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CHAPTER THREE 

Experimental Setup and Signal 

Processing Strategies. 

3.1.  Introduction 

A discussion about the current status of data analysis of IMS was done in chapter 

one, and it was found that univariate strategies are deeply used for IMS data analysis. 

However, new applications introduce higher complexity in IMS data and the necessity 

to extend the analysis to multivariate strategies. Moreover, IMS can have non-linear 

behavior due to both changes of concentration of the analyte of interest and presence 

of other substances that impose additional limitations on the use of univariate 

techniques.  

Since the aim of this thesis is to explore new data analysis strategies for tackling 

complex data in bio related applications measured with IMS, a set of dataset were 

created for this purposes. The results of this thesis are split in two main parts, 

qualitative analysis and quantitative analysis. For the quantitative analysis two set of 

synthetic data were generated one of them using pure compounds for testing non-

linear behavior at higher concentrations, and the second one was a mixture of two 

amines for evaluating the quantitative effect of them, additional details will be given 

below.  Moreover, feasible studies were performed for testing IMS as potential device 

for on-line measurements. These studies were focused in quality control in wine and 

clinical essay. For the qualitative analysis, two non-target dataset were obtained by 

analyzing real samples. The goal of the first dataset were to build a discriminative 

model for discriminate wine samples of different denomination of origin. The second 

one was a preliminary clinical study to classify between rats with sepsis from control 

rats through the measurement of volatiles in the rats’ breath. In addition, pre-

processing strategies were evaluated for each spectrometer in order to enhance 

signal to noise ratio.  

In summary, this chapter explains the experimental setup, specific instrumentation 

and the strategies for the data analysis of the studies that were carried out during this 

thesis. The first part explains the ion mobility spectrometers used in this thesis with 

their main advantages or disadvantages from experimental and data analysis point of 

view. Then, each scenario is explained in detail together with the methods and signal 

processing strategies. Moreover, block diagram is presented in order to make clear 

the signal processing used in each scenario. 
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3.2. Commercial IMS used in the present thesis. 

Three different commercial IMS instruments have been used in the present thesis. 

Their main features are summarized in Table 3.1 and Table 3.1. As it has been said 

in chapter one, the performance of the instruments in presence of some analytes 

depends on several key characteristics such as ionization source, sampling 

introduction, drift tube temperature, dopant, etc. These three commercial 

spectrometers were used taking into account theirs main key characteristics linked to 

specific application. Thus, the spectrometer was selected to get the best performance 

of the data.  

IMS GDA2 
G. A. S. 

UV-IMS 
VG-Test 

Type Handheld Portable Desktop 

Ion source 
63Ni 

100 MBq 

UV Lamp 

10.6 eV 
Corona Discharge 

Standard inlet Gas or vapors Gas or vapors Swab 

Drift Tube 

temperature (ºC) 
40-45 Ambient 90 

Dopant Water chemistry -None Triethylphosphate 

Standard flow of 

sample (mL min-1) 
400 50-100 240 + pump suction 

Drift Gas flow 

(mL min-1) 
2100 150 200 

Shutter Grid Type 
Bradbury -

Nielson 

Bradbury -

Nielson 
Tyndall-Powell 

Opening Time 

(sec) 
200 500 200 

Drift Length (cm) 6.29 12 6.4 

Pressure (P) Ambient Ambient Ambient 

Inlet Type Membrane Open System Open System 

Electric field 

(V cm-1) 
289 320 280 

Peak resolution 

Eq. 1.8.(Spangler, 

2002) 

32 17 18 

Sampling rate 

(kHz) 
33 30 10 

Table 3.1  Comparison of the main operation parameters of the three IMS devices used in the 
present study. 

The operation of IMS was explained in chapter one, thereby a summary of its 

operation is following explained. The gas phase molecules are sampling into an 

ionization source, then an electrostatic gate allows the ions to travel at atmospheric 

pressure into the drift tube where a constant electric field accelerates them 

(approximately length 6cm). At the end of the drift tube ions become neutralized in the 

collector and an electric current is measured. In this manner, the time that the ions 
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need to reach the collector is measured, depending on the spectrometer the sampling 

frequency differs one to each other.  

 

The relevant differences between three spectrometers are ionization source, humidity 

membrane, drift tube temperature, and the fact of having or not a dopant. All of these 

factors might affect the qualitative and quantitative performance of the spectrometers. 

Despite of the fact that in the last four decades a huge variety of both commercial and 

handmade IMS has been developed using different ionization sources, drift tube 

designs, operating temperatures and ranging in size from pocket size to walk-in 

portals, only few direct comparisons of the performance of different instruments are 

available. Among of them, comparisons related to the effect of the ionization 

source(Borsdorf et al., 2005). 

 

The handheld GDA2 (Airsense, 2012), see Figure 3.1(a),  use a radioactive source 

which is based on a 100MBeq Ni63 isotope, that works in both positive and negative 

mode. That means this spectrometer provide two spectra of the same sample one 

related to positive ions and the other to the electronegative ions. The GDA2 also has 

a membrane to filter the humidity of the sample and prevent a bad performance of the 

IMS.  The drift tube has a temperature control to assure a constant temperature and 

therefore controlled operation conditions. Moreover, the ionization of this 

spectrometer is known as “water chemistry”. Hence, a wider branch of compounds 

can be measured above water proton affinity, but not alkanes, which are usually 

considered to be biomarkers of some diseases. Other characteristic is the 

compounds of this spectrometer has a competitive effect. Therefore, to be able to see 

a compound in presence of another one will depend on the proton affinity of them.  

 

The VG-Test (3QBD), see Figure 3.1(b), is a desktop IMS which operation is based 

on corona discharge. This IMS is mainly used for biomedical proposes thus a swab is 

coupled to the inlet port where the sample is introduced and heated. There is a 

temperature control for heating the drift tube and get controlled conditions. The VG-

Test allows adding a dopant for favor compounds with higher proton affinity than the 

proton affinity of the dopant. The IMS is set up with a dopant (Triethylphosphate) to 

become it selective to amines. A spectrum is taken every 0.63 seconds with a 

sampling rate of 10 kHz.  

 

The portable UV-IMS (GAS)), see Figure 3.1 (c), is a portable device which ionization 

source is based on UV of 10.6 eV with a constant electric field of 320 V cm–1. The drift 

tube works at ambient temperature and the drift gas flow at 100 ml min-1 of Nitrogen. 

The sampling rate of the IMS is 30 kHz. A spectrum is average of 32 consecutive 

scans. In principle, this spectrometer is able to measure a wide variety of molecules 

including alkanes. The fact of not having a temperature control might directly affect to 

cluster formation and the identification of compounds. Therefore it is necessary to 

have a controlled experiment in order to avoid any bad performance of the 

spectrometer. 
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(a) 

 
(b) 

 
(c) 

Figure 3.1  Spectrometers used in the current thesis. (a) The handheld GDA2 developed by 
Airsense, Germany (Airsense, 2012), (b) The portable UV-IMS developed by GAS Dortmund 
(GAS), (c) the desktop VG-Test developed by 3QBD, Israel (3QBD) 

The peak resolution, which in terms of applicability represents the separation between 

two peaks, differs between three spectrometers. The peak resolution was defined in 

chapter one by Eq. 1.8.(Spangler, 2002). This parameter is calculated using 

information from the drift time (td) and the full-width-at-half-height (FWHH) (wh) for the 

mobility peak. The peak resolution is a clue parameter for deconvolute overlapping 

peaks and in this thesis is used specially in MCR-LASSO algorithm (Pomareda et al., 

2010). In general, high peak resolution implies that overlapped peaks can be 

distinguished. In this sense, GDA has higher peak resolution than the other two 

spectrometers, therefore GDA in terms of overlapping peaks shows an important 

advantage between the other two spectrometers.  

It is important to consider that depending on the application, the fact of choosing one 

spectrometer or the other will be crucial for obtaining reliable results. In our case, 
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three spectrometers have been used taking into account their main characteristics 

related to application. For instance, VG-TEST was used for analyzing biogenic 

amines, GDA-2 was used for biomedical and wine applications, and UV-IMS was 

used for a non-target study for discrimination of wine. Moreover, additional studies 

have been carried out in order to compare IMS performances and main features.  

3.2.1. Methods for volatile generation. 

In order to achieve the objectives of this thesis, some synthetic experiments are 

needed. One of the aims of the synthetic experiments is to find the limit of detection of 

some compounds of interest. Therefore, the generation at very low and well 

controlled concentrations of different volatiles and mixtures is mandatory. Two 

sampling techniques was used to complete this challenge: the use of a volatile 

generator equipment and head space sampling.  

The volatile generator system (see Figure 3.2) used in this thesis was a commercial 

instrument developed by Owlstone (Owlstone, 2014), based on permeation tubes. 

The permeation tubes technology allow the generation of precise and repeatable low 

concentrations of volatiles. The calibration of the tubes is done through a gravimetric 

procedure. The tubes must be weighted and the mass loss is measured over time 

using a mass balance. All the procedure lasts several days and the permeation rate is 

calculated in ng/min. Once the permeation tubes are calibrated, the tubes can be 

used for further analysis, but the generation of low and stable concentrations need an 

incubation of the tubes in a very stable temperature and the use of a very controlled 

carrier gas flow. The volatile generator instrument helps to have controlled conditions 

of temperature and flow.  

 

Figure 3.2  The OVG calibration gas generator developed by Owlstone (Owlstone, 2014) together 
with IMS used in this present thesis 

The head space sampling is normally used for performing synthetic experiments 

closer to real scenarios. The sample is heated in order to evaporate the sample for 

obtaining the gas phase ions. There are some parameters that need to be set up 

such as temperature and the heating time. Many times to control these parameters 

are not easy, thus some errors must be expected during the experiment. However, 

when the raw sample is liquid or solid, head space sampling is a really good option. 

Moreover, depending on the application, other sampling methodologies have to be 

used and they are explained depending on the application further on in this chapter. 
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3.2.2. Comparative study of three IMS spectrometers 

During this thesis, a comparative study of the performance of three different IMS 

spectrometers was done. From this study a publication was realized and published 

(Karpas et al., 2013) and for more details refers to this paper.  

As far as I know, just few comparative IMS studies had been published before; 

among of them  the works of Borsdorf et al. should be highlighted (Borsdorf et al., 

2009, Borsdorf et al., 2005, Borsdorf and Rudolph, 2001) in which the gas phase ion-

chemistry of isomeric hydrocarbons (Borsdorf et al., 2005), terpenes (Borsdorf and 

Rudolph, 2001) and substituted toluene andaniline compounds (Borsdorf et al., 2009) 

was compared when a radioactive 63Ni, a corona discharge (CD) and a 

photoionization (PI) ion source was used. One of the most interesting works of 

Borsdorf is where he uses three similar RAID1  handheld IMS devices (Bruker, 

Germany). The different between the three devices is the ionization source. The work 

stands that the reduced mobility and relative abundance of the product ions differed 

significantly among these instruments (Borsdorf et al., 2009). A few other reports on 

the comparison of the performance of two types of IMS towards detection of odor 

signatures of smokeless gun powders (Joshi et al., 2009) and drugs (Su et al., 1998, 

Choi et al., 2010) were also published. In many cases vendors of IMS devices report 

the level of detection of their device for a given set of compounds (usually belonging 

to one of the above applications) allowing consumers to compare the instruments on 

the basis of the manufacturers' claims (Cottingham, 2003). 

