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Chapter Four 

Qualitative Analysis of IMS 

4.1. Introduction 

Qualitative models are deeply used for solving many research problems (Dixon-Woods 

et al., 2001, Patton, 1999). Among of them, discriminate groups(Stevenson et al., 

2010), detecting the presence or not presence of a substance in an organism(Cen and 

He, 2007), enhancing the data analysis (Chen et al., 2010, Razifar et al., 2009, 

Statheropoulos et al., 1999), analyzing the evolution of some medication or vaccines in 

the organism (Webster and Bertoletti, 2001), and many other research interest. These 

research problems can be solve by using variety of algorithms with different grade of 

difficulty from a single principal component analysis to cluster algorithm(Wang et al., 

2004) (Krause, 1998, Tsoukias, 2008).  

Applications about the presence of explosives was one of the initial uses of IMS (Ewing 

et al., 2001). Later on, the interest as analytical technique was also moved on to 

discover which compounds or analytes are involved in some specific class into a 

clustering model. Hence, the development of classification models is one of the 

interests in the IMS field.  

As soon as, bio-related applications have emerged, the need to develop strategies for 

building reliable qualitative models has also appeared. Certainly, there are exploratory 

techniques, which are commonly used for visually inspect the data, such as PCA 

(Bishop, 2006). However, there are other alternatives that are useful for tackling the 

common problems in IMS, such as the use of multivariate curve resolution algorithms 

(de Juan and Tauler, 2006, de Juan et al., 2000). Some of them will be discussed in 

the course of this chapter. Surely, it will be necessary to compare the results with a 

reference analytical technique in order to confirm them. In this thesis GC analysis has 

been used as reference technique for contrasting the IMS results.  

The content of this chapter is split in two main parts. The first one seeks to enhance 

signal to noise ratio of IMS spectra trough pre-processing techniques, which are also 

used for the analysis present in chapter five. The second one presents two different 

alternatives to resolve a classification problem that can be used in IMS field.  The 

classification problem is proposed to be solved either using the whole spectra 

information, or using a multivariate curve resolution algorithm and use the pure 

compounds which have more discriminant information. 

4.2. Pre-processing of IMS spectra 

Pre-processing seeks both to enhance the signal to noise ratio and prepare the spectra 

for a later data analysis in order to guarantee a certain degree of success in further 

quantitative or qualitative analysis. Pre-processing can be done in consecutive steps, 

even though there is no rule to be followed. In this work, we propose to perform the 

pre-processing in the following way: (i) noise reduction or signal smoothing, (ii) 

baseline remove, (iii) peak alignment of the same sample or same group of samples 

(same class), and (iv) a posterior alignment of samples from different classes. 
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4.2.1. Noise reduction or smoothing 

It is well known that the performance of the noise reduction processes depends on the 

kind and characteristics of the noise present in the spectra. During the development of 

this thesis, two different kinds of noise have been identified which are close related with 

the specific hardware development of the IMS instruments. Figure 4.1 shows raw 

spectra of two different spectrometers: GDA2 and UV-IMS. Note, how different is the 

noise present in spectra and how the peaks of interest are been affected by the noise. 

In one hand, spectra from GDA2 present peaks that are really well resolved. It can be 

seen that the spectra has a baseline that need to be subtracted with a kind of noise 

that is not really affecting the peak information. Figure 4.1(b) shows a zoom in a region 

in which no information exist and it is appreciable that baseline behave is not lineal and 

noise seems to be high frequency noise. On the other hand, Figure 4.1(c) depict a 

really different scenario, quite different from GDA2, the peaks are wider than GDA2 

and the noise is really interfering with the signal information, whereas the baseline has 

a lineal behave. Figure 4.1(d) shows also the artifacts of the spectra, which may 

probably due to some experimental manoeuvre.  In addition, it is clear that UV-IMS has 

noise of both high and low frequencies. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.1  Raw spectra of a single measurement of two spectrometers. (a) GDA2 raw spectra (b) 
zoom of the tail without peaks information of the same spectra as (a), (c) UV-IMS raw spectra and 
(d) zoom of the tail with not relevant information. 

Certainly, it is necessary to use different strategies for both kinds of problems. The 

simplest and easiest one is to tackle high frequency noise in GDA2.  The information is 

not affected by the noise and the high frequency noise can be tackled using smoothing 
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algorithms such as savitzky and golay filter (Savitzky and Golay, 1964). In order to use 

this algorithm, two crucial parameters have to be set up which are the width of the filter, 

and the polynomial order that the algorithm need to fit. The order of the polynomial 

might be one or two, since polynomials of higher order do not significantly improve the 

baseline correction. So, using order one or two, either a straight line or quadratic 

function will be fitted into the signal. The width of the filter can be based on the peak 

resolution of the spectrometer, hence avoiding any distortion of the peak information. In 

the case of GDA2, the peak resolution is 32 (see chapter two, table 2.1), and several 

values, which were proportional to the peak resolution, were used to test the filter and 

observe the results. Figure 4.2 (a) and (b) shows the effects of applying a filter of order 

2 with different widths in a single spectrum. It can be seen that the peak starts to be 

distorted when the width has a value proper to the peak resolution and peaks that are 

overlapped (11-13 ms) becomes broad.  

On the other hand, the peaks get distorted while the width is large. Surely, there is a 

trade-off between noise reduction and holding the relevant information. In our case, a 

value above 7 and bellow 15 should be a good option. Actually, Figure 4.2 (c) and (d) 

shows the final result after being applied the filter of order 2 and width 15 to a single 

measurement, which consist of several spectra. On the one hand, noise has been 

diminished, but the height peaks also is attenuated. Moreover, the application of the 

filter improves de signal to noise ratio (SNR) (see Table 4.1).  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.2  (a) Smoothing using savitzky-golay filter of order 2 using different width sizes, (b) 
Smoothing using savitzky-golay filter of order 2 using different width sizes (region with no peaks), 
(c) ) Smoothed spectra using savitzky-golay filter of order 2 and width of 15, (d) Smoothed spectra 
using savitzky-golay filter of order 2 and width of 15 (region of no peaks). 
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The same filter was applied to UV-IMS spectra and the results are shown in Figure 4.3. 

