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Chapter TWO 
Quantitative and Qualitative Analysis 
of Ion Mobility Spectrometry: from 
univariate to multivariate 

2.1.  Introduction 

Both hardware development and the use of IMS have considerably increased in the last 

decade, as well as the amount of data to be analyzed. Initially, when the applications 

were based on on-off detection, the analysis was done by visual inspection or without 

any sophisticated software. However, novel application requires a deeper exploration 

and understanding of the spectra, especially when the important information seems to 

be hidden in complex spectra or the amounts of the compounds are really closed to 

signal to noise ratio. Therefore, multivariate strategies can bring useful solutions to deal 

with this kind of signal processing problems as well as pattern recognition and 

chemometrics tools, which have been used day-to-day in standard analytical techniques.  

IMS dataset usually have a high dimensionality due to a single spectrum has hundreds 

of drift time points, and a single measurement can generate scores of spectra. Thus, a 

single experiment may lead many samples with a bunch of spectra.  That is the reason 

why is really important to treat and set out rules and validation strategies for avoiding 

overffiting results. 

This chapter stars dealing to pre-processing requirements of IMS. Then, qualitative and 

quantitative analysis is explained from a general perspective to a specific IMS approach. 

Cross validation strategies is also pointed out. Finally, limit of detection is also covered 

giving a perspective of different uses and formulation and how to be used in quantitative 

analysis of IMS.  

2.2.  Spectral description 

A spectrum of IMS represents the ion current as a function of the drift time. An IMS 

usually provide several scans of a single measurement in few miliseconds (5ms to 

20ms). However, this scans are usually very noisy. In order to reduce the noise, IMS 

instruments perform an average of a subset of consecutive scans completing less noisy 

spectra. This averaging provides slow instrument responses (around 0.5 to 2 seconds),  

but improves the signal to noise ratio.  So, in order to estimate the dimensionality of data 

provided by an IMS, we can assume that an IMS instrument uses a recording spectrum 

speed of around a spectrum (scan) by second. Every spectrum is recorded at a sampling 

frequency of around 30 KHz and the drift time can be around 30 ms. Thus, the 

dimensionality of a single measurement that lasts N seconds, can be a matrix of N scans 

x M drift points, which means a high dimensional data.  
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Figure 2.1 shows a single measurement of IMS where only a small part of the drift time 

is studied, the part with useful information. The data matrix has a dimension of around 

70 scans x 200 drift time points ≈ 6 ms.  The high dimensionality can be easily noticed. 

On the right of the figure, the evolution of the whole measurement is represented in an 

image. Three of the 70 scans are depict on the left of figure, which represent different 

times of the whole measurement showing on the right of the figure. The intensity of the 

peaks is linked to the intensity of the image on the right of the figure. These scans depict 

the variety of the information from compounds that arise at different times during the 

whole measurement. In fact, depending on the application, the information either can be 

located in a unique spectrum, or a further and thorough analysis of several spectra is 

required to extract accurate information. For instance, in Figure 2.1 the information in 

spectrum 20 and spectrum 40 is quite different, thus means that analysis should be done 

using at least both spectra.  

 

Figure 2.1 An exemplification about the high dimensionality of a single IMS measurement. Left: An 
image of the scans vs drift time of a single measurement. Right: Different spectra at different 

measurement time (scans) showing the information variability. 

Clearly, the complexity of IMS data cannot be solved with simple methods and this 

example shows how IMS data processing must be faced with intelligent signal 

processing approaches.  In a typical framework, some general data processing steps are 

needed. For a good reliability on results, to perform a preconditioning of spectra is 

mandatory. Then, and depending on the main purpose, qualitative or quantitative 

strategies must be implemented (Figure 2.2). Specific strategies for preprocessing, 

quantitative and qualitative IMS signal processing are presented below in sections 2.3, 

2.4, and 2.1 respectively
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Figure 2.2 Genera block diagram  

2.3. Pre-processing 

Before addressing the quantitative or qualitative IMS data processing, some initial 

specific issues with the raw IMS spectra must be faced. These initial specific issues are 

solved in techniques that are known as pre-processing. 

The preprocessing of IMS spectra consists of several consecutive steps for enhancing 

the signal to noise ratio (SNR).  First issue is about noise. IMS spectra are noisy and, 

depending on the signal to noise ratio, this issue might affect to the detection of peaks 

at low concentration. As it was explained above, the spectra provided by IMS instruments 

are an average of several scans. Although this operation improves the signal to noise 

ratio, additional noise reduction operations are usually needed. 

Apart from the noise, spectra present a certain baseline that need to be corrected in 

order to get a proper peak determination. In a single measurement, the baseline of each 

spectrum is quite similar between them. Thus, it is not necessary to estimate different 

baseline for each spectrum. In addition, there is not any difference between samples 

when the spectra come from the same IMS. Although, baseline correction do not implies 

hard algorithms strategies, performing a proper baseline correction allows avoiding a 

miss interpretation of the results. For instance, baseline correction should be needed 

when the peak area need to be estimated or a spectra analysis need to be done. 

Otherwise, the results might show difference due to different baseline of spectra, not due 

to differences between samples. 
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In addition, a misalignment of peaks is sometimes observed. The main source of 

misalignments is due to changes in temperature, pressure and humidity conditions. 

Effects of misalignment are greater, the larger the measurement time. The 

implementation of these three preprocessing steps to IMS spectra improves accuracy 

and precision of the final results. Below, a brief explanation of practical implementations 

of every step is presented. Specific results of the preprocessing used in this dissertation 

will be presented in chapter four.  

2.3.1. Noise reduction  

Noise reduction and filtering is a common problem in different fields, and several 

methods have been developed in order to solve it, among of them, digital filtering, 

smoothing, mean filtering. Some commercial spectrometers usually implement hardware 

or software tools to enhance the SNR. This improvement, as it was explained before, is 

done by averaging several scans of IMS. Nevertheless, a high frequency noise is still 

present in the spectra that need to be smoothed.  For removing high frequency noise 

components from the sprectra savitzky and golay algorithm (Savitzky and Golay, 1964) 

is typically used. The savitzky and golay algoritm performs a local polynomial regression 

to determine the smoothed value for each data point. The polynomial regression (of 

degree k) is calculated using evenly spaced k+1 data points. The coefficients of the filter 

are chosen for preserving features of the data such as peak height and width, which are 

usually dismissed by adjacent averaging. Thus, the number of points for calculating the 

polynomial regression and the degree of the polynomial needs to be determined.  

In practice, despite all the cautions and due to the complexity of the instruments, it is not 

uncommon to have a periodical low frequency noise coupled to the signal. This 

undesirable noise may distort peaks, causing loss of information and reduce the 

performance. Digital filters as savitzky and golay filter cannot deal efficiently with this 

kind of noise due to them might alter the shape of the peaks.  A better alternative is to 

use techniques that aim to extract pure components from the signal and separate them. 

An example of this issue is depicted in Figure 2.3 in which 0.5 ppm of 

trimethylamine(TMA) is measured during 30 seconds while a chemical hood is turning 

on. It can be seen on the left how a periodical noise is coupled in the measurement. On 

the right it is shown the sinusoidal noise caused by the chemical hood superimposed on 

the TMA spectra. In order to uncouple this noise strategies based on component analysis 

has been used. Some of the algorithms available for this purpose are independent 

component analysis (Comon, 1994, Saruwatari et al., 2006) and principal component 

analysis (Statheropoulos et al., 1999) which have been mainly used in image, biomedical 

and voice preprocessing (Razifar et al., 2009, Ren et al., 2006, Saruwatari et al., 2006, 

Takahashi et al., 2009). This new approach applied to IMS spectra are going to be 

explained in chapter four.  
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Figure 2.3 Low frequency noise coupled to IMS spectra. 

2.3.2. Baseline Removal 

The approach for baseline removal cannot be thinking as a general solution, it should be 

considered one solution for each spectrometer. Note, peak area or height of the peak of 

interest is regularly used in IMS analysis, thus baseline need to be removed before any 

further analysis.  One simple option is to connect a straight line between the endings of 

the peak of interest, but is not the optimal choice.  

In Figure 2.1, the peaks are really well defined if it is compared to the baseline, thus the 

baseline estimation might not be difficult. However, set up a correct baseline sometimes 

is not easy to perform as it can be seen in Figure 2.3. For this purpose, there are some 

general approximations that can also fit in the IMS field. The easiest one is to select 

intervals where no information (peaks) appears, which can be at the beginning and the 

end of each spectrum. Then a polynomial of  a certain order can be fitted using these 

intervals (Pomareda et al., 2010). Certainly, it can occur that the baseline does not fully 

fit in the real baseline, so a certain amount of error should be expected.  

Iterative approaches have been developed for fitting and removing baseline from a signal 

using some initial specifications. One of them is to set up iteratively automatic thresholds, 

which could be a polynomial, and cut out the signal above of them. A criterion indicates 

if the baseline fulfill all the requirements and the final baseline is determined and 

removed from the signal(Gan et al., 2006). Another approach is based on asymmetric 

least squares in combination with a smooth factor for modeling the baseline without any 

prior information of the signal (Peng et al., 2010). There are two parameters as initial 

information that need to be set up, and are related with the smooth shape of the baseline 

and asymmetric algorithm behavior of the baseline. Zheng et al (Zhang et al., 2010) 

proposes an adaptive iteratively penalized least squares (airPLS) method in which the 
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baseline is gradually approximate changing weights of the penalized least squared 

algorithm(Good and Gaskins, 1971). The weights are adjusted adaptively by means of 

sum square errors between the fitted baseline and original signal and the smooth of the 

baseline by a parameter provided by the user.  

