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Abstract

The HIV-1 envelope glycoprotein (Env) composed of the receptor binding domain gp120 and the fusion protein subunit
gp41 catalyzes virus entry and is a major target for therapeutic intervention and for neutralizing antibodies. Env interactions
with cellular receptors trigger refolding of gp41, which induces close apposition of viral and cellular membranes leading to
membrane fusion. The energy released during refolding is used to overcome the kinetic barrier and drives the fusion
reaction. Here, we report the crystal structure at 2 Å resolution of the complete extracellular domain of gp41 lacking the
fusion peptide and the cystein-linked loop. Both the fusion peptide proximal region (FPPR) and the membrane proximal
external region (MPER) form helical extensions from the gp41 six-helical bundle core structure. The lack of regular coiled-coil
interactions within FPPR and MPER splay this end of the structure apart while positioning the fusion peptide towards the
outside of the six-helical bundle and exposing conserved hydrophobic MPER residues. Unexpectedly, the section of the
MPER, which is juxtaposed to the transmembrane region (TMR), bends in a 90u-angle sideward positioning three aromatic
side chains per monomer for membrane insertion. We calculate that this structural motif might facilitate the generation of
membrane curvature on the viral membrane. The presence of FPPR and MPER increases the melting temperature of gp41
significantly in comparison to the core structure of gp41. Thus, our data indicate that the ordered assembly of FPPR and
MPER beyond the core contributes energy to the membrane fusion reaction. Furthermore, we provide the first structural
evidence that part of MPER will be membrane inserted within trimeric gp41. We propose that this framework has important
implications for membrane bending on the viral membrane, which is required for fusion and could provide a platform for
epitope and lipid bilayer recognition for broadly neutralizing gp41 antibodies.
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Introduction

HIV-1 employs its trimeric env glycoprotein, composed of the

receptor binding domain gp120 and the membrane anchored

fusion protein subunit gp41 to enter host cells. Gp120 interacts

sequentially with its cellular receptors CD4 and coreceptor CCR5

or CXCR4 [1], which induce a cascade of conformational changes

in gp120 and gp41 [2,3]. As a consequence the core of gp41 folds

into a six helical bundle structure that leads to the apposition of

viral and cellular membranes [4,5].

Gp41 catalyses membrane fusion and current models suggest

that receptor binding leads to the exposure of the gp41 fusion

peptide (FP), which interacts with the target cell membrane

producing an intermediate, pre-hairpin state bridging two

membranes. This pre-hairpin has a relatively long half-life [6]

and constitutes the target for inhibitory peptides [7,8,9] and

neutralizing antibodies directed against HR1 [10][11] and MPER

[12,13]. Potentially at this stage, MPER was hypothesized to be

membrane embedded based on the reactivity of broadly

neutralizing MPER-specific antibodies [14,15,16,17,18]. The

pre-hairpin then refolds into the six-helix bundle core structure

[4,5] and it is this transition that catalyzes membrane fusion [19].

Six-helix bundle core formation is achieved before fusion pore

opening [20]. Experimental evidence [6,19,21] suggest that fusion

proceeds via lipidic intermediate states, a membrane stalk, opening

of the fusion pore and its expansion [22]. Mutagenesis analyses

indicate that both linkers to the membrane anchors, FPPR and

MPER, are implicated in fusion [23,24] and the TMRs play an

important role in fusion pore enlargement [22,25,26].

The energy released during gp41 refolding is used to overcome the

kinetic barrier [3,27], which is underlined by the high thermostability

of gp41 core structures [28,29] constituting a common feature of viral

fusion proteins [30][31][32][26]. Although the free energy liberated

during refolding of one trimer might be sufficient for fusion [26]

consistent with experimental evidence [33], other studies imply that

cooperativity of several trimers is required [34].
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In order to understand the structural basis of MPER and FPPR

in the context of gp41 trimers and their potential contribution to

stabilize the gp41 post fusion conformation, we have assembled

gp41 containing FPPR and MPER (gp41528–683). Thermostability

measurements show that inclusion of FPPR and MPER increases

the melting temperature (Tm) substantially compared to the gp41

core, suggesting that the gain of free energy can be directly

coupled to membrane fusion. The crystal structure of gp41528–683

shows helical refolding of FPPR and part of MPER as well as the

potential membrane insertion of MPER adjacent to the TMR.

