA, the order q is given by the number where the plot is near zero.

3. Decay after a few lags

It is an ARMA, we know that the partial auto-correlation function has a slow decay
after p lags, so that gives us the order of auto-regressive model. We also know that
the auto-correlation function has a slow decay after q lags, this gives us the order
of q. The orders can be chosen by other criterion that are explained later.

4. Special cases

• All zero or close to zero

The data can be considered as random.

• High values at fixed intervals

The data has a seasonal term that we did not include in the model.

• No decay to zero

The series is not stationary, so we have to differentiate.

The Akaike information criterion

We have studied a theory method based on the analysis of ACF and PACF to select
the orders p and q. Now we will explain the method that is normally used in practice,
the AIC.

The method consists on choosing the p, q, φ and θ that minimize

AICp,q,φ,θ = −2 lnL(φ, θ, σ2 1
n) + 2(p+ q + 1)n/(n− p− q − 2)

Where L is the likelihood function of the ARMA process.

The first step of the method is to select the two upper bounds, P and Q, these are the
maximum orders, of AR and MA respectively, that we will consider. In practice we often
use the values P = 5 and Q = 5. Then, for 1 to P and for 1 to Q we fit all the possible
ARMA models and we will choose the one that minimizes the AIC function.
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2.8.2 Parameter estimation

After estimating the weights of the models, we now focus on the following functions of
the Time Series: the Mean, the Covariance, the Auto-correlation and the Partial Auto-
correlation function. In that part we mainly use [4].

Estimation of the Mean Function

In this estimation we use the simple mean used in statistics

X̄n = 1/n
∑n

i=1Xi

Properties of the Estimator of the Mean Function

• It is unbiased E[X̄n] = µ

• Besides, the estimator is consistent. The variance is

V ar(X̄n) = V ar(1/n
∑n

i=1Xi) = 1/n2
∑n

t=1

∑n
s=1Cov(Xt, Xs) =

1/n2
∑n

t=1

∑n
s=1 γt−s = 1/n

∑n−1
τ=−(n−1)

n−|τ |
n γτ

We know that γτ is absolutely summable, so when we calculate the limit n → ∞,
it will be zero.

Observation 1. The last step of the process is easy to understand if we use the
following table and we sum by diagonals, we have only one γ−(n−1), ..., we have n
γ0, ... and one γn−1.

s/t 1 2 · · · n
1 γ0 γ1 · · · γn−1

2 γ1 γ0 · · ·
...

...
...

...
. . .

...
n γ−(n−1) · · · · · · γ0

So,

∑n
t=1

∑n
s=1 γt−s =

∑n−1
τ=−(n−1)(n− |τ |)γτ .

Estimation of the Covariance Function

A possible estimator could be

γ̂τ,n = 1
n

∑n−τ
t=1 (Xt − X̄n)(Xt+τ − X̄n)

We use the estimator of µ as the real µ.

Properties of the Estimator of the Covariance Function

• It is not an unbiased estimator, but it is asymptotically unbiased.

E[γ̂τ,n] = E[ 1
n

∑n−τ
t=1 (Xt − X̄n)(Xt+τ − X̄n)]
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If we bracket the second order terms, it will be:

E[γ̂τ,n] = n−τ
n γτ − n−τ

n V ar(γ̂τ,n) + ϑ(1/n2)

But we see that, when n→∞, we have

limn→∞E[γ̂τ,n] = γτ

so it is asymptotically unbiased.

• We also have that the estimator is consistent.

Estimation of the Auto-correlation function

Obviously we will estimate the Auto-correlation function using the Covariance func-
tions that we have estimated before. So we have

ρ̂τ,n =
γ̂τ,n
γ̂0,n

Properties of the estimator of the Auto-correlation Function

• We have a bias of order 1/n, because:

E(ρ̂τ,n) = ρτ + ϑ(1/n)

• The estimator is asymptotically unbiased.

• The estimator is consistent.

Estimation of the Partial Auto-correlation Function

In this estimation we use the predictions used before. Recall that φ̂hh is the last
component of φ̂ = Γ̂−1γ̂.

Estimation of AR(p) process

We estimate the AR(p) process using the Yule-Walker equations that we have explained
before. In the matrix Γ we will replace all the ρi for the estimated ρi, i.e. ρ̂i. In the
vector ρ we do the same, we replace the ρi by the estimated ρi. Finally replace φ by
φ̂ = (φ̂1, · · · , φ̂p).

So the matrix and vectors are:

Γ̂ =


1 ρ̂1 · · · ρ̂p−1

ρ̂1 1 · · · ρ̂p−2
...

...
. . .

...
ρ̂p−1 ρ̂p−2 · · · 1


φ̂ = (φ̂1, · · · , φ̂p)
ρ̂ = (ρ̂1, · · · , ρ̂p)
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And the new Yule-Walker equations will be:

Γ̂φ̂ = ρ̂

If we solve this system, we will have the estimated weights.

Note 16. If you want to know more about this subject, you can look for information about
another algorithm method (Burg’s Algorithm) , in [3]. This algorithm is used to estimate
AR models.

Estimation of MA(q) and ARMA(p,q) processes

The estimation of the weights of MA(q) and ARMA(p,q) processes are more difficult
than the estimation of the weights of AR(p). This is because, when we have to estimate
the weights of the moving average part of the model, we can not apply the Yule-Walker
equations, and we have to curry out another type of estimation.

We know that MA(q) and ARMA(p,q) processes can be represented like an AR(∞),
so the process is:

Xt =
∑∞

j=1 πjXt−j + εt

In order to apply the estimation of the weights that we want to do, we have to assume
some conditions:

1. The process is stationary.

2. The process is invertible.

3. εt ∼ N(0, σ2).

4. X0 = 0.

Note 17. The way to check the first two conditions is explained in the part of MA(q) and
ARMA(p,q) processes.

Under these conditions, we will see that X = (X1, · · · , Xn)T has multivariate normal
distributions.

If we see the representation of X1, is:

X1 = π1X0 + ε1 = ε1

In the second step, we assume that X0 = 0, so X1 = ε1 and X1 have a normal
distribution.

If we now consider the representation of X2, is:

X2 = π2X1 + ε2

So X2 has a normal distribution because X1 and ε2 are independent, so the sum of
two independent normal distributions results in a normal distribution.

For the other orders is exactly the same, so we have that X = (X1, · · · , Xn)T has
multivariate normal distributions with a density
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η(x|λ) = (2πσ2)−n/2|Γ|−1/2exp(− 1
2σ2x

TΓ−1x)

Where Γ is the covariance matrix and λ = (φ1, · · · , φp, θ1, · · · , θq, σ2)T the vector with
the parameters we have to estimate.

Now we can calculate the likelihood function L, that is the density function interpreted
as a function of the parameter vector λ.

L(λ|x) = η(x|λ)

We take the logarithm of L(λ|x)

logL(λ|x) = −n
2 log(2πσ2)− 1

2 log(Γ)− 1
2σ2x

TΓ−1x.

Then, we have to derive logL(λ|x) and equal it to zero. We do this to find the correct
estimators, and check whether if it is a maximum. This is better done with a computer
algorithm.

Finally, the ML estimator is λ̂ = arg maxλ∈Θ L(λ|x).

2.8.3 Model checking

In the last part of the method we are going to check the model. We will study if the error
term εt is a white noise. We have to test the white noise assumptions.

These assumptions are:

• E(εt) = 0

• E(ε2t ) = σ2

• E(εtεt+s), 6= 0 ∀s 6= 0

This analysis can also be made graphically. First, we need to plot the errors, and
decide if the error is a white noise.

If the assumptions are not satisfied, we should change the model, so we should go back
to the first step of the method and change p,d and q.

Note 18. There is no need to be extremely accurate when we are trying to prove an exact
white noise. Sometimes we have that the assumption E(εt) = 0 is false, but E(εt) ≈ 0.
In this cases we consider that the error is white noise.

2.9 ARCH and GARCH

Sometimes in practice, we have Time Series that can not be represented by an ARIMA
model. In that cases the next step is to think about conditional heteroscedastic models.
When we have an ARMA process, φ(L)Xt = θ(L)εt, we assume that εt has a zero mean
and a constant variance, i.e. the variance of εt is a constant that does not hinge on the
past. But if we think that the errors depend on the past errors we have to change the
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model. The assumption we make is based on the fact that a tendency of large deviations
may be followed by moments with large deviations. On the other hand, moments with
small deviations may be followed by moments of small deviations.

Thanks to his introduction of the ARCH models, Engle won the Economics Nobel
prize in 2003. In this part of my work, the definitions are basically based on [4]. I have
focused on this book to study the ARCH and GARCH models, because these models are
quite different depending on where you study them. However, other books have also come
in handy.

2.9.1 The Auto-regressive Conditional Heteroscedastic Model

The process εt is ARCH(q) when E[εt|Ft−1] = 0 and

σ2
t = ω + α1ε

2
t−1 + · · ·+ αqε

2
t−q

with ω > 0, α1 > 0 , · · · , αq > 0.

We distinguish three ARCH.

1. Strong ARCH: when V ar(εt|Ft−1) = σ2
t and the process Zt = εt/σt is i.i.d.

2. Semi-Strong ARCH: when V ar(εt|Ft−1) = σ2
t .

3. Weak ARCH: when P(ε2t |1, εt−1, ε
2
t−2, · · · , ε2t−1, ε

2
t−2, · · · ) = σ2

t .