2.3.3. Misalignments 

The last problem from a signal preprocessing perspective is to solve misalignment. The 

misalignment can be produced by changes in experimental condition or instrument 

variability. As it has been explained above, temperature and pressure are completely 

related with the formation of clusters and, in turn, shift of peaks may come from changes 

in these parameters. These changes are clearly observed during an experiment when 

different samples are analyzed. In this case, peaks from sample to sample are 

misalignment and consequently performing any kind of analysis becomes unfeasible. 

The alignment has to be done in such a way there is no peak distortion.  

 A first alignment can be addressed performing a correction of the mobility coefficient, 

which is inversely proportional to drift time, using Eq. 3.2. This first alignment has the 

main advantage that does not require any reference vector. However, this first order 

correction is sometimes not enough, especially when complex mixture are been 

analyzed and producing different effects such as overlapping peaks. 

Additional techniques/algorithms for peak alignment, coming from gas chromatography 

analysis or NMR analysis (Brown et al., 1996, Trygg et al., 2007), can be used in IMS 

spectra. Nevertheless, an indispensable requirement of this kind of algorithms is to have 

a reference peak or pattern. The fact of having a reference can be quite challenging 

when non-target experiments are analyzed. For those IMS spectrometers that are able 

to generate a RIP peak (those with a radioactive ionization source, for example) or a  

dopant peak, these peaks can be used as reference for alignment purposes and a first 

order alignment can be done in the time basis direction. 

There are other solutions when the spectra are more complex than performing a shift in 

the time basis direction. One solution is the use of warping algorithms. Warping 

algorithms are a well-established solution which goal is to align a sample data towards 

a reference pattern by allowing limited changes using constraints in segments lengths 

on the sample vector (Tomasi et al., 2004). The most popular and may be used are 

known as correlation optimized warping (COW) and dynamic time warping (DTW) 

(Tomasi et al., 2004). The computational cost of both algorithms could be quite 

expensive and the peaks can be slightly altered as consequence of the changes in time 

domain. Hence, in the last years a faster version called icoshift (interval correlation 

optimized shifting algorithm) (Tomasi et al., 2011) has been developed. Icoshift use an 

efficient Fast Fourier Transformation for performing an interval shift of the sample that 

requires less computational time, but using the same concept of warping algorithms. The 

reference vector can be any spectrum and there is a certain grade of flexibility in the use 

of intervals. At the end, the most important in the IMS is to not distort the spectrum as 

consequence of the alignment, in order to not lose their physical meaning.
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2.4. Qualitative Analysis 

The IMS data is a matrix of huge dimension of N scans per M drift points. Moreover, the 

information can be placed in different scans and many times the evolution during the 

measurement can add information in the analysis. Actually, the information of the IMS 

data is focused in the peaks present in the spectra. Consequently, the M points might be 

reduced to a subset of K peaks. Nonetheless, it can be overlapped peaks that make 

difficult to extract peak information. One solution can be to analyze the whole spectrum 

information instead of extract peak information. On the other hand, the N scans of a 

single measurement have to be taken as unique information and not as having N 

measurements. These consideration are really important especially to avoid the called 

“curse of dimensionality” (Duda et al., 2000, Raudys and Jain, 1991). The curse of 

dimensionality is well known in pattern recognition field which means get results that are 

over fitting for the fact of having fewer samples than features or sensors. Certainly, if this 

consideration is not taking into account in IMS data, the results can suffer from over 

fitting.  

Qualitative analysis provides a certain grade of discrimination between different 

categorical classes. This qualitative analysis can be done building a model and using a 

classification algorithm to get a classification rate. It is important to highlight the high 

dimensionality of a single measurement of IMS as can be seen in Figure 2.1. 

Consequently, it is really necessary to perform a dimensional reduction to avoid over 

fitting results as it was explained above. Besides dimensionaly reduction, it is important 

to do a suitable validation. The validation should also consider that a single sample has 

scores of scans and not misinterpret scans with samples.  

2.4.1. Feature extraction, feature selection and dimensionality reduction 

In order to avoid over fitting results, the dimension of the data must be reduced in such 

a way to ensure to have enough samples for getting realistic results. According to 

Raudys and Jain there is an exponential relationship between samples and features 

(Raudys and Jain, 1991). Thus implies that dataset from IMS, which provides hundreds 

of drift points, will be require thousands of samples for obtaining reliable results.  

 

There are two main approaches for dimensional reduction called feature extraction and 

feature selection. Feature extraction seeks to create a new subspace from a projection 

of the original space. Feature selection attempt to select a subset of original features 

which maximize a figure of merit such as classification rate. In IMS feature selection can 

be only possible if the features are information of peaks such as height or width of peaks. 

Other alternative is use feature selection after a pre deconvolution of the spectra; hence 

pure components can be obtained instead of whole spectra. On the other hand, feature 

extraction can be used over IMS spectra and get a new projection with fewer dimensions 

of the original IMS data.  

A common search strategy attempt to extract enlightening information based on an 

expert knowledge such as area or height from the peak or peaks of interest in IMS. In 

this case the whole spectra get reduced to a subset of peaks, instead of having hundreds 

of drift points. The effectiveness of getting peaks information will depend on the 

resolution of the peaks (if they are overlapped or not) and the informatics tools that help 

in this demanding task. Univariate techniques used as qualitative analysis can be done 
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using statistical tests or ploting one feature against the others. Therefore, the most 

significant and representative features can be keep it.    

Other alternative is to generate a subspace where the most relevant information should 

be keep it. Nonetheless, this new subspace tends to be no lineal and is necessary to 

generate systematic lineal transformations. In order to avoid theses repetitive 

transformation, linear approximations has been developed, among of them the most 

popular is principal component analysis (PCA) (Bishop, 2006). PCA is defined as the 

orthogonal projection of the data onto a lower dimensional linear subspace called 

principal components (PCs), which are linear independent, such that the variance of the 

projected data is maximized (Hotelling, 1933). The mathematical formulation is given by 

Eq. 2.1, where X is the dataset of N samples by F features, T represents the samples 

projected onto the new subspace D (D << F) called scores and the W are the loadings 

which measure the feature importance in this new subspace in accounting for the 

variability. The number of PCs can be determined either by visual inspection or using 

cross validation methods.  

𝑋 = 𝑇𝑊𝑇 Eq. 2.1  

The PCA is an unsupervised method because the labels of the sample do not take part 

in the compression, and it is usually to be hoped that the new PCs describe really well 

the original data without losing important information. In this sense, supervised methods 

seek to compress the data but considering the labels of the sample. One of the most 

popular is the linear discriminant analysis or fisher discriminant analysis (LDA) (Bishop, 

2006, Eisenbeis and Avery, 1972, Friedman, 1989, Sugiyama, 2007) which compresses 

the data into a lower dimension equal to the number of classes minus one. LDA seeks 

to perform dimensionality reduction while preserving as much of the class discriminatory 

information as possible. It finds a new subspace where examples of the same class are 

projected very close to each other but, at the same time the projected means of every 

class are farther apart as possible.  Despite of the effect of dimensionality reduction, LDA 

is sensitive to over fitting especially when the number of samples is smaller than the 

number of features. A strategy of combining PCA and LDA is commonly used in order to 

take profit of advantages of both. Normally a first unsupervised PCA step is applied on 

the dataset in order to reduce dimensionality and prevent the overfiting, and then a 

second LDA step is applied for improving the performance. (PCDA) (Wang et al., 2004, 

Garrido-Delgado et al., 2011a).  

Other approach for combining dimensional reduction techniques and discriminant 

analysis is PLS-DA (Westerhuis et al., 2008, Barker and Rayens, 2003). PLS-DA use 

partial least squares (PLS), explained below in section 2.5.3, using binary labels, 

therefore PLS-DA seeks to predict the response of the data using the explanatory 

variables from the PLS. PLS-DA can be used as either classifier or model using the score 

projection for applying a different classifier. There other combinations using PLS such 

as orthogonal PLS (OPLS) (Trygg and Wold, 2002) which tries to enhance the 

discrimination between classes removing systematic variations of the data that are not 

correlated with the categorical classes, or a recent variation called OPLS-DA (Bylesjo et 

al., 2006) which attempt to enhance the variance between groups in a single dimension 

or latent variable, and separate the within group variance into orthogonal latent variables.  
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Feature selection seeks to select a subset of features that maximize an objective 

function. One alternative is to use a variable selection approach such as interval PLS 

(IPLS) (Norgaard et al., 2000) which main idea is to select a subset of features or 

intervals that maximizes the prediction between classes comparing to the use of the 

whole data. Another way is to use bilinear models such as multivariate curve resolution 

(MCR) which is deeply explained bellow in section 2.6. There are also more conventional 

algorithms such as sequential feature selection (SFS) or sequential backward selection 

(SFS)(Narendra and Fukunaga, 1977).  The objective is to sequentially add or remove 

features while the objective function is maximized. There are other versions, in which the 

algorithm goes forward and backward seeking the best option. This algorithms is 

knowing as floating search algorithms (Pudil et al., 1994).  Finally, genetic algorithms 

(Leardi et al., 1992)  is another alternative for feature selection which is biological 

inspired. In any case, these techniques build models and their predictive power needs to 

be obtained and it is done using classifiers.  