The comparative study done during this thesis, was based on the analysis and 

comparison of three important biogenic amines: trimethylamine (TMA), putrescine 

(1,4-diaminobutane) and cadaverine (1,5-diminopentane). The sensitivity and limit of 

detection for the three amines were determined by continuous monitoring of a stream 

of air with a given concentration of the analyte. Ten different concentration with one 

replicate were measured and the maximum concentrations (“zero split” in the oven) of 

TMA (at 70ºC), putrescine (at 90ºC) and cadaverine (at 90ºC) in a carrier flow either 

400 mL min-1 of air were, 11.15, 16.21 and 8.49 ppm (by weight), respectively. 

Moreover, measurements of headspace vapors of TMA were also tested in order to 

analyze the vapors emanating from a given quantity of the biogenic amine deposited 

in a vial. The carrier flow through the headspace vial was 400 mL min-1 for the GDA2 

and VG-Test and 100 mL min-1 for the G.A.S. UV instrument. In the VG-Test the 

analyte vapors were somewhat further diluted by the instrument's own carrier flow of 

240 mL min-1. In addition, the dopant used for each spectrometer in this study is also 

different.  Toluene was used as a dopant in the UV-IMS instrument, the VG-Test 

contained a permeation tube with triethylphosphate (TEP) as a dopant, while the 

GDA2 did not contain a dopant and thus the ionization processes are based on so 

called "water chemistry". Moreover, the drift tube temperature in the GDA2 was 40-

45ºC, in the VG-Test was 90ºC while the G.A.S. operated at ambient temperature 

(about 26ºC).The data analysis of this work is explained in chapter four and five.  

The results of this work are relevant in terms of transferability of spectrometers 

working at different conditions. The most relevant results will be presented below, for 

more detail refers to original paper (Karpas et al., 2013). The results encompass the 

raw spectra of each spectrometer, the analysis of the reduced mobilities of each 

amine and the calibration sensitivity. 
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The raw spectra of each amine at different concentrations for GDA2, UV-IMS and 

VG-Test are shown in Figure 3.3 where the peak of the dopant is pointed out. It can 

be notice the differences between the spectra produced by the different the 

spectrometers and note how the noise has a different impact on each measurement. 

Indeed, while UV-IMS is affected by low frequency environmental interferences which 

can be a serious problem at lower concentrations, the other spectrometers are mainly 

affected by high frequencies noise. Also, it can be seen the different peaks that can 

be obtained using the spectrometers, i.e. GDA2 and VG-Test provide narrower peaks 

than UV-IMS. However, the peak resolution of GDA2 is bigger than the others (see 

Table 3.1 ), this means the capability of distinguish overlapped peaks. The VG-Test 

and UV-IMS has similar peak resolution, but VG-Test use a dopant that favor amines 

and rejecting compounds of less proton affinity. That is the reason why the spectra of 

UV-IMS shows peaks more overlapped than the others.  

Signal processing steps were applied to each spectrum in order to enhance the signal 

to noise ratio (SNR) for each spectrometer. The signal to noise ratio (SNR) improved 

due to the pre-processing from 8 to 16 dB for the VG-Test, from 7 to 12 dB for the 

GAS and from 10 to 42 dB for the GDA2. The methodology used for obtaining these 

results is explained in detail in chapter four. 

 
(a) 
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(b) 

 
(c) 

Figure 3.3 Raw spectra from three amines (a) GDA2 (Ni-IMS) Airsense (b) UV-IMS (G.A.S 
Durtmund) and (c) VG-TEST (3QBD, Israel) 
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The reduced mobility values of the ions formed in TMA, putrescine and cadaverine 

were determined relative to that of 2,4-lutidine (Eiceman et al., 2003) and are shown 

in Table 3.2. The protonated monomer molecule was seen in all spectrometers; 

however the reduced mobility values differ significantly in some cases. The reduced 

mobility value for the putrescine protonated monomer measured with the GDA2 

instrument (1.94 cm2V-1s-1) differed significantly from the value obtained with UV-IMS 

(1.99 cm2V-1s-1) and the VG-Test device in the present study (2.02 cm2V-1s-1). 

Nonetheless, in studies carried out with the VG-Test at 3QBD measuring putrescine 

or cadaverine vapors emanating from a sample that was placed on a cotton swab, an 

additional peak for the monomers with reduced mobility values of 1.93 and 1.84 cm2V-

1s-1, respectively, with slightly longer drift times were observed and the relative 

intensity of the two species changed during the measurement probably due to 

variations in the operational conditions (Karpas et al., 2013) . Note that for a given 

analyte in a given instrument, the drift time and reduced mobility did not change with 

concentration or with the sample introduction method.  

The differences observed in the reduced mobility values cannot be attributable to 

uncertainties in drift time measurements and mobility scale calibrations. The 

differences might be due to formation of different ion species in each IMS that has 

been operating at different conditions (ion source, temperature, moisture, reactant ion 

chemistry and structural features of the drift tube). Thus, discrepancies in reduced 

mobility values that have been reported for different IMS devices are not necessarily 

the result of erroneous measurements but rather a natural outcome of variations in 

ionic species formed under different experimental conditions. This may have major 

repercussions on the transferability of reduced mobility values between different 

instruments and even for the same instrument operated under different conditions. 

This also could be attributed to variation in the degree of clustering that is affected by 

the different operating temperatures of the three devices and to the nature and 

characteristics of the core ion. 

 

 

Compound 

 

Temperature 

Ion Species 

Reduced Mobilities 

GDA2 

 

44ºC 

G. A. S. 

 

26ºC 

VG-Test 

 

90ºC 

2,4-Lutidine (LUT)H+ 1.90 1.90 1.90 

TMA (TMA)H+ 2.22 2.13 2.10 

(TMA)2H+ 1.78 - - 

Putrescine (PUT)H+ 1.94 1.99 2.02 

(PUT)2H+ 1.46 - - 

Cadaverine (CAD)H+ 1.81 1.82 1.87 

(CAD)2H+ 1.36 - - 

Mixed (CAD)(PUT)H+ 1.41 - - 
Table 3.2 The ion species observed in TMA, putrescine (PUT) and Cadaverine(CAD) and their 
reduced mobility values (cm2V-1s-1) calculated relative to 2,4-lutidine(LUT) 
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There have been other studies regarding different product ions that can be found in 

different IMS operating with identical parameters except the ion source used 

(Borsdorf et al., 2009). Quantitative measurements to determine the limit of detection 

were not reported in that study (Borsdorf and Rudolph, 2001). From these results can 

be concluded that IMS needs to be calibrated before performing any experiment; 

however the current database of reduced mobility can serve only as a guideline for 

identification of ion species. 

Since the main objective of this study is to determine meaningful differences between 

different commercial spectrometers working at different conditions, it is necessary to 

perform accurate spectra analysis. Therefore, multivariate signal processing was 

carried out for extracting significant information and performing a proper analysis of 

the final results.  

 

The quantitative response of the IMS was performed using multivariate strategies. 

Multivariate strategies, in contrast with univariate methodologies, allow evaluating the 

overall spectra and getting information regarding the evolution of the ions species 

present in the samples. Although multivariate strategies are deeper explained in 

chapter five, a brief summary is presented below.  

 

The IMS spectra needs to be preprocessed in order to enhance the signal to noise 

ratio (see chapter four). The determination of the pure components in the sample is 

necessary for a good performance of the quantification of IMS measurements. 

Multivariate curve resolution (MCR) has been used as a multivariate solution for this 

task, specifically MCR-Lasso (Pomareda et al., 2010) was implemented. MCR-Lasso 

is a hard source technique, where Gaussian Models are imposed for building the final 

model. This means that noise is quite to be modelled by a Gaussian and therefore 

only the most relevant peaks are shaped. Then, a calibration model was built for 

analyzing the performance of the three spectrometers.  

 

The final performance of the calibration model for cadaverine, putrescine and TMA is 

summarized in Table 3.3.  It can be seen that the sensitive of the calibration model do 

not vary from spectrometer to spectrometer and is closer to one, but the root mean 

square error of cross validation (RMSECV) changes from both spectrometer and 

biogenic amine. The RMSECV was evaluated leaving samples out during the model 

construction. This might be due to either the noise present in the sample or the 

sensitivity or selectivity of the spectrometer to the biogenic amine.  
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Biogenic 

Amine 

Sample 

Type 
Calculation 

VG-Test GDA2 G.A.S 

RMSECV* R2 RMSECV R2 RMSECV R2 

TMA 

Air (ppm) 

MCR + 

Univariate 

Calibration 

0.1 0.95 1.6 0.91 0.2 0.88 

Headspace 

(µg) 

MCR + 

poly-PLS 
0.6 0.94 1.1 0.99 1.1 0.92 

Putrescine 

Air (ppm) 

MCR + 

Univariate 

Calibration 

0.3 0.96 0.1 0.95 0.7 0.96 

Cadaverine 

Air (ppm) 

MCR + 

Univariate 

Calibration 

0.2 0.97 0.09 0.94 0.1 0.97 

Table 3.3 The dependence of the response of the VG-Test, GDA2 and UV-IMS on the 
concentration of trimethylamine, putrescine and cadaverine.  * Root mean square error of cross 

validation. 

 

 

The results of the calibration model of TMA of each spectrometer is shown in Figure 

3.4. From this results, it is clear to note that some spectrometers has more variability 

than the others, thus the LOD is affected too. This variability might affect the 

performance of the spectrometers and surely will be one criteria to be followed when 

a spectrometer needs to be chosen. This variability can be due to either the noise or 

the non-linear behavior of the spectrometer. The results might be better if non-linear 

techniques are used. Note that the RMSECV is less than 1 ppm and in the best case 

less than 100 ppb. However, this difference are not really significant as it can be seen 

in Table 3.4. 
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(a) 

 
(b) 

 
(c) 

Figure 3.4   Calibration model of TMA for each spectrometer. (a) GDA, (b) UV-IMS and (c) VG-Test. 

On the other hand, the response of the three IMS devices to TMA vapors in a 

headspace vial was similar in principle though different in detail. This is clear seen in 

Figure 3.5 (a) that shows the TMA and reactant ion peak in the VG-Test as function of 

time. First, a rapid increase within a few seconds in the intensity of the analyte signal, 

concomitant with the decrease in the reactant ion peak and then a gradual decrease 

in the analyte signal and increase in the reactant ion peak as the headspace vapors 

begin to clear out. These changes are due to the fact that the flow of the carrier 

through the headspace vial dilutes the analyte vapors and the rate of dilution depends 

on the flow and volume of the vial. 
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(a) 

 

(b) 

 
(c) 

Figure 3.5 The signal intensity of the analyte (TMA) and reactant ion (TEP) peak in headspace vial 
as a function of time. (b) The theoretical (with pefect mixing) dilution of the TMA headspace 

analyte vapor for a carrier flow  of 400 ml min-1 (6.67 ml s-1) and a 20 ml vial volume for VG-Test. 
(c) Final calibration model using poly-PLS. The predicted concentration vs Real concentration in 

which the final model have a 3 latent variables and a polynomial of order 2. 

Theoretically, with perfect mixture, a carrier flow of 400 ml min-1 (6.67 ml s-1) with a 

20 ml vial volume should dilute the analyte vapors as shown in Figure 3.5 (b). For the 

VG-Test the graph was adjusted to allow for the 5 seconds delay until the maximum 

signal intensity of the analyte is obtained. Evidently, the clearing time is longer due to 

imperfect mixing and transport of analyte vapors from the sample vial into the drift 

tube. In Figure 3.5 (c) is shown the final model for TMA headspace vapors measured 

in VG-Test after applying MCR and poly-PLS which number of latent variables and 

polynomial order were set up by cross validation. The fact of using poly-PLS was due 

to the non-linear data that was obtained for analyzing head-space samples. In this 

case, the latent variables were selected by 3 and the order of the polynomial was 2. 