In the Weak ARCH, P is the best linear projection, but this type of ARCH is not
studied in this work.

Note 19. The ARCH process often refers to Semi-Strong ARCH. We will use ARCH to
refer to Semi-Strong ARCH.

Theorem. Unconditional variance: If εt is an ARCH(q) process with V ar(εt) = σ2 <∞,
if α1 + · · ·+ αq < 1 we have that

σ2 = ω
1−α1−···−αq

Proof.

σ2 = E[ε2t ] = E[E(ε2t |Pt−1)] = E[σ2
t ] = ω + α1σ

2 + · · ·+ αqσ
2

Now if we isolate σ2 we have σ2 = ω
1−α1−···−αq .

�

Theorem. ARCH representation : If εt is a stationary strong ARCH(q) process with
E[ε4t ] <∞ and we assume that Zt follows a N(0, 1), we have that:

• ηt = σ2
t (Zt − 1) is white noise.

• ε2t = ω +
∑q

i=1 αiε
2
t−i + ηt, so ε2t is an AR(q) process.
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Proof.

• To show proof of this, first we have to prove that the expected value of ηt is zero.
Then, we need to proof that the variance is constant and independent of time and,
finally, that the covariance is zero for all pair.

1. E[ηt] = E[σ2
t ]E[Z2

t − 1] = 0

2. V ar(ηt) = E[σ4
t ]E[(Z2

t −1)2] = E[(ω+α1ε
2
t−1+· · ·+αqε2t−q)2]E[Z4

t +1−2Z2
t ] =

2E[(ω + α1ε
2
t−1 + · · ·+ αqε

2
t−q)

2]

This will be constant since, if we do the square of the values that we have in
parenthesis, we will get a polynomial function of ε’s and the expected values
of all these are constant and independent of t.

3. Cov(ηt, ηt+s) = E[σ2
t (Z

2
t −1)σ2

t+s(Z
2
t+s−1)] = E[σ2

t (Z
2
t −1)σ2

t+s]E[(Z2
t+s−1)] =

0. For all s 6= 0.

The last step , E[(Z2
t+s − 1)] = 0 is because E[Z2

t+s] = 1.

• The rest of the proof is really easy if we consider that ηt = σ2
t (Zt − 1) is a white

noise:

ε2t = σ2
tZ

2
t = σ2

t − σ2
t + σ2

tZ
2
t = σ2

t + σ2
t (Z

2
t − 1) =

ω + α1ε
2
t−1 + · · ·+ αqε

2
t−q + σ2

t (Z
2
t − 1) = ω + α1ε

2
t−1 + · · ·+ αqε

2
t−q + ηt

�

Selection of the correct q for an ARCH(q) process

The selection of the best q of an ARCH process is easy if we use the theorem of the
ARCH representation. This theorem claims that ε2t is an AR(q). So the problem becomes
the selection of the order of an AR process (this is explained in the AR estimation). The
method uses ACF and PACF plots (of ε2t ) to determinate the correct order.

Estimation of ARCH(q)

We can do the estimation of the parameters by means of some methods.

We have seen in the last theorem that an ARCH(q) process can be represented by
an AR(q) in X2

t , so one possibility of estimation is to do what we have studied in the
part of AR estimation; using the Yule-Walker equations to select appropriate parameter
estimators. The way to do this is explained before, but this estimation often leads to
a problem: ε2t may not be normal, and this causes the Yule-Walker estimation to be
inefficient.

When we have to estimate the parameters of an ARCH model, the most used method
is the maximum likelihood method. For this estimation we assume that εt has a normal
distribution. So the likelihood function of the observation t is

ρ(εt|Ft−1) = 1√
2πσt

exp
{
−1

2
ε2t
σ2
t

}
If we do the logarithm of ρ(εt|Ft−1)

lt = log ρ(εt|Ft−1) = −1
2 log(2π)− 1

2 log(σ2
t )− 1

2
ε2t
σ2
t
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Now we can obviate the constants, because they do not affect the result when we are
doing the maximum. So we have

lt = log ρ(εt|Ft−1) = −1
2 log(σ2

t )− 1
2
ε2t
σ2
t

Finally, the log-likelihood function, noted as l, for T observations is:

l = 1
T

∑T
t=1 lt.

Once we have the log-likelihood function the process is nearly finished. We only have
to calculate the maximum of this function and get the estimated parameters. To calculate
the maximum we have to derive the log-likelihood function depending on each parameter
and equalize it to zero. To check it is a maximum we have to derive one more time. This
analytic process is long but easy, so sometimes it is better to calculate it with a computer.

ARIMA(p,d,q)-ARCH(w)

Sometimes we approximate Xt by an ARIMA process, but we think that the approx-
imation is not as good as we intended. One option is to consider ARCH models and
reject ARIMA process, but often this is not a good idea because, if we have done the
Box-Jenkins method like we have studied, we may have passed the model checking, and
this means that the ARIMA process is a good approximation. So it is a bad idea to reject
all we have done. We can use both of this models together. The way to do this is to
construct a model based in ARIMA process introducing the ARCH models to the errors.
Now, we introduce an example with an AR(p) model.

Definition 2.9.1. An AR(p) process with ARCH(w) model errors is Xt = φ1Xt−1 + · · ·+
φpXt−p + εt, where E[εt|Ft−1] = 0 and

V ar(εt|Ft−1) = σ2
t = ω + α1ε

2
t−1 + · · ·+ αwε

2
t−w

with ω > 0, α1 > 0 , · · · , αw > 0.

2.9.2 The Generalized Auto-regressive Conditional Heteroscedastic Model

The process εt is GARCH(p,q) when E[εt|Ft−1] = 0 and

σ2
t = ω + α1ε

2
t−1 + · · ·+ αqε

2
t−q + β1σ

2
t−1 + · · ·+ βpσ

2
t−p = ω +

∑q
i=1 αiε

2
t−i +

∑p
j=1 βjσ

2
t−j

with ω > 0, α1 > 0 , · · · , αq > 0, β1 > 0 , · · · , βp > 0.

We distinguish three GARCH.

1. Strong GARCH: when V ar(εt|Ft−1) = σ2
t and the process Zt = εt/σt is i.i.d.

2. Semi-Strong GARCH: when V ar(εt|Ft−1) = σ2
t .

3. Weak GARCH: when P(ε2t |1, εt−1, ε
2
t−2, · · · , ε2t−1, ε

2
t−2, · · · ) = σ2

t .

Theorem. Unconditional variance: If εt is a GARCH(q) process with V ar(εt) = σ2 <∞,
if α1 + · · ·+ αq + β1 + · · ·+ βp < 1 we have that

30



σ2 = ω
1−α1−···−αq−β1−···−βp

Proof.

The proof of the theorem is exactly the same as in ARCH process.

�

Theorem. GARCH representation: If εt is a stationary strong GARCH(p,q) process with
E[ε4t ] <∞ and we assume that Zt follows a N(0, 1), we have that:

• ηt = σ2
t (Zt − 1) is white noise.

• ε2t = ω +
∑q

i=1 γiε
2
t−i −

∑p
j=1 βjη

2
t−j + ηt, so ε2t is an ARMA(m,p) process, with

m = max(p, q) and γi = αi + βi.

Proof.

The proof is the one in the ARCH process.

�

Selection of the correct p and q for a GARCH(p,q) process

The selection of the best p and q of a GARCH process is easy if we use the theorem
of the GARCH representation. This theorem establishes that ε2t is an ARMA(m,p) with
m = max(p, q). So, the next problem is the selection of the order of an ARMA process,
and this is explained in the ARMA estimation. The method consists of using the ACF and
PACF plots (of ε2t ) to determinate the correct orders. The only problem of this selection
is that m is a maximum. Therefore, we may not know the order of q. But this is not a
big problem because we usually have low orders, for example if m = 1, it means that q is
0 or 1. So to select the final model we should have to estimate both and select the one
with fewer errors.

Estimation of GARCH(p,q)

Like in ARCH processes, the estimation of the parameters can be done by means of
several methods. One of them is the same used in ARCH. We should apply what we have
seen in the last theorem: a GARCH(p,q) process can be represented like an ARMA(m,p)
with m = max(p, q). So, the estimation of the parameters can be done using what we
know about the estimation of ARMA models. Usually we do not use this method of
estimation, we normally use the maximum likelihood method.

For the maximum likelihood method, the likelihood function of the GARCH(p,q) is the
same as the ARCH(q), the difference is that now we have q more parameters to estimate.
We have the same function to maximize, but with more parameters. So, the maximum
likelihood method for GARCH entails the same difficulties as the maximum likelihood
ARCH method. However, the first one is longer.
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Chapter 3

Technical Analysis

3.1 Introduction to Technical Analysis

Technical Analysis is the study of the price, the volume and the open interest, mainly
through the use of graphics, with the purpose of predicting future price trends.

To understand the definition of Technical Analysis we must know what volume and
open interest are. Open interest refers to the total number outstanding of derivative
contracts that have not been settled. Volume indicates the amount of securities contracted
in financial markets in a session.

Technical Analysis can be used with any financial instrument. Due to this, it is applied
to price stocks, futures, foreign money exchange,...

Note 20. If you want to know more about the meaning of open interest and volume, you
can look for information in [7]. In my work I do not study hard both concepts.