2.4.2. Classifiers 

At the end, the goal of a qualitative analysis is to get a quantitative value regarding a 

separation between substances. The classifiers create decision regions using decision 

boundaries or surfaces to divide an input space (Bishop, 2006). The input space is made 

up by the training data or model and giving a test vector x the idea is to assign it to one 

of the K discrete classes Ck of the training data. The final decision can be either assigns 

each sample to one and only one class or to provide a probability value for each class. 

The decision boundaries can be obtained from linear and nonlinear models.  

Among of the linear models, LDA is the most known and was explained above, with the 

variations for dimensional reduction. Another alternative is logistic regression(Bishop, 

2006) which is a probabilistic statistical classification model. The boundaries can be 

nonlinear, hence the classifiers, among of them support vector machine (SVM) (Burges, 

1998, Suykens and Vandewalle, 1999, Chang and Lin, 2011) using kernel functions, 

decision trees such as random forest (Svetnik et al., 2003, Strobl et al., 2007), multilayer 

perceptrons (Ruck et al., 1990, Huang and Huang, 1991, Pal and Mitra, 1992), and k 

nearest neighborhood (kNN) (Henley and Hand, 1996) or in the fuzzy version fuzzy-kNN 

(Kuske et al., 2005) which provide a grade of membership.  

In Table 2.1 shows a brief summary about the main requirements of classifiers.  
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 Overfitting Computational 

requirements 

Setting up 

Parameters 

Decision 

boundaries 

Membership 

LDA Yes Low None Linear Yes 

Logistic 

Regression 

Yes Very Low Regression 

parameters 

Linear Yes 

SVM No Medium /High Kernel Linear/NonLinear Yes 

kNN No Medium k neighbors Non Linear No 

Random 

forest 

No High Number of 

variables to 

start the 

decision 

tree 

Non-Linear Yes 

Multilayer 

perceptrons 

Yes High Number of 

neurons 

Non-Linear Yes 

Table 2.1  Summary about requirements of classifiers. 

Actually, choosing a classifier will be depend on how the data is distributed and how 

many samples has the model, otherwise overfitting results may lead. Surely, the 

classification rate is very important in order to demonstrate if a model is good or not. 

Apart from the fact of using a proper classifier, validate the model are essential. Thus, 

performing a precise validation methodology is required.  

2.4.3. Qualitative analysis used in IMS. 

In IMS field, qualitative analyses have been carried out from screening strategies to 

discrimination of classes. Most of them have been based on identification of a peak or 

set of peaks of interest in target experiments by visual inspection, and then a discussion 

about the behavior of the compound in the experiment (Bell et al., 1995, Fernandez-

Maestre et al., 2010, Verkouteren and Staymates, 2011, Zamora et al., 2011, Dunn et 

al., 2012). Other groups perform calibration curves using either height or area of the peak 

or peaks of interest, which sometimes are done using commercial software developed 

by the manufacturer, and calculate the limit of detection of them, see more detail in 

section 2.1 and 2.7. 

There are just few papers that use the information of the whole spectra for discrimination 

aims. For instance, Snyder et al (Snyder et al., 1995) use PCA for cluster compounds of 

different families, Garrido et al (Garrido-Delgado et al., 2011a) use PCDA for discriminate 

wine of different origin denominations, also in another publications Garrido et al (Garrido-

Delgado et al., 2012)use the same technique for differentiate olive oils. The detection of 

fungal infestations of wood has been studied by Huebert et al (Huebert et al., 2011) in 

which PCA was used. A different approach was applied in the study of breath analysis 

in rats where MCR following by sequential feature selection was used for building a 

model that discriminate between control and inflammatory disease(Guaman et al., 2012). 

This methodology is relative new in the IMS field, which results are explained in chapter 

four.  
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2.5. Quantitative Analysis 

Quantitative analysis is referred to build quantitative model in order to be able to predict 

an amount of a substance or substances of interest. Quantitative analysis is also known 

as calibration process. Calibration has a widespread use in different science such as 

chemistry, physics, medicine, engineering , and instrumental measurements (Thomas, 

1994). The main idea is to seek a relationship, which could be a linear relationship, 

between a signal response and a target variable; thereby calibration relates, correlates 

or model a measured response based on any physical or chemical properties of the 

sample (Brown et al., 1996, Kalivas, 2005, Olivieri et al., 2006, Danzer et al., 1998). 

Actually, calibration or quantitative prediction models have become a main objective of 

signal processing for chemical sensing in the last years (Marco and Gutierrez-Galvez, 

2012). In the same context both instrumental and computational advances have allowed 

to develop numerous calibration methods which are able to also manage new challenges 

in emergent applications like food chemistry, biomedical applications and environmental 

industry. 

2.5.1. Univariate Calibration Model 

Univariate calibration is conceived as the analysis of a single feature.  Usually, peak 

height or area of the analyte of interest is extracted and used for the quantitative analysis. 

For instance, in the case of having a linear regression, a calibration model can be 

mathematical modeled as Eq. 2.2 which express a relationship between a target value 

X (I(calibration samples) x 1 analyte of interest) (e.g., concentration, level of absorbance 

of a dilute solution, etc) and the response of the instrument Y (Ix1)- i.e height of a peak 

of interest. Thus, the model is formed by 0 which represents the intercept, and  which 

is the slope of calibration curve. It is noteworthy that linear regression is the simple case, 

but it is possible to use curve of polynomials of higher orders when the assumption of 

linearity is no longer suitable.  

𝑌 = 𝛽0 + 𝛽𝑋 Eq. 2.2 

The calibration model is obtained using a set of measurements of the analyte of interest, 

which are also known as training, within a desired region. The following step is known 

as prediction in which new set of measurements is projected into the calibration model 

in order to predict its associated concentration level. Indeed, the main idea is to 

determine  which is usually obtained using least squares and the mathematical 

expression is given by Eq. 2.3. The new prediction (x) of a new set of measurement (y) 

is given by  Eq. 2.4  (Hastie et al., 2003). 

𝛽 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌 Eq. 2.3  

 

𝑥 = 𝑦/𝛽 Eq. 2.4  

 

In a simple scenario, when data can be obtained by a single selective sensor, univariate 

methods are fully feasible and therefore Eq. 2.3, and Eq. 2.4 can be directly applied. In 

a real scenario, such as biological samples, to achieve these requests are quite difficult 

because interferences cannot be fully eliminated, and real samples are composed by 

hundreds or thousands compounds. Thus means that is necessary to acquire pure 

standards for all responding species and to do this is not completely manageable. In 

addition to that, it is well studied that univariate calibration in presence of interference 
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give severely biased predictions (Olivieri et al., 2006). Despite of the univariate 

calibration issues, it is still accepted and deeply used in different fields among of them 

pharmaceutical(Sasic et al., 2015)  ,biology(Dimitrov et al., 2015) , 

meteorology(Feldmann et al., 2015, Kiesel et al., 2015). 

2.5.2. Univariate Calibration applied to IMS 

Univariate calibration has been deeply accepted and used in the field of IMS owing to its 

simplicity, but its use might be questionable owing to IMS intrinsic complexity. The idea 

under univaritae paradigma is to find where the peak of interest is located and calculate 

either peak area or peak height whose final value is used to build a calibration curve.  

Note that univariate calibration can be really dificult in real samples, since it is expected 

that a sample include several compounds and a more complex spectra for extracting the 

area or height of the peaks.There are several publicashion where univariate calibration 

is used, i.e. (Armenta and Blanco, 2012b, Garrido-Delgado et al., 2011b, Marcus et al., 

2012, Jafari et al., 2007, Satoh et al., 2015, Atmanene et al., 2012, Morsa et al., 2011). 

In those cases, a univariate measurement were calculated in order to determine a 

quantitative information, even though the measurements were not done with pure 

analytes. Even though the results shown are quite acceptable, the main problem  is an 

expert needed to certificate that one peak belonged to a particular analyte. In some 

cases, as it was mention before, when the experiment was performed in a control 

situation, it could be posible assure previous statement. However, it is difficult to guaranty 

that samples from biological sources in non target studies do not have interfernts or a 

high backround. Thus means  that there will be other interferents in the sample with the 

same reduced mobility or a background with more intensities values that hide the 

compounds of interest. Therefore, results from univarite calibration must be used when 

there is a guaranteee of do not having any other interfent in the sample.  

Figures of Merit for Univariate Calibration 

The univariate calibration use can be linked to its easy implementation. Thus, 

organizations such as IUPAC have developed a compendium of accepted rules in order 

to be stricter when univariate calibration is used. (Danzer et al., 1998). These rules are, 

also known as figures of merit, oriented towards to ensure a proper use and validation 

of calibration model. In addition, the figures of merit provide a good way to compare 

results and models.  

In general, the figures of merit most used are sensitivity, selectivity, signal to noise ratio 

and root mean square error of prediction and cross validation. 

 Sensitivity (R2), in the case of univariate calibration of a given analyte is defined 

as the slope of the calibration curve. 

 Selectivity is a ratio between sensitivity of the analyte (sa) and sensitivity of a 

particular interference (si) and it is given by ξi,a = sa si⁄ . 

 Signal to noise ratio (SNR) is the ratio of the useful analytical signal to the 

background noise. 

 Root mean square error of prediction (RMSEP) of M measurements is given by 

Eq. 2.5.  
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RMSEP = √
1

M
∑(Xi − xi)

2

M

i

 
Eq. 2.5  

 

  

This figures of merit are going to be used for compare the results between different 

models, especially between multivariate calibration models.  

2.5.3. Multivariate Calibration Model 

In the last decade the use of multivariate calibration model has increased and become 

popular as an analytical tool. There are several reasons why multivarite calibration has 

been so well accepted, among of them the fact of being able to include multiple features 

and several measurements into the model –i.e. sensors response, spectral information 

and not single response as univariate case. Thus allow to improve the precision and 

applicability of quantitative analysis (Forina et al., 1998, Thomas and Haaland, 1990). 