The final calibration results and limit of detection calculated according it was 

explained in methodology part are shown in Table 3.3 and Table 3.4. 
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Compound Sample type VG-Test GDA2 G.A.S 

TMA Vapor in air (ppm) 0.1±0.1 1.5±0.1 0.5±0.2 

Headspace vapors (µg) 0.9±0.6 1.9±1.2 0.7±1.1 

Putrescine Vapor in air (ppm) 0.5±0.3 0.7±0.1 0.7±0.7 

Cadaverine Vapor in air (ppm) 0.4±0.2 0.2±0.1 0.4±0.1 

Table 3.4 The limit of detection calculated on the basis of MCR-LASSO for vapors of 
trimethylamine, putrescine and cadaverine in air for the GDA2, GAS and VG-Test ion mobility 
spectrometers.  Also shown is the limit of detection for TMA in headspace vapors emanate 

Conclusions and important remarks 

The LOD showed some dependence on the analyte and on the type of IMS device 

used, but the range between the lowest LOD (0.1 ppm of TMA vapor with the VG-

Test) and highest LOD (1.6 ppm of TMA with the GDA) was quite narrow.  The LOD 

for the diamines varied between 0.2 ppm for cadaverine with the GDA to 0.7 ppm for 

putrescine with the GAS instrument.  The LOD for TMA deposited in a headspace vial 

ranged from 0.7 to 1.9 g for the GAS and GDA, respectively. The fact that the 

performance of the three devices was quite similar is really surprising considering that 

they differ so much from each other in their operating temperature, ionization source, 

dopant chemistry and drift tube design.   

It is well known that the ultimate constraint for limit of detection measurements is the 

noise level (and signal to noise ratio). For this reason noise filtering and signal 

enhancement (as provided by MCR-LASSO) are key elements for improving the LOD 

performance for different analytical instruments. In the present study, it should be 

noted that there were differences in the appearance of mobility spectra and response 

characteristics of the three instruments. The GAS spectra had the best SNR but this 

was offset by the lower reproducibility of the device for a given concentration of the 

analyte.  The LOD measurements with the GDA suffered from the long stabilization 

and clearance times between samples that affected the determination of the blank 

levels. 

The calibration curves with raw spectra or noise filtered spectra can lead to very 

different results. Correct pre-processing of spectra and applying the appropriate 

multivariate signal processing is essential before establishing an appropriate 

comparison, since this study shows that different instruments have different noise 

levels. Those differences may be partially due to different conditions regarding 

grounding, shielding and cabling and obviously different electronic filtering and 

amplification signal chains in the instrument electronics. We believe that proper digital 

filtering can recover the inherent noise limits of the different IMS technologies. 

Surprisingly, the three devices showed quite similar limits of detection for the three 

analytes although they differ so much in their operating temperature, ionization 

source, and dopant chemistry and drift tube design. Considering the uncertainty in the 

LOD determinations there appears to be almost no statistically significant difference 
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between these three instruments. This finding may have general implications as to 

the possible limit of detection that can be achieved with classic IMS drift tubes 

(without pre-concentration or separation). 

3.3.  Data set used in this thesis: Motivation, work scenarios and 

signal processing methodologies. 

From the last section (Section 3.2) it was seen that studies performed in different 

commercial IMS can be comprable and are likely to provide similar results. 

Nevertheless, it is clear that IMS needs to be often calibrated before performing any 

experiment. Another important issue that was treated in the last section was the need 

of using a proper multivariate signal analysis, in order to get the most relevant 

information.  

The thesis aims to introduce strategies for the analysis of IMS spectra. Furthermore, 

the novel bio-related applications that have been faced by the IMS technologies in the 

last years have also brought new issues to be solved in terms of IMS signal 

processing. The complexity and high dimensionality of data provided by bio-related 

scenarios makes mandatory the use of proper signal processing algorithms for 

obtaining good performance.  In order to study and test different algorithmic signal 

processing solutions for IMS data about bio-related datasets, a set of experiments 

were developed during this thesis. The detail of these experiments are presented 

below. 

3.3.1. Synthetic data: Quantitative analysis applied to linear and non-linear 

behavior of IMS using multivariate strategies 

In chapter one, the non-linear behavior of IMS versus concentration has been 

discussed. The Figure 3.6 sum up the effect of non-linear in IMS data. First, while the 

concentration of the analyte increases, the intensity of protonated monomer raises 

and the reactant ion peak intensity decrease. As soon as the proton-bound dimmer 

peak appears with a further concentration increase, the intensity of the protonated 

monomer and reactant ion peak decreases. It can also be seen, how a same 

compound can lead different peaks at different retention time (Figure 3.6 (b)) and with 

different evolutions.  

 

Figure 3.6 Synthetic representation of the effect of concentration response in Ion Mobility 
Spectrometry. (a) Concentration profiles as concentration increases. (b) Spectral responses for 

two particular concentrations 
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The quantitative analysis for IMS has received scarce attention such as it was 

mentioned in chapter two. The default solution is the use of univariate techniques, 

which are usually performed through the information of peak area or peak height of 

protonated monomer or protonated-bound dimmer and then applying an appropriate 

fitting function, commonly a polynomial function. However, it is known that the 

monomer is sensitive at low concentrations and the protonated-bound dimmer usually 

appears at high concentrations. Moreover, the IMS dynamics is non-linear when 

concentration is increasing, thus the univariate techniques are not fully suitable; 

whereas, multivariate calibration techniques appear to be a good choice for dealing 

with these conditions.  

Regarding multivariate calibration techniques PLS has been studied by different 

authors (Zheng et al., 1996, Fraga et al., 2009).  The studies show that multivariate 

calibration methods provide better IMS quantitative precision and accuracy than 

univariate methods even when the peaks are unresolved. Nevertheless, the 

interpretation of PLS models for IMS is not easy. Furthermore, despite the fact that 

PLS algorithm is able to handle slightly non-linear data by increasing the number of 

latent variables in the calibration model, this approach is less successful for datasets 

containing moderate and severe non-linearities (Yang et al., 2003). A different 

approach to analyze IMS spectra is the use of multivariate curve resolution 

techniques (MCR) that aim to recover the evolution of the source signals 

(concentration profiles) and the mixing matrix (spectral features) without any prior 

supervised calibration step. Therefore, it provides a powerful way to separate 

contributions of substances as separated components without having any prior 

knowledge about the composition of the sample.  

In the present work, we aim to provide a multivariate calibration method for IMS 

spectra combining the advantages of MCR-ALS for qualitative interpretation and a 

non-linear multivariate technique such as poly-PLS for an improved quantification of 

substance concentration. Thereby, MCR-ALS is used as a prior step to multivariate 

calibration modeling nonlinear contributions properly and with an easier interpretation. 

This method can be useful especially in cases where peak intensity behavior is non-

linear as concentration increases.  

Methods and Sample preparation 

Standards of 2-butanone and ethanol samples (at least 99% pure, provided by 

Sigma-Aldrich) were prepared at different concentrations using synthetic air premier 

(pure at 99.995%, provided by Carburos Metálicos). The standards were obtained by 

a volatile generator system based on permeation tubes (OVG4, Owlstone). The 

permeation tubes were previously calibrated in our facilities by gravimetric methods 

after one week in the OVG4 at constant temperature. The analytes were measured 

using the GDA2 ion mobility spectrometer (Airsense, 2012) at ten different 

concentrations and each set of measurements were repeated in three different days. 

Table 3.5 shows the measured concentrations for each substance. Twenty spectra 

(consecutive scans) are obtained for each concentration. The same measurements 

were replicated in three different days. In the case of 2-butanone, the total size of the 

data matrix is 108 scans x 198 spectral points for each replicate. In the case of 
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ethanol, the total size of the data matrix is 196 scans x 198 spectral points for each 

replicate. 

 

2-butanone (ppm) Ethanol (ppm) 

0 0 

0.05 0.39 

0.1 0.89 

0.16 1.52 

0.23 2.13 

0.29 2.66 

0.33 3.04 

0.38 3.55 

0.44 4.10 

0.51 4.73 

0.57 5.33 

Table 3.5 Concentrations for 2-butanone and ethanol generated using the volatile generator 
system OVG (Owlstone) 

 

Signal Processing for the mobility spectra 

The block diagram used in this work is shown in Figure 3.7.  For tackling 

nonlinearities from a quantitative point of view, three different strategies have been 

studied. However, the same procedure helps to understand problems of 

reproducibility and sensitivity of the IMS. Univariate calibration strategies and 

multivariate calibration strategies have been explored and the internal parameters of 

both strategies are set up using cross-validation methodology. At the end, root mean 

square error are compared and discussed.  
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Figure 3.7 Block diagram applied for the analysis of nonlinearities 

A common step is the pre-processing where baseline correction, noise reduction and 

spectra alignment is applied. As it will be shown in chapter four, baseline from each 

spectrum can be corrected fitting and subtracting a polynomial of 4th order using the 

first 150 points (from 1ms to 5.51ms) and the last 295 points (from 19.15ms to 

28.09ms) of them where no relevant peaks were identified. Additionally, noise 

reduction was performed using Savitzky-Golay filter(Savitzky and Golay, 1964) which 

use a polynomial of second order of window length of fifteen points. Finally, 

misalignment was corrected applying a shifting in drift time taking as reference the 

position of the reactant ion peak (RIP). The last step is crucial in order to obtain good 

qualitative and quantitative results. 

Multivariate curve resolution with alternating least squares (MCR-ALS, (de Juan et al., 

2000, Cao et al., 2005)) was explained before in chapter two. However, a brief 

summary of this technique is presented below. The algorithm assumes that 

experimental data follow a bilinear model consisting of the decomposition of the 2-

way dataset into the product of two sub-matrices of reduced sizes. In matrix 

representation D = C·ST+E, where D is the experimental data matrix (dimensions M 

measured spectra x N spectroscopic points); C is the matrix of concentration profiles 

(dimensions M x K pure chemicals); S (dimensions N x K) is the matrix of spectra 

related to each pure component and E is the matrix of the residuals (dimensions M x 

N). The matrix of concentration profiles (C) describes the evolution over time of the K 

pure components present in the sample, and the matrix of spectra (S) describes the 

pure ion mobility spectra of these K components. Each component corresponds to a 

single ionic species; therefore, monomer and dimmer peaks are modeled as 
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separated components. The constraints used in this work were: unimodality, closure 

and non-negative. Non-negativity has been used because concentration profiles and 

spectra are expected to be positive in order to have a physical and chemical 

meaning. This constraint has been applied through fast nonnegative least squares 

(FNNLS (Bro and DeJong, 1997)). Moreover unimodality has been applied in peaks 

which were expected to be unimodal for instance, the reactant ion peak and the 

monomer. The closure constraint has also been applied because, in IMS, available 

charge is transferred among ions but this charge remains constant during the whole 

process; this constraint is applied to all concentration profiles. In addition, self-

modelling mixture analysis (SIMPLISMA (Windig et al., 2002)) was used to obtain 

initial estimations.  

Convergence of the algorithm is assessed calculating the root mean squared error 

(RMSE): 
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Eq. 3. 1 

where Dm,n represents the elements in the experimental data matrix D, and 𝐷̂𝑚,𝑛 =

(𝐶𝑆𝑇)𝑚,𝑛  represents values computed by using concentration profiles and spectra 

obtained from the MCR-ALS method. The algorithm stops when the relative 

differences between RMSE for successive iterations is small enough (0.1%) or the 

maximum number of iterations is achieved. 

In order to assess the performance of MCR-ALS, the explained variance is used as 

figure of merit: 
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Eq. 3.2 

where C and S correspond to the concentration profiles and spectra matrices 

recovered by MCR-ALS algorithm and D corresponds to the original matrix of spectral 

responses. 

Quantification using Univariate and Multivariate Calibration techniques. 