It can be seen that the high frequency noise is smoothed, but the low frequency noise 

becomes ever clearer.  SNR of raw spectra was calculated giving as result 18 dB and 

after filtering 24dB (see Table 4.1). Obviously, a slight enhancement was obtained, but 

it seems not enough since spectra is still noisy.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.3  Savistzky and golay filter applied to UV-IMS spectra (a) Filter of order 2 using different 
width sizes applied to one spectrum (b) Filter of order 2 using different width sizes applied to one 
spectrum (region with no peak information), (c) Smoothed spectra using savitzky-golay filter of 
order 2 and width of 15, and (d) Smoothed spectra using savitzky-golay filter of order 2 and width 
of 15 (region with no peak information) 

 

In this particular measurement, a low frequency noise was coupled to the signal and 

the source of this noise was already known, therefore the rejection of this noise 

becomes quite feasible. Conventional filtering techniques such as low-pass filters 

cannot be used due to they are likely to seriously distort the peaks shape. Therefore, 

two different approaches are detailed next. The first approach consist to use principal 

component analysis as filtering technique (Statheropoulos et al., 1999). The procedure 

consists of rebuilding the raw data eliminating sinusoidal contributions (periodic 

signals). Coming up, the steps are explained in detail. 
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i. Mean center the dataset. 

ii. Build a PCA model with as much principal components as cumulative variance 

is captured. 

iii. Examine the loadings of the PCA model and select ones that have a periodic 

behavior, or through a Fast Fourier transform analysis that have the noisy 

frequency. 

iv. Rebuild the data with PCs that do not have the noisy information.  

𝑋 = 𝑇𝑊𝑇 

𝑋 is data , T scores and W loadings of the model. 

v. Sum to X the mean center of (i). 

 

 

The procedure explained above was applied to UV-IMS spectra after being filtered with 

savitzky-golay filter. The first six loadings of PCA model is shown in Figure 4.4(a) which 

cumulative variance is around 90%. It can be seen that the first principal component 

(PC), which recover 74% of variance, is the only one that do not have any periodical 

behave and the other loadings are likely to be a sinusoidal signal. In this case, 

rebuilding the data became really easy because the first component is the only one that 

has the main information. Nevertheless, there is a 26% of the information that is going 

to be lost which might totally be correlated with the noise. The final spectra after 

applying PCA is shown in Figure 4.4(b) and (c), and a clear improvement is 

observable. Actually, the SNR after applying PCA as filter was 58dB. Surely, it can be 

seen that the height of peaks diminish a little bit if it is compare to raw data, but the 

improvement is more important when the comparison is done in the tail where no 

information is located Figure 4.4(d).  
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(a) 

 
(b) 

Figure 4.4  PCA used as filter. (a) Loadings of PCA model, (b) UV-IMS spectra before and after 
filtering. 

The second approach is the use of independent component analysis (ICA) which seeks 

to separate independent sources linearly mixed (Comon, 1994). The sources have to 

be statistically independent in order to be able to use this algorithm. In our case, the 

noise comes from the engine of a chemical hood located near to the spectrometer, so 

presumably both signals are independent. ICA has been extended used in biomedical 

signal processing,  for instance, when recording electroencephalograms (EEG) on the 

scalp, ICA can separate out artifacts embedded in the data (Ren et al., 2006, 

Saruwatari et al., 2006). The procedure is quite similar to the PCA. 
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i. Mean center the dataset. 

ii. Build ICA model, the number of independent components can be selected by 

using the information of PCA model. 

iii. Examine the independent components (IC) and select ones that have a periodic 

behavior, or through a Fast Fourier transform analysis that have the noisy 

frequency 

iv. Rebuild the data with ICs that do not have the noisy information.  

S =  W X , 

where X is the data , S independent components and W linear statistic 

transformation of S. 

v. Sum to X the mean center of (i) 

 

 
(a) 

 
(b) 

Figure 4.5  ICA used as filter. (a)Independent components, (b) UV-IMS spectra before and after 
filtering. 

Figure 4.5 (a) depicts the independent components as result of ICA model. The two 

first independent components are clear sinusoidal signals and the third one is quite 

similar to the mean spectrum of the data. Thus, the spectra are reconstructed using 

only the third component and the results are shown in Figure 4.5 (b) and (c). Again, a 

really good improvement can be seen with a final SNR of 67dB. A final comparison in 

terms of SNR is shown in Table 4.1 and it is obvious that the best option is to use 

either PCA or ICA as filter in case of UV-IMS dataset.  
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Signal to 

noise ratio 

Raw 

spectra 

Savitzky- 

golay filter 

order 2 

width 15 

PCA ICA 

GDA2 82 dB ± 2dB 97 dB ± 3dB - - 

UV-IMS 18 dB ± 5dB 24 dB ± 9dB 58 dB ± 3dB 67 dB ± 7dB 

Table 4.1  Signal to noise ratio before and after using different filtering algorithms. 

A single spectrum that shows the differences between the uses of the different filters is 

shown in Figure 4.6 (a). It can be seen that the first smoothing filter reduced the high 

frequency noise and an enhancement is evident. Then, the use of PCA and ICA as 

filter strategy improve significantly the SNR. SNR that was calculated using all filtering 

techniques and raw spectra (see Table 4.1), shows that the best approach is the use of 

ICA. Certainly, ICA is intended to separate independent sources of the signal, thus 

since the goal is to separate the coupling noise that come from another equipment, ICA 

is likely to be the best option. On the other hand, PCA require that the noise have to be 

orthogonal to the information in order to separate both signals. In this example, the 

principal components from 2 to 6 have noisy signals, which are orthogonal to the first 

PC that contains the main information of the data, thus reject the noise became 

feasible. That will unfortunately still not means that part of the noise is not orthogonal 

and it is present in the first PC. In addition, there is 26% of the data which are excluded 

and information can be part of this percentage as well as noise.   

Two considerations have to be taking into account for using both strategies. The first 

one is the number of principal and independent components need to be chosen. In the 

PCA, it was hardly by chance that first component has the main information because 

the large amount of analyte present in the sample allows high peak intensity. 

Nevertheless, the information does not have to be in the first PC but may be distributed 

in other PCs. Therefore, it is important to preserve the most information in PCs as it is 

possible. The same idea has to be used when ICA is applied. The second 

consideration is how to known which PCs or ICs are noise. In this example, the 

selection was done by visual inspection, but it is not feasible if the number of samples 

is in order of hundreds or thousands. Thus, an automatic algorithm should be 

implemented. The algorithm can perform the fft of each independent or principal 

component and choose ones that have the fundamental frequencies of the coupled 

noise (only if it is known). An example is shown in Figure 4.6 (c), and you can see the 

fft of the two first independent components has a main fundamental frequency around 

300 Hz and the bandwidth of the third independent component are between 0 to 100 

Hz. The fft of raw spectrum and spectrum filtered by PCA and ICA are shown in Figure 

4.6  (d), which shows that the main information is conserved and frequencies of noise 

are attenuated.  