Indeed, multivariate calibration allows the study of analyte concentration in mixtures 

becoming the most growing area in chemometrics (Brown et al., 1996). Additionally, 

analyzing multivariate signal enable to compensate contributions of interferences in the 

predictions samples. The use of multivariate calibration have been succesfully and 

extended used in a variety among of them, spectroscopic, biomedical, food chemistry, 

industrial and clinical chemistry (Escandar et al., 2006, Forina et al., 1998, Forina et al., 

2007, Thomas, 1994). 

 

A model is built using the dimension of the original data. In our case, the model is going 

to be applied directed to IMS dataset. Thus, lest have a matrix, for instance IMS matrix 

Y (IxJ), which contain the spectra of I calibration samples at J measurements at different 

drift time, and a vector of concentrations X (IxN) for each I calibration sample from N 

analytes. Thus, a calibration model can be described by Eq. 2.6 if the model fullfill the 

superposition propierties. In this case (Eq. 2.6), B (JxN) are the sensitivities or regression 

vector for each analyte at the J measurements of drift time and E (IxJ) represent the 

error. Therefore, the N concentrations are obtained by fitting the regressors matrix B to 

the spectrum of the prediction 𝑦̂  whose fitting is usually done using ordinary least-

squares (OLS) Eq. 2.3. This approach is also known as classical least-squares (CLS) 

and it shown in Eq. 2.7. However, it is important to take into account its limitations such 

as CLS requires the spectra information of all contributing analytes to be measured or 

estimated from mixture spectra (Olivieri et al., 2006) thereby all interferences must be 

known.  

𝑌 = 𝑥1𝑏1 + ⋯ + 𝑥𝑁𝑏𝑁 + 𝐸 = 𝑋𝐵 + 𝐸 Eq. 2.6 

 

𝑥 = 𝐵+𝑦̂ Eq. 2.7  

 

Since, knowing all interferences in advance is impractical or even unreal, a different 

approach called inverse model have been developed to solve these problems by treating 

analyte concentrations as a function of spectral values (Kalivas, 2005). Thus, the 

calibration model is given by Eq. 2.8 and Eq. 2.9. As long as the number of samples I is 

larger than the number of variables J in the matrix Y, OLS can be used to get a regressor 

matrix B. Nevertheless, this rarely happens so that alternative methods called inverse 

least squares (ILS) have been used to reduce dimensionality to a lower space F<I. For 
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instance, artificial neural networks (Swierenga et al., 2000) or genetic algorithms (Leardi, 

2001) have been used to select a best subset of variables for implementing ILS. Hence, 

B will be determined by 

𝑋 = 𝑌𝐵 + 𝐸 Eq. 2.8  

 

𝐵 = 𝑋𝑌+ Eq. 2.9  

 

Another approach tries to perform linear combinations of the original variables instead of 

selecting only a set of them. This linear combinations are also called scores in which the 

idea is to move from J>I to a new reduced space F<I. The leading approaches of the so 

called "full-spectrum" method are principal component regression (PCR) (Massy, 1965) 

and partial least squares (PLS) (Geladi and Kowalski, 1986, Haaland and Thomas, 1988, 

Helland, 1990). Both PCR and PLS addresses to replace the original variables of 𝑌+ by 

the called scores, but both of them differ on how to estimate these scores. 

 

On one hand, PCR takes advantage of dimensional reduction using principal component 

analysis (PCA) thereby 𝑌 = 𝑇𝑃𝑇 + 𝐸  in which T are the scores of Y and P are their 

respectively loadings. T and P both collect only a limited percentage of the total variance 

of Y. The number of principal components (PCs) is selected using a rank-determination 

method such as cross validation. At the end, PCR estimates 𝑌+ in the base of T and P, 

and regressor matrix B will be determine as Eq. 2.10. 

𝐵 = 𝑌+𝑋 = [𝑃(𝑇𝑇𝑇)−1𝑇𝑇]𝑋 Eq. 2.10  

 

On the other hand, PLS seeks to maximize the covariance between Y and X, therefore 

the new factors called latent variables (LV) capture variance in Y but also achieve 

correlation with X. PLS decomposes Y and X matrices into the form Eq. 2.11 and Eq. 

2.12, where T and U are the score matrices (dimensions I x F) of the F extracted latent 

variables. The matrix P (JxF) and matrix Q (NxF) are the loadings and E and F represent 

the residuals. 

𝑌 = 𝑇𝑃𝑇 + 𝐸 Eq. 2.11  

 

𝑋 = 𝑈𝑄𝑇 + 𝐹 Eq. 2.12 

 

According to non-iterative partial least squares of NIPALS method (Geladi and Kowalski, 

1986) PLS provides two types of loadings matrices W (weight loadings), which are 

needed to keep the scores T orthogonal, and P that explains the maximum covariance 

between instrumental signals and information of constituents - i.e. concentrations. The 

scores T are given by Eq. 2.13  and the final matrix B as Eq. 2.14 

 The LV in PLS should be selected using methods of cross-validation to get an objective 

determination of the importance of prediction errors in the final calibration model. 

𝑇 = 𝑌𝑊(𝑃𝑇𝑊)−1 Eq. 2.13  

 

𝐵 = [𝑊(𝑃𝑇𝑊)−1(𝑇𝑇𝑇)−1𝑇]𝑋 = 𝑌+𝑋 Eq. 2.14 

 

There are slightly variations of PLS when the calibration problem is no longer linear such 

as poly-PLS (Wold et al., 1989, Wold, 1992). Poly-PLS attempts to establish a non-linear 

relationship between score U and T whose fit is a polynomial of a certain order (nth) and 

is given by Eq. 2.15. 
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𝑢𝑖 = 𝑏0𝑖 + 𝑏1𝑖𝑡𝑖 + ⋯ + 𝑏𝑛𝑖𝑡𝑖
𝑛 Eq. 2.15  

 

Besides the typical techniques of PLS and PCR, there are less used approaches based 

on machine learning strategies which results are positively accurate such as support 

vector regression (SVR) (Desai et al., 2006, Smola and Scholkopf, 2004, Cherkassky 

and Ma, 2004), or random forests applied to regression (Svetnik et al., 2003).  

In our thesis PLS are explored as multivariate calibration technique applied to IMS 

dataset. The multivariate techniques are compared with the use of univariate calibration 

models which results are deeply explained in chapter five.  

2.5.4. Multivariate Calibration applied to IMS 

As it has been discussed in the chapter one, the ionization process in IMS, and hence 

the response of the instrument to the analytes, is affected by the nature of ion species. 

The ion competitiveness, the collisions driven atmospheric pressure and the clustering 

of ions can provide an unwanted IMS response due to variation on temperature or 

humidity, and matrix effects during ionization(Eiceman and Karpas, 2005). Univariate 

techniques are not able to handle with the complexity of the process, explained before, 

and they have poor performance in complex scenarios. On the other hand, multivariate 

techniques are able to use the entire information of the whole spectra featuring better 

the IMS response in real scenarios.  

 

Actually, it was not long ago that the IMS use was focused on detecting the presence or 

absence of an analyte. Thus, the effort was concentrated on the study of dopants for 

achieving an appreciable grade of selectivity of the studied analyte/es. This usually 

happen because of the complexity in the dynamics of ion formation of the IMS.  Even 

though the use of the dopant is still in use and its usefulness is guaranteed, new 

applications have been emerged where the use of dopant is not an option. This new 

applications usually claims to find new compounds from complex samples, such as 

biological samples, in order to use IMS as detection or monitoring instrument from a 

research perspective. These new application have brought new problems among of 

them, complex spectra. Therefore, the use of multivariate calibration techniques has 

been tabled as a perfectly good solution giving reliable results. In this sense, (Zheng et 

al., 1996, Fraga et al., 2009, Zamora and Blanco, 2012) are the only ones who made a 

contribution in the field of IMS using multivariate techniques. 

 

Zheng (Zheng et al., 1996) proposed the use of cascade correlation networks (CCN) 

(Fahlman and Lebiere, 1991) to perform both qualitative and quantitative analysis of a 

set of 15 volatile organic compounds that were measured independently. In addition, 

PLS was implemented to evaluate the performance of neural networks. They found a 

good fit when CNN is used even in cases in which peaks are overlapped with the RIP of 

the instrument and better results comparing to PLS results. However, number of latent 

variables was fixed and not selected using cross validation; thereby the PLS results could 

be too pessimistic.  

Fraga (Fraga et al., 2009) compared the common univariate technique versus 

multivariate techniques such as partial least squares and principal component 

regression. Explosives compounds 2,4,6-trinitramine (RDX), 2,4,6-trinitrotoluene(TNT) 

and 1,3,5,7-tetrazocie (HMX) were analyzed by temperature step desorption (TSD) 

coupled to IMS. TSD was used to partially resolve mixture components before ion 
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mobility spectrometry. The measurements consisted of mixtures at different 

concentrations of the three explosive compounds. In the univariate case the area of the 

peak of each compound were calculated and in the multivariate case the whole spectra 

were used to perform PLS and PCR. The authors concluded that the results are 

remarkably better with PLS or PCR both than univariate case. They also said that in 

terms of accuracy the variability in peak area calculation does not allow to have 

sufficiently precise quantitative results even the substances were well resolved. 

Moreover, multivariate calibration is able to capture the effects like competition among 

the reagents among the different IMS signals while peak-area calibration cannot do it.  