The structure thus indicates for the first time that part of MPER

can insert into the viral membrane within trimeric gp41 and

supports the hypothesis that a number of neutralizing gp41

antibodies recognize MPER in a membrane environment.

Results

Thermal denaturation of the extracellular domain of
gp41

We assembled the extracellular domain of gp41 from two

fragments containing residues 528 (lacking 16 N-terminal gp41

residues including FP) to 581 (FPPR-heptad repeat 1, HR1) and

residues 629 to 683 (HR2-MPER) (gp41528–683) (Fig. 1A and Fig.

S1). Both chains contain N-terminal Flag-tags to produce a soluble

and monodisperse complex (Fig. S2). Circular dichroism analysis

reveals a high helical content of ,90% (Fig. S3A) and a melting

temperature (Tm) of 87.6uC (Fig. 1B). In comparison, the core

fragment of gp41 composed of HR1 and HR2 [5] (gp41541–665)

containing N-terminal Flag-tags shows a Tm of 75.1uC (Fig. 1B).

Thus FPPR and MPER interact and impart most likely increased

trimer stability.

Crystal structure of gp41 and MPER membrane insertion
Gp41528–683 was crystallized in space group P63. The structure

was solved by molecular replacement and refined to a resolution of

2 Å (Table 1). The crystal structure composed of residues 531–581

and 629–681 plus 5 N-terminal Flag-tag residues reveals the six

helical bundle core [4,5] with FPPR and MPER extending in a

helical conformation resulting in an 88 Å-long rod-like structure

(Fig. 2A). A striking feature of the structure is a ,90u turn of the

MPER chain at Asn 677 which positions the remaining residues

including Trp 678, Trp 680 and Tyr 681 perpendicular to the rod

(Fig. 2B). Two disordered C-terminal residues must connect gp41

into the TMR in the membrane (Fig. S4). As a consequence, Trp

678, Trp 680 and Tyr 681 are exposed towards the membrane

and well positioned to insert their side chains into the bilayer (Fig.

S4). In order to calculate the membrane curvature generated by a

shallow embedding of these MPER residues into the outer leaflet

Figure 1. FPPR and MPER increase the melting temperature of
gp41. A) Schematic overview of gp41; FP, fusion peptide; FPPR, fusion
peptide proximal region; HR1, heptad repeat 1; HR2, heptad repeat 2;
MPER, membrane proximal external region; TMR, transmembrane
region. B) Unfolding of gp41528–683 and gp41541–665 monitored by
circular dichroism spectroscopy at 222 nm.
doi:10.1371/journal.ppat.1000880.g001

Author Summary

HIV-1 employs its envelope glycoprotein complex (Env)
composed of gp120 and gp41 to catalyze cell entry. Both
Env subunits undergo conformational changes triggered
by the gp120-mediated interactions with cellular recep-
tors. Notably, gp41 refolds into a core six-helical bundle
structure which is central to the fusion process. Here we
report the structural basis for the folding of the linker
regions connecting to the membrane anchors of gp41,
namely to the transmembrane region (MPER) and to the
fusion peptide (FPPR). Our structural analysis shows helical
assemblies of FPPR and MPER which increase the melting
temperature of gp41 and position the fusion peptide
towards the outside of the six-helix bundle structure at this
stage of gp41 refolding. It suggests that part of MPER must
be inserted into the viral membrane, which would induce
membrane curvature as postulated to be required for the
fusion reaction. Thus our findings shed new light on the
refolding of gp41, which contributes energy to the fusion
reaction and reveals for the first time the structural
principles of MPER membrane interaction within trimeric
gp41. We propose that the structure presents a late fusion
intermediate state that provides a new framework for
fusion inhibitor development and MPER immunogen
design.

Table 1. Crystallographic statistics.

Data collection statistics

Resolution(Å) 91.00 - 2.00 (2.11 – 2.00)

Completeness(%) 96.5 (84.0)

I/s(I) 17.9 (2.8)

Rmerge 0.065 (0.331)

Redundancy 5.9 (2.4)

Number of reflections 129,367 (6627)

Unique reflections 22,184 (2804)

Refinement statistics

Resolution range (Å) 50.00 – 2.00

Rwork 0.177

Rfree 0.217

R.m.s.d (bonds)(Å) 0.009

R.m.s.d (angles)(u) 1.242

No of atoms 2405

No of waters 60

doi:10.1371/journal.ppat.1000880.t001

Structure of gp41 with MPER and FPPR
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of a bilayer, we used a model for membrane bending by

hydrophobic insertions [35]. This suggests that one gp41 chain

produces local curvature of ,0.65 nm21; thus a gp41 trimer

might stabilize a membrane cylinder of about 15 nm diameter,

which would facilitate fusion considerably [36].