Although MCR-ALS provides a powerful way to resolve different contributions 

measured in the spectra, the results are mainly qualitative due to during the 

decomposition the concentration of the samples is not taking into account. Therefore 

it cannot be used directly to quantify new samples. In this sense, calibration 

techniques are required for quantification proposes. 

Univariate calibration 

Peak area calibrations have been performed adding up the areas of each one of all 

the peaks related to the substance and then fitting a polynomial of a certain order to 

the relationship between substance concentration and peaks area in order to 

construct the calibration model. In this work, we define the peak area as the integral 
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of the peak corresponding to the FWHM (Full Width Half Maximum) region, that is, 

the sum of intensities above the 50% of the maximum. The polynomial order is 

optimized using a cross-validation procedure and peak height calibrations have been 

performed in a similar way to area calibration but taking the maximum of the 

monomer peak.  

Partial least squares (PLS) and nonlinear polynomial PLS (poly-PLS) 

PLS and poly-PLS have been applied to both the original matrices of spectral 

responses which are considered to be the X-block and the concentration profile from 

MCR-ALS. In these cases, the number of latent variables (PLS and poly-PLS) and the 

polynomial order (poly-PLS) were optimized using a cross validation procedure in 

order to construct the calibration model.  

The main proposal in this work is to build multicalibration models using the 

concentration profiles extracted by a pre-processing MCR-ALS step. For that 

purpose, PLS and poly-PLS have also been applied to the matrices constructed using 

the concentration profiles of monomer and dimmer (obtained from MCR-ALS). In 

these cases, the number of latent variables was set to be 2 (monomer and dimmer) 

and only the polynomial order (poly-PLS) was needed to be optimized using the cross 

validation procedure. 

Cross validation: Leave-One-Block-Out  

Cross-validation can be used to achieve two main objectives: assessing the 

performance of the different calibration techniques (univariate and multivariate cases) 

and optimizing some parameters (the number of latent variables in PLS and poly-PLS 

and the polynomial order in the univariate techniques and the poly-PLS case). 

The cross-validation procedure used in the present work corresponds to leave-one-

block-out (LOBO). First of all, the set of spectra corresponding to the first and last 

measured concentrations are always used to construct the calibration model, which 

means that this set of samples is not available for validation. The reason is that we 

are interested in predicting concentrations within a certain range and not out of this 

range. This requirement could not be fulfilled if the first or last concentration were 

taken out to be validated. Secondly, leaving one block out means that, given a 

substance, the set of spectra corresponding to a certain test concentration is taken 

out to be validated and the remaining set of samples is used to build the calibration 

model. In other words, the estimation dataset never has the concentration value that 

is going to be predicted. In this way, the interpolation performance of the model is 

tested. The set of scans to be validated for each concentration is used to calculate 

the root mean squared error of validation (RMSEV).  
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Eq. 3.3 

where REALc  corresponds to the original concentration, 𝑐̂𝑃𝑅𝐸𝐷𝐼𝐶𝑇𝐸𝐷 to the concentration 

This procedure is repeated as many times as concentrations to be validated. Table 

3.5 shows the measured concentrations per each substance). Each validated 
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concentration has its own RMSEV, therefore an averaged RMSEV can be calculated 

giving the final root mean squared error of cross-validation (RMSECV). 
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Eq. 3.4 

where RMSECV is the root mean squared error of cross-validation, RMSEVi 

corresponds to the validation error calculated using Eq. 3.3 for a particular 

concentration, and I corresponds to the number of validated concentrations. This 

result is presented as a percentage of the maximum substance concentration (see 

Table 3.5). 

The RMSECV can be calculated for a different number of latent variables and for a 

different number of polynomial orders. For the univariate techniques (area and peak 

height), the polynomial order which minimizes de RMSECV is taken to build the 

calibration model. For the PLS case, the number of latent variables which minimizes 

the RMSECV is considered optimum and is taken to build the calibration model. For 

the poly-PLS case, the combination of the number of latent variables and polynomial 

order which minimizes the RMSECV is taken to build the poly-PLS model. 

The squared correlation coefficient R2 also gives a measure of the quality of the 

prediction. It assesses the correlation between the predicted concentrations by the 

calibration model and the expected concentrations. The quality of the prediction is 

better as R2 is closer to 1 ( 10 2  R ). 

3.3.2. Synthetic dataset: Quantitative effect in the limit of detection of known 

analyte in presence of an interferent  

Biogenic amines are usually formed by degradation of amino acids through enzymatic 

and microbial process which play a really important role in environmental and 

biological scenarios. Some biogenic amines have specific names such as 

trimethylamine (TMA), dimethylamine, putrecine and cadaverine (Santos, 1996, 

Bodmer et al., 1999) and the relation of those compounds are mainly responsible for 

the odor often associated with spoiling food or bad breath (Santos, 1996). In food, 

biogenic amines are formed during food processing or storage and they usually refers 

to spoilage by microbial activity, and they can be found in fish, meat, sausages, 

vegetable products, etc. (Bodmer et al., 1999, Halasz et al., 1994, Santos, 1996, 

Stratton et al., 1991, Suzzi and Gardini, 2003). In the case of medical applications, 

biogenic amines are compounds that are present in each living cell and play an 

important role in regulating the cell functions. Thus biogenic amines may serve as 

important markers for diseases (Kalac and Krausova, 2005), i.e. putrescine, spermine 

and cadaverine have been related to malignant tumors (Bachrach, 2004). 

Methods for determination of biogenic amines are commonly based on analysis in 

serum or body fluids that are usually measured with gas or liquid chromatography 

(Eerola et al., 1993, Yamamoto et al., 1982, Molins-Legua et al., 1999, Molins-Legua 

and Campins-Falco, 2005) and electrophoresis(Kovacs et al., 1999). However, 

chromatography techniques requires that amines to be derivatized (Kalac and 

Krausova, 2005, Cirilo et al., 2003), which is usually a time-comusing and complex 

procedure. Moreover the target of this kind of experiment is to have an automatic 
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system capable of giving results without any stage of extraction or derivatization of 

the sample. In this context, ion mobility spectrometry provides a feasible solution 

because the samples of amine vapors can be introduced directly to IMS by a flow of 

air providing results in a short time. Moreover, the interest in using IMS techniques for 

applications in the medical and biological fields has grown considerably in the last 

decade, such as in the fields of monitoring food safety and study of pathological 

conditions. (Jafari et al., 2007, Bohrer et al., 2008, Bunkowski et al., 2009a, 

Verkouteren and Staymates, 2011, Garrido-Delgado et al., 2011b, Armenta et al., 

2011, Ruzsanyi et al., 2012, Moran et al., 2012, Karpas et al., 2012, Armenta and 

Blanco, 2012, Karpas, 2013) 

The high proton affinity of amines in general, and biogenic amines in particular, allows 

their measurement by stand-alone IMS instruments with simpler sampling pre-

separation and pre-concentration methods that may be required for other applications 

where matrix effects could detriment the measurements. Just a few studies have 

been performed to test IMS as instrument to measure biogenic amines, Karpas et. al., 

have studied the usefulness of IMS as screening technique to detect bacterial 

vaginosis (Marcus et al., 2012, Sobel et al., 2012, Chaim et al., 2003, Karpas et al., 

2002a) in which high levels of trimethylamine (TMA) together with presence of 

putrescine and cadaverine were correlated with the disease. Other studies such as to 

measure food spoilage (Karpas et al., 2002b, Bota and Harrington, 2006) or feasible 

study to measure biogenic amine with IMS (Karpas, 1989, Hashemian et al., 2010, 

Menendez et al., 2008) or differential mobility spectrometry (Awan et al., 2008) were 

also been published.  

Biogenic Amines have been studied in the last years as diagnostic tool for detecting 

bacterial vaginosis infections using ion mobility spectrometer in which the most 

common ionization source was a corona discharge (Marcus et al., 2012, Sobel et al., 

2012, Chaim et al., 2003, Karpas et al., 2002a). The IMS has been prepared to 

deflect compounds from lower proton affinities (PAs) than 219 kcal/mol and enhance 

the selectivity of the instrument to recognize biogenic amines(Karpas et al., 2002a). 

The clinical procedure to collect the biological sample and the subsequent analysis is 

described elsewhere (Marcus et al., 2012, Chaim et al., 2003, Karpas et al., 2002a). 

In these studies, it has been found that the presence of elevated level of 

trimethylamine (TMA) usually together with presence of putrescine (PUT) and 

cadaverine (CAD) is indicative of bacterial vaginosis (BV). On the contrary, a lower 

level or background levels of the biogenic amines indicate that the woman does not 

have a vaginal infection. A ratio between the intensity of TMA and the intensity of the 

total amounts of the other compounds gives a threshold for the final diagnosis (Sobel 

et al., 2012). Moreover, Sobel et al (Sobel et al., 2012), in a recent clinical study, also 

found that high levels of PUT concomitant of high levels of TMA could be related with 

other bacterial infections such as trichomoniasis. Nevertheless, the study needs to 

be carried out with a higher population to establish significative differences between 

BV and trichomoniasis.  

On the other hand, it is well known that the response of the IMS depends on the 

nature of the reactants and products, and is determined by the thermodynamics and 

kinetics of the ion-molecule reactions that occurs during the fragmentation in the 

ionization source and when the molecules are transported into the drift tube(Eiceman 
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and Karpas, 2005). Actually, there are dominant species- which are usually related 

with PAs of the compounds- that leads competitive reactions between the 

compounds involve and the formation of monomer ions can be forced by the 

difference in their PAs (Tabrizchi and Shooshtari, 2003). Indeed, PAs has been used 

as major advantage to improve the selectivity of the instrument under certain 

conditions using substances as dopants. In a recent publication Puton et.al., (Puton 

et al., 2012) describe what happen in a binary mixture when the proton affinities of 

the compounds to be analyzed are slightly different while the concentration of the 

analyte of interest increases. He explained about the non-linear behavior present 

between the signal and concentration, and demonstrated that the presence of an 

admixture can differently affect the detection of an anayte. In addition, when two 

compounds have a similar PAs, the proton-bound dimer depends on the admixture 

concentration. 

In a previous work (Karpas et al., 2013) the limit of detection of TMA, PUT and CAD 

were calculated separately using multivariate calibration techniques in three different 

spectrometers (see Table 3.5). Nonetheless, it was not study the effect of having a 

mixture between these three amines and the possible effects in the estimation of the 

LOD. As it was explained before, it is expected an effect on the response of the 

instruments though the three biogenic amines have a similar PAs. Moreover, it is 

obvious that the presence and amounts of TMA, PUT and CAD plays an important 

role in the detection of BV, and knowing that TMA is the most important compound 

involve in the detection. It is important to study how the LOD of TMA is affected by 

the presence of the other amines, and the possible consequences in the diagnosis of 

BV. 

In the present work, the sensitive and limit of detection of TMA (981.8 kJ/mol PA 

according to (NIST, 2013) ), is going to be studied in presence of PUT (1005.6 

kJ/mol PA according to (NIST, 2013) ) as interferent. In this context, a set of different 

concentration of TMA were measured with and without a set of concentrations of 

PUT using a corona discharge IMS (VG-Test, (3QBD)). Three different approaches 

are studied to solve the problem of the interferent from a quantitative point of view.  

Methods and Sample preparation 

Trimethylamine (purum, 45% in water), putrescine (99%, 1,4-diaminobutane), and 

triethylphosphate (99.8%) were purchased from Sigma-Aldrich. A sample from each 

of the amines was inserted in a permeation tube that was placed in an oven with two 

independently controlled chambers (Owlstone OVG-4, UK) at the selected 

temperature. The amount of the sample that emanated from the permeation tube was 

determined by weighing the sample periodically. The amount of sample emanating 

from the tube was calibrated with pure, dry nitrogen. The air flowing through the oven 

compartment was mixed with a stream of clean air to dilute the concentration of the 

sample vapors. The rate of permeation depends on the oven temperature so that 

combining the selected temperature with the dilution factor was used to supply the 

analyte vapors according to the desired concentration range. 