 

(Zamora and Blanco, 2012) used IMS to determine active principal ingredients (APIs) 

present at low concentrations in pharmaceuticals. The main objective was to test 

multivariate techniques to solve overlapping problems present in APIs. They measured 

two concecutives peaks which were strongly overlapped and through multivariate curve 

resolution and a second derivative algorithm both APIs were extracted given qualitative 

results. To get quantitative results PLS were performed to the whole plasmagrams 

(spectra) using mixtures and pure APIs. They conclude that APIs are able to be 

quantitative determined using PLS and also overcomes the problems of their mutual 

interferences, primarily present in mixtures. 

 

In this thesis, an deeply exploration of multivariate technique is done using novel 

biological application, where the main difficulties are pointed out togheter with its 

respective methodological solutions. Also, new altarnetive of calibration is presented 

where a deconvolution technique is used. All of these results are presented in chapter 

five. 

Figures of Merit for Multivariate Calibration 

The figures of merit for multivariate calibration are extensively explained in (Olivieri et 

al., 2006). Nevertheless, an overview about inverse model will be described. 

 Sensitivity is determined by 1 ‖𝐵‖⁄ . The sensitivity is also known as slope of the 

calibration curve and is denoted by R2. A calibration model works better as the 

sensitivity is close to 1 or 100%. 

 Root mean square error based on cross-validation (RMSCV) provides a measure 

of how well the prediction is estimated on the basis of the average analyte level 

(Thomas, 1994). RMSECV is a robust prediction measurement, due to the error 

is calculated over a several partitions of the original data. A calibration model is 

enough accurate and reliable when RMSEC is minimum or closer to an ideal 

zero.  

𝑅𝑀𝑆𝐶𝑉 = √
1

𝑛
∑(𝑋̂ − 𝑋)

2
𝑚

𝑖=1

 Eq. 2.16 

 

, where 𝑋̂  is the prediction concentration using a multivariate model and m 

represents the number of predictions samples. 



Quantitative and Qualitative Analysis of IMS: from Univariate to Multivariate  

55 
 

2.6. Self-modeling mixture analysis techniques 

Real samples are composed by both pure standards and complex mixtures. In addition, 

the content of real samples are usually formed by thousands of compounds, but there 

are just few of them that are fully correlated with an specific application.  The compounds 

that are not linked with the desired application can be considered as background, and 

some of them migth be pollutatants of the sample. Therefore, the fact of extracting just 

the informative compounds from the whole sample is not a simple procedure. 

One of the goals of multivariate techniques is to extract a pattern from the whole 

compounds which are totally realated with the application. In this sense, there are some 

techniques that are able to extract the basic information from the sample, among of them 

the most popular are PCA and PLS. PCA and PLS are techniques that perform 

mathematical transformations building a new space where the samples are projected. 

Even though, the projection of the data in this new space are able to separate or 

discriminate different clases, identifying the features (compounds) which are responsible 

for this separation results to be complex. The features are projected in this new sapace 

in a matrix called loadings. These loadings do not provide a physical interpretation of the 

compounds, but the featuares are wheighted for each principal component. For these 

reasons, PLS and PCA are deeply used as exploratory techniques, but has to be 

carefully taken as ultimate model without any validation.  

Moreover, depending upon the instrumental technique, the final data matrix could be a 

multi-component system of 2 dimensions that is also known as two-way data or bilinear 

data. For example, a single measurement using ion mobility spectrometry generates a 

data matrix in which each row is a multivariate spectrum and each column represents a 

drift time of the ionized molecules. This kind of data should follow Beer-Lambert law that 

means i.e. there are a linear dependency between pure compound and its concentration 

(Stlouis and Hill, 1990). Thus means that changes in concentration will lead changes of 

the pure compound peaks. Therefore, self-modeling techniques attempt to perform a 

bilinear decomposition or a mathematical deconvolution to extract pure compounds 

present in the sample without any a priori information about them (Jiang and Ozaki, 2002, 

Windig and Guilment, 1991, de Juan and Tauler, 2006). This kind of techniques are also 

known as Blind Source Separation (BSS) (Cichocki et al., 2008) in the field of signal 

processing and their usefulness has been tested in different scenarios both within and 

outside the chemical scope (Comon, 1994, Esteban et al., 2000, Berry et al., 2007, 

Zhang et al., 2013, Kim et al., 2007, Osten and Kowalski, 1984, de Juan et al., 2000). 

Bilinear models can be applied provided exist a linear relationship between the samples 

that are analyzed by the spectrometer and the underlying contributions of the pure 

components. It means that each concentration belongs to a specific compound. In this 

sense, the mathematical model is represented as Eq. 2.17 

𝐷 = 𝑐𝑎𝑠𝑎
𝑇 + 𝑐𝑏𝑠𝑏

𝑇 = 𝐶𝑆𝑇 + 𝐸 Eq. 2.17 
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In the specific case of IMS data, matrix D is formed by I spectrum x J drift time points. 

The resulting concentration profile C will have a dimension of I x N pure compounds and 

S represents the spectra profile for each pure variable. In this case ca, sa, cb,and sb are 

the pure compounds present in the sample.There are different approaches for resolving 

bilinear model (Eq. 2.17)  but it could be divided in two groups: non-iterative approaches 

(unique resolution techniques) and iterative approaches (rational resolution 

methodologies) (de Juan and Tauler, 2006, Jiang and Ozaki, 2002). 

Non-iterative procedure explores a subspace of dataset both selective and zero-

concentration regions which are usually built using local rank analysis. It is based on 

performing repetitive PCA analysis within small regions of the data matrix which can be 

done using fixed or variable windows. This final process gets as results information from 

the pure compounds that evolve along the dataset. According to (Manne, 1995), the best 

scenarios to use these methods are when the overlapping is in the same direction of 

concentration. However, the fact of selecting a unique region makes this kind of 

methodologies dependent on an expert, who needs to have a priori knowledge of the 

regions for assuring accurate estimations. Amongst the most popular algorithms can be 

found Evolving Factor Analysis (EFA) (Maeder, 1987) usually used as local rank analysis 

technique, Window Factor Analysis (WFA) (Malinowski, 1992)(Malinowski, 

1992)(Malinowski, 1992)(Malinowski, 1992), Heuristic Evolving Latent Projections 

(HELP) (Kvalheim and Liang, 1992, Liang and Kvalheim, 1993). WFA and HELP use a 

preselected region of raw data at zero-concentration in order to find main variations 

between them, and recover the pure variable that is uncorrelated with information at 

zero-concentration. Nowadays, Fixed Size Moving Window Evolving Factor Analysis 

(Keller and Massart, 1991) is the most popular algorithm in this category because it uses 

different size of windows to detect the presence of minor species in data matrix.  

Moreover, there are other techniques that aims to evaluate the purity of the most 

representative compounds and concentrations of the spectral variables. These methods 

assume that the pure variables must be selective and vary during the whole experiment, 

and can be used for either determining the number of pure compounds present in a 

sample or extracting the concentration and spectra profile. The pioneer and the most 

used method is called simple-to-use interactive self-modeling mixture analysis 

(SIMPLISMA) (Windig and Guilment, 1991). Windig define a pure variable in such a way 

it has only contribution from one of the components in the sample. The basic idea is to 

estimate C of Eq. 2.17 with pure variables which is defined by 

𝑝𝑘,𝑗 = 𝑤𝑘,𝑗 ×
𝜎𝑗

𝜇𝑗 + 𝛼
 Eq. 2.18  

 

for which 𝑝𝑘,𝑗  is the purity spectrum k of variable j. The 𝑤𝑘,𝑗  is a determinant based 

weight function which measure the linear independence of the jth candidate variable with 

respect to the previous pure variable candidate, and 𝛼 is a constant value that prevent 

dividing by zero in case of no signal content and bias the purity slightly towards variables 

with higher intensity (Windig et al., 2005). Then, the spectra profile for each k pure 

variable can be calculated using Eq. 2.18 as Eq. 2.19, and the predicted concentration 

profile can be determined using Eq. 2.20 
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𝑠𝑘,𝑗
∗ = 𝑤𝑘,𝑗𝜎𝑗 Eq. 2.19  

 

𝐶∗ = 𝐷𝑆∗(𝑆∗𝑇𝑆∗)
−1

 Eq. 2.20  

 

In the last years, some modifications have been proposed by Windig such as the use of 

the second derivative data for a better selection of the pure compounds especially in 

cases when the data present baseline problems and there is higher overlapping between 

the components (Windig et al., 2002). SMAC (stepwise maximum angle calculations) 

(Windig et al., 2005) is an angle measurement of the pure variables previously selected 

with each other, i.e. using SIMPLISMA, in order to reject pure variables that represent 

several components -in other words variables that are not completely pure. In addition, 

SMAC is a helpful tool in cases when a dataset have both narrow and broad spectral 

features and SIMPLISMA are not able to accurately extract the correct pure variables. 

Iterative approaches yields feasible solutions in complex chemical process or data 

without any a priori knowledge, thus adding knowledge to the models is known as adding 

constraints for refining the pure variables.  

Constraints, which can be either mathematical or physical information, are an active field 

of study, and new kinds of constraints are being developed nowadays (deJuan et al., 

1997, de Juan et al., 2000). These methods requires initial estimations of C or ST, which 

can be obtained by applying methods such as SIMPLISMA or PCA. Among of the set of 

constraints, non-negative, unimodality, closure are the most common, specially applied 

above all in the spectrometry field. Another approach is to fit hard/rigid models that define 

our data in a mathematical expression, in general the shape of the concentration or/and 

spectra profile. Figure 2.4 illustrates the most common constraints applied in multivariate 

curve resolution approaches. 