3.1.1 Basic assumptions of Technical Analysis

Before we start the study of the technical chart patterns we have to make the basic
assumptions of Technical Analysis.

It can be summarized in three points:

1. Market action discounts everything.

This is surely the most important fact that we have to assume. If we disagree on
this statement, everything else is meaningless.

Technical analysts believe that all the relevant information that might influence
price should be reflected in the price. For example, an increase in food taxes will
be reflected in the market price of Mercadona.

Price action should reflect the movements in the supply and demand. If the demand
is larger than the supply, the price will increase. Analysts claim that, if the price
is increasing, it is because the demand is larger than the supply. They are not
interested in the reasons why prices rise, they only worry about the consequences.

I.e. everything that affects the price, is reflected in the market price in the long
term. So the only thing we have to study is the price action.
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2. Prices move in trends.

Analysts assume that markets forms trends. As in the first point, if we do not
accept that assumption, there is no need to go any further.

The purpose of technical analysts is to detect the price trend in the first phases of
the trend, in order to operate in the market in the right direction.

Analysts often suppose that it is more likely for a trend to continue in motion than
to changing its tendency.

3. History tends to repeat itself.

It is based on the fact that the future is a repetition of the past. In order to be able
to predict the future, we have to study the past.

3.1.2 Dow theory

Charles Dow was an economist and a journalist. He was born in 1851, and he died in 1902.
He did not write any book, but he wrote a lot of articles for his own newspaper, The Wall
Street Journal. His economic principles are extracted from his articles. He is considered
the forefather of Technical Analysis, and for this reason we study his proposals.

We summarize the basic outlines of his theories:

• Averages discount everything.

This assumption is exactly the same that we have used in the basic assumptions
appearing in Technical Analysis.

• The Market has three trends.

The primary, the secondary and the minor trend (In order of importance).

• Primary trends have three phases.

Those trends have an accumulation phase, a public participation phase and a dis-
tribution phase. His basic definitions of phases are:

– The first one is the one which we want to operate, i.e. operate on the beginning
of the trends.

– The second phase is when more investors are able to distinguish the new trend.

– The last one is when everybody perceives the trend.

• Averages must confirm each other.

Dow was referring to the industry and rail averages, so we are not interested in that
aspect.

• The trend is confirmed by volume.

Dow said that the volume must confirm trends generated by graphics. So volume
must expand in the trend’s same direction.

• Trends exist until definitive signals prove that they have ended.

This is the base of Technical Analysis used today. It is the same as saying that the
trend in movement may be in movement.

33



The most important difference between the Dow Theory and Technical Analysis is
that most investors who follow the Dow Theory operate only in the principal trend, i.e.
in long term. In Technical Analysis we operate equally in long and short term.

3.1.3 Work Distribution

I have divided the Technical Analysis study into three separated parts, the trend and
canals, the chart patterns and moving average indicators.

In the part of trend and canals I analyze the different types of trends, the influence of
the trend on market prices and how to operate with each trend. Then, I explain how to
draw the correct trend line. Finally, I work with Canals. A canal is a figure that appears
when all prices fluctuate between two parallel lines.

A chart pattern is a distinct formation on a stock chart that creates a trading signal,
or a sign of future price movements. Analysts use the patterns to identify current trends
and trend reverse.

We will study some of the most used patterns like Head and Shoulders, triple tops
and bottoms, triangles, diamonds,... We distinguish two types of patterns, the reversal
patterns and the continuation patterns. The most important difference between both is
that return patterns change the trend.

Finally I examine Moving average indicators. A moving average is an average of the
last prices. There, I study the different types of Moving averages and how to operate on
it.

3.2 Trend and Canals

3.2.1 Trend

To study the evolution of prices, it is essential to understand the importance of the trend.
The most important idea is to operate in the same direction as the trend, i.e. if the trend
is ascendant (descendent) we should buy (sell).

In this part of the work we study the ways to measure and predict the trend.

Markets usually show zig-zags moves, and obviously every zig-zag has a maximum and
a minimum. The main direction of zig-zags is what we know as the trend.

When ridges are increasing (decreasing) we call it uptrend (downtrend). If we have
a trend with ridges that are not increasing or decreasing (horizontal ridges), we call it
lateral trend.

As we will see, we use patterns to operate in the markets. Those patterns are usually
based on uptrends or downtrends. So if we have a lateral trend, we rarely operate in the
market, because nothing happens and we can not recognize any pattern.

Now, we have taken into consideration the direction of the trend, but we also have to
study the three trend types. That characterization is done by dividing the trend by time
frame. Time frames are slightly different to each analyst, but we rely on what is more
accepted.

1. Principal trend: it is the trend with a time frame of more than one year.
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2. Intermediate trend: it is the trend with a time frame from one to many months.

3. Short-term trend: it is the trend with a time frame of less than two or three weeks.

So, for example if we have an ascendant principal trend, we have an ascendant trend
for more than a year, but in this case we can also have a decreasing trend of the last two
weeks, and it means that the short-term trend is decreasing.

This reveals that trends by time frame are not exclusive. We can have different prin-
cipal, intermediate and short-term trends.

Note 21. We denominate support (resistance) to the minimum (maximum) of the zig-zag,
In a support, or a resistance, the movement of the price stops and reverses.

Once a support (resistance) is broken, it becomes a resistance (support).

Exact numbers have often a tendency to become resistances and supports. Numbers
are usually 10, 20 , 25, 50, 75 and 100.

Note 22. Some analysts suggest a 45 degree trend is needed in order to have a consistent
trend. They point out that, if the trend is above (below) the degree, it will decay (grow) to
45 degree trend.

3.2.2 Trend line

To study the trend, first we have to select the correct trend, and this process depends on
the characteristics of the trend placed before us.

We know that the trend is ascendant because the final price is higher than the first
price. In these cases, the trend line must be below the prices all the time. If the price is
lower than the trend line at any time, the trend line is not the correct. First we have to
select the lower support. Then, we build for all the other supports a line trend through
both. We select the trend line with the lower slope.

If we have a downtrend, we do the same but with the resistances. We select the first
resistance and we build a line for all the others resistances, and we select the one with
the higher slope.

Figure 1: Trend Line.
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Observation 2. To be sure that the trend line has been broken, analysts often use two
different criterion. The first, when we have two straight days below the trend line. The
second is that the difference between the price in the trend line and the actual price is
bigger than 2%.

Observation 3. Sometimes when an uptrend line is broken it becomes a descendent
trend line.

Observation 4. Technical Analysis suggest that when an uptrend (downtrend) line is
broken, the price tends to go down (up) really fast. So predicting a future break or
distinguishing a real break from an isolated event is very decisive in our operations.

Observation 5. Some analysts suggest that in a zig-zag of an uptrend, if we have a
resistance A, a support B and a resistance C, the difference between B and C is often 1/3,
1/2 or 2/3 of the difference between A and B. And the same happens in a downtrend,
but the other way around.

Program 1. Trend.c

Basically the program computes the trend and elucidates whether the trend is broken
or not using both criteria.

The program works as follows:

1. First it asks for the data and it calculates whether the trend is ascendant or descen-
dent.

2. If the trend is descendent, the program searches the maximum of the data and names
it maxA, and saves the maximum time as tA. Then, from tA to the end of the data,
the program calculates all the maximums. For every maximum, it calculates the
slope of the line through this maximum and maxA. It selects the maximum with
a higher slope and it saves it as maxB. If the slope of the trend line is larger than
-0.05, the program considers the descendent trend as lateral.

3. Until the trend line is not broken, the program asks for new data. It checks for the
new data the two break conditions. If one of the conditions is satisfied, the output
is that the trend line is broken.

4. For uptrends it is analogue.

5. In the cases with lateral prices, the program says that the data given do not have
any trend.

3.2.3 Canal

If we consider the case of an uptrend, sometimes prices are between the ascendant (de-
scendent) trend line and another parallel upper (lower) line. The other line is called the
canal line. And it is used to operate between both. If the price is near the trend (canal)
line, we are supposed to buy (sell).
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Figure 2: Canal.

Observation 6. Like in observation 4, if a canal line of an ascendant (descendent)
trend is broken, Technical Analysis suggest that the price will go up (down) quickly.

Program 2. Canal.c

The program searches the trend line and the canal line. It predicts for future prices,
whether the lines are broken or not, and it advises us on buying or selling.

The program works as follows:

1. The first part of the program is the same as the first two points of 1trend.c.

2. We consider a downtrend. The program search the two farthest prices of the trend
line, and it calculates the line connecting these two points. This is the canal line.

3. The program checks if the canal line and the trend line are parallel.

4. Finally while the price is between both lines, the program suggests if we have to
buy or sell.

5. For uptrend, the same applies.

3.3 Reversal Patterns

The most important properties of the Reversal Patterns are, on the one hand, the existence
of a previous trend and, on the other hand, the fact that bigger patterns imply bigger
trend changes.

3.3.1 Head and Shoulders

The pattern is based on the fact that we have an ascendant trend. The figure is formed
by 3 maximums and 2 minimums. We note the maximums by temporal order A,C and
E, and the minimums by temporal order B and D. The sequence of the figure must be
A-B-C-D-E. The figure must be as follows:

• The prices on A and E are similar.
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• The prices on B and D are similar.

• B price is the lowest mark between A and C.

• D price is the lowest mark between C and E.

• C price must be the highest price between A and E.

When this happens, we have a HS. The name is given after the body parts, where A
and E are the shoulders and A the head.