Structure of FPPR and MPER
Both FPPR and MPER extend HR1 and HR2 as continuous

helices, but neither extension shows the regular knobs into holes

packing reminiscent of classical coiled coils. Instead the FPPR

region splays the inner core apart starting from Leu 545 (a position)

(Fig. 3A). The distance between Arg 579 residues at the HR1 C-

terminus is 12.5 Å while the one at the extreme N-terminus opens

up to 22.7 Å (between Gly residues 531). As a consequence HR1

heptad positions are too far apart for interaction (Fig. 3A). The

FPPR-MPER region is only stabilized by few hydrophobic contacts

between adjacent chains, including interactions of Gly 531- Leu679,

Ala 533- Trp 670, Met 535-Ile 675/Asn 671, Thr 536/Leu 537 -

Trp 666 and one hydrogen bond between the carbonyl of Ala 533

and NE1 of Trp 670 (Fig. 3B). At position of MPER residue Asn

676, the N-terminus of FPPR-HR1 points towards the outside of the

rod (Fig. 2A) facilitating fusion peptide (residues 512–530)

membrane interaction or further refolding of FP with MPER and

possibly TMR. Another striking feature of the structure is the

solvent exposure of a stretch of hydrophobic MPER residues (Trp

666, Leu 669, Trp670, Trp 672, Phe 673) that generate a

hydrophobic surface patch (Fig. S5).

Figure 2. Crystal structure of gp41528–683 reveals a 90 Å long
rod-like structure. A) Ribbon representation of gp41. The previously
determined core is colored dark blue (HR1) and marine blue (HR2). The
flag sequence present at the N-terminus of HR2 is shown in black. FPPR
is colored in light blue and MPER in grey. Note that the N-terminus of
FPPR (residue 531) points towards the outside of the rod. B) Close up of
the MPER and FPPR region shows the exposure of aromatic side chains
Trp 678, Trp 680 and Tyr 681 towards the membrane.
doi:10.1371/journal.ppat.1000880.g002

Figure 3. The FPPR-MPER regions are splayed apart. A) Close-up
view from the bottom showing residue Leu 545 as the last coiled coil
interacting residue of the HR1 core of gp41. The preceding potential
heptad positions are Ala 541 and Thr 538. B) Close up view revealing
mostly hydrophobic interactions between FPPR and MPER and only one
hydrogen bond between the carbonyl of Ala and NE1 of Trp 670. C)
Close-up of solvent exposed hydrophobic MPER residues.
doi:10.1371/journal.ppat.1000880.g003

Structure of gp41 with MPER and FPPR
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Since the crystals were grown at a high MPD concentration, we

tested the effect of MPD on the structure in solution. MPD does

not change the overall helical content of gp41528–683, which is

,90% in the absence and presence of high MPD concentrations

(Fig. S3A). However, MPD reduced the Tm of gp41528–683 to

82.2uC (5% MPD) and 74.7uC (10% MPD) as well as that of the

gp41541–665 core (Fig. S3B). Therefore, we cannot exclude the

possibility that MPD might have destabilized the rod resulting in

the ‘open’ structure (Fig. 3A) and FPPR and MPER might pack

tighter in the absence of MPD.

Comparison of MPER conformations
The NMR structures of MPER peptides show kinked or straight

helical conformations [17,37], which superimpose partly with

MPER present in the crystal structure (Fig. S6A and B). Three

broadly neutralizing antibodies (nAb) target MPER and utilize

diverse structural motifs for recognition. NAb 2F5 recognizes a

beta-hairpin [15] and Z13e1 binds to a short kinked helix [38].

Both epitopes refold into a straight helix in the gp41 structure

(Fig. 4A and B). The epitope of nAb 4E10 is helical [16]; although

it is present and exposed in the gp41 crystal structure (Fig. 4C)

nAb 4E10 does not interact with gp41528–683 (data not shown), due

to clashes with the helical conformation of HR2. However, if we

consider only MPER and its membrane orientation and dock the

4E10 structure onto its epitope, nAb 4E10 could present its heavy

chain CDR3 loop implicated in bilayer interaction [14,18]

towards the membrane, lined up with the gp41 membrane

embedded residues W678, W680 and Y681 (Fig. S7). The

comparison of the peptide epitope structures and gp41 corroborate

that nAbs 2F5 and Z13e1 block the refolding process of gp41 at

early steps. In contrast the 4E10 epitope might be present

throughout gp41 refolding from a native conformation as evident

by its presence in the late fusion intermediate conformation.