The results show that the filtering methodology works quite well, especially when the 

noise is orthogonal to the signal and therefore can be perfectly separated in one or 

more components. However, when the noise is not orthogonal to the signal, the 

performance of the algorithm decreases.  For instance, the noise of VG-Test comes 

from the internal engine of the drift pump. Figure 4.6 (b) shows an example of VG-Test 

spectra before and after filtering in which ICA was used to eliminate the noise. The 

SNR of the raw spectra was 70dB and after filtering 91dB, even though a sinusoidal 
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noise can be seen in the final result showing that this technique was not feasible to 

completely eliminate it. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.6  (a) Single spectrum before and after noise reduction , (b) VG-Test spectra before and 
after noise reduction (c) Fast fourier transformation of each independe component of ICA, and (d) 
fft of single spectrum before and after filtering. 

 

4.2.2. Baseline subtraction 

 

Baseline in analytical chemistry is a serious problem because if it is not done properly 

many problems might occur during the data analysis; among of them, peak detection, 

calculate the area of peaks of interest, and calibration problems. In IMS, as well as 

other analytical techniques, this problem needs to be solved. The main objective in 

analytical chemistry is to extract reliable information above background noise of the 

sample. One of the steps is to get a list of peaks and analyse them for selecting the 

most representative ones. This procedure is sometimes performed manually, thus 

there is a dependency on analyst expertise.  The manually procedure is to fit a 

polynomial curve between the tails of the peak of interest.  Nevertheless, this 

procedure is time consuming and there is likely to get errors on the determination. 

Therefore, developing and using automatic algorithms for fitting the baseline is worthy, 

especially in high dimensional data with hundreds of compounds.  
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The baseline correction in stand-alone IMS tends to be simpler than other analytical 

techniques such as GC/MS or IMS/MS. For instance, a chromatogram lasts several 

minutes and the baseline changes from time to time, thus determine a unique 

polynomial for the whole chromatogram results unavailable. On the contrary, a 

spectrum of a stand-alone IMS lasts miliseconds, thus there is not an important change 

of the baseline.  

In this work the baseline correction is addressed with polynomial fitting, and the order 

of the polynomial will depend on the specific IMS instrument. The tails of the IMS 

spectrum, where no significative information is presented, are used to perform the 

fitting. In this thesis, the polynomial order was estimated manually, testing different 

polynomial order and calculating the final error when the baseline was subtracted. 

Figure 4.7 depict the baseline counteraction process for the three spectrometers used 

in this thesis. In case of GDA2, spectrum from 1 to 5.5 ms and 18 to 27 ms, which no 

peak are located, were used for fitting a polynomial of fourth order. Note, at least the 

first period of drift time is constant due to the GDA2 has the RIP and it is unusual to 

have peaks before of it. 

A polynomial of first order was used for UV-IMS spectra; the section used to fit the 

baseline in this example was from 5 to 13 ms and 31 to 34 ms. However, this values 

can significantly vary because peaks from analytes will appears at different drift times.  

A polynomial of order 3 was used for VG-test and the polynomial was fitted using 

spectra from 3 to 10 ms and 20 to 23ms. In contrast to GDA, the last part of spectrum 

is more stable because there are not likely to appear peaks after the dopant TEP (peak 

that appears around 15 ms). During the estimation of the baseline, different order of 

polynomial was tested, and it was seen that higher orders did not provide better results 

than lower ones. It is important remark that the baseline does not change significantly 

in presence of different compounds, so that the polynomial was set up and used 

independently of the application.  
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(a) 

 
(b) 

 
(c) 

Figure 4.7 Baseline subtraction (a) GDA2, (b) UV-IMS and (c) VG-Test. 

4.2.3. Peak alignment 

The peak misalignment in IMS comes from changes of temperature, pressure, 

humidity, external and uncontrolled conditions.  This misalignment usually appears as a 

shift of the main peaks. When the IMS has a reference peak such as reactant ion peak 

in GDA, which come from the radioactive ionization of the water and ammonia, the 

misalignment becomes evident. Since the misalignment may occur in few seconds of 

measurement, this problem became really important in the IMS field.  Despite of the 

fact, there is not too much research about the kinds of misalignment in stand-alone 

IMS, the misalignment can be divided by misalignment additive, and multiplicative. The 

common one is additive misalignment where it is expected that a constant shift affects 

the whole spectrum. There is not a deep study that confirms stand-alone IMS has a 

multiplicative misalignment, but it is expected that shifts will depend on drift time 

position of each peak.  

In this thesis, it was assumed that spectrum of stand-alone IMS has additive 

misalignment, and was focused in how to solve misalignment within spectra and 

between different samples.  Thus, peak alignment problem can be divided into (i) 

alignment of spectra from a single measurement and (ii) alignment of spectra from 

different samples that contain same information (analyte). The first one is that a single 

measurement can last minutes, thus slight misalignments can happen. It is 

recommendable to fix it before trying to align different measurements or samples. An 

example is shown in Figure 4. 8 (a) and (b). This is a single measurement of a same 

compound that last around 12 minutes. It can be seen that from scan 200 (3 minutes) 

0 5 10 15 20 25

0

10

20

30

40

50

60

Drift Time (ms)

In
te

n
s
it
y
 (

a
.u

.)

 

 

Filtered Spectrum

Baseline (Order 4)

Spectrum
without baseline

5 10 15 20 25 30 35

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Drift Time (ms)

In
te

n
s
it
y
 (

a
.u

.)

 

 

Filtered Spectrum

Baseline Order 1

Spectrum
without baseline

5 10 15 20 25

0

0.5

1

1.5

2

x 10
4

Drift Time (ms)

In
te

n
s
it
y
 (

a
.u

.)

 

 

Filtered Spectrum

Baseline (Order 3)

Spectrum
without baseline



Pre-processing of IMS spectra 
 

142 
 

the main peak (9-9.5 ms) starts to shift little by little of the original drift time. This shift is 

mainly due to temperature and environmental changes and this behavior might appear 

even in few seconds of analysis.  Actually, when measurements are taken during a 

day, further misalignment can be happen such as is seen in Figure 4. 8 (c). In this 

experiment, three different measurements were done in intervals of hours, thus the 

misalignment is larger than it was in a single measurement. This is the reason why it is 

advisable to align first each measurement separately and then do it with all samples. 

 
(a) 

 
(b) 

 
(c) 

Figure 4. 8 GDA2 spectra (a) measurement of a single analyte during 12 minutes in which a slight 
misalignment is observable, (b) spectra of a single measurement that last 12 minutes, (c) different 

measurements of the same analyte in which a misalignment should be fix it. 