Eight different concentrations of TMA closer to their LOD (0.1 ppm see section 3.3.2) 

and seven different concentration of PUT were measured in a carrier flow of 400 ml 

min-1 of air. In addition, 13 set of blanks were measured for estimating the LOD. A set 
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of combinations between these two amines were carried out to determine the 

response of IMS as it is shown in Table 3.6. The airstream was introduced by Teflon 

tubing to the inlet port of the device. In order to perform the mixture, both vapor 

generators, which were set up at 200 ml min-1, were connected using a union Tee. 

The first scans of each measurement contain information related to the background of 

each instrument in order to eliminate any possible drift that can be happened during 

the measurements, and the limit of detection to vapors was derived from the 

calibration curve. 

PUT 

(ppm) 

TMA 

(ppm) 

PUT 

(ppm) 

TMA 

(ppm) 

PUT 

(ppm) 

TMA 

(ppm) 

PUT 

(ppm) 

TMA 

(ppm) 

0 0 0 0 11.9 0 18 0 

4.5 0 0 0.17 11.9 0.17 18 0.17 

7.8 0 0 0.19 11.9 0.19 18 0.19 

13.8 0 0 0.21 11.9 0.21 18 0.21 

28 0 0 0.24 11.9 0.24 18 0.24 

- - 0 0.28 11.9 0.28 18 0.28 

- - 0 0.33 11.9 0.33 18 0.33 

- - 0 0.37 11.9 0.37 18 0.37 

  
0 0.43 11.9 0.43 18 0.43 

Table 3.6 Different concentrations of TMA and PUT for the mixture analysis. 

The IMS used in the present study was the desktop (VG-Test 3QBD, Israel (3QBD)). 

The main specifications of the device are shown in Table 3.1 . The spectrometer 

contained a permeation tube with triethylphosphate (TEP which proton affinity is 

909.3 according to NIST (NIST, 2013)) as a dopant and the drift tube temperature 

was 90ºC. 

Signal Processing for the mobility spectra 

The signal processing applied in this study is shown in Figure 3.8. The first step 

consists on performing a pre-processing, which was explained before, to sum up a 

smoothing, baseline correction and alignment was applied spectrum by 

spectrum(Karpas et al., 2013, Karpas et al., 2012, Pomareda et al., 2010). The whole 

data were spited in training and prediction sets as it shown in Figure 3.8. The 

prediction was done using only a set of blanks that were not used as training data.  

The LOD was calculated using three different approaches, one of them is a univariate 

strategy and the others were the use of two different multivariate methodologies. The 

training data are formed by the mixtures which are detailed in Table 3.6. 
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Figure 3.8 Block diagram for studying mixtures of biogenic amines. 1 Univariate limit of detection 
using Eq. 3.5 . 2 Multivariate limit of detection using equations Eq. 3.6 and Eq. 3.7 

Three different approaches have been taking into account for building a calibration 

model. The first one is to estimate the ratio between the peak of TMA and the total 

amount of the spectra (TMA+PUT+TEP) proposed by (Sobel et al., 2012, Karpas et 

al., 2002a). Then, using a univariate calibration model, the LOD is calculating based 

on International Union of Pure and Applied Chemistry approach (Mocak et al., 1997) 

using Eq. 3.5.  

𝐿𝐷 =  𝑦̅0 +  𝑡(𝑣0, 𝛼)(1 + 1 𝑛0⁄ )1/2𝑠0 Eq. 3.5 

where, 𝑦̅0 and 𝑠0 are the sample characteristics of both mean and standard deviation 

of blank samples, 𝑡(𝑣0, 𝛼) critical value of t-distribution with v0 degrees of freedom 

which is calculated as number of blank samples (n0) minus one., and the term 

(1 + 1 𝑛0⁄ )1/2 is a correction of the uncertainties of the determination of 𝑦̅0 and 𝑠0 

 

The second approach uses the information of the whole spectra to perform a 

multivariate calibration model using PLS (Geladi and Kowalski, 1986). The third 

approach uses SIMPLISMA (Windig et al., 2002) concomitant with MCRLasso 

(Pomareda et al., 2010) for extracting spectra and concentration profile. Since there is 

no need to do a dimensional reduction, using the information of the concentration 

profile a multiple linear regression (MLR) model is built. Once the multivariate 

calibration model is done, a multivariate limit of detection (MDL) is calculated using 

equations Eq. 3.6 and Eq. 3.7 in which the regressor matrix from PLS or MLR is 

needed and the variance of the training and validation test is taking into account 

(Bauer et al., 1991).  
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𝐿𝐷,𝐾 = ∆(𝛼, 𝛽)𝑣𝑎𝑟(𝑐𝑎)1/2 Eq. 3.6 
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Eq. 3.7 

where B is referred to pseudo-inverse of the regresor matrix which is obtained by PLS 

or MLR. Y represents the concentration of the training model which was built using 

the response of D. 𝑦̂ is the predicted concentration of the 𝑫̂ new measurement (test 

set). 𝑣𝑎𝑟𝑐𝑎̂
 is the prediction variance of the associated analyte obtained by error 

propagation of the standard error in the concentration estimates (Bauer et al., 1991) 

to estimate the limit of detection has to be evaluated at 0 concentration (blanks). 

∆(𝛼, 𝛽) is referreed to t-test distribution of the training samples and validation dataset. 

The latent variables for the PLS model were set up using a Kfold cross-validation 

method which minimizes the root mean square error (RMSECV) Eq. 3.4. In this 

case, a 17-fold was chosen in order to assure that at least two samples as 

validation. A selectivity was used in the first estimation performed by SIMPLISMA 

(Windig et al., 2002), in order to get the three main compounds in the spectra (TMA, 

PUT and TEP). After that multivariate curve resolution with LASSO (MCR-

LASSO)(Pomareda et al., 2010), which impose a hard model into MCR procedure, 

was used to resolve IMS spectra yielding a spectra profile and a concentration profile 

for each species in the sample. 

3.3.3. Feasible study for detection of 2,4,6-tirchloroanisole (2,4,6-TCA) in wine 

using a portable Ni-IMS. 

Wine industry has a high impact in the Spanish economy. Actually, Spain is the third 

biggest producer in Europe and Spaniards are the ninth wine consumers in the world 

according to International Organization of Wine and Vine. Hence, Spanish producers 

devote much attention about the wine production and make an effort to control any 

process that can alter wine quality. In this context, Trichloroanisole (TCA), particularly 

the 2,4,6-TCA isomer, is commonly identified as the main compound responsible for 

the off flavor of wine known as "cork taint".  

TCA can migrate from cork stopper to the wine producing changes in the organoleptic 

properties reducing wine quality (Rubio-Coque et al., 2006, Pereira et al., 2000, 

Sefton and Simpson, 2005). Other isomers of trichloroanisole, substituted tetra- and 

penta- chloro-anisoles and compounds such as tribromoanisole, 2-methylbornoleol, 

4-ethylguaiac, etc., were also associated with off flavor of wine. Furthermore, the use 

of the common term "cork taint" is misleading as it attributes the origin of the 

unpleasant aroma of tainted wine to the cork alone, while in fact the odorous 

compounds may originate from the wood in barrels used for aging wine (especially 

reusing barrels that have been cleaned), wooden structures within the vineyard and 

traces of TCA were even detected in water (Sefton and Simpson, 2005, Rubio-Coque 

et al., 2006). However, 2,4,6-TCA originating from cork material is still being 
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considered as the main source for tainted wine that effect wine producers globally 

and the financial losses are estimated in the range of 1-10 billions US-dollars 

annually(Rubio-Coque et al., 2006).  

(Buser et al., 1982) were the first researchers who attributed the off-flavor of wine to 

2,4,6-TCA and since then several publications have confirmed the effects of the 

presence of this compound on the wine flavor (Fischer and Fischer, 1997, Pereira et 

al., 2000, Teixeira et al., 2006). The human olfactory threshold for 2,4,6-TCA in wine 

(in the liquid phase) is usually well below 10 ng L-1 and in one study it was estimated 

to be 2.1 ng L-1 and the customer rejection level was only slightly higher at 3.1 ng L-1 

(Prescott et al., 2005). 

The consumers of wine usually describe TCA as wet cardboard mushrooms, earthy 

smell, etc.(Mazzoleni and Maggi, 2007) and the origin of these compounds in wine 

was attributed mainly to the presence of chlorine substituted compounds, including 

chlorophenol derivatives, in the cork stopper material and sometimes to the content of 

similar chemicals in wood barrels, especially cleaning materials deployed for re-use of 

these barrels for aging of the wine. The dominant mechanism for production of 2,4,6-

TCA, that is not a naturally occurring compound, is usually described as O-

methylation of 2,4,6-trichloro-phenol (2,4,6-TCP) by filamentous fungi(Maggi et al., 

2008, Prak et al., 2007). TCP and pentachlorophenol are widely used as pesticides in 

agriculture and other applications including sanitizing wood products. 

Several analytical approaches have been adopted in order to provide an objective 

measure for the concentration of the compounds responsible for the "tainted" wine 

flavor (Riu et al., 2006, Riu et al., 2007, Bianco et al., 2009, Zalacain et al., 2004, 

Pizarro et al., 2012, Weingart et al., 2010, Fontana et al., 2010, Luisa Alvarez-

Rodriguez et al., 2009, Vlachos et al., 2007, Alzaga et al., 2003). The most common 

methods deploy solid phase microextraction (SPME) fibers to pre-concentrate TCA 

from the headspace vapor phase or from the wine itself that is generally combined 

with stir-bar agitation. The pre-concentration step is generally followed by gas 

chromatographic (GC) separation of the components of the wine or headspace 

vapors that were adsorbed on the SPME fiber. Finally detection of the GC effluent is 

carried out by electron capture detectors (ECD) or more commonly by different mass 

spectrometric instruments that also identify the components. The reported limit of 

detection (LOD) for 2,4,6-TCA by these methods is generally in the 1-100 ng L-1 

range after pre-concentration. 

As it was pointed out in introduction, Ion mobility spectrometry (IMS) is a well-

established method that is frequently used for detection of hidden explosive, 

contraband drugs and monitoring the presence of toxic chemicals in ambient air 

(Eiceman and Karpas, 2005). Recently applications in the fields of medical 

diagnostics and food quality have been developed. Among these are monitoring 

processes of beer fermentation (Vautz et al., 2004), determining the spoilage and 

freshness of muscle food products (Karpas et al., 2002b) and detection of molds 

(Ruzsanyi et al., 2003). These applications take advantage of the fact that IMS has a 

high sensitivity for compounds with high proton affinity or high electro-negativity 

values and that the ion chemistry can be controlled to enhance the response to the 

target analytes while avoiding interferences from many other chemicals that may be 
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present in the matrix. Several chlorophenol derivatives have been studied by liquid 

chromatography followed by electrospray ionization and ion mobility spectrometry 

(LC-ESI-IMS) (Tadjimukhamedov et al., 2008). In a couple of recent publications by 

Marquez-Sillero et. al., 2,46-TCA was determined in water and wine samples by ionic 

liquid-based single-drop micro-extraction and ion mobility spectrometry (Marquez-

Sillero et al., 2011a, Marquez-Sillero et al., 2011b). The limit of detection that was 

reported, 0.2 ng L-1 (Marquez-Sillero et al., 2011a) or 0.01 ng L-1 for a 2 mL wine 

sample(Marquez-Sillero et al., 2011b), appears to have considerably superseded all 

other methods. These results showed the potential use of IMS as technique of TCA 

screening, provided a pre-concentration instrument is used such as single-drop micro 

extraction technique. Nevertheless, the measuring time is slightly high, around 40 

minutes, which reduce the likelihood of introducing IMS in the vineyard market as 

detection instrument of TCA. 