Discussion

Although the core structure of the HIV-1 fusion protein has

been solved [4,5], detailed structural information on the regions

linking up to the membrane anchors (FPPR and MPER) has been

lacking. We crystallized gp41(528–683), which has a similar N-

terminal end as a proteolytic fragment of HIV-2 gp41 [39] and N-

and C-terminal ends as determined by peptide studies [40] and

solved its structure. FPPR and most of MPER extend in a helical

fashion from the gp41 core and interact with each other as

indicated by peptide studies performed at pH 3.2 [40]. Although

the interactions are mostly hydrophobic, they are not classical

coiled-coil interactions. The TMR-juxtaposed region of MPER

positions three aromatic side chains per monomer towards the

membrane. We calculate that membrane insertion of these

residues could induce membrane curvature in the outer leaflet of

the viral lipid bilayer [35], which would facilitate fusion based on

previous studies [36]. Membrane fusion models postulate that

fusion proteins induce local bending of both bilayers into ‘‘nipples’’

projecting toward each other to reduce the energy requirement for

initial stalk formation [22,41,42]. Bending on the target-cell side

can be stabilized by insertion of the fusion peptide [43] or

hydrophobic residues of fusion loops [26]. The present structure

suggests that bending on the viral side may be stabilized by

membrane-embedded MPER residues. We suggest that MPER

membrane insertion may occur early during the conformational

transition of gp41 and persist through the process of refolding.

Alternatively this segment of MPER may adopt a straight helical

conformation [37] in continuity with TMR in the final postfusion

conformation. Such a continuous helical structure was observed

for the linker sequences that connect the core SNARE complex to

its TMRs [44].

The presence of FPPR and MPER splay the ‘‘membrane-

anchor’’ end of the rod apart, which may be required to

accommodate FP whose chain direction points to the exterior of

the structure. The missing part of FP (residues 512–530) could thus

contact the membrane and/or interact with the kinked membrane

embedded MPER or with a straight helical MPER conformation.

Since the thermostability measurements indicate that the MPD

crystallization conditions could influence the stability of gp41 in

solution, it is possible that FPPR and MPER pack tighter in the

absence of MPD. We thus propose that the structure represents a

late fusion intermediate state rather than the final postfusion

conformation, although the latter possibility cannot be excluded.

MPER contains a number of hydrophobic residues, which are

conserved in the majority of HIV and SIV isolates, namely

Trp666, Trp672, Phe673 and Ile675. Single Ala mutations of

these residues do not affect cell-cell fusion but reduce viral

infectivity significantly [24]. Interestingly all residues are mostly

exposed in the crystal structure and/or contribute to hydrophobic

interactions with FPPR. Mutation of FPPR Leu537, which makes

a hydrophobic contact with Trp666, in combination with

mutations of conserved MPER residues Trp666 or Trp672 or

Phe673 or Ile675, reduces virus infectivity further thus confirming

Figure 4. Comparison of MPER conformations. MPER conformations as determined in complex with broadly neutralizing antibodies (A) 2F5
[15], (B) Z13e1 [38] and (C) 4E10 [16] are shown in comparison to MPER within trimeric gp41. The corresponding MPER segments are colored equally
and residues contacting the 4E10 Fab are shown as sticks. (blue, HR2).
doi:10.1371/journal.ppat.1000880.g004

Structure of gp41 with MPER and FPPR
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the important interplay between FPPR and MPER during fusion

[24]. Analysis showed that the defect of mutant Leu537-Trp666 is

at the level of lipid mixing [24]. Another study demonstrated that

mutations of the five conserved tryptophan residues (Trp666,

Trp670, Trp 672, Trp678, Trp680) alone or in combination or

deletion mutants within MPER affect syncytium formation thus

supporting the importance of MPER for fusion [45]. Reduction in

viral infectivity was also reported for pseudoviruses containing

alanine mutations of hydrophobic MPER residues (Leu 669,

Ile675, Leu679) exposed within MPER in addition to the

conserved tryptophan residues [46]. The hydrophobic surface

generated by the conserved MPER residues as shown here might

induce clustering of several gp41 trimers at the site of fusion

although the number of env trimers required for fusion is still

debated [33,34]. Such a function may be consistent with

mutagenesis data showing that single tryptophan exchanges within

MPER affect cell-cell fusion, while combinations of tryptophan

mutations abrogate cell-cell fusion completely [45]. Thus muta-

genesis of multiple tryptophans may reduce the hydrophobicity of

the exposed patch sufficiently to affect the clustering function.