We call the line through B and D the neckline, and it has an important roll in the
operate system.

The way to operate with this pattern is to calculate the neckline. When the price
after E is lower than that neckline, we have to sell. HS is a signal of a change of trend.
Sometimes after the neckline breaks, a reverse movement appears, and the price increases
up to the neckline. After that reverse movement, the decay of the price will be sharper.

Figure 3: Head and Shoulders.

Note 23. Head and Shoulders (HS) is possibly the most famous pattern.

Program 3. Hch.c

The first one is based on the fact that an analyst thinks he has found a HS. The
program distinguishes the correct HS from the incorrect, i.e. if the HS that we give to
the program is really a HS or it is not. If the series given is a HS, the program proposes
the way to operate, sell or wait in relation to every price and each moment.

The program works this way:

1. It calculates the line through A and E to check that they are at the same height.
To check it, we use the slope of the line.

2. Then, it checks whether C is sufficiently higher than A and E. We use the slope of
the line through A and C, as well as through E and C.
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3. It calculates the neckline to check if B and D are at the same height. To check it,
we use the slope of the line.

4. The program makes us enter future prices, and recommends us if we have to sell or
not, by using the neckline. In this part, the program informs us that the neckline is
totally broken if the price is lower than the neckline plus 0.05 times the difference
between E and D. This is done to ensure that the neckline is broken.

If you are interested in the exact algorithms and the code, you can find the program
in the appendix.

Program 4. Buscarhch.c

The second one is based on the idea that the analyst is not in front the computer, i.e.
the program does all the work for the analyst and looks for possible HS. The program
searches HS in the prices given, and then we apply the program hch.c to operate with the
found HS.

This is how the program works:

1. First it finds the maximum of the series (this price is C).

2. We do not care what happens after the HS, so we establish the research of A on the
preceding time period of C, but under the condition that it is, at most, 1.5 times
the distance between C and the end of the series. The first time is called k.

3. For k to C, we calculate all the maximums, and with every maximum we calculate
all the minimums between the maximum and C. We select the maximum and the
minimum with a higher difference, and in the case with two maximums with the
same difference, we select the closest to C. The maximum will be A and the minimum
B.

Note 24. If we do not use this algorithm and we select the maximum and minimum
between k and C, probably we will not find a HS. This is because in a HS, we have a
lot of maximums between B and C, and they are probably higher than A. The only
case when this algorithm will be correct is if the data do not have any maximum
between B and C. However, this is almost impossible.

4. For C to the end, we calculate all the maximums, and with every maximum we
calculate all the minimums between the maximum and C. We select the maximum
and the minimum with a bigger difference, and in the case with two minimums with
the same difference we select the one closest to C. The maximum will be E and the
minimum D.

5. Finally the program output is A-B-C-D-E, and we have to introduce that into the
hch.c. The other program will tell us if the HS is correct or not, and if we have to
sell or not in future prices.

If you are interested in the exact algorithms and the code, you can find the program
in the appendix.
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3.3.2 Inverted Head and Shoulders

The inverted HS is the same as HS, but inverting the HS.

This pattern is based on the fact that we have a descendent trend. The figure is formed
by 3 minimums and 2 maximums. We note the minimums by temporal order A,C and
E, and the maximums by temporal order B and D. The sequence of the figure must be
A-B-C-D-E. The figure must be as follows:

• The prices on A and E are similar.

• The prices on B and D are similar.

• Price B is the highest price between A and C.

• Price D is the highest price between C and E.

• Price C must be the lowest price between A and E.

As in HS we call the line through B and D the neckline.

Figure 4: Inverted Head and Shoulders.

The way to operate in this pattern is to calculate the neckline. When the price after
E is higher than that neckline, we have to buy. Inverted HS is a signal for a change of
trend. Sometimes after breaking the neckline, a reverse movement occurs and the price
falls down to the neckline. After that reverse movement, the increase of the price will be
higher.

Program 5. inverthch.c

In the development of this program I had the idea to use hch.c program. I thought
on multiply all the prices by -1. This method makes minimums become maximums, and
maximums become minimums. After that transformation the inverted HS becomes a HS,
and we can use part of the hch.c code.

Program 6. Buscarhchinvertit.c

The idea is the same as in inverthch.c, we multiply the prices by -1. Then, the research
is almost the same as in buscarhch.c. I had some troubles in the development of this
program, because the negative prices affect to some algorithms.
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3.3.3 Triple Top

This pattern is the same as HS but with a small difference, the three maximums are in a
similar height. All the other assumptions are the same.

Program 7. Tripletops.c

The program is the same as in HS but excluding the conditions of the different heights,
so we do not have to check that C is higher than A and E. We have to include another
condition. This condition is to check that A, C and D are at the same height. We check
this by calculating three lines, the one through A and C, the one through C and E and
the one through A and E. If the slopes of two of them are almost zero, the condition is
correct.

Figure 5: Triple Top.

Note 25. To search possible tripe tops we use buscarhch.c, because in that program there
is not any condition of different height in respect of shoulders and head.

3.3.4 Triple Bottom

This pattern is the same as inverted HS but with a little difference, the three minimums
are in a similar height. All the other assumptions are the same.
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Figure 6: Triple Bottom.

Program 8. Triplebottom.c

The programs are the same as in Triple Top, but after introduce the prices, we have
to multiply all of them by -1. The argument is the same used in inverted HS.

As in triple tops, we use buscarhchinvertit.c to search possible triple bottoms.

Observation 7. Some analysts use Double tops (bottoms), which are the same that
in triple tops (bottoms) but with only two maximums (minimums). We might venture to
say that this pattern is very ambiguous. According to the experience gathered, frequently
the figure is perfect, but the prediction is totally false. So we are not going to introduce
this pattern.

3.4 Continuation Patterns

Continuation patterns are patterns on which the trend will continue once the pattern is
complete, i.e. the pattern will not change the trend. This does not mean that we can not
operate with them. These figures are usually used on a short-term basis.

3.4.1 Triangles

Triangles are one of the most known figures in Technical Analysis. Essentially the triangles
are figures that, for a period of time, the prices range between two lines. Those lines may
not be parallel, so they must have an intersection. If the intersection of the lines is in the
right part of the figure, we have a triangle, and if it is in the left part of the figure, it is
a broadening formation. There are three types of triangles: symmetrical, ascendants and
descendents.

3.4.2 Symmetrical triangle

These triangles are the ones with an upper line descending and a lower line ascending. It
represents a pause on the trend, so after the triangle the trend will have the same original
trend. We need two points to draw a line. So we note the points of the upper line, in
temporal order, A and C. The two points of the lower line, in temporal order, are B and
D.

To have a symmetrical triangle the points must be as follows:

1. Price A must be higher than C.

2. Price B must be lower than D.

3. Price A must be highest.

4. Price C must be higher than B and D.
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Figure 7: Symmetrical Triangle.

The way to operate in these figure is to purchase when the price is next to the lower
line, and to sell when the price is near the upper line.

The triangle is a continuation pattern, so the most probable event is that the price
will break the triangle in the direction of the previous trend. If the opposite happens and
we had a descendent (ascendant) trend, once the price breaks the upper (lower) line, it
means that the price will increase (decrease) quickly.

Program 9. Triangles.c

The program is based on the fact that the analyst believes he has found a triangle.

The program works as follows:

1. The analyst must introduce the price and the time following the order A-B-C-D,
independently of the temporal order.

2. It makes some checks on the conditions of a symmetrical triangle.

3. The program calculates the upper and lower lines.

4. If tA is previous than tB, it calculates the difference between B and the price in
the upper line on tB. If tB is previous than tA, it calculates the difference between
A and the price in the upper line on tA. This difference is multiplied by 0.05 and
named percentaux. This will be used to do an interval of lines. Because we will
say that the upper line is broken when the price is higher than the upper line plus
percentaux. We act the same way with the lower line.

5. The program asks for future prices and it resolves if we have to operate or not. We
will operate if the future time is previous to tintersecmaxim, this is the intersection
of the lower line plus percentaux and the upper line less percentaux. The idea behind
this is that near the vertex of the triangle, we can not use the pattern because it is
too close to the edge.

6. The program establishes how we have to operate. If the price is between upper line
plus percentaux and upper line less percentaux, we will sell. If the price is between
lower line less percentaux and lower line plus percentaux, we will buy.

7. If the triangle is totally broken, the program says if it is broken by the upper or the
lower line.

Program 10. Buscartriangles.c
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The second one is based on the idea that the analyst is not in front of the computer,
i.e. the program does all the work for him and it searches for possible triangles. The
program searches triangles among the prices given. Then we need to apply the program
triangles.c to operate with the found triangle.

This is how it works:

1. The analyst introduces the data in temporal order, beginning with the oldest.

2. The program searches the maximum and the minimum of the data, and it always
selects the newest values.

3. We are searching symmetrical triangles, so when we are looking for C, we are only
interested on the prices upper B plus the difference between the price A and B.

For every maximum after tA it searches the slope of the line through A and the
maximum. The program selects the maximum with lower slope, and that maximum
is C.

The research of D is the same as C, but with minimums and the maximum slope.

4. The program calculates tintersecmaxim as in triangles.c. Then it checks if the trian-
gle is in the past, or if it can even be applied. The way is to prove if tintersecmaxim
is bigger than the final time of the data.