The main objective of the current work was to study the atmospheric pressure gas-

phase ion chemistry of 2,4,6-trichloroanisole that pertains to IMS in positive and 

negative modes and to determine the limit of detection of IMS for 2,4,6-TCA. This is 

also the first study of the potential of a stand-alone IMS for direct determination of 

TCA without GC pre-separation or other method for preconcentration. Based on these 

results we assess the potential for using this technique to monitor off flavor in wine. 

Methods and Sample preparation 

2,4,6-trichloroanisole (TCA) (CAS 87-40-1) was purchased from Aldrich (lot 

#MKBG3491V) and used without further purification after its purity was tested with 

GC-MS (see below). Headspace vapor vials with a volume of 20 mL sealed with 20 

mm crimp and 20 mm PTFE/silicone septum3 (all from ChemLab, Barcelona) were 

used throughout the study. Stock solutions were prepared by weighing samples of 

TCA and dissolving them in dichloromethane (DCM, CAS 75-09-2, Fluka 66750, 

98%) or in ethanol (99.5%, Panreac Sintesis, Barcelona) yielding concentrations of 

2.03 and 2.89 µg µL-1, respectively. The DCM stock solution was diluted tenfold to 

produce a solution with 0.2 µg µL-1. 

Duplicate samples of TCA, containing 2 to 40 µg, were prepared by pipetting a known 

volume of the stock solution, or diluted solution, on a piece (about 5x3 mm) of filter 

paper (Fisherbrand code 1490) that was placed in a headspace vial. The vial was 

sealed immediately after the solution was deposited on the filter paper to avoid loss of 

the solvent and analyte. After at least five minutes at room temperature (about 25ºC) 

for evaporation and equilibration the vial was inserted into a homemade aluminum 

heater that was kept at 100ºC for two minutes in order to vaporize the sample. The 

temperature in the center of the top part of the vial was about 70ºC. At that time two 

needles pierced the septum: one was connected to a tube that carried a 400 mL min-

1 stream of purified air, or air seeded with dichloromethane as a dopant, and the 

other needle was connected through a short piece (about 10 cm) of 1/8” Teflon tubing 

to the IMS. It was assumed that absorption of TCA vapor on the surface of the tubing 

would be minimal due to the high flow rate through the narrow tube. 

An additional stock solution containing 15 µg µL-1 of 2,4,6-TCA in ethanol was also 

prepared and a 25 µL aliquot (containing 375 µg of TCA) was added to 225 µL of 

white wine or red wine. A blank sample was prepared by adding 25 µL of pure ethanol 
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to 225 µL of wine. Each sample was placed on a 55 mm diameter filter paper and 

allowed to evaporate to dryness in a hood and then folded and placed in a headspace 

vapor vial that was sealed. Analysis of these sealed vials was carried out as 

described above. 

In addition, 8.5 mg of 2,4,6-TCA were placed inside a 20 mL headspace vial that was 

sealed. Taking 2.065 Pa as the vapor pressure of TCA at 25ºC 27, the amount of 

TCA vapors in 20 mL at equilibrium was calculated as 5.45 µg and this served as 

means to estimate the sensitivity of the system. Exponential dilution could not be 

carried out with this system as only a fraction of the 2,4,6-TCA was vaporized. 

The ion mobility spectrometer used was the handheld Gas Detector Array 2 (GDA2, 

Airsense Analytics, Germany). The instrument was switched on and allowed 30 

minutes for stabilization before measurements began. The operating temperature of 

the drift tube was 44ºC. The sampling airflow was set at 400 ml min-1 and the 

measurements were made with no internal dilution of the sample. 

Signal Processing for the mobility spectra 

In order to obtain a quantitative model for the correlation between the response of the 

IMS and the TCA concentration, a number of signal processing steps are needed. A 

main characteristic of IMS spectra is the presence of several ion species from the 

same analyte with different dependencies on the analyte concentration. The 

procedure described below allows consideration of all ion peaks with the proper 

weight automatically assigned in the model building procedure. Additionally, the 

proposed signal processing chain takes into account the full set of spectra from every 

individual sample.  
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Figure 3.9 Block diagram of signal processing for TCA samples 

A block diagram of the signal processing procedure is shown in Figure 3.9. The main 

blocks are: (i) spectra pre-processing (ii) spectra resolution by MCR-

LASSO(Pomareda et al., 2010) and (iii) multivariate calibration by Partial Least 

Squares. To estimate the limit of detection (LOD) and limit of quantification (LOQ) a 

set of four blanks was taken separately and used uniquely for the purpose of LOD 

estimation and the dataset to train the model was comprised of 15 samples with 0 to 

40 g of TCA deposited on the filter paper. All the spectral signal processing, as well 

as the estimations of LOD and LOQ was performed using the negative polarity 

spectra of the IMS that were measured with dichloromethane as a dopant. 

Once spectra has been preprocessed, multivariate curve resolution (MCR-LASSO 

(Pomareda et al., 2010))was applied to the data matrix yielding a spectra profile. The 

number of pure compounds was selected to be three by visual inspection of the 

spectra. The technique also provides the concentration profiles for every individual 

peak along the sample transient, in this case consisting of 15 samples that contain 13 

spectra each one.  

Quantification based on MCR results has been previously considered (Antunes et al., 

2002). In the present study, a partial least squares model was built based on the 

concentration profiles. The input pattern for each sample consisted in the 

concatenation of the concentration profiles for two ionic species related with TCA 

monomer and dimer ions. The dimension of this vector is 26 (13 spectra x 2 pure 

components) to each sample that give at the end a matrix of dimension 15 samples x 

26 concentration profiles. PLS model order was decided by cross-validation 
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procedure (leave one out) optimizing the RMSECV (root mean square error cross-

validation).  

Once the model had been built, four blank samples, which were measured 

separately, were projected over the calibration model, and their predicted value was 

used to estimate LOD and LOQ. The limit of detection and limit of quantification 

determination was carried out in accordance with IUPAC (Mocak et al., 1997) Eq. 3.6. 

GC-MS measurements 

The purity of the 2,4,6-TCA was determined from GC/MS (Focus GC with DSQ II 

mass spectrometer, Thermo Scientific) measurements of the headspace vapor 

emanating from a sample of 47 mg that was placed in a 20 mL vial that was 

hermetically sealed with a PTFE/silicone septum. The sample was thermostatted for 

10 min at 100ºC under constant stirring. Afterwards, 1 mL of the headspace vapors 

was introduced into the injector port of the gas chromatograph. Chromatographic 

injection was made in split mode (1:50) at 250ºC. A TRB-5MS chromatographic 

column (30m x 0.25mm i.d., 0.25µm film thickness) was used with an oven 

temperature program of 60ºC (2 min) at 20ºC min-1 up to 260ºC (2 min). The carrier 

gas was high-purity helium with a flow-rate of 1.0 mL min-1. Mass spectra were 

recorded by electron impact (EI) ionization at 70eV and ion source temperature of 

200ºC. 

A single peak appeared in the gas chromatogram with a retention time of 8.32 min 

Figure 3.10 (a). The mass spectrum corresponding to this peak is shown in Figure 

3.10 (b) that displays the mass spectrum of 2,4,6-TCA obtained in full scan mode 

(mass range 35-350 Da). Identification of TCA was confirmed through the comparison 

of the NIST-library mass spectrum of TCA Figure 3.10(c) with the mass spectrum 

obtained from the sample. The ions around m/z 210 are attributed to the 

quasimolecular ion with typical isotopic pattern of three chlorine atoms, while the ions 

around m/z 195 represent the same pattern after the loss of the methyl group. 
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(a) 

 
(b) 

 
(c) 

Figure 3.10 (a) The gas chromatogram of the headspace vapor of 2,4,6-trichloroanisole; (b) the 
mass spectrum of the peak at 8.32 min in the chromatogram; (c) the mass spectrum of 2,4,6-

trichloroanisole (NIST database) 

3.3.4. Qualitative analysis for discriminate wines from different “origins” 

Wine fraud can be divided in two groups consumption fraud and collector fraud 

(Holmberg, 2010). The first one involves customers, producers and/or exporters, 

large quantity of wine in which up 10% of wines offered to consumers are of a lesser 

quality that touted on the label. The other one is mostly committed by perpetrators 

and original exporters and aims at very high top of the wine market(Holmberg, 2010). 

The composition of wine samples is influenced by diverse factors among of them, 

grape variety, soil, climate, culture, yeast, winemaking practices, etc (Arvanitoyannis 

et al., 1999). In fact, the determination of the grape variety used in the wine 

elaboration is far to be an easy topic. Sometime the analysis involves DNA 

sequences (Lockley and Bardsley, 2000), but the main difficult is to discard 

contamination out of biomarkers of the grape, which are present in small quantity of 

wine sample. There are analytical techniques for monitoring illegal activities such as 

nuclear magnetic resonance, mass spectrometry, infrared-mass spectrometry and 

chromatography(Ghidini et al., 2006, Gall et al., 2003). Besides, human panels is a 

usually practice for sensory evaluation and classification, however, it is not always 

feasible because of high-cost and time consuming (Arvanitoyannis et al., 1999). 

Therefore, the development and application of vanguard analytical systems suitable 

for the varietal authentication of wines are matters of interest in order to avoid fraud. 

Monitoring the content of the volatile aroma compounds for classifying varietal wines 

is commonly used in wine industry and the most used analytical technique is Gas 
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Chromatography techniques (Pedro Santos et al., 2010, Lozano et al., 2005, Kataoka 

et al., 2000, Yamamoto et al., 1982, Ferreira et al., 2000). There are other analytical 

techniques used for classifying wines, among of them Ultra High Resolution Mass 

Spectrometry (Cuadros-Inostroza et al., 2010), electronic noses and electronic 

tounge(Legin et al., 2003, Buratti et al., 2004). The uses of sensors as electronic 

noses or artificial olfactory systems try to imitate a simplified human sense of smell 

but removing the subjective component implicit in it. These systems have the 

advantage of high portability for in situ and on-line measurements with lower cost 

(Lozano et al., 2005). Also they have high sensitivity, fast response, easy operation 

and capability to recognize different volatile compounds profiles. In this sense, IMS 

technique could be an alternative and appropriate sensor for the characterization and 

classification of different types of wines. On the other hand, wines could be potential 

products for frauds in the international market (Holmberg, 2010) . For this reason, it is 

necessary to develop easy and reliable analytical tools to control the characteristic of 

each wine and to confirm the information of their labels. 

Moreover IMS equipment is very versatile and therefore different sample introduction 

systems (SIS) are an essential supplement for introducing volatile analytes in an 

efficient way into the IMS equipment. Different SIS coupled to IMS are described in 

the bibliography(Arce et al., 2008) and this SIS are characterized by their simplicity 

and low cost to get profit of the IMS technique(Menendez et al., 2008, Alonso et al., 

2008).  

 

The main goal of this work is to perform a classification model using the whole 

spectra for discriminate the wine samples by their origin. In this case a new sampling 

technique called Gas Phase Separator (GPS) for in-line introduction of volatile 

analytes present in liquid samples was used coupled to UV-IMS. In this case, it has 

been used for the extraction and injection of volatile analytes presents in wine 

samples and the classification of different types of white wines using their volatile 

analytes profiles. Multivariate statistical techniques are going to be used to extract 

and use information based on the overall properties of the sample and perform a 

classification without the need for additional compositional data. In addition, a robust 

cross-validation methodology was implemented in order to assure the effectiveness of 

the model and classification. 