 

Figure 2.4 Common constraints used in iterative MCR approaches (de Juan and Tauler, 2006) 
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One of the main drawbacks of these algorithms is that can produce a set of different 

feasible solutions, which is also called rational and/or intensity ambiguities, and this 

uncertainties have been the center of attention of many researches (Gemperline, 1999, 

Vosough et al., 2006, Leger and Wentzell, 2002, Abdollahi and Sajjadi, 2010, Golshan 

et al., 2012). Nevertheless, one possible solution is to set minimum and maximum 

boundaries to each pure compound, one at a time, for the feasible solutions bands of 

resolved profiles (Tauler, 2001, Rajko and Istvan, 2005, Abdollahi and Tauler, 2011, 

Abdollahi and Sajjadi, 2010, Sawall et al., 2012, Beyramysoltan et al., 2013). 

The most popular algorithm within iterative methods is Multivariate Curve Resolution – 

Alternating Least Squares (MCR-ALS) (Tauler et al., 1993). In principal, ALS attempts to 

minimize the error in Eq. 2.17  over C for fixed S and over S for fixed C. An initialize 

profiles either C or S is needed before to start with ALS and it usually is done either using 

PCA or SIMPLISMA. For example, if the initial estimation is the spectra profile S, the 

least square equation to estimate C is: 

 

𝐶 = 𝐷𝑆(𝑆𝑇𝑆)−1 = 𝐷(𝑆𝑇)+ Eq. 2.21  

 

𝑆 = 𝐷(𝐶𝑇𝐶)−1𝐶𝑇 = 𝐷𝐶+ Eq. 2.22  

 

 

where (𝑆𝑇)+ is the pseudoinverse matrix of 𝑆𝑇  when it is full rank. To estimate the 

spectra profile the equation is Eq. 2.21. Both Eq. 2.21 and Eq. 2.22 are iteratively 

estimated until an optimal solution is obtained and/or a convergence criterion is fulfilled. 

As previously stated, constraints need to be applied in the iterative process of ALS, so 

that ambiguities can be avoided. A diagram block is shown in Figure 2.5 about MCR-

ALS procedure. Apart from MCR-ALS, there are other algorithms related to iterative 

methodologies such as Iterative Target Transformation Factor Analysis (Gemperline, 

1984, Vandeginste et al., 1985). 
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Figure 2.5 Block diagram of MCR-ALS approach 

2.6.1. Self-modeling mixture analysis applied to IMS 

One of the first studies aiming to extract pure compounds from IMS spectra was 

developed by (Bell et al., 1995). In this work Bell et. al. use deconvolution techniques to 

extract the compound of interest from a noisy background. They propose to use fitting 

curves as models of peaks in IMS like Gaussian, Lorentzian, and Error functions. In 

addition, they want to know the effects in deconvolution under a certain experimental 

conditions such as drift tube temperature, concentration of the analyte, moisture and 

component mixtures. Besides concluding that error function was not as good 

approximation for deconvolution as the others, they found that concentration and the 

physic-chemical properties of the compounds are totally correlated with peak shape, 

which is a predominant factor for deconvolution. Special care must be taken in cases of 

mixture of substances, in which proton affinity and interaction among them play an 

important role. Another important factor was the amount of moisture to guarantee the 

success of deconvolution. Nevertheless, they admitted that some deconvolution 

parameters must be optimized for every application, making less attractive than other 

approaches.  
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(Buxton and Harrington, 2001) was one of the pioneer of introducing SIMPLISMA as 

techniques for deconvoluting peaks in IMS. In this case, they used compounds related 

to explosives as pure standards and interferents at different temperatures. The results 

showed that pure compounds were correctly extracted, even though some of them were 

missed by visual inspection. Furthermore, they said the successful of SIMPLISMA was 

due to the changes both concentration and temperature occurred at the measuring time. 

Pure compounds in presence of interferents were also extracted using SIMPLISMA, but 

they noted that concentration level of pure standard was significantly higher than 

interferents which make a less complicate scenario. Later on (Chen and Harrington, 

2003, Chen and Harrington, 2001, Cao et al., 2005) introduced a compression method 

based on wavelet transformation in order to make feasible real time processing using 

SIMPLISMA. Data used to test the algorithms were warfare agent stimulants (Cao et al., 

2005) and narcotics (Chen and Harrington, 2003) both at high concentration. In both 

cases, they used wavelet compression in both retention time and measuring time 

direction, and then either SIMPLISMA or ALS was used to extract pure compounds. They 

claimed the fact of using wavelet was not worse if it is contrasted against original 

algorithm with the advantage of having less dimensions. Then (Harrington and Chen, 

2004) developed a new constraint to be applied into ALS called equilibrium of 

compounds in IMS which uses a formulation of theoretical evolution of monomer and 

dimer when concentration increases. They concluded that this method could be a good 

model to estimate vapor concentrations in non-multivariate scenarios.  

(Lu et al., 2009) presented an alternative approach closer to the biological scenario. They 

applied ALS to the data of samples that were measured with solid phase extraction 

(SPE)-ion mobility spectrometry. In this case, they tried to get cocaine metabolites in 

urine samples using SPE to increase instrumental sensitivity and selectivity, and 

subsequently they applied ALS to obtain spectra and concentration profile from the 

metabolites of interest. They finally concluded that coupling SPE-IMS is a good 

alternative for screening drugs in urine, and the use of ALS offers good performance 

compared with traditional screening methods. 

In the last years, just few contributions have emerged linked with this topic. Pomareda 

et al. (Pomareda et al., 2010) proposed to impose a hard modeling into MCR algorithm. 

The objective was to create a very dense Gaussian model (it could be other peak model) 

and then fitting it using a least absolute shrinkage and selection operator, thus the 

algorithm is called MCR-LASSO and its diagram block is shown in Figure 2.6. This 

method assumes that the peak shape can be modeled by a Gaussian and the weight of 

the Gaussian is calculated using the resolution of the instrument.. Under this approach,  

a regularization parameter () should be adjusted by cross-validation. The algorithm was 

tested using synthetic and real data and its performance were compared to SIMPLISMA 

. The results showed a better fit when MCR-LASSO was applied, specially when high 

level of noise was introduced in the system. The algorithm was able to model wider 

asymmetric peaks and provide a better resolution in real experiments. The final pure 

spectra and concentration profiles had less noise becoming more interpretable than 

SIMPLISMA.  
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Figure 2.6 MCR-LASSO algorithm's block diagram.(Pomareda et al., 2010) 

(Khayamian et al., 2012) aims to build a cubic data matrix (IxJxK) using IMS data in 

which I is a whole measurement of IMS of J spectra x K drift time points, and use tucker 

3 model to decompose the pure compounds of the sample into three modes and three-

way core array. Each mode represents the evolution in time of the experiments, the 

concentration behavior and the spectra information, respectively and the three-way core 

array represent the capture variance of the model. Although, the main idea is similar to 

the methodologies explained above, the parameters setting up and the subsequent 

interpretation it is not as simple as other methodologies. The author’s also propose to 

use the final concentration profile to build a calibration curve as quantitative procedure.  

(Zamora and Blanco, 2012) proposes to use MCR-ALS and a second derivative 

deconvolution technique to deconvolute peaks that have a huge overlap between them. 

According to the authors both techniques had a good performance and allowed the  

correct identification of the pure compounds. Besides identification techniques, they 

used PLS as quantitative procedure using the whole information of IMS. In turn, (Armenta 

and Blanco, 2012a) aims to find a set of pharmaceutical substances that might be 

present in the air of a pharmaceutical workplace using an IMS which is coupled to a 

thermal desorption unit. Thus, the final data matrix represents a spectrum of IMS for 

each retention time. Furthermore, they identified a set of compounds that has a closer 

reduced mobility between them using MCR-ALS. The first estimation was performed 

using evolving factor analysis to enhance the selectivity and sensitivity and then it is 

refined using MCR-ALS. The results were satisfactory and the concentration profile gave 

a quantitative value about the concentration of the compounds of interest. Finally, both 

instrumental technique and the deconvolution methodology were tested in simulated 

workplace exposure and in a real situation, and the final results were contrasted against 

a reference method given comparable results. Thus, confirms the potential of IMS as 

monitoring techniques in an occupational pharmaceutical assessments.  

In this thesis, MCR-ALS and MCR-Lasso is combined with other multivariate techniques 

such as PLS and sequential floating feature selection. In the first case, the concentration 

matrix is going to be used for transforming the semiquantitative response into a purely 

quantitative response using PLS. This is going to be applied in non-linear datasets that 

comes from samples of wine, and rat’s breath. The second case, the concentration 

profile from the compounds are the input of a feature selection algorithm. Thus, a subset 

of the compounds will be selected by the algorithm which maximize the separation 

between the classes. Both strategies are going to be used to solve  quantitative and 

qualitative problems. 
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2.7. LIMIT OF DETECTION 

Limit of detection (LOD) is one of the most used figure of merit in analytical chemistry 

and many other fields. LOD has the capability for quantify a trace element or molecule 

in chemical and biological matrices, and measure the power of an analytical procedure 

to deal with traces amount of analyte. However, there is a lack of agreement about the 

best definition and interpretation of limit of detection, and it could imply an order of 

magnitude in its calculation. 