Certainly, how to perform an alignment will depend on many factors such as having or 

not reference peaks, and to analyse if the misalignment is additive or multiplicative. On 

the other hand, when different samples need to be aligning, it is important to be sure 

that the compound of one sample is exactly the same compound in the others.  

The best case is to have reference peaks of known compounds in order to perform the 

proper alignment. It is the case of GDA2 and VG-Test spectrometer that have a 

reference peak reactant ion peak (RIP) and TEP respectively. Consequently, the 

precision of the alignment can be tested or performed based on these peaks. Note that 

knowing the compound, the coefficient of reduced mobility (K0) is also known; thereby 

the alignment can be done in basis of K0 instead of doing in drift time axes. The 
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alignment is recommendable to be performed in terms of reduced mobility, since it can 

be corrected by temperature and pressure of each measurement using Eq. 3.2. When 

there is not an internal peak in every measurement, it is recommendable to add a 

dopant into the measurement or even better a calibrant. However and depending on 

the complexity of the sample, it should be not practicable.  

For instance, Figure 4. 8 shows an example when the IMS has a reference peak, and 

an additive correction can be performed. It can be seen that all the set of peaks drift in 

the same direction, thus the drift of RIP can be taken as reference to correct the other 

peaks. In this case the resultant spectra is shown in Figure 4. 9(a) and (b) where no 

drift is observable. Exactly the same procedure can be applied when different samples 

need to be aligned. For align different sample, one sample  (Figure 4. 9 (b)) is taken as 

reference and sample 2 and 3 are being corrected in terms of a reference spectrum. 

Since, these samples are replicates of the sample 1, there are more than one common 

peak to be aligned. Thus, alignment will consider all possible information. Again, an 

additive correction was performed and the result is shown in Figure 4. 9 (c) in which all 

samples are correctly aligned.  

 
(a) 

 
(b) 

 
 

(c) 
Figure 4. 9  Alignment of peaks using a reference peak (RIP). (a) measurement of a single analyte 
during 12 minutes, (b) aligned spectra of a single measurement that last 12 minutes, (c) different 

measurements of the same analyte. 
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The other scenario is when there is no reference peaks such as experiments done with 

UV-IMS. In this case, the best option is to have a reference spectrum and try to align 

using either common peaks or the whole spectrum. In this cases the alignment can be 

done either performing an additive shift or mix a shift together with a warping 

technique. Icoshift (Tomasi et al., 2011) is a warping technique which main principle is 

warp the spectra according to a reference spectrum. Icoshift is part of the warping 

techniques such as dynamic time warping (DTW) and correlation time warping 

(CTW)(Tomasi et al., 2004), but with the main advantage that works in the frequency 

domain allowing align a huge amount of data in few time.  

Figure 4.10(a) is an example of four different measurements of wines sample, which 

are from different origins, analyzed with UV-IMS. Despite of the fact there is not any 

calibrant, it can be seen there are common peaks between samples. Therefore, the 

main idea is to choose one spectrum as reference and align the rest to the reference. 

In this example spectra of Montilla Moriles were used as reference and the other 

classes were aligned. The final result is depicted in Figure 4.10 (b) where the alignment 

is not yet perfect, but a signicant improvement was achieved. Note that we assume that 

there is common information (peaks) that should be align, but this is a particular case 

because all samples comes from the wine. Nevertheless, in qualitative analysis some 

assumptions should be taken in order to perform an accurate analysis. It is advisable 

for choosing reference peaks either to add a calibrant in the sample, or use an expert 

opinion for the identification. 

 
(a) 

 
(b) 

Figure 4.10 Wine spectra of different origins. (a) Preprocessed spectra, (b) Preprocessed spectra 

after aligment. 
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4.3. Discrimination of wines using Multivariate Analysis based on 

the information from whole spectra 

Wine consumption is widely spread around the world. According with the International 

organization of wine, the world wine consumption in 2013 has been of 238,7 millions of 

hectolitres (iCEX, 2014). This huge figure has, of course, a very important impact on 

the economy of wine producer countries, such as Spain, France and Italy. Due to this 

direct impact on the economy, the fight against wine fraud is becoming an important 

issue. In recent years, public administrations and  wine industry have driven research 

for quality improvement and fraud detection, which has been carried out within the 

chemical science(Holmberg, 2010).The quality of the wine has a direct relationship with the 

wine composition. Many factors have influence on the composition as, for example, grape variety, 

soil and climate, culture, yeast, winemaking practices, transport and storage (Bisson et al., 2002, 

Arvanitoyannis et al., 1999). 

This work studies the viability of IMS as analytical technique for differentiate wine from 

different origin. A full optimization of the acquisition system, called CFS-GPS-UV-IMS 

(Garrido-Delgado et al., 2011), was firstly carried out to extract the volatile compounds 

present in wine samples and in-line analysis by UV-IMS equipment. Subsequently, a 

signal and data processing study was applied to classify wines according to their origin 

from the IMS recorded spectra. In addition, the analysis of the same set of wine 

samples by GC-FID were carried out so to compare the obtained results by IMS to 

demonstrate the potential of this technique. 

The dataset consist of 56 wine samples from different origins analyzed with UV-IMS. 

Figure 4.10 (b) depict a single measurement of each kind of wine after being 

preprocessing as was explained before. Figure 4.11 depict the mean spectra of each 

sample in which can be seen main differences between classes. Note that a peak 

around 17ms can cluster the wines samples in two groups: (i) Condado de Huelva and 

Jerez, (ii) Valdepeñas and Montilla Moriles. Nonetheless, this difference seems to be 

attributing to ethanol content and not to the origin of them. Therefore, it is expected that 

the other peaks contribute more to discrimination according to the origin.  

 

Each measurement comprised 50 spectra but only 34 spectra (15-49) were used for 

data evaluation because the first part and last part of the analysis do not provide 

relevant information. The relevant information in all cases was included only in the 

spectral region between 15.4 to 27 ms (351 variables). The dimension of the data 

matrix is 1904 x 351, corresponding to the 56 wine samples by 34 spectra for each 

sample and the 351 useful variables.  
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As it was mentioned before (section 4.2) data must be carefully pre-processed, since 

any inaccuracy introduced at this stage can cause significant errors in the statistical 

analysis. First a smoothing Savitzky-Golay filter of order 3 was used to improve the 

signal to noise ratio of all spectra of wine samples. Later, the baseline from each 

spectrum was corrected subtracting the mean value of an empty area of peaks 

(between 0 to 15 ms), common to all the original spectra of wine. Additionally, all 

spectra were aligned with a shift in x-axis based on a polynomial function fitted to a 

reference peak. New positions of the peaks are maximally close among the different 

spectra. 