5. Finally the output is A-B-C-D. And we have to apply triangles.c to know if we have
to operate or not when we encounter future prices.

3.4.3 Ascendant triangle

It is a variation of the symmetrical triangle. The difference is that the upper line is almost
horizontal. The lower line is ascendant. It almost always ends breaking the upper line
and increasing even more. It is considered an ascendant figure, i.e. the price tends to
increase.

This type of triangle entails the problem that, if we know that the price will increase,
why should we want to sell. So analysts are very careful with this pattern.

Figure 8: Ascendant Triangle.

The programs
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The programs will be the same as in Symmetrical triangles, we can introduce a con-
dition to differentiate the ascendant of the symmetrical, which could be: checking if the
slope of the upper line is between -0.1 and 0.1. The programs will be the same because I
do not introduce any strong condition to the slopes in the symmetrical triangles programs.

3.4.4 Descendent triangle

This triangle is the same as Ascendant Triangle, but inverting the Triangle.

The difference with the symmetrical is that the lower line is almost horizontal. The
upper line is ascendant. It almost always ends breaking the lower line and decreasing. It
is considered a descendent figure, i.e. the price tends to decrease.

Figure 9: Descendent Triangle.

The programs

We have the same as in Ascendant triangles, the programs will be the same as in
symmetrical triangles. We can differentiate the descendent by introducing this condition:
the slope of the lower line must be between -0.1 and 0.1.

Program 11. Quintriangle.c

It requests a possible triangle and it tells if is symmetrical, ascendant or descendent
and how to operate with future prices.

Program 12. Buscarquinstriangles.c

The program searches triangles and expresses if they are symmetrical, ascendant or
descendent.

3.4.5 Broadening Formation

The Broadening Formation are figures showing that, over a certain period of time, the
prices range between two lines. The intersection of the lines is in the left part of the
figure, i.e. in the past. So it is like an inverted triangle, the vertex is on the start of the
figure. This figure is not as common as triangles.
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The way to operate in the Broadening Formation is to buy when the price is close to
the lower line, and to sell when the price is next to the upper line. If the price breaks the
upper (lower) line, it is a signal that the price will increase (decrease).

Figure 10: Broadening Formation.

Program 13. Ensanch.c

The program requests data that we think that is Broadening Formation and it decides
if it is correct or not. Then, determines the best way to operate at future values.

Note 26. A program that searches Broadening Formations, with data that we can provide,
is almost impossible. We have tried a lot of things, but is hardly ever possible to find
Broadening Formations. The conditions of that pattern are very ambiguous, and if we
do not introduce any more conditions, that type of program is not prepared to be used to
operate.

3.4.6 Diamonds

The diamond is an extremely rare figure which only appears on the top of prices. It is
a combination of a Broadening Formation and a symmetrical Triangle. It starts with a
Broadening Formation and finishes with a Symmetrical Triangle,is named after the gem
it resembles.
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Figure 11: Diamonds.

Apparently, this figure does not introduce anything new. When we study triangles,
we do not care about what happens after the triangle.

We treat the diamond like as a triangle, because we do not care about the past, so the
programs will be the same ones we use symmetrical triangle.

3.4.7 Rectangles

Rectangles are figures that represent a pause on the trend, prices oscillate between two
horizontal lines. The break on the rectangle points at the trend direction. We have to
be careful to distinguish these from the double or triple tops and bottoms, because the
figures are really similar. We differentiate them according to the line that it breaks.

Figure 12: Rectangles.

Program 14. Rectangles.c

The program is the same as triangles.c but it introduces two new conditions:

1. The upper line slope must be between -0.1 and 0.1.

2. The lower line slope must be between -0.1 and 0.1.

3.5 Moving Average Indicators

Moving average is probably one of the most used indicators. This is because moving
average is very easy to program, and the results are totally objective.

The indicator is based on the idea of doing an average of the last n prices. If the
weight is the same for the last n prices, we call it simple moving average. If the weight is
different depending on the temporal position, we call it weighted moving average.

The purpose of the moving average indicator is to identify the end of a trend or the
beginning of another. We can understand the Moving average as a curve trend line. It
is important to understand that the MA does not anticipate anything, it only reacts to
trend changes that have already occurred.

We have to be careful with the choice of the correct n, i.e. the number of lags we
will consider. An analyst has to make that decision considering the past of the stock he
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is going to analyze, because the best MA is different in every market. The most used
short-term MA are 10, 20 and 60. For long term MA, we normally use 100 or 200.

I will distinguish two types of Moving average: the simple Moving average and the
differences of Moving average. The difference between them is that in the first we only
consider one moving average, and in the second we consider the subtraction of two moving
averages.

3.5.1 Simple Moving Average

If we consider the last n prices, (P1, P2, · · · , Pn), with Pn the actual price. The Simple
Moving Average is:

MAn(0) = 1
n

∑n
i=1 Pi

The first MA is the MAn(0).

If we introduce the next price Pn+1, the last n prices are (P2, P3, · · · , Pn+1). So the
Simple Moving Average is:

MAn(1) = 1
n

∑n+1
i=2 Pi

So, the second MA is MAn(1).

And for every time t > 0 the moving average is:

MAn(t) = 1
n

∑n+t
i=t Pi

Finally, the k MA is MAn(k).

If the actual price, Pt, is above (below) the MAn(t), the signal is to buy (sell).

Analysts usually work with two MA, with different number of lags (usually 20 and 50
or 10 and 20), and they operate if both MA signals are the same.

Program 15. Media.c

The program requires two numbers of lags, n and m, with m > n. Then it asks for
the last m prices. Finally, it determines if we had better buy or sell in the future.

3.5.2 Weighted Moving Average

It works as Simple Moving average, but it actually ponders the prices. The most used
way to weight is to give more importance to the last prices and less to the older. For
every time t > 0 the weighted moving average is:

WMAn(t) = 2
n(n−1)

∑n−1+t
i=t (i+ 1− t)Pi

We multiply the oldest price by 1, the second oldest by 2 ... and the last price by n.
Then, we divide that addition by 1 + 2 + · · ·+ n.

The way to operate is the same as in Simple Moving Average.
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Program 16. Ponderatmedia.c

The program asks for two number of lags, n and m, with m > n. Then you need to
provide the last m prices. In the end, it says if we have to buy or sell in future cases.

3.5.3 Difference of Moving Averages

The difference of Moving Averages is the subtraction of two Moving Averages of different
number of lags. The first Moving Average has lower number of lags than the second.

For every time t > 0 we consider the value of

Xn,m(t) = MAn(t)−MAm(t)

With n < m.

Then we have to introduce the next price, and calculate Xn,m(t+ 1):

Xn,m(t+ 1) = MAn(t+ 1)−MAm(t+ 1).

The operate system is:

• If Xn,m(t) ·Xn,m(t+ 1) > 0 we do not have to operate.

• If Xn,m(t) ·Xn,m(t+ 1) < 0 we operate following:

1. We buy if Xn,m(t) < 0 and Xn,m(t+ 1) > 0.

2. We sell if Xn,m(t) > 0 and Xn,m(t+ 1) < 0.

Program 17. Mediasmo.c

The program works as follows:

1. The program asks you to fill in the n, m and the last m prices. Then it checks if
the lags are correct.

2. It calculates Xn,m(1) and demands for the next price. While Xn,m(t)·Xn,m(t+1) ≥ 0
the program asks for next prices.

3. Once Xn,m(t) ·Xn,m(t + 1) < 0 the program should advise us to buy or sell. Once
the program has done that, in future situations the program resolves that we do not
have to operate because we have already made a purchase.
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Chapter 4

Practical Work

In this part of the work, I intend to study Repsol shares, IBEX35 stock exchange, the
EUR/USD exchange rates and Gold price. The reason why I chose these four is that each
one belongs to a different type of Financial Markets categories. The first one belongs to
Capital Markets, the second is the mean of a Capital Market, the third one belongs to
Foreign exchange markets and the last one belongs to Commodity markets. I study the
data with both types of analysis. The idea is to forecast prices and then compare the
decisions made using Technical Analysis with the ones made using Time Series.

The data is updated to 19/06/2015 but I study the data until 19/05/2015. I do this
to check if the forecast we will make is correct or not. So the forecast is at most one
month beyond. I do the forecast using the last 20, 60 and 240 prices. Since markets do
not operate on weekends I select 20 in order to represent a month average. I select 60 in
order to represent 3 months, and finally, 180 to represent 9 months. The data used is in
the folder, so you can use it to check the results.

4.1 Time Series using R

In this part, there is an explanation of how we have worked with R. I curry out different
types of study for every data. The first I will is to adjust an ARIMA to the prices. Then,
I will adjust an ARIMA to the logarithms of the prices. Once I have done both analysis,
if I have an ARIMA(0,1,0), the next step is to adjust an ARCH to the prices or the
logarithms of the prices. If we have an ARIMA(p,d,q) with p or q different of zero, we
adjust an ARMA-GARCH of the log returns, exactly an ARMA(p,q)+GARCH(1,1). I
select GARCH(1,1) because, in practice, we hardly ever need long lags.

I study the forecast for the last 20,60 and 180 prices. When I use the last 20 prices,
I try to forecast the fifth next future price. With the last 60 prices I try to forecast the
next fifteenth future prices. Finally, for the last 180 prices I try to forecast the next thirty
future prices.