𝐿𝐷 = 𝜇0 +  𝑘𝐷𝜎0 Eq. 2.23  

 

The basic formulation of LOD (Eq. 2.23) can be expressed in terms of population mean 

(𝜇0) and the population standard deviation of the blank of the signal (𝜎0). The standard 

deviation is multiplied by a constant value kD which represents a probability that the blank 

does not exceed the LOD value (α or type I error), where kD has been typically received 

a value of 3.  

A wide study about hypothesis based on detection limit theory was presented by Currie 

in 1968 (Currie, 1968), and it has rapidly become one of the most popular formulation of 

LOD. This study was based on define LOD in basis of the null hypothesis (H0), which 

tests if the analyte is not present. Currie establishes two concepts: a critical level (Lc), 

which is the maximum acceptable value for avoid detecting a substance when it is not; 

and detection limit (Ld) which is the smallest true signal that will be reliable detected 

against to make a false conclusion that a blank observation is a real signal. 

The mathematical formulation of critical level and detection limit are given by Eq. 2.24 

and Eq. 2. 25 

𝐿𝐶 = 𝑘𝛼𝜎0  Eq. 2.24  

 

𝐿𝐷 = 𝐿𝐶 + 𝑘𝛽𝜎𝐷 Eq. 2. 25  

 

where kα and kβ correspond to probabilities of commit error type I and type II according 

to central t distribution. Error type II () is committed when a compound is not detected 

when it should be detected.  𝜎𝐷 is the standard deviation which stands for measurements 

that contains the analyte at the level of limit of detection.  

In 1995, Currie (Currie, 1995) addressed how to calculate kα and kβ coefficients, and 

confidence limits of LOD.  Later on Hubaux and Vos(Hubaux and Vos, 1970) introduced 

a new method in calculation of LOD based on confidence limits for linear calibration 

curves. This approach attempts to calculate upper and lower confidence limit in a 

regression curve which represents a confidence band where predicted values must fall 

inside of the region.  

Moreover, the width of this confidence band will depend on knowledge of data and 

uncertainty about the true position of the calibration line. In order to estimate LOD the 

authors define a value yc that represent the lowest measurable signal, which is similar to 

critical level on Currie estimation (Currie, 1968). The lowest concentration to be predicted 

is represented by xD and it is the projection of yc on the lower confidence limit. Therefore, 

xD represent the detection limit (LD) that Currie(Currie, 1968) had previously estimated.  
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Figure 2.7 depicts the concept under LOD calculation, and it is important remark that xD 

and yc are related to α and  probabilities (type I and II errors). This approach assumes 

data are homoscedastic that means equal variance through the whole experiment or 

constant variance. Thus, if data are not homoscedastic, the confidence band will be 

narrower or wider around calibration curve, and LOD calculation will be affected by these 

data distribution as it can be noticed in Figure 2.7. 

 

Figure 2.7 Calibration curve with upper and lower confidence limits. yC decision limit, xC critical 

level and xD the detection limit 

The mathematical development goes through determine yc (Eq. 2.26) 

𝑦𝐶 = 𝑌0 + 𝑠 ∙ 𝐴 Eq. 2.26  

 

where Y0 represents the intercept of the curve, s is given by equation Eq. 2.27 and is the 

residual variance of the theoretical and real signals, and A it is a factor related to 

confidence interval of regression curve equation Eq. 2.28. 

𝑠2 =
∑(𝑦𝑖 −  𝑌𝑖)2

𝑁 − 2
 

Eq. 2.27  

 

𝐴 = (𝑡1−𝛼 + 𝑡1−𝛽)√1 +
1

𝑁
+

𝑥2

∑(𝑥𝑖 − 𝑥)2 
Eq. 2.28  

 

N is the number of samples in the calibration curve, yi is the measured signal at 

concentration xi and Yi is the theoretical signal based on regression line.  

Despite of the fact that the theoretical approximations of Currie(Currie, 1968) and 

Hubaux and Vos(Hubaux and Vos, 1970) are quite similar, in practice there are one order 

of magnitude different in LOD calculation. Actually, Voigtman (Voigtman, 2008a) 

performed a set of simulation to test both approaches and concluded that Hubaux and 

Vos approximation is overly pessimistic resulting in false negatives rates (failing to 

decide that an analyte is present when it is) and the final LOD is twice of Currie(Currie, 

y
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1968) estimation. In addition, he claims that the fundamental problem with Hubaux and 

Vos method (Hubaux and Vos, 1970) is that the confidence prediction levels do not fit in 

the detection process because the authors are considering limit of detection on the 

content (xD) and not in the response of the instrument (yD). Hence, the LOD should have 

been lower than they report. On the other hand, Long and Winefordner (Long and 

Winefordner, 1983) were settled that the curve approximation is only valid when the 

major source of variation is present in the blank, otherwise the LOD could give artificially 

low values. Moreover, Analytical Methods Committee of Royal Society of Chemistry 

(1987) claims that Hubaux and Vos (Hubaux and Vos, 1970) approach have to be only 

used when the calibration curve is linear near the detection limit region.  

In 1997 International Union of Pure and Applied Chemistry (IUPAC) published an 

overview in order to standardize the procedures for determining the limits of detection 

and quantification (Mocak et al., 1997). The LOD was defined as “limit of detection must 

reflect the value of the true signal (related to some non-zero analyte concentration) which 

is significantly different from the blank signal value”. They emphasized about having a 

finite number of measurement both in blank measurements and calibration points in real 

experiments and how the original Eq. 2.24 formulation have to change taking to account 

a finite number of measurements. The first consideration is how to estimate kD. Thus, 

the new formulation that they proposed is an upgrading of Eq. 2.24, and it is shown in 

Eq. 2.29 

𝐿𝐷 =  𝑦̅0 +  𝑡(𝑣0, 𝛼)(1 + 1 𝑛0⁄ )1/2𝑠0 Eq. 2.29  

 

where, 𝑦̅0 and 𝑠0 are the sample characteristics of both mean and standard deviation of 

blank samples, 𝑡(𝑣0, 𝛼) critical value of t-distribution with v0 degrees of freedom which is 

calculated as number of blank samples (n0) minus one., and the term (1 + 1 𝑛0⁄ )1/2 is a 

correction of the uncertainties of the determination of 𝑦̅0 and 𝑠0. Mocak (Mocak et al., 

1997) also alluded to the consideration of estimate LOD using information of calibration 

curve Eq. 2.26. It was called as Upper limit approach to the calibration curve and is given 

as, 

𝐿𝐷 = 𝑡(𝑣, 𝛼)
𝑠2

𝑏
𝐴 

Eq. 2.30  

 

where, s2 and A is given by respectively Eq. 2.27 and Eq. 2.28, b is the slope of the 

calibration curve and 𝑡(𝑣, 𝛼)  is a value of t distribution with v degrees of freedom 

calculated as number of samples plus one minus number of the regression parameter 

for instance 2 when is a line. 

Obviously, Mocak (Mocak et al., 1997) and (Currie, 1968) determinations differs from 

each other and the major discrepancy corresponds to whether include or not error of the 

second kind which at the end means doing error type I and II comparable. Furthermore, 

Mocak claimed that the differences goes beyond to be a theoretical disagreement but it 

is a philosophical understanding of what it is detection limit; and he considered that LOD 

determination is considered by to be different from a blank signal such as critical level 

Eq. 2.24 of Currie(Currie, 1968). Indeed, he mentioned if there are several 

measurements, the error of the second kind shifts to the error of the first kind resulting in 

consider only α probabilities.  
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Mocak (Mocak et al., 1997)also gives some considerations when LOD is calculated such 

as: 

 Blank samples need to be included in the regression procedure. 

 It is recommendable to have the same number of replications for each 

concentration in the calibration curve. 

 The range of concentrations to calculate LOD has to be as close to the expected 

value to avoid over-optimistic value. 

Later on in 2007 Voigtman performed an extensive monte carlo studies in order to test 

four different scenerios like (i) to compare Currie (Currie, 1968) and Hubaux and Vos 

(Hubaux and Vos, 1970) methodology (Voigtman, 2008a)(ii) having non-central 

distributions (Voigtman, 2008b)(iii) what happen when heteroscedastic noise is present 

in samples (Voigtman, 2008c), and (iv) exploring error of the second kind in 

LOD(Voigtman, 2008d).  

The first part (Voigtman, 2008a) was discussing above, but in summary he found that 

Hubaux and Vos method is negative biased so the LOD is too low. The second part 

(Voigtman, 2008b) concluded there is not any relevant effect when data are not central 

distributed, therefore there is not any need to apply critical values of the noncentrality 

parameter of the noncentral t distribution. In the third part, Voigtman explored the value 

of use weighted least squares when heteroscedastic noise is present in a sample. In 

order to explore this scenario, he assumed that the noise precision model is known. 

Nevertheless, in reality it is far from be true. He also tested a Currie (Currie, 1997) 

formulation dealing with heteroscedastic noise. After 10000 simulations, Voigtman found 

that Currie formulation can accurately calculate when heterostedastic noise is present 

as long as weights of WLS have been accurately estimated. Finally, in part 4, he studied 

the effect of whether include or not Type 2 errors. The main advantage is the simplicity 

of the formulation when 50% Type 2 error rates are assumed. Since, having this 

percentage of error sometimes has not a big impact; the author suggested the use of 

Currie schema Eq. 2.22 and Eq. 2.23. He also mentioned the effect of having a fixed kD 

as it is mentioned by Mocak (Mocak et al., 1997) and he could observe that when kD 

varies, LOD changes. 