 

Finally, the precision of the method proposed was assessed by analyzing the same 

wine sample on the same or three different days under identical testing conditions. The 

within-day precision was obtained in eleven replicates on the same day and the 

between-day precision was obtained in three replicates within three consecutive days. 

The within-day and between-day precision values were obtained by using all data of 

the range selected in each sample (mean value of 34 spectra per sample from 15.4 to 

27 ms). The within-day and between-day precision values obtained were 2.2% and 

3.1% respectively calculated as relative standard deviation (RSD).  

 

In order to find possible disturbing outliers for the pattern recognition analysis, a 

Hotelling’s T (Bishop, 2006) square statistic test using a confidence interval of 95% has 

been implemented. As a result of this test, three samples were discarded from Montilla-

Moriles wines, one sample was discarded from Jerez wines and four samples were 

discarded from Valdepeñas wines. Therefore, after the discarded samples, the final 

data base for the analysis is composed of 48 samples, 12 samples per class. The 

dimension of the new data matrix was 1632(48x34) x 351.  

Table 4.2 summarizes the data and variables per each type of wine sample analyzed. 
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Samples 

Montilla-

Moriles 
Jerez 

Condado 

de 

Huelva 

Valdepeñas 

 

 

 

 

 

 

 

 

 

 

 

Number of spectra per sample 

1 34 32 – 33 

2 34 – 34 34 

3 34 34 34 – 

4 29 34 34 – 

5 34 34 34 34 

6 – 31 34 34 

7 – 32 34 34 

8 34 34 34 29 

9 34 32 34 33 

10 34 34 – 34 

 
11 33 34 34 31 

 
12 28 31 – 34 

 
13 34 – 

 
30 

 

 

14 34 
  

– 

Number 

of 

samples 

12  11  9  11  

 

Number 

of 

spectra 

396  362  306  360  

Data set 

Training 9 Samples 
8 

Samples 

6 

Samples 
8 Samples 

Validation 3 Samples 
3 

Samples 

3 

Samples 
3 Samples 

Table 4.2  Summary of wine dataset analyzed by UV-IMS. 

As it was seen in  Figure 4.11(a) spectra present some differences between classes, 

so that it is to be hoped that exist a pattern able to discriminate the four wines. 

Additionally, there may be a set of compounds (peaks) more discriminative of each 

class. Note that dataset (Table 4.2) has a high dimensionality and also note that the 

number of features is very much larger than number of samples. Thus a dimensional 

reduction technique is required prior to build any classification model. As it has been 

commented in chapter 2, both peaks height and area, are commonly calculated to 

tackle this problem. However the univariate strategy is naïve and not useful on 

applications where IMS is used with water-chemistry configuration, which means that it 

is non-selective. This is the case of the wine application, where spectra also present 

peaks overlapping and surely there is a grade of uncertainty on the correspondence of 

each peak with an specific compound. Thus a better option is to work with the whole 
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spectra and, using the proper techniques, extract the most informative information 

which can give a feasible discrimination. In this work PCA together with LDA was 

proposed as dimensionality reduction technique with discriminatory trait, thus PCA is 

used to reduce the data dimension and new projection of LDA is going to maximize the 

discrimination between classes. This strategy has been used before by other authors, 

in order to overcome the known tendency of this algorithm to overfitting in small-

sample-size problems, where the dimensionality is higher than the number of vectors in 

the training set (Westerhuis et al., 2008, Smit et al., 2007). 

 

 

The data was initially splitted in two subsets (Table 4.2): training and validation data. 

The first one, training set, was used to estimate the calibration model which contains 

1224 samples that correspond to 75% of the total amount. The remaining data (408 

samples) is used to validate the model. Principal components were used on training 

dataset in which 3 PCs were selected that jointly explained 95.7% of the total variance. 

However, by this approach, the different wine samples could only be separated by their 

alcohol content which it was not the objective of this work (Figure 4.11 (b)). It can be 

seen that there are two main clusters (i) Condado de Huelva and Jerez and (ii) 

Valdepeñas and Montilla Moriles. Both clusters depict that there is a separation by the 

alcohol content and it can be demonstrated in the loadings (Figure 4.11 (c)). The 

loadings of the two first principal components show that the peak around 17 ms, which 

peak is related with alcohol, has more importance than the others.  
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(a) 

 
(b) 

 
(c) 

Figure 4.11  (a) Mean spectrum of each wine sample (b) Scores of the PCA model (c) loadings of 
the PCA model 

Knowing that the main objective is to perform wine clustering avoiding the alcohol 

content, performing a LDA can help to achieve this goal. The main idea is to build a 

LDA model in the PCA space and use a classifier to test the discrimination. The kNN 

classifier was used to get the final accuracy of PCA-LDA model. Despite of the fact the 

model was built using each spectrum, the classification was done by each sample. 

Thus, a sample is assigned to a wine class through a majority vote procedure, i.e. if the 

majority of its spectra belong to that wine class. In addition, the number of principal 

components was determined by cross-validation using bootstrap algorithm 

(Felsenstein, 1985, Efron, 1979). Under the Bootstrap validation procedure, the training 

set is randomly selected (with replacement) over the total number of data and the 

remaining samples that were not selected for training are used for the validation. This 

procedure is repeated for a specific number of folds (B = 100). It must be again 

highlighted that selection has been done over the samples, not over the spectra, i.e. to 

select a wine sample means to select all its corresponding spectra. For every step in 

the procedure, PCA and LDA combination is built using the information of the training 

set. Then the validation set is projected over the model and a kNN classifier (k = 3) is 

used for estimate the classification rate of the model.  

 

A scanning from 4 until 20 PCA dimensions has been done in order to test the 

performance of the PCA–LDA strategy. Figure 4.12 shows the evolution of the overall 

classification rate with error bars representing the confidence interval at 95% 
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confidence level. It can be seen that the best classification rate is achieved with 16 PCs 

but on the other hand, taking into account the statistical significance, the classification 

rate of 8 PCs is comparable to the best solution, with a 92.0% classification rate value 

with confidence interval (89.0%, 95.0%) at P = 0.05 confidence level.  

 

 
Figure 4.12 Scanning plot of PCA-LDA strategy from 4 to 20 principal components. 

Figure 4. 13 (a) and (b) depict the LDA model that was built using the 16 PCs, which 

shows the best classification rate using boostrap (Figure 4.12). It can be seen that the 

first discriminant function is still separating the sample based on the alcohol content. 

However, the two remaining discriminant functions are able to separate the samples by 

their origins. The classification rate using 16 PC was 93 %(90.5-95.5%).  