Six-helix bundle formation leads to fusion pore opening [20]

and an intact six-helix bundle is required for its enlargement [47].

Since FPPR and MPER folding most likely follows six-helix

bundle formation its hydrophobic patch may further support pore

enlargement together with the essential role of TMRs [22,25,26].

This suggestion is in agreement with data on mutagenesis of all 5

tryptophan residues within MPER; these mutations do not affect

fusion pore opening, but inhibit fusion pore expansion [23].

Finally the linker region that connects the SNARE complex with

its TMR exposes a similar patch of hydrophobic residues [44]

underlining functional similarities between viral fusion protein and

SNARE-mediated membrane fusion processes.

Fusion proteins utilize the free energy released during their

refolding to draw two membranes into close apposition and catalyze

membrane fusion [26]. The thermostability measurement of the

gp41 core compared to the crystal structure reveals a 12uC increase

of the melting temperature, which can translate into an increase in

DG that can be directly coupled to membrane fusion. Notably,

folding of the complete SNARE complex versus the core produces a

similar increase in Tm that can convert into energy for fusion [44].

MPER harbors the epitopes of three broadly neutralizing

antibodies, 2F5, Z13e1 and 4E10. The epitopes of 2F5 and Z13e1

[15,38] adopt a straight helical conformation, indicating that both

antibodies neutralize by blocking the transition into the trimeric

gp41 structure. In contrast the epitope of 4E10 [16] is still present

and exposed, although nAb 4E10 does not interact with

gp41528–683 due to clashes with the helical conformation of

HR2. NAb 4E10 has a long CDR3 region that does not contact

the epitope, but was proposed to interact with the membrane [16]

based on its reactivity with lipids [14]. If we consider only the

4E10 epitope and the membrane embedded part of MPER, 4E10

could orient its CDR3 towards the membrane and insert its

aromatic residues into the bilayer as required for neutralization

[18]. Thus stabilization of a peptide in the conformation of the

MPER as present in the crystal structure should prove useful to

generate an immunogen capable of inducing 4E10-like antibody

responses.

Based on the crystal structure we suggest the following extension

to our picture of the fusion process. Receptor binding induced

conformational changes exposes FP, which interacts and bends the

target cell membrane. Concomitantly, TMR and MPER dissoci-

ate, potentially from a native MPER coiled-coil structure [48] and

a few aromatic MPER residues insert into and bend the outer

leaflet of the viral membrane. This then generates the functional

epitope for nAb 4E10. Part of MPER stays membrane associated

throughout the folding of the gp41 core that leads to fusion pore

opening. Subsequently FPPR and the soluble part of MPER

interact, releasing more energy for fusion. Alternatively, we cannot

exclude the possibilities that (i) membrane insertion of MPER is

already present in the native env trimer or (ii) that membrane

insertion of MPER is not important for the generation of

membrane curvature and exerts another role during the fusion

process. Finally, although the conformational state of gp41

observed in the crystal structure is no longer targeted by

neutralizing antibodies, the development of small molecules

targeting the FPPR-MPER conformation could block further

gp41 refolding required for membrane fusion.

Materials and Methods

Protein constructs
The gp41 proteins were assembled from different fragments of

gp41 (Fig. S1): FPPR-HR1-HR2-MPER (Ser528 to Leu581 and

Met628 to Lys683; gp41528–683), HR1-HR2 (Ala541 to Leu581 and

Met628 to Lys665; gp41541–665). DNA sequencing and MALDI

TOF Mass Spectrometry confirmed all constructs.

Protein expression and purification
Fragments of HIV-1 gp41 HXB2 group M subtype B were

amplified by standard PCR techniques and cloned either into

pETM-MBP-1a (EMBL, Heidelberg), pETM-20 (thioredoxin

fusion, EMBL, Heidelberg) or pET11 (His-tag). HR1 and HR2

containing constructs were N-terminally fused to the Flag-tag

sequence (ASP-ASP-ASP-ASP-Lys) to improve solubility (Fig. S1).