The main difference between the approach by Mocak and Currie is to add Type 2 error 

into the formulation that results in a philosophical understanding of what it is limit of 

detection. On the other hand, the other method, where the parameters of the calibration 

curve are used for estimate LOD, ((Hubaux and Vos, 1970), Mocak(Mocak et al., 1997) 

has brought some controversy about its use.  Nevertheless, this method brings a solution 

when predicted calibration points give as result negative values whose response do not 

have any physical meaning. Perhaps this approach is not useful from univariate 

standpoint, but it could be valuable when there are not enough blanks in the experiments 

and the calibration curve can add useful information in the LOD calculation. 

The need of multivariate detection limit (MDL) is given by the fact of solving the presence 

of other analytes apart from the analyte of interest in the sample to be analyzed. 

Therefore, LOD does not only depend on the mathematical model, but depends on 

influence of the other analyte over sample. The pioneer of introducing MDL was Lorber 

(Lorber, 1986) starting from the analysis of net analyte signal. However, it had not been 
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used in the field of chemistry until Bauer (Bauer et al., 1991) improve Lorber method 

(Lorber, 1986) and used in error propagation theories. Later on, in 1997 Faber and 

Kowalski (Faber and Kowalski, 1997) made a good approximation of Currie univariate 

method (Currie, 1968) estimating LC Eq. 2.24 and LD Eq. 2. 25 from calculating error 

propagation(Bauer et al., 1991) of predicted concentration of ordinary least square 

solution Eq. 2.6, and Eq. 2.7 

Another approach of MDL was developed by Boqué (Boque and Rius, 1996) who used 

criteria discussed by Hubaux and Vos(Hubaux and Vos, 1970) in univariate calibration 

and turned into multivariate calibration point of view. In this approach MDL is calculated 

taking to account the variance of the predicted concentration of the analyte of interest 

testing the null hypothesis, and the MDL will be given by intersection of the lower 

confidence interval of the multivariate model with a straight line for an analyte 

concentration at zero level.  

Besides LOD and MLD techniques, another approach is related to use the information 

of receiver operation curve (ROC) for determining LOD (Brown and Davis, 2006). This 

approach is a univariate technique that is used as an alternative when data has a non-

parametric distribution whose noise is heteroscedastic.  

2.7.1. Limit of detection applied to IMS 

Limit of detection in ion mobility spectrometry is commonly determined from predictions 

of blanks that are obtained from a calibration curve which is built using the information 

of either peak area or height intensity of the peak of the analyte of interest. The common 

way of estimate LOD is determined by three times standard deviation of blanks divided 

by slope of calibration curve (Armenta and Blanco, 2012b), (Marquez-Sillero et al., 

2012),(Moran et al., 2012),(Zhou et al., 2012) and (Garrido-Delgado et al., 2011b). This 

approximation is similar to Eq. 2.23 when kD has a value of 3 which is equal to have 

99.85% probability that the blank signal not exceed the LOD. Actually, neither the 

number of samples to build a calibration curve nor influences of other analytes present 

within sample are considered in this approximation. As seen in Eq. 2.29 (Mocak et al., 

1997) a correction of kD has to be introduced in the formulation of LOD in order to correct 

the uncertainties of having a limited number of points in calibration curve. Furthermore, 

it is important to pay attention in the fact that the usefulness either peak area or height 

intensity of a peak of interest can bring misunderstandings specially when there are 

present other substances, or even worst when the peak of interest is overlapped with 

another substance. Thus, multivariate techniques are needed to get a better profit of the 

IMS response. 

As far as I know, in the literature there is only one publication about LOD applied to IMS 

techniques. Fraga in 2007 (Fraga et al., 2007) introduced the approach about ROC-curve 

(Brown and Davis, 2006) in order to be adopted in IMS field. In this case, IMS is used to 

detect the presence or absence of a proprietary chemical marker placed into diesel fuel 

in such a way to observe if there is any interaction and suppression of this chemical 

marker due to diesel. Several experiments were performed at different concentration of 

the marker. From these experiments different ROC curves were built, thus the best AUC 

of the ROC curve was obtained when the presence of the marked is considerable high 

compared with the background of the diesel. This strategy seems to be suitable for 
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achieving the LOD when there is a complex chemical matrix. However, this approach 

does not provide a specific LOD, but a concentration range where LOD is located.  

2.8. Cross validation methodologies 

As it was mention above, over fitting results are obtained when the number of features 

are much bigger than the number of samples, or when the parameters of the model was 

only set up using a subset of samples. The fact of having over fitting results implies that 

the results seem better than they really are. Therefore, validation is always a crucial step 

for avoiding over fitting results. Validation helps to confirm results of a model and to set 

up parameters of a model. The validation can be divided into external and internal 

validation. Internal validation is used for setting up the parameters of the model and 

external validation is used for measuring the robustness of the model.  

The simplest method is to keep apart a subset of samples as test data and the rest of 

the samples are used for building the model. This method is called hold-out validation 

and the test data is used for giving the final accuracy of the model. Indeed, the results  

from this partition out of a finite number of samples cannot be generalized and the result 

is not enough accurate. In contrast, the use of cross validation techniques gives a better 

description about the data and the models.  

Cross validation is an iterative approach that split the data in training and validation data, 

thus different models are build and validated, so the final error is the mean error between 

all models. There are three methods commonly used as cross validation technique which 

are k-fold, leave one out and random sub-sampling cross validation (Filzmoser et al., 

2009). Another approach is bootstrap validation  (Efron, 1979, Felsenstein, 1985). 

Bootstrap validation is the most powerful methodology for validation which is also 

considered as a random sub-sampling validation with replacement. In each iteration 

samples for training set are chosen randomly, and the samples were not selected in 

training set are part of validation set. The “replacement” means that training set can have 

repeated samples. It is considered that in each iteration 30% of the data is left out for 

validation purposes.  

The use of cross validation is really important for setting up parameters of models and 

classifiers. Thus, some authors propose the use of a double cross-validation with inner 

loops for setting up parameters as it is shown in Figure 2.8. The data is initially split in 

validation and training set, then the training set is used for model optimization purposes 

in which a cross validation strategy can be used. Once the model parameters are 

optimized, a final model is built with the training data set and validated with the validation 

set to get the final error results. A cross validation outer loop can be used either to test 

the model with the parameters previously selected or to generate different models and 

combine them using other strategies.  
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IMS dataset is made up of several spectra of different measurements, and each 

measurement is composed by a number of spectra per hundred of drift time points. Thus, 

in a validation process is important to taking into account a specific subset of scans or 

spectra that belongs to a sample, and not only individual spectrum. Therefore, when a 

sample is left out, all spectra of the sample have to be kept apart and not only one 

spectrum. At the end, the error should be calculated as mean or majority vote from all 

spectra of a sample.  

 

Figure 2.8 Cross validation for setting up model parameters. 

Both quantitative and qualitative model require a thorough validation process. The best 

method for validation is boostrap validation, but it is necessary to have considerable 

amount of samples in order to get feasible results. However, many times is not possible 

to have too much samples, especially in clinical applications where it is common to have 

just few of them.  

In addition, it is necessary to add external and internal validation in the methodology. 

Thus means, the model will be always tested with data that is not part of the model. This 

implies that the model will be more robust and ensure that any sample can be properly 

classified. This methodology is really strict and requires to add a double loop of 

validation. The first one for setting up the internal model parameters and the second one 

for testing the external dataset. This procedure is surely time consuming, and requires 

to have enough samples for this iteration process.  

The validation process is not usually deeply studied in IMS field. It might be due to the 

fact that usual scenarios where IMS has been used do not require an exhaustive 
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validation process, but the biological/biomedical scenario need an adequate validation 

for ensuring reliable results.  In this thesis, different biological applications have been 

studied and the validation process has been carefully design in order to avoid over fitting 

results.  



Summary: Quantitative and Qualitative Analysis of IMS 

70 
 

2.9. Summary 

Nowadays, the measurement of Volatile Organic compounds (VOCs) is an active field 

for research and development. Certainty, there are reference techniques for VOC 

measurement that are extendedly used, but besides their high economic cost, their high 

cost in time for each measure is a drawback in applications when it is necessary to 

perform on-line measurements. In this sense, IMS can be a complement or an alternative 

to reference techniques, but there has been a lack about how to perform a proper signal 

processing analysis. Actually, when new applications have emerged in IMS field, the 

need of developing new signal processing strategies were evident for obtaining reliable 

and accurate results.   

It is important to remark that IMS has a moderate selectivity and non-linear behave, and 

changes in temperature and humidity might affect the analysis of the information of the 

IMS. The primarily use of IMS was in explosive and illicit chemicals detection in which 

the detection was based on a binary decision using one or few known compounds. In 

virtue of novel bio related applications has appeared, the interest of using multivariate 

techniques to address complex data from IMS have been raised too.  

The samples, which are obtained from this kind of applications, contain thousands of 

compounds that make unfeasible the use of univariate strategies. Moreover, the 

compounds behave into IMS brings additional drawbacks, such as overlapping of peaks 

from unknown compounds, that need to be solved. Therefore, multivariate strategies are 

proposed to handle with these problems and extract informative information. 

This chapter has covered from a general view a comparison of multivariate and 

univariate analysis. In addition, how multivariate and univariate techniques has been 

applied into the IMS field.  The main proposal of this thesis is tackled IMS problems such 

as non linearities and mixtures through multivariate techniques. These problems occur 

due to chemical response of the spectrometer or complexity of the application. Next 

chapters will cover the following issues. Chapter three explains the experiments that 

were carried out and the spectrometers that were used. Chapter four explores the 

qualitative applications. In chapter five, IMS data is explored from a quantitative point of 

view, where calibration models are built and limit of detection are evaluated.  
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