4.1.1 ARIMA with the prices

In the ARIMA with the prices, we do the following commands: (we use data1 as
repsol,ibex35,...)
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data1< −scan()

I introduce the last 20,60 or 180 prices.

acf(data1)

pacf(data1)

With these plots, as we have already seen, we can select the order of the ARMA. But I
use it to check if the model selected using the minimum AIC is correct or not. The plots
can be found in the folders with the data. The way they have been named can be
inferred from this example: if we are studying 20 prices of repsol, the name will be
20ACFrepsol and 20PACFrepsol.

auto.arima(data1)

It selects the model with the lower AIC, and the output is the weights.

predict(auto.arima(data1),n)

We get the forecast of the future n prices.

Finally, we have to check the model testing white noise conditions, we use the
Ljung-Box test and is done with the command:

Box.test(resid(data1))

Resid(data1) are εt, i.e. the difference between the real prices and the forecast prices. If
the result is lower than 0.05, the model is not correct, in other cases the model is precise.

4.1.2 ARIMA with the logarithms of the prices

Before working with the data, we have to set the logarithms of prices.

lndata1< −log(data1)

After that command, we apply the same method.

4.1.3 ARCH with the log returns

If the model selected is an ARIMA(0,1,0), it is an indicator of an ARCH model. Then,
we have to plot the PACF for the square log returns, we select the order of the ARCH
with that plot. First of all, we have to install the fGarch package and introduce the
command: library(fGarch).

After that, the commands are

data< −scan()

fr=diff(log(data))

This command computes the log returns.

ts< −frˆ2

We know that the order of ARCH is the order of AR(ts), so we plot:

pacf(ts)

And we select the order of the ARCH. For example p.

archdata=garchFit(formula =˜garch(p,0),data=ts)
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predict(archdata,k)

With k representing the number of forecast prices that we want.

4.1.4 ARMA-GARCH with the log returns

We do an ARMA model selecting the one with lower AIC, and then we apply a
GARCH(1,1), we apply GARCH(1,1) because the order is almost always equal or lower
than 1, in other cases we only have to change the values. The commands are:

data1< −scan()

ts=diff(log(data1))

auto.arima(ts)

In that moment, the output is nearly always a model like ARIMA(p,0,q). In the case of
ARIMA(p,d,q), with d 6= 0, we should have to differentiate on another occasion.

Then we have to check if we have to apply the GARCH or not, with the Test Ljung-Box
of the squared residuals.

Box.test(ts 2̂)

If the p-value is below 0.05, we have to continue, in other cases we stop this model
adjust.

armaGarch=garchFit(formula =˜arma(p,q)+garch(1,1), data=ts)

predict(armaGarch,k)

With k representing the number of forecast prices that we want.

4.2 The investment decision

In the case of Technical Analysis, the risk averse decision will be the points of union
between all patterns. Sometimes, I also take into consideration a slightly more risky
decision.

The Time Series investment decision depends on the ARIMA models. If we have an
ARIMA(0,d,0), first we do not have to operate. But the final investment decision could
be to operate if the ARCH with the log returns decision is very confident. If we have an
ARIMA(p,d,q) with p or q different to zero, and the first decision is to operate. The
final investment decision could only change if ARMA-GARCH with the log returns
decision is the opposite of ARIMA(p,d,q).

4.3 Repsol

The Repsol data goes from 04/01/1994 to 19/06/2015.

4.3.1 Repsol with the last 20 prices

The data used figures on the folder Repsol with the name CTRepsol.txt or
CTRepsol.xlsx.
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Using Technical Analysis

• Trend.c considers the trend as lateral.

• Canal.c considers the trend as lateral.

• Buscarhch.c finds a possible HS on times 0, 1, 5, 11 and 16, but when we introduce
the possible HS into hch.c the result is that the head is lower than the first shoulder.
When this happens it is an indicator of a possible Triple Top. We introduce to the
tripletops.c and, after the verification, we see that we found a Triple Top. So, we
introduce the next price 18.12, and we are advised not to buy or sell. But after
introducing the 20/05/2015 price, the signal is to sell.

• Buscarhchinvertit.c finds a possible inverted HS on times 1, 5, 11, 16 and 18. If
we introduce the possible inverted HS to inverthch.c it tells us that the head is not
high enough. So, as in HS it is an indicator of a possible triple bottom. According
to the program, we have a Triple Bottom. When we introduce the next three prices
the program makes us the recommendation to buy. Then, we do not operate in the
next period. Nevertheless, after 20/05/2015 we have to sell always.

• Buscartriangles.c finds a possible triangle in the past.

• Media.c with n=10 and m=20 urges us to sell after 25/05/2015.

• Ponderatmedia.c with n=10 and m=20 urges us to sell for all the prices, regardless
of all prices.

• Mediasmo.c output is that we do not have to operate.

The risk averse decision is to sell after 25/05/2015. The difference between that price
and the fifth price is -0.18, so the benefit was 1.0084%. A slightly more risky decision is
to sell after 20/05/2015. The difference between that price and the fifth price is -0.31, so
the benefit is 1.7108%.

Using Time Series

• ARIMA with prices.

It selects an ARIMA(1,1,0) with the weight φ1 = -0.4663. The forecast is that we
should sell, because the fourth and fifth prices are 17.94061 and 17.93775.

• ARIMA with the logarithms of the prices.

It selects an ARIMA(1,1,0) with the weight φ1 = -0.4668. The forecast determines
that it would be more profitable to sell, because the fourth and fifth prices are
17.94049 and 17.93762.

• ARMA-GARCH of the log returns

The model that we have to compute is ARMA(1,0)+GARCH(1,1). The meanFore-
cast is always negative, so the prediction is that the prices will decrease.

The decision is to sell at once. The difference between the first and the fifth price is
-0.31, it grants a benefit of 1.7241%.

53



4.3.2 Repsol with the last 60 prices

The data used is on the folder Repsol with the name MTRepsol.txt or MTRepsol.xlsx.

Using Technical Analysis

• Trend.c considers the trend as lateral.

• Canal.c considers the trend as lateral.

• Buscarhch.c finds a possible HS. But when we introduce the data into hch.c, the
head is lower than the first shoulder.

If we introduce the possible HS found into the tripletops.c, the checking says that
we have a Triple Top. So we introduce the next price 18.12, and the program drives
us to sell right away because the neckline is totally broken.

• buscarhchinvertit.c searches for a possible inverted HS but it does not pass the
checking of inverthch.c. If we introduce it into triplebottom.c, it advises against
operating until 25/05/2015, then we have to sell, independently of all future prices.

• Buscartriangles.c finds a possible triangle in the past.

• Media.c with n=30 and m=60 dissuades us from operating until 26/05/2015, then
we have to sell for all always.

• Ponderatmedia.c with n=30 and m=60 tells us to ell at any future price.

• Mediasmo.c claims it is unadvisable to operate.

The risk averse decision is to sell after 25/05/2015. The difference between that price
and the fifteenth price is -1, so the benefit was 5.6022%. A slightly more risky decision
is to sell after 20/05/2015. The difference between that price and the fifteenth price is
-1.27, so the benefit was 7.0088%.

Using Time Series

• ARIMA with prices.

It selects an ARIMA(1,1,1) with the weights φ1 = −0.9404 and θ1 = 0.8262.The
forecast renders it better to wait, because the fourth and fifth prices are 17.98458
and 18.01647, extremely similar to the actual value.

• ARIMA with the logarithms of the prices.

It selects an ARIMA(1,1,1) with the weights φ1 = −0.9434 and φ2 = 0.8360.The
forecast considers it better to wait, because the forecast of the log returns are
positive and negative.

• ARMA-GARCH of the log returns

We have to compute the model ARMA(1,1) + GARCH(1,1). The p-value of α1 is
not lower than 0.05, so the final model is:
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Pt = −0.952Pt−1 + 0.836εt−1

σ2
t = 1.668× 10−5 + 0.8722σ2

t−1

The forecast considers it better to wait, because the meanForecast of the log returns
are positive and negative.

If we do not operate, the benefit is zero.

4.3.3 Repsol with the last 180 prices

The data used appears in the folder Repsol with the name LTRepsol.txt or LTRepsol.xlsx.

Using Technical Analysis

• Trend.c considers the trend as lateral.

• Canal.c considers the trend as lateral.

• Buscarhch.c does not find any possible HS.

• Buscarhchinvertit.c finds a possible inverted HS on times 32, 59, 93, 125 and 136.
But the head is not low enough. The triplebottom.c considers it like a triple bottom,
but on the past.

• Buscartriangles.c finds a possible triangle in the past.

• Media.c with n=90 and m=180 considers it advisable to buy until 01/06/2015, then
we do not have to operate for two days, and finally sell the stock, regardless of all
future prices.

• Ponderatmedia.c with n=90 and m=180 says that we have to buy the three first
future prices but then from 29/05/2015 until the end we have to sell.

• Mediasmo.c says that we do not have to operate.

The decision is to buy from the first price until 22/05/2015 and then sell after 03/06/2015.
The benefit of the first operation is 1.1123%, while the benefit of the second is 7.4541%.

Using Time Series

• ARIMA with prices.

It is an ARIMA(0,1,0) with drift, the forecast of the future prices is that they will
decrease.

• ARIMA with the logarithms of the prices.

It is an ARIMA(0,1,0) with non-zero mean. The forecast of the future prices is that
they will decrease.

• ARCH with the prices.

We select an ARCH(4), but all the p-values are lower than 0.05, so we do not have
to take into consideration an ARCH model.