Methods and Sample Preparation 

Wines samples from four different origins, which were selected due to their similar 

organoleptic characteristics, were analyzed using UV-IMS. Each sample was 

continuously recorded for about 2 minutes. The wines brand of origin used in this 

work were: Montilla-Moriles (n=15), Jerez (n=13), Valdepeñas (n=16) and Condado 

de Huelva (n=12). The wine samples were stored in their original container at ambient 

temperature, while this work took place.  

 

The manifold employed for the in-line vapour phase generation and mobility 

measurements is depicted in Figure 3.11. The SIS selected in this work was used by 

Armenta et al. (Armenta et al., 2006) for seafood freshness determination using 

Fourier Transform Infrared (FTIR) spectroscopy. The SIS consisted in a peristaltic 

pump of four channels, furnished with Teflon tubes, which was used to introduce the 
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wine samples in the flow system. The connections and reaction coils were made from 

Teflon tubing. The gaseous phase was separated from the liquid stream in a home-

made Pirex-glass of 4.7 mL volume GPS. The manifold incorporates an oven to 

improve the removal of volatile compounds from wine samples.  

Wine samples were continuously aspirated inside the manifold of Figure 3.11 at 0.7 

ml min-1 flow. Wine samples were passed through a 100 cm length coil heated at 

80ºC and introduced in the GPS from which the generated volatile compounds were 

transported to the UV-IMS equipment after 15 min of generation of volatile 

compounds using a N2 carrier flow of 20 ml min-1. During these 15 min, the stream of 

highly pure nitrogen (6.0) from Abelló Linde (Barcelona, Spain) was passed through 

the UV-IMS system for cleaning and stabilization while drift gas (N2) pass in 

crosscurrent to a flow of 70 ml min-1. 

 

 

Figure 3.11 Introduction system of wine samples using UV-IMS (Garrido-Delgado et al., 2011a). 

Signal Processing for the mobility spectra 

The signal processing consists of pre-processing spectra following with a step of 

outlier detection to reject those samples that do not fit in the model. The signal 

processing is explained in detail in chapter four, but the main idea is to noise 

reduction, baseline correction and alignment. Since any dopant was present in the 

samples, the alignment was done taken a reference spectrum for all samples. The 

following focus was to build a robust model whose accuracy get been maximized. A 

representation of the main blocks for signal processing of this work is shown in Figure 

3.12. 
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Figure 3.12 Block diagram of the analysis of wine samples for classification purposes. 

Briefly, the spectra were cut, which was from 15.4 to 27 ms, in order to analyze 

spectra where the main information was located. The outlier detection was based on 

Q statistic and T2 analysis, thus spectra and entire samples were discarded when the 

Q and T2 statistic were higher than 95% of the confidence limit. The model proposed 

in this work is a combination of principla component analysis (PCA) and linear 

discriminant analysis(LDA) (Wang et al., 2004)and the final classification was based 

on the results provided by kNN classifier.  

PCA (Bishop, 2006) is a signal processing technique that generates projections along 

the directions of maximum variance of the analyzed data. It has also been used as an 

unsupervised technique to beat the course of dimensionality generating projections of 

the original data in a reduced dimension where the maximum variance is preserved.  

LDA (Bishop, 2006)is a signal processing technique that maximizes class 

separability, generating projections where the examples of each class from compact 

clusters and the different clusters are far from each other. LDA has been used as 

supervised linear projection technique to find directions of maximum separation from 

a set of samples for which class membership is known in order to be able to predict 

the class membership of unknown samples. 
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The kNN (Henley and Hand, 1996, Denoeux, 1995) method is a technique used to 

generate nonlinear classifications, finding the closest k examples in the dataset to the 

unknown class, and selecting the predominant class for it. kNN has been used for the 

classification of the wine samples in their correct group. The model is built based on a 

training set; later, it is used to predict classes of new samples (validation set). In this 

work, k equal to 3 was used. 

Bootstrap validation (Felsenstein, 1985, Efron, 1979)was proposed in this work for 

avoiding overfitting results. Bootstrap validation procedure allows resampling the data 

set with replacement, to generate sets of observations that may be used for the 

estimation of statistic magnitudes as the performance of the model. 

3.3.5. Feasible study for measurement potential biomarkers of Prostate Cancer 

using Ion Mobility Spectrometry 

Volatile organic compounds present in both breath and bodily fluids have been 

studied by virtue of its potential use as non-invasive diagnosis tool in medical 

applications. In fact, a number of VOCs in breath have been recognized as 

biomarkers for several systemic diseases and monitoring purposes. Acetone in breath 

is totally linked to patients with uncontrolled diabetes mellitus (Lebovitz, 1995), 

elevated ammonia is linked to patients with renal failure (Davies et al., 1997) and 

propofol levels can be used for monitoring anaesthesia in clinical use (Perl et al., 

2009). Nevertheless, the study of VOCs in urine has received much less attention 

than breath samples. One of the major studies was undertaken by Mills and Walker 

(Mills and Walker, 2001) in which 103 compounds where found from 5 heterogeneous 

patients at different conditions using SPME-GC/MS as analytical technique. There 

have been other studies in healthy individuals giving as a result potential biomarkers 

present in elderly population (Smith et al., 2008).  

Since, urine is routinely used in diagnostics of diseases as diabetes mellitus and 

urinary tract infections, its potential as diagonistic tool for detecting cancer is really 

noteworthy. There have been some studies in liquid-chromatography for detect 

presence of non-volatiles as biomarkers for melanoma metastases (Yamada et al., 

1992). The volatiles in urine cover a range of chemical classes, among of them, 

acids, alcohols, ketones, aldehydes, amines, sulphur compounds and hydrocarbons 

(Costello and Ratcliffe, 2013). Indeed, ketones have been reported to be linked to 

bacterial action in the gut , and some aliphatic amines have been observed during 

hepatic and renal diseases (Mitchell and Zhang, 2001).Although it is still unclear the 

cellular and biochemical origin of endogenous VOCs metabolites released to urine as 

consequence of a neoplasic lesion, some experimental works have related an 

increase of formaldehydes with bladder and prostate cancer patients (Spanel et al., 

1999). However, no compound or set of compounds have been proposed as serious 

candidates for bladder or prostate cancer clinical diagnostics. 

Prostate cancer (PCa) is the third leading cause of death from cancer in men in the 

European Union. PCa can be treated by various therapies if only it is detected in its 

initial stages. The suspicion of PCa is established through elevated serum PSA 

(prostate-specific antigen) and/or DRE (digital rectal exam), and its diagnosis is 

confirmed through prostate biopsy As a consequence of the current screening 

parameters, large populations of men with chronically elevated PSA undergo 

repeated biopsies to rule out PCa (Loeb et al., 2009, Pannek and Partin, 1997). 
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Around ⅔ of the approximately 1.300.000 biopsies made yearly in Europe are 

negative and therefore unnecessary. Therefore, other alternatives are needed that 

can help to an early diagnosis and identify patients whit high risk of developing PCa 

from whom repeat prostate biopsies should be mandatory. As prostate cells can be 

detected in the urine of men with PCa, urine-based diagnostic tests have the 

advantage of being non-or minimally invasive. Recently, urine has been extensively 

analyzed by proteomics, revealing that more than 1,500 proteins constitute the 

normal urine (Adachi et al., 2006). The origins of the proteins found in the normal 

human urine are plasma proteins (≈ 30%) and other proteins (≈ 70%) secreted by the 

bladder or the prostate gland into the urine (Oh et al., 2004, Pieper et al., 2004, 

Thongboonkerd et al., 2002). 

In a previous study urine sample were analyzed using headspace GC/MS. The urine 

sample were taken from subjects with PSA levels (>4.0 ng/ml) and/or an abnormal 

diagnostic DRE and healthy subjects. After the data analysis, a subset of volatiles 

was found as potential biomarkers correlated with PCa patients. From the results one 

of the compounds, which are going to be known as Compound A, seems to be 

preferable present in patient with PCa than healthy subjects. Thus, the aim of this 

work is to test two commercial spectrometers as potential portable device for 

detection of PCa in clinical use. A set of measurements at different concentrations 

were carried out for continuous monitoring of a stream of air/nitrogen with a given 

concentration of the analyte and headspace vapors in a sealed vial to determine the 

response of the spectrometers to the compound A mixed with milliQ water. The limit 

of detection of the Compound A in air-gas phase and headspace is going to be 

calculated for the two commercial spectrometers. 

Methods and Sample Preparation 

Compound A was purchased from Sigma-Aldrich (Madrid, Spain). A sample of the 

compound was inserted in a permeation tube that was placed in an oven with 

controlled chambers at 30ºC (Owlstone OV4, UK). The permeation tube was 

periodically weighted to determine the amount of the sample that emanates from the 

tube. The concentration was determined by the oven temperature and permeation 

rate of the compound. Table 3.7 shows the concentrations that were introduced to 

both spectrometers. The airstream was introduced by Teflon tubing to the inlet port of 

each device. The response was measured and a limit of detection to vapors was 

derived from the calibration curve.  
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GDA2 (400 ml min-1) UV-IMS (50 ml min-1) 

Airstream (ppm) Headspace(µg ml-1) Airstream(ppm) Headspace(µg ml-1) 

0.6 5 0.6 0.1 

2 10 2 0.5 

4 20 4 1 

6 50 6 2 

8 100 8 5 

10 250 10 10 

12 500 12 15 

14 - 14 20 

16 - 16 25 

18 - 18 50 

20 - 20 75 

22 - 22 100 

24 - 24 125 

- - - 150 

Table 3.7 Range of concentrations of Compound A for both spectrometers. 

For the headspace measurements, a stock of solution of Compound A was prepared 

in ultrapure milli-Q water at a concentration of 812 mg l–1 and stored at 4 ºC. Working 

standard solutions were prepared on a daily basis by rigorous dilution of the stocks in 

ultrapure milli-Q water. The introduction of the sample into the spectrometers was 

carried out through a loop flow path 4-ports valve. Two ports of the valve were 

connected to two stainless steel needles for the subsequently introduction into the 

headspace of a sealed vial. Another connection of the valve was coupled to the 

source of purified air/nitrogen stream and the other port was connected to the sample 

inlet of the instrument, as shown in Figure 3.11. Connections were made through 1/8" 

OD PTFE tubing.  

The process for generating the headspace of the sample and the subsequent 

introduction into the instrument was as follows: 10 ml of an aqueous solution 

containing a known concentration of Compound A was spiked in a glass vial of 20 ml, 

which was tightly fitted with a removable aluminum cap provided with a silicone 

septum. Then, the sample introduction system was set in “extraction” mode (Figure 

3.13(a)) in which the needles were injected into the headspace of the vial. 

Subsequently, the vial was heating at 40 °C for 15 min to allow the passing of the 

Compound A to gas phase. Once this time was elapsed, the switch of the valve was 

rotated to change the system to the “injection” mode (Figure 3.13 (b)). Thus, the 

headspace generated in the vial was dragged by a stream of highly purified 

air/nitrogen and directly introduced into the spectrometer for the analysis. The start of 

data collection was coordinated with the change to "injection" mode position of the 

valve. The carrier flow through the headspace vial was 400 ml min-1 for the GDA2 and 

50 ml min-1 for the UV-IMS. The concentrations range for headspace is shown in 

Table 3.7. 
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a) Extraction mode b) Injection mode 

Figure 3.13 Sample introduction system used to generate and inject the sample into the UV-IMS 
instrument. 

Signal Processing for the mobility spectra 

The procedure for the limit of detection calculation is similar to that explained in 

section 3.3.2 and Figure 3.9. The preprocessing step is specific for each 

spectrometer (see chapter four), but the main idea is to get a clean spectra in order to 

obtain accurate results. 