 

 
(a) 

 
(b) 

Figure 4. 13 Scatter plot for the LDA obtained using 16Pcs on training set from IMS data. Montilla-
Moriles ( red circle), Jerez (green triangle), Valdepeñas (liliac square) and Huelva (blue star). 

It was seen in Figure 4.12¡Error! No se encuentra el origen de la referencia. that 

from 8 PCs the improvement of the model is slightly different from 16PCs. The final 

model was done using the 8PCs and the classification results are shown in Table 4.3.  

It can be seen that the model can classify the four wine classes with an accuracy of 

92%. That shows that IMS can be potentially used as analytical technique for 

discriminante wine origins avoiding the alcohol content. 
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Confusion Matrix 

(8 PCs) 

PREDICTED 

Montilla

-Moriles 
Jerez 

Condad

o de 

Huelva 

Valdepeña

s 

REAL 

Montilla-Moriles 93% 7% 0% 0% 

Jerez 10% 87% 3% 0% 

Condado de Huelva 3% 6% 87% 4% 

Valdepeñas 0% 0% 1% 99% 

Classification Performance 

Classification Rate 92% (89%-95%) 

Montilla-Moriles 93% (90%-95%) 

Jerez 87% (83%-90%) 

Condado de Huelva 87% (83%-91%) 

Valdepeñas 99% (97%-99.5%) 
Table 4.3 Classification performace of PCA-LDA model using boostrap validation. 

The same samples were analyzed with a reference analytical technique in order to 

compare and confirm the IMS results. Despite of the fact, the GC analysis is out of the 

scope of this thesis; a briefly summary of the main results will be presented. The area 

of 36 compounds was integrated from the chromatogram, 11 of which were identified 

as acetaldehyde, methyl acetate, ethyl acetate, methanol, 2-butanol, 1-propanol, 

isobutanol, 1-butanol, 2-methyl-butanol, and 3-methyl-butanol. It was observed that 

acetaldehyde, methyl acetate, 1-propanol, isobutane, 1-butanol, 2-methyl-butanol and 

acetoin classify to the wines in two groups and the area of 3-methyl-butanol was as 

different as the wine origin.  

A signal processing strategy similar to IMS was applied to GC dataset. Figure 4.14 

shows the resultant PCA model from GC dataset. The first PC discriminate the 

samples by the alcohol content similar to IMS data set. The second PC separate by the 

wine origin. Using kNN classifier (k = 3)  with hold out validation, a percentage of 

96.5% of good classification is obtained, with a confidence interval (88.2%, 99.9) at P = 

0.05 confidence level. Just a single sample, corresponding to Valdepeñas wine was 

bad labeled. 
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Figure 4.14  PCA model of GC dataset. 

Although a good classification of the white wine samples has been achieved with both 

methods, with the CFS-GPS-UV-IMS method none sample pretreatment is required 

while in the chromatographic method a prior dilution and addition of the internal 

standard to the wine sample are necessary before analysis. Others advantages of the 

IMS technique are the short analysis times and a lower cost of the CFS-GPS-UV-IMS 

compared with a GC system. 

 

 

Possible identification of the profile of the wine samples analyzed by IMS 

The wine present a huge number of volatile compounds, such as, alcohols, esters, 

aldehydes or ketones (Holmberg, 2010). Although the objective of the work was not to 

carry out the identification of the volatiles compounds presents in the wine samples, the 

profile of the spectra from wine samples obtained by CFS-GPS-UV-IMS was studied to 

identify some analytes. To achieve this goal, all the compounds identified by GC-FID 

method were studied to check if these analytes could also be determined by UV-IMS. 

In Table 4.4, the boiling point, ionization potential and vapor pressure to ambient 

temperature of these compounds are summarized. Only the compounds with an 

ionization potential lower that 10.6 eV can be ionized by a UV lamp. Therefore, all the 

compounds with a ionization potential lower that 10.6 eV could be determined using the 

proposed IMS method but only three compounds (acetaldehyde, methyl acetate and 

ethyl acetate) shown signal. Although the other compounds have an ionization potential 

lower that 10.6 eV their boiling points are above 80ºC. Moreover these compounds 

have a very low vapor pressure at room temperature for all these reasons, these 

compounds were not identified in the IMS spectrum. IMS has the disadvantage that it is 

difficult to identify peaks in their spectra due to ion-molecule reactions and its low 

resolving power, but by comparing the ion mobility spectrum of a wine with one spiked 

wine sample shows an increase can be seen in the bands from spectrum between 15 

and 27 ms. Therefore, in this preliminary study we could confirm that acetaldehyde, 
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ethyl acetate and methyl acetate contribute to obtaining the fingerprint of a wine 

sample analyzed using the proposed method. 

 

Compounds 

Ionization 

potential 

(eV) 

Boiling 

temperature 

( °C) 

Vapor 

pressure 

(mmHg 

to 20 °C) 

GC(1) IMS(2) 

Acetaldehyde 10.23 20.08 756.8 yes yes 

Methyl acetate 10.25 57 165 yes yes 

Ethyl acetate 10.01 77 73 yes yes 

Methanol 10.85 64.7 97.7 yes no 

2-Butanol 9.88 99 12.5 yes no 

1-Propanol 10.22 97.1 14.9 yes no 

Isobutanol 10.02 108 8 yes no 

1-Butanol 9.99 118 5 yes no 

2-Methyl-1-

butanol >10.6 128 3 yes no 

3-Methyl-1-

butanol >10.6 132 2 yes no 

Acetoin >10.6 148 

2.7 (25 

°C) yes no 

Table 4.4  Compounds analyzed by GC-FID(1) and CFS-CPS-UV-IMS(2) (Garrido-Delgado et al., 
2011) 

In this work, a vanguard analytical system (CFS-GPS-UV-IMS) has been proposed for 

extraction in-line of volatile compounds present in liquid samples. This method has 

been applied to the analysis of white wine samples from different origins and different 

alcohol content. In this way, characteristics profiles from each group of wine samples 

have been obtained. Later a detailed chemometric signal processing was carried out to 

classify the different wine samples. A good classification was obtained by firstly 

reducing the data dimensionality by PCA followed by LDA and finally using a kNN 

classifier.  

  

On the other hand, these same wine samples have been analyzed using a 

chromatographic method using GC-FID. Later a chemometric treatment has been 

carried out too. Using the data of the areas from all the peaks (36 peaks) from the 

chromatogram and applying a PCA, all the wine samples have been classified 

correctly. Moreover LDA and later a kNN classifier have been used to get a good 

classification too. 
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4.4. MCR and SFFS as classification methodology: Application for 

detection of SEPSIS in rats. 