The decision is to sell, the difference is 1.84 and the benefit is 10.23%.
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4.4 IBEX35

The IBEX35 data goes from 02/01/1996 to 19/06/2015.

4.4.1 IBEX35 with the last 20 prices

The data used is in the folder IBEX35 with the name CTIBEX35.txt or CTIBEX35.xlsx.

Using Technical Analysis

• Trend.c finds an ascendant trend and the trend is broken on 25/05/2015 and totally
broken on 26/05/2015, then we have to sell.

• Canal.c finds a canal, but not parallel enough.

• Buscarhch.c finds a possible HS on times 0, 1, 4, 9 and 19. But the shoulders are
not at the same height. It is not a Triple Top either.

• Buscarhchinvertit.c finds a possible inverted HS, on times 1, 4, 9, 13 and 17. But
the shoulders are not at the same height and it is not a Triple Bottom.

• Buscartriangles.c does not find any triangle.

• Media.c with n=10 and m=20 determines that we have to buy for the next three
prices and then sell for the next 2.

• Ponderatmedia.c with n=10 and m=20 determines that we have to sell always.

• Mediasmo.c recommends that we do not have to operate for all prices except for the
second, whenn we have to buy.

The risk averse decision is to sell after 25/05/2015. The difference between that price
and the fifth price is -82 points, so the benefit was 0.7242% . A slightly more risky decision
is to buy in the first moment until 22/05/2015 and then sell for the next two periods.
The difference of the first operation was 56.5 points so the benefit was 0.4914%. The
difference of the second operation is 82 points, so the benefit was 0.7242%.

Using Time Series

• ARIMA with prices.

It is an ARIMA(0,0,1) with θ1 = 0.5817 and constant 11390.4145. The forecast
prices for the fourth and the fifth are 11390.41 and 11390.41, so we have to sell.
Because the forecast prices are above the actual price.

• ARIMA with the logarithms of the prices.

It is an ARIMA(0,0,1) with θ1 = 0.5776 and constant 9.3405. The forecast prices
for the fourth and the fifth are 11389.68 and 11389.68, so we have to sell, because
the forecast prices are above the actual price.
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• ARMA-GARCH of the log returns

We have to compute the model ARMA(0,1)+GARCH(1,1). But the p-values are
not the expected, so we can not introduce GARCH errors.

The decision is to sell. The difference is 257 points, so the benefit is 2.2352%.

4.4.2 IBEX35 with the last 60 prices

The data used is in the folder IBEX35 with the name MTIBEX35.txt or MTIBEX35.xlsx.

Using Technical Analysis

• Trend.c finds an ascendant trend, and future prices does not break it.

• Canal.c does not find any canal.

• Buscarhch.c finds a possible HS on times 6, 12, 34, 49 and 59. But when we introduce
the data into hch.c, it says that the shoulders are not equally high. The problem is
the same as in tripletops.c, so we do not have a triple top.

• buscarhchinvertit.c does not find any inverted HCH.

• Buscartriangles.c does not find any triangle.

• Media.c with n=30 and m=60 determines we have to buy beginning at the first
price up to 22/05/2015, and then sell from 25/05/2015 until 26/05/2015, after that
one buying period, and finally for all the next prices we have to sell.

• Ponderatmedia.c with n=30 and m=60 urges us to sell for all future prices we come
across.

• Mediasmo.c determines that we do not have to operate for any time.

The decision is to sell only in 25/05/2015 and after 28/05/2015. The first operation
difference is -56.5 points, with a benefit of 0.4990%. The difference of the second operation
is -438.5 points. It is a sale, so the benefit is 3.8479%.

Using Time Series

• ARIMA with prices.

It is an ARIMA(0,1,0) with drift. The forecast is that the prices will increase.

• ARIMA with the logarithms of the prices.

It is an ARIMA(0,1,0), so we do not have to operate.

• ARCH with the prices.

The p-values are not correct.

We do not operate. Therefore, the benefit is zero.
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4.4.3 IBEX35 with the last 180 prices

The data used is the folder IBEX35 with the name LTIBEX35.txt or LTIBEX35.xlsx.

Using Technical Analysis

• Trend.c says that we have an ascendant trend, and it is not broken for any future
prices.

• Canal.c does not find any canal.

• Buscarhch.c finds a possible HS. But the shoulders are not at the same height. So,
it is not a triple top either.

• Buscarhchinvertit.c finds a possible inverted HS, but applicable in the past.

• Buscartriangles.c does not find any possible triangle.

• Media.c with n=90 and m=180 urges us to to buy in all future prices.

• Ponderatmedia.c with n=90 and m=180 deems it advisable to buy only for the first
two prices. Then, we do not have to operate.

• Mediasmo.c assures that we do not have to operate.

The decision is to buy for the first two prices. The difference is 76.4 points, the benefit
we obtain is 0.6644%.

Using Time Series

• ARIMA with prices.

It is an ARIMA(0,1,0), with drift. The forecast of the future prices is that they will
increase.

• ARIMA with the logarithms of the prices.

It is an ARIMA(0,1,0) with non-zero mean, and the forecast of the future prices is
that they will increase.

• ARCH of the log returns

We have to adjust an ARCH(4). This gives us the following ARCH(4) model

Pt = εt

σ2
t = 7.602× 10−4 + 0.453εt−3

The meanForecast is always positive, so we have to buy.

The final decision is to buy. The difference is -129.5, with a loss of 1.126%.
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4.5 Euro/Dollar

The Euro/Dollar data goes from 04/01/1999 to 19/06/2015.

4.5.1 Euro/Dollar with the last 20 prices

The data used is in the folder EURODOLLAR with the name CTEURODOLLAR.txt or
CTEURODOLLAR.xlsx.

Using Technical Analysis

• Trend.c considers the trend as lateral.

• Canal.c considers the trend as lateral.

• Buscarhch.c does not find any possible HS.

• Buscarhchinvertit.c does not find any possible inverted HS.

• Buscartriangles.c does not find any triangle.

• Media.c with n=10 and m=20 deems it prudent to sell in all future prices.

• Ponderatmedia.c with n=10 and m=20 says that we have to sell for all future prices.

• Mediasmo.c says that we do not have to operate.

The decision is to sell for all future prices. The difference between the first price and
the fifth price is -0.02443, so the benefit was 2.1912%.

Using Time Series

• ARIMA with prices.

It is an ARIMA(0,1,1) with θ1 = 0.5715. The forecast is 1.109839, so we have to
sell.

• ARIMA with the logarithms of the prices.

It is an ARIMA(0,1,1) with θ1 = 0.5715. The forecast is 1.109823, so we have to
sell.

• ARMA-GARCH of the log returns

The test of Ljung-Box is negative, so we do not have GARCH errors.

The decision is to always sell, so the benefit is the same as in Technical Analysis.

4.5.2 Euro/Dollar with the last 60 prices

The data used is in the folder EURODOLLAR with the name MTEURODOLLAR.txt or
MTEURODOLLAR.xlsx.
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Using Technical Analysis

• Trend.c finds a descendent trend, but it is almost lateral.

• Canal.c does not find a canal.

• Buscarhch.c does not find any possible HS.

• buscarhchinvertit.c finds a possible inverted HS, but it is in the past.

• Buscartriangles.c does not find any triangle.

• Media.c with n=30 and m=60 says we have to buy for the first two prices but then
we do not operate during two prices. After, we have to sell two times.

• Ponderatmedia.c with n=30 and m=60 urges us to sell for always.

• Mediasmo.c says that we do not have to operate.

The decision is to sell after 25/05/2015. The difference between that price and the
fifteenth price is 0.03507, so the loss was 3.1947%.

Using Time Series

• ARIMA with prices.

It is an ARIMA(0,1,0), so we do not have to operate.

• ARIMA with the logarithms of the prices.

It is an ARIMA(0,1,0), so we do not have to operate.

• ARCH with the prices.

The p-values are lower than 0.05.

The decision is not to operate. The benefit is zero.

4.5.3 Euro/Dollar with the last 180 prices

The data used is in the folder EURODOLLAR with the name LTEURODOLLAR.txt or
LTEURODOLLAR.xlsx.

Using Technical Analysis

• Trend.c considers the trend as lateral.

• Canal.c considers the trend as lateral.

• Buscarhch.c does not find any possible HS.

• Buscarhchinvertit.c finds a possible inverted HS but the head is not high enough.
It is a triple bottom, but it is applicable on the past.
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• Buscartriangles.c finds a possible triangle on times 1, 132, 73 and 153. But when
we introduce the future prices we can not apply the triangle.

• Media.c with n=90 and m=180 says that we have to sell for the first eight future
prices, then we do not have to operate.

• Ponderatmedia.c with n=90 and m=180 says that we have to sell for the first nine
future prices, then we do not have to operate.

• Mediasmo.c says it is preferable not to operate.

The decision is to sell until the eight period. The difference between the first price
and the eight price is 0.020345, so the loss was 1.8248%.

Using Time Series

• ARIMA with prices.

It is an ARIMA(0,1,1) with drift, the forecast of the future prices is a decay. So we
have to sell.

• ARIMA with the logarithms of the prices.

It is an ARIMA(0,1,0).

• ARCH of the log returns.

The model that we have to adjust is ARCH(5). This gives us the following model

Pt = εt

σ2
t = 2.347× 10−5 + 0.3268ε2t−5

The forecast of the future prices is a decay. So we have to sell.