The first step is going to determine the reduced mobility coefficient (K0) of pure 

analyte. Then MCR-Lasso is going to be used for extract the pure compound and use 

the concentration profile for calibration purposes. The limit of detection is going to be 

determined using blanks that were taken in each experiment. At the end, a qualitative 

and quantitative analysis is going to be carried out to figure out the use of IMS for 

PCa detection. 

3.3.6. Breath analysis for detection of SEPSIS in rats using Ion Mobility 

Spectrometry 

Thanks to the pioneering work of Pauling, it has been known since the 1970s that 

human breath is a complex mixture of hundreds of compounds (Teranish.R et al., 

1972, Pauling et al., 1971). Gas Chromatography-Mass Spectrometry has made it 

possible to identify some of these compounds, revealing that exhaled breath included 

traces of many volatile organic compounds (VOC), small inorganic molecules and 

non-volatile substances such as isoprostanes, cytokines or leukotrienes (Smit et al., 

To UV-IMS From nitrogen source To UV-IMS From nitrogen source



Dataset used in this thesis: Motivation, work scenarios and signal processing methodologies 
 

118 
 

2007, Westerhuis et al., 2008, Miekisch and Schubert, 2006). Accordingly, there is 

now a consensus about the diagnostic potential of breath, and there is considerable 

evidence available to support the use of breath analysis as a diagnostic tool for 

pulmonary diseases, liver diseases, gastric diseases, diabetes and inflammatory 

diseases such as sepsis (Miekisch and Schubert, 2006, Sethi et al., 2013, Phillips et 

al., 2010, Vautz et al., 2010a, Zhang and Li, 2010, Smith and Spanel, 2007). The 

analysis of exhaled breath has a number of advantages compared with traditional 

diagnostic techniques: it is a non-invasive, painless procedure that does not require 

skilled medical staff (Buszewski et al., 2007). 

Despite this undeniable interest, however, only a few breath tests, such as 

capnography and the urea breath test, are typically used in clinical routine. One 

reason for the continued reluctance to use breath analysis as a common diagnostic 

tool in clinical practice is lack of knowledge about the compounds' metabolic 

pathways of the compounds, although another factor is the lack of normalization and 

standardization methods (Miekisch and Schubert, 2006). Furthermore, bedside 

systems are not always compatible with the sophistication now required of analytical 

instruments. Gas chromatography-mass spectrometry (GC/MS), for example, is the 

most widely used instrument in breath analysis (Van Berkel et al., 2010, Phillips et al., 

2007, Phillips et al., 1999) but, although it offers very good sensitivity, precision and 

resolution, the sampling procedures and subsequent interpretation of data can be 

demanding and time-consuming and require qualified personnel. 

Promising results of breath analysis with IMS have been reported and its potential for 

application as a diagnostic instrument is huge. Lung cancer has been the main focus 

of attention (Vautz et al., 2013, Carstens et al., 2010, Vautz et al., 2010a, Marcus et 

al., 2012, Sobel et al., 2012) but also interesting findings have also emerged with 

respect to COPD, sarcoidosis (Bunkowski et al., 2009b) and vaginitis (Chaim et al., 

2003, Karpas et al., 2002a). Other diseases such as sepsis have yet to be tested by 

IMS technology, however, even although the potential capability of breath test for the 

diagnosis of sepsis has been posited in some works (Miekisch and Schubert, 2006). 

Sepsis is a clinical condition characterized by systemic inflammation, aberrant 

immune response, and microcirculation/coagulation disorders generated by the host 

in combating an infection due to bacterial toxins absorbed from infected wounds and 

passed into the bloodstream (Opal, 2014). It is a common cause of morbidity and 

mortality in elderly, immuno-compromised and critically ill patients, and it is the 

commonest cause of death in adult intensive care units (Parker and Watkins, 2001).  

Several rodent models have been used for sepsis studies in various works (Schultz 

and van der Poll, 2002, Tarkowski et al., 2001) and, although the correlation between 

animal and human models is not perfect, rat models can make a positive contribution 

in many areas, such as the reduction and standardization of experimental variability 

and the simplification of the experimental setup. One of the common sepsis models 

used in murine is the induction of sepsis through an exogenous bacteria infection. It is 

well known that mimicking bacterial infection by using lipopolysaccharide (LPS), 

which is a structural component of gram-negative bacteria, has been used as a model 

to activate the immune system, inducing fever, sepsis and multi-organ injury (Lava et 

al., 1982). The main cytokines acting as endogenous pyrogens in response to LPS 
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are interleukin (IL)-1β, IL-6 and tumor necrosis factor-α (TNF-α). Moreover, 

pulmonary dysfunction, including edema, is a well-recognized dysfunction in sepsis 

(Sethi et al., 2013, Sethi et al., 2008). 

The analysis of exhaled breath in rats has been reported in some studies (Vautz et 

al., 2010b, Weicker et al., 2001, Dercho et al., 2006) and the analysis of rodent’s 

breath with an IMS instrument has been reported in a recent feasibility study by Vautz 

et al (Vautz et al., 2010b). 

This work explores the viability of the IMS instrumentation and chemometric 

techniques to generate a VOC discriminatory pattern of sepsis through breath 

sampling.  This work has been performed in a rat model as a first step towards a 

possible future application in humans. Furthermore, although IMS is undoubtedly 

capable of providing fast VOC analysis, it also needs to be compared with a gold 

standard technique in VOC analysis. In order to fill this gap, this study includes 

GC/MS measurements of the rat’s breath as a reference technique, while also 

providing analyte identification capabilities using proper MS libraries.  

Methods and Sample Preparation 

This study was carried out on 20 Sprague-Dawley male rats from Charles River (250-

300g) following an experimental protocol approved by the Ethical Committee of 

Animal Research at the University of Barcelona. One day before the experiment, 10 

of these rats were intraperitoneal (IP) injected with LPS from Escherichia coli 055:B5 

(Sigma Chemical Co., St. Louis, MO) at a concentration of 4mg/kg and the other 10 

rats were IP injected with saline solution as a control group. All the animals were 

housed in light-dark cycle-regulated air conditioned (23ºC) and air humidity (60%) 

animal quarters for 24h. After this period, the animals were IP sedated and 

anaesthetized with a mixture solution containing Rompun (Bayer) in a concentration 

of 0.7mL/kg and Imalgene 1000 (Merial Laboratories, Spain) in a concentration of 

1mL per kilogram of animal body weight. A tracheotomy was performed and one 

cannula (16GA BD Adsyte Pro, Becton Dickinson, Spain) was introduced into the 

trachea. The intratraqueal cannula was connected, by means of a T-piece, to the 

inspiratory and expiratory lines of a conventional mechanical ventilator (Harvard, 

USA). The rats were ventilated normally, with a tidal volume of 7ml per kg of body 

weight, at a rate of 80 breaths/min using room air. The ventilation period lasted for 20 

min and at the end of this period the expiratory gas was sampled for further VOC 

analysis. Figure 3.14shows the sampling method used in this work. With GC/MS the 

rat's breath was collected in a perfluoralkoxy (PFA) bag for subsequent analysis. With 

IMS, the breath sample is directly introduced into the instrument via the expiratory line 

and measured online. 
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Figure 3.14 Experimental setup of breath sampling (Guaman et al., 2012). 

After expiratory gas sampling, the rats were sacrificed by aortic exsanguination. The 

rats' septic status as a result of the bacterial-LPS injection was investigated by 

assessing lung edema and systemic inflammation. To assess lung edema, the lungs 

of all the rats were excised, quickly weighed after removing the main airways, 

weighed (wet weight=W), dried at 70ºC for 48h and weighed again (dry weight=D).  

The ratio W/D was computed as a conventional index of lung edema. 

The systemic inflammatory status of the rats injected with LPS was determined by 

measuring the plasma concentrations of two representative inflammatory cytokines: 

IL1-β and TNF-α. To this end, the peripheral blood was processed to isolate the 

plasma (centrifugation at 3,000 g using a vasculant rotor for 15 min at 4 ºC). Enzyme-

linked immunosorbent assays (ELISA) for IL1-β and TNF-α were performed 

(Quantikine, R&D Systems, Minneapolis, MN, USA). 

The IMS used in this study was the GDA2 (Airsense Analytics, Germany) which 

measurements were made at 50% internal dilution of sampling, with a sampling flow 

of 200ml/min. All the samples were measured twice for up to 40s after 5min of 

stabilizing the system and IMS. Once these measurements with the IMS were 

finished, 1L of breath was collected in PFA bags (Jensen Inert Products, USA) for 

subsequent SPME-GC-MS analysis.  

The GC/MS analyses were performed on a Focus GC-DSQ II (Thermo Scientific, 

USA) with a split/splitless injector. Breath was collected in 1L PFA bags and analyzed 

with SPME-GC-MS. A Carboxen/Polydimethylsiloxane (CAR/PDMS) 75-µm-thick fiber 

from Supelco was used for the pre-concentration of the analytes. The sorption 

conditions were 30min at room temperature. The desorption of volatiles from the fiber 

was undertaken at 250ºC for 5min at the GC/MS injection port. A 60m x 0.32mm x 

1.8µm capillary column DB-624 (Agilent Technologies) was chosen for the 

chromatographic separation. Helium was used as carrier gas, with a flow rate of 

1ml/min. The MS analyses were carried out in a full scan mode (scan range 35-
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350amu) with ionization energy of 70eV. The oven program temperature was as 

follows: initially, 40ºC held for 5 min, then ramped 10 ºC min-1 to 180ºC; held for 1 

min, then ramped 15ºC/min to 230ºC; and then held for 10min.  

At the beginning and at the end of each session of measurements, the blanks of the 

sampling system and the air of the laboratory were measured with IMS in order to 

ensure the reproducibility of the measurements. In order to counteract the anesthetic 

drugs in the ion mobility spectra and in the chromatogram, these products were 

measured in a head-space mode by IMS and by SPME-GC-MS. 

Signal Processing for the mobility spectra 

The signal processing used in this work is shown in Figure 3.15. The signal 

processing applied to the IMS dataset was designed to find differences between 

healthy and diseased rats, and the signal processing applied to the GC/MS dataset 

focused on identifying compounds that could be potentially useful as sepsis 

biomarkers. 

 

Figure 3.15 Block diagram of the analysis of vapors from breath analysis for determining SEPSIS 
in rats.  

The IMS dataset have to be pre-processed as it has been explained above (3.2.1). 

The multivariate signal processing strategy involved the use of the iterative algorithm 

MCR-LASSO (Pomareda et al., 2010) to estimate the pure contributions to the 

spectra. The spectra profile and concentration profile are likely to be linked to the 

biomarkers of breath, thus the specific biomarkers of sepsis. Sequential Floating 
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Feature Selection (SFFS) (Pudil et al., 1994, Narendra and Fukunaga, 1977) to select 

the best subset of pure contribution for maximum discrimination between classes 

using the concentration profile results, and a kNN classifier (Denoeux, 1995, Bezdek 

et al., 1986)in the reduced space to evaluate the classification results under a 

bootstrap validation (Felsenstein, 1985, Efron, 1979)strategy. 

As regards the GC/MS dataset, the compounds were identified by comparison with 

mass spectra from the NIST 2005 library database available in the Thermo Xcalibur 

data system. The basic multivariate strategy involved using a combination of principal 

component analysis (PCA) (Bishop, 2006)and linear discriminant analysis 

(LDA)(Bishop, 2006) (ref34ref), with a selection based on rank products(Smit et al., 

2007, Breitling et al., 2004). This strategy made it possible to reduce dimensionality 

and order the identified compounds by their p-value. A kNN, SFFS and bootstrap 

validation were also used in the same way as in the IMS dataset analysis. 
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