In the previous section a classification model was done using the whole spectra 

information. Another option is trying to extract pure compounds with multivariate curve 

resolution techniques and use the concentration profile for the subsequent 

classification. This methodology is going to be used in the application for detection of 

SEPSIS in rats. The main goal is to find a set of compounds responsible for 

discrimination between healthy rats and rats that were induced SEPSIS(Guaman et al., 

2012).  

Despite the evolution of intensive care medicine and the broad range of clinical 

systems nowadays, sepsis is still the first cause of death in non-coronary critical care 

units. Traditionally, sepsis diagnostics use culturing techniques of blood, urine, 

cerebrospinal fluid and bronchial fluid, among others. The major drawback of culturing 

techniques is the time needed to develop the culture, usually between 24 and 48 h. 

Although other techniques such as ELISA, ProCalcitonin Test (PCT) assays and DNA 

detection by Polymerase Chain Reaction (PCR) are faster, they need between 2 and 6 

h to obtain a response and they are incapable of following the dramatic changes 

occurring in sepsis. In the face of a lack of a real-time monitoring system for sepsis, 

breath analysis with IMS must be considered a promising and prospective alternative. 

The potential capability of breath tests for the diagnosis of sepsis has been indicated in 

some works (Miekisch and Schubert, 2006) but, as far as we know, sepsis still remains 

untested by IMS technology. Other technologies such as GC/MS are also capable of 

offering a high performance in breath analysis but usually they cannot provide the 

portability and simplicity of the IMS measurements. IMS is more suited to the clinical 

trend of developing bedside patient systems but unfortunately it cannot identify easily 

unknown volatile compounds in a sample, so, in this respect, GC/MS measurements 

complement this lack of knowledge as a reference technique. This study includes, for 

the first time, the measurement with IMS technology of rats' breath infused with LPS 

from E. coli as a sepsis animal model. This represents a first step in the potential 

applicability of IMS for the diagnosis of sepsis in human patients. 

A pathophysiological rat status was carried out to each rat. As expected, pulmonary 

edema was found only in the LPS-treated rat group (SEPSIS) compared to control 

animals. Moreover, concentrations of circulating inflammatory markers in plasma were 

significantly increased in LPS-infected mice compared to controls. Whereas in the 

control animals the concentration of IL1-β and TNF-α were 1.51±1.01 pg/mL and 

1.43±0.14 pg/mL, respectively, in the LPS-injected animals these concentrations rose 

to 313.45±81.80 pg/mL and 5.99±0.30 pg/mL, respectively. 

The IMS dataset featured 10 spectra from 40 breath samples (10 healthy rats + 10 LPS 

treated rats and an additional replicate of each one). Since the breath analysis was 

done using GDA2 spectrometer, two spectra of each sample is obtained -one positive 

and one negative IMS mode. Figure 4. 15 (a) and (b) shows the spectra of both classes 

in positive and negative mode respectively. It can be observed that there are some 

peaks remarkably different between both classes. In addition, spectra are really 

reproducible between them, it may be because of rats are genetically identical and its 
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diet and external condition were precisely controlled. Certainly, in human samples the 

spectra would be quite different due to the high and uncontrolled variability.  

 
(a) 

 
(b) 

Figure 4. 15  Spectra from breath analysis in control and SEPSIS rats. (a) Positive mode IMS and (b) 
Negative mode IMS. 

MCR-LASSO(Pomareda et al., 2010) was used to decompose IMS raw spectra into 

their pure contributions: pure spectra components, S, and their related concentration 

time evolution, C, were extracted (Figure 4. 16). As a result, fourteen relevant pure 

components were obtained from negative and positive spectra. Undesirable 

contributions appeared at a drift time of 9.575ms in positive mode and at a drift time of 

8.99ms in negative mode. Anesthesia (drift time=12.48ms in negative mode) as well as 

pure components related to the RIP peaks in positive mode (drift time=8.06ms and 

9.03ms) and negative mode (drift time 8.363ms) were identified but were not 

considered for further evaluation. At the end of this process, eight pure components 

had been obtained. 

 

Figure 4. 16  Spectra profile from MCR-LASSO analysis. Pure components peaks (P) from MCR-
LASSO results for rat's breath. Every component from P1 to P14 has its Reduced 

Mobility K0 (cm2 V−1 s−1) for positive and negative mode. Filled peaks correspond to anesthesia, 
air pollution and reactant ion peak from IMS, and the others are related to compounds from breath. 
Positive Spectra: P1 (K0 = 2.35): RIP comes from Nitrogen ion species, P2 (K0 = 2.11): RIP comes 
from water ion species, P3 (K0 = 1.97): a component from laboratory room air, P4 (K0 = 2.04), P5 

(K0 = 1.89), P6 (K0 = 1.84), P7 (K0 = 1.82), P8 (K0 = 1.79). Negative Spectra: P9 (K0 = 2.25): RIN, P10 
(K0 = 2.11): a component from laboratory room air, P11 (K0 = 1.52): anesthesia, P12 (K0 = 2.16), P13 

(K0 = 2.01), P14 (K0 = 1.60).(Guaman et al., 2012) 
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The concentration profile of the compounds that do not have undesirable contributions 

for both positive and negative mode is shown in Figure 4.17 (a) and (b) respectively. 

These concentration profiles were used to build a model for discrimination between 

control and SEPSIS rats. In addition, a feature selection algorithm was used in order to 

get a subset of discriminatory compounds correlated with the disease. Actually, some 

compounds are really different between control and SEPSIS.  

 
(a) 

 
(b) 

Figure 4.17  Concentration profile of different compounds present in breath samples (a) positive 
mode and (b) negative mode. 

As a result of the SFFS selection, the subset consisting of compounds with reduced 

mobility of K01=1.89 cm2V-1s-1 (positive spectra), K02=2.16cm2V-1s-1 and K03=1.60 

cm2V-1s-1 (negative spectra) were selected. Figure 4.18 shows the distribution of rats in 

the space of the three selected compounds. For easier interpretation, two plots of K01 

versus K02 and K01 versus K03 have been shown, as opposed to a three-dimensional 

plot. Bootstrap validation was applied to estimate the discrimination between healthy 

and LPS-treated rats and the final result was an accuracy of 99.8% (99.7%-99.9%), a 

specificity of 99.6% (99.5%-99.7%) and a sensitivity of 99.9% (99.8%-100%). The 

confidence limits were calculated at a 95% confidence level. 
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Figure 4.18  Plot of IMS samples using the three compounds that were selected by SFFS algorithm. 

As it was seen before the results are really promising due to there are a set of 

discriminative compounds. Nonetheless, these compounds are unknown; thereby the 

same breath samples were analyzed with a reference analytical technique as GC/MS. 