The decision is to sell, the loss is the same as in Technical Analysis.

4.6 Gold

The Gold data goes from 19/04/2002 to 19/06/2015.

4.6.1 Gold with the last 20 prices

The data used is in the folder OR with the name CTOR.txt or CTOR.xlsx.

Using Technical Analysis

• Trend.c finds an ascendant trend. When we introduce the 4th next price, it says
that we have to sell because the trend is totally broken.

• Buscarhch.c does not find any possible HS.
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• Buscarhchinvertit.c finds a possible inverted HS, but the head is not high enough.
It is not a Triple Bottom either.

• Buscartriangles.c does not find any triangle.

• Media.c with n=10 and m=20 asserts that we have to buy the first two future prices,
then we do not have to operate for one period. Finally we sell for the rest periods.

• Ponderatmedia.c with n=10 and m=20 says that we have to sell in all future prices.

• Mediasmo.c says that we do not have to operate.

The decision is to sell after 22/05/2015, the difference is 18 points. The benefit is
1.495%.

Using Time Series

• ARIMA with prices.

It is an ARIMA(1,0,0) with non-zero mean, the weight is φ1 = 0.5559 and the
constant is 1198.7342. The fourth and fifth forecast future prices are 1199.523 and
1199.173, so we should sell.

• ARIMA with the logarithms of the prices.

It is an ARIMA(1,0,0) with non-zero mean, the weight is φ1 = 0.5527 and the con-
stant is 7.0889. The fourth and fifth forecast future prices are 1199.4 and 1199.051,
so we should sell.

• ARMA-GARCH of the log returns.

The p-values are not lower than 0.05.

The decision is to sell. So the difference is 21 points. The benefit represents 1.739%.

4.6.2 Gold with the last 60 prices

The data used is in the folder OR with the name MTOR.txt or MTOR.xlsx.

Using Technical Analysis

• Trend.c consider a lateral trend.

• Canal.c does not find a canal.

• Buscarhch.c does not find any possible HS.

• buscarhchinvertit.c finds a possible inverted HS, but the shoulders are not at the
same height. So, we do not have a triple bottom too.

• Buscartriangles.c does not find any triangle.

• Media.c with n=30 and m=60 says we have to buy for the first three prices but then
we have to sell for all the future prices.
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• Ponderatmedia.c with n=30 and m=60 says that we have to sell for all future prices.

• Mediasmo.c says that we do not have to operate.

The decision is to sell after 22/05/2015, the difference is 18 points. The benefit is
1.495%.

Using Time Series

• ARIMA with prices.

It is an ARIMA(1,0,0) with non-zero mean, the weight is φ1 = 0.7890 and the
constant is 1195.0332. The forecast of future prices is that will decay, so we have
to sell. The first forecasts are 1204.475, 1202.483, 1200.911, 1199.671, 1198.692,
1197.920, 1197.311 and 1196.831.

• ARIMA with the logarithms of the prices.

It is an ARIMA(1,0,0) with non-zero mean, the weight is φ1 = 0.7913 and the
constant is 7.0858. The forecast of future prices is that they will decay, so we have
to sell. For instance, the first four are 1204.468, 1202.469, 1200.887 and 1199.639.

• ARMA-GARCH of the log returns.

The p-value of the Ljung-Box test is 0.8537, so we reject GARCH errors.

The decision is to sell. The difference is 21 points, and the benefit is 1.739%.

4.6.3 Gold with the last 180 prices

The data used is in the folder OR with the name LTOR.txt or LTOR.xlsx.

Using Technical Analysis

• Trend.c says that we have a descendent trend.

• Canal.c does not find any canal.

• Buscarhch.c finds a possible HS but the shoulders are not at the same height. So,
we do not have a triple top too.

• Buscarhchinvertit.c finds a possible inverted HS but its application is exclusive for
past times.

• Buscartriangles.c finds a possible triangle on times 103,57, 178 and 136. But with
the future prices we can not apply the triangle.

• Media.c with n=90 and m=180 determines that we have to sell for all the prices
except the last two prices of the data.

• Ponderatmedia.c with n=90 and m=180 urges us to sell always.

• Mediasmo.c tells us that we do not have to operate.

The decision is to sell for all the prices except the last two. The difference is 31 points.
The benefit is 2.568%.
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Using Time Series

• ARIMA with prices.

It is an ARIMA(0,1,0) with drift. The future prices will decrease, so we have to sell.

• ARIMA with the logarithms of the prices.

It is an ARIMA(0,1,0) with non-zero mean. The decision is to sell.

• ARCH with prices.

The PACF determines that we do not have an ARCH model.

The decision is to sell, the difference is 7 points and the benefit is 0.58%.

4.7 Analysis of the practical work

We analyze the results of this part using the ratio benefit/non-operate/loss.

• With Repsol data we obtain 7/1/0, with IBEX35 data we obtain 5/1/1, with Eu-
ro/Dollar data we obtain 2/1/3 and finally with Gold data we obtain 6/0/0.

• With the last 20 prices we obtain 10/0/0, with the last 60 prices we obtain 5/3/1
and with the last 180 prices we obtain 5/0/3.

• Using Technical Analysis we obtain 13/0/2 and using Time Series we obtain 7/3/2.

With these ratios we can draw some conclusions.

The investment decisions based on the last 20 prices are totally profitable. Because we
always take the decision to operate and we always obtain benefits. Exactly the same
happens with Gold.

Excluding Euro/Dollar, all the ratios are lucrative.

The Technical Analysis investment decisions are more profitable than the ones using
Time Series. Time Series has more non-operate decisions than Technical Analysis. The
perception we have is that to generate Time Series operating decisions we have to be
more secure than with Technical Analysis.

The conclusion of this part is that we should take more consideration to Technical
Analysis decisions, and we also recommend to use, more than anything else, the only
last 20 prices.
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Chapter 5

Conclusions and Further Work

Throughout this work, we have studied two of the most used types of analysis of Financial
Markets. The first objective of my thesis was to make a rigorous study of both analysis.

In the part of Time Series we have focused on the properties, on how to estimate the
weights and how to adjust models using R. We started with stationary models. After
that, we moved forward and we studied the non-stationary models and we finished with
Time Series Analysis with the Auto-regressive Conditional Heteroscedastic Models.

The work of Technical Analysis has been much more complicated than what we ex-
pected. First we work on the definitions and the patterns, one complication was to
determine how to approach the patterns to a mathematical vision. Then, I focused on
the development of 17 computer programs, which turned out to be much more compli-
cated than what it may seem at first sight. The purpose was to make Technical Analysis
decisions something objective, leaving aside subjectivity.

The practical part was really surprising, the results were really unexpected. The deci-
sions using both types of analysis with Repsol, IBEX35 and Gold prices were spectacular.
They all produced great benefits, with the exception of the three non-operate decisions
(out of twenty-one) and one loss. So, we have benefits in practically all the operate deci-
sions. The study of the Euro/Dollar exchange has thrown the results we were expecting
on the beginning, benefits and losses for equal. My conclusion is that, probably, the
bad results with the Euro/Dollar exchange are caused by the actual unsteadiness of the
Euro, due to the possible euro exit of Greece and the impact of this hypothetical event
to European currency.

The second objective of my thesis was to choose the analysis that I consider to be
more accurate. This decision is a bit subjective, because the practical part’s results are
satisfactory for both types of analysis.

Firstly I would like to comment that Technical Analysis has an interesting self-fulfilling
prophecy. Part of the patterns studied do not have any logic, but they are eventually
accomplished day after day. I think that these patterns are met because a lot of investors
believe in them and make use of them. For example, if all the people link together a HS
with a decay on the prices, when this patterns come about in practice, all the investors
that believe in HS pattern will make the decision of selling. Those decisions will increase
the volume and decrease the price.

Despite what it may seem, both types of analysis are based on past prices, errors,
volatility, among others, in order to forecast future prices. So, both types could be
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considered to be blood-related and opposed Fundamental Analysis.

In regard to Technical Analysis, it is more prone to consider changes on trend and to
execute investment orders than Time Series. This could be seen as an advantage or a
disadvantage, depending on the risk averse of the investor. So, the decision depends on
the risk averse of what we are supposed to be. For example, if we work for an investment
fund, we are more likely to be liable for all of our investing decisions.

Although results of Technical Analysis are better that the ones using Time Series,
the conclusion is that we may use both types of analysis to make decisions, because both
generate good results in practice. If we are supposed to be risk averse, we probably should
operate if the investment decisions are the same for both types of analysis. If we take into
consideration a slightly more risky decision, we should only consider the decisions using
Technical Analysis.

We would like to conclude this thesis by discussing some possible lines of future work.

My intention is to write a complete program for Technical Analysis. The idea would be
to introduce the data into this program, and then, it can search for all possible patterns,
both the ones studied in this thesis and the ones that we have not contemplated, and it
selects the right investment decision. The complication of the program would certainly
be the decision of the way to operate. This is because we often have opposed decisions.

Another path of future work would be to study the correlations between different
shares of a Capital Market using Technical Analysis. For example, whether a buy signal
in Repsol using Technical Analysis echoes in the Technical Analysis of Telefonica, or it
does not.

Finally, I would like to study a way to join Technical Analysis and Time Series. The
idea would be to introduce the patterns studied to Time Series. It would be incredible to
create a new type of analysis based on both.
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