Figure 4.19 shows chromatograms obtained from diseased rats and healthy rats. Note 

the abundance of peaks and slight differences between both chromatograms. 

Moreover, how reproducible are the chromatograms between them as it was seen in 

IMS data.  

 

Figure 4.19  Chromatogram of breath samples from control and SEPSIS rats. 
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Although not all the peaks of the samples can be identified, Table 4.5 lists nineteen 

compounds found and identified in breath samples from diseased and healthy rats. 

Three compounds were identified as related to a fiber induced by LPS and one 

compound was identified as linked to the anesthesia. All of these were discarded for 

the subsequent data evaluation study. In the end, fifteen compounds were selected as 

possible compounds associated with sepsis and the area under the peak was 

calculated for each one using MzMine2(Katajamaa et al., 2006). The results of the 

application of PCA-LDA with rank products are shown in Table 4.5. Five compounds 

with a p-value less than 0.001 were chosen by the algorithm as possible compounds 

related with sepsis.  

Figure 4.20 shows the plot resulting from the discriminant model. Bootstrap validation 

was implemented for a strict validation of the discrimination model. The final results 

obtained with bootstrap validation have an accuracy of 85% with a confidence interval 

between 84.6% and 85.9%. The results for sensitivity and specificity are 91% (89.7%-

92.2%) and 80% (79.3%-80.7%), respectively. Again, the confidence limits were 

calculated to a 95%. 

GC/MS measurements provided a list of compounds in the rat’s breath. After the 

elimination of the compounds from the SPME-fiber and the anesthesia, fifteen 

compounds can be potentially used to separate healthy rats from treated rats. To 

obtain a subset of compounds related to sepsis, PCA-LDA and rank products were 

used as techniques that allow a maximum discrimination between classes and a 

ranking of compounds according to their discrimination importance. Moreover, this 

methodology allows us to obtain a significance level for selected compounds 

considered as a p-value. Thus, the p-value represents the probability of observing a 

compound at a certain rank, and compounds with the lowest rank are the most 

important in the separation. In this study we selected compounds with a p-value lower 

than 0.001. In the end, the first five compounds listed in Table 4.5 were selected as the 

most representative compounds in the discrimination between septic and healthy 

animals, and this could be considered a pattern correlated with sepsis. In this reduced 

space, a pattern recognition system provides promising rates of bootstrap validation: 

85% of accuracy, 91% of specificity and 80% of sensitivity. These percentages must be 

understood in the light of the bootstrap validation procedure: they mean that, after 500 

random selections of different sets of rats, overall 85% of the rats were well classified, 

and the same interpretation can be made for the specificity and sensitivity figures. 
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Compounds Identification 
Rank Product 

(p-value) 

1 Cyclohexane, methyl 0.000005 

2 Acetone 0.000007 

3 CO2 0.00001 

4 Pentafluoropropionamide 0.00003 

5 Dimethylether 0.0002 

6 
Retention Time (18.57) 

Mazas(42,48,56) 
0.0010 

7 o-Xylene 0.0191 

8 Hexane, 2,3,4-trimethyl- 0.2676 

9 Octane, 4-methyl- 0.5343 

10 Decane 0.6611 

11 2-Propanol, 1,3-dichloro- 0.8983 

12 Toluene 0.9702 

13 Acetic acid 1.6955 

14 Propane, 2-ethoxy-2-methyl- 2.3828 

15 Benzene 4.1241 

FIBER 

Silanediol, dimethyl-  

Cyclotrisiloxane, hexamethyl-  

Cyclotetrasiloxane, octamethyl-  

ANESTHESIA Ketanone  

Table 4.5  Identification of compounds from GC dataset 

Despite the good figures achieved with GC/MS measurements, the time, cost and 

infrastructure needed for the sampling and measurement make it impossible to use of 

these instruments in a bedside setting. The IMS alternative, however, does allow for 

this possibility because the sampling and measurement time takes only few minutes. 

With respect to the IMS results, multivariate signal processing was able to detect the 

spectra of pure breath constituents. After a fine counteraction of external pollutants and 

anesthesia, and after applying pattern recognition procedures, a pattern of three 

components was found. Although it is not possible to identify these compounds, they 

can be separated into two classes, with good levels of accuracy (99.8%), specificity 

(99.6%) and sensitivity (99.9%) figures under bootstrap validation. It must be stressed 

that bootstrap validation is designed to avoid over-optimistic results. It is interesting to 

note that even better results are achieved by processing the full IMS spectra instead of 

selected molecules. In this respect, we believe that sepsis produces a general 

alteration in the breath pattern and not just the secretion of a single or few biomarkers.  
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Lack of knowledge about the metabolic pathway is therefore not a major issue, since 

the levels of many different VOCs are probably altered. The outstanding results 

obtained are encouraging and open up the prospect of performing new experiments to 

validate the model developed for the diagnosis of sepsis and beginning carefully 

controlled studies with human patients.  

 

 

Figure 4.20  Score plot from LDA analysis 

In conclusion, breath analysis with IMS has been presented as an alternative for a 

rapid diagnosis of sepsis. The performance of this methodology in separating a healthy 

rat group from a diseased rat group is excellent and provides encouraging conceptual 

evidence at the experimental level. Therefore, the results obtained in the present 

animal study warrant further clinical studies in septic patients, in order to explore the 

routine capability of IMS as a non-invasive point-of-care diagnostic tool. 



Qualitative Analysis of IMS 

161 
 

4.5. Summary 

This chapter has addressed solving qualitative problems in IMS field. Different 

analytical techniques have been presented for building qualitative models from real 

data which were measurement with IMS. Moreover, in this chapter an explanation 

about how to improve the signal to noise ratio of the spectra IMS has done.  

The pre-processing of the IMS spectra has enclosed three main parts: noise reduction, 

baseline correction and peak alignment. The noise reduction has been covered from 

easy algorithms to more complex strategies. PCA or ICA was selected as alternative to 

reduce noise that was coupled to the signal, which was not eliminated using 

conventional filtering algorithms. The results show good performance, however the 

methodology is not fully optimized.  

On the other hand, two different alternatives have been used for resolve a classification 

problem. The first approach is to use the whole spectra without taking to account the 

information of individual compounds. The second approach is to use blind source 

separation techniques to extract the pure compounds of a sample. The results of both 

techniques mainly differ in the goal that is going to be achieved. The goal of the first 

approach is build a model that discriminate wine classes but the main attention is not 

found which compounds are involved. The second approach apart from build a 

classification model, it is also interesting to choose the compounds more discriminative 

between classes.  
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