Gp41528–683 and gp41541–665 fusion proteins were expressed in

E. coli strain Rosetta 3 (DE3) (Strategene). Cells were grown to an

OD600 nm of 0.7 and induced with 1 mM IPTG at 37uC. After

2 hours cells were harvested by centrifugation, resuspended in

buffer A (0.02 M Tris pH 8.0, 0.1 M NaCl) and pellets of HR1

and HR2 expressing bacteria were mixed before lysis. Notably,

bacteria expressing HR2 were used in excess over HR1 expressing

bacteria. The soluble fraction was loaded onto an amylose column

(NEB) and eluted in buffer A with 0.01 M maltose. In order to

remove fusion proteins, constructs were digested o. n. at 4 Cu with

TEV (Tobbacco Etch Protease) and the uncleaved material was

removed by Ni2+ chromatography. Further purification was

achieved by anionic exchange chromatography in buffer A. A

final purification step included size exclusion chromatography on a

superdex 200 column in buffer A.

Crystallization, data collection and structure
determination

Crystals of gp41528–683 were obtained by the vapor diffusion

method in hanging drops mixing equal volumes of purified

complex and reservoir solution (0.1 M citric acid pH 6, 60% MPD

(v/v)). Crystals were improved by macroseeding; briefly crystals

grown in the initial conditions (0.1 M citric acid pH 6, 60% MPD

(v/v)) were transferred into a new drop equilibrated with 0.1 M

citric acid pH 6, 56% MPD (v/v), 1.5% glycerol (v/v). Before data

collection, crystals were flash frozen at 100 K using the same

reservoir solution supplemented with 10% of glycerol (v/v).

A dataset was collected at the ESRF beam line ID14-EH4 at

100 K. The images were indexed with MOSFLM [49] and scaled

with SCALA [50,51]. The crystals were twinned and analysis with

phenix.xtriage [52] revealed space group P63 with twin fractions of

0.45 (Britton) and 0.47 (H test and Maximum likelihood test) and

an associated twin law of h, -h-k, -l. The cell parameters are

a = b = 57.42 Å, c = 182.76 Å, a= b= 90u, c= 120u. The struc-

Structure of gp41 with MPER and FPPR
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ture was solved by molecular replacement using the program

Phaser [53] and the model of the gp41 core (PDB ID: 1AIK) by

applying the twin law of h, -h-k, -l on the data, revealing 3

molecules in the asymmetric unit. The model was built manually

with COOT [54] and refined with the program Phenix [52]. The

final structure has an Rfactor of 0.177 and Rfree of 0.217 and good

stereochemistry (Table 1). The most complete monomer contains

gp41 residues 531–581 and gp41 residues 629–681 plus 5 N-

terminal residues (624-DDDDK-628 derived from the Flag/

enterokinase cleavage site sequence); this monomer was used to

reconstruct the trimer by applying crystallographic symmetry. The

second monomer contains residues 538–581 and 629–672 plus 5

N-terminal residues (residues 624-DDDDK-628); the third

monomer contains residues 542–580 and 629–665 plus 5 N-

terminal residues (residues 623-MDDDDK-628). All molecular

graphics figures were generated with Pymol (http://www.pymol.

org). Coordinates and structure factors have been deposited in the

protein data bank with accession number 267r.

CD spectroscopy
CD measurements were performed using a JASCO Spectropo-

larimeter equipped with a thermoelectric temperature controller.

Spectra of each protein were recorded at 20uC in 1 nm steps from

190 to 260 nm in buffer A or buffer A supplemented with MPD as

indicated. Spectra were recorded at 222 nm using a bandwidth of

4 nm and averaging time of 4 sec per step. For thermal

denaturation experiments, the ellipticity was recorded at 222 nm

with 1uC steps from 20u to 100uC with an increment of 80uC h21

and an averaging time of 30 s/step. Since the unfolding of

gp41528–683 was not reversible, two more spectra were recorded

with increments of 40uC h21 and 120uC h21, which resulted in

comparable Tms, indicating that the system was in equilibrium.

For data analysis, spectra were corrected for the baseline (recorded

with buffer) and the raw ellipticity values were converted to mean

residue ellipticity. Thermal melting (Tm) points were calculated

with a Boltzmann sigmoid fit using the program OriginLab.

Physical model
The effective shape of a membrane embedding domain

consisting of the gp41 hydrophobic residues was approximated

by a short cylindrical rod of 16 Å in length and 7 Å in diameter,

shallowly inserted up to a 5 Å depth into the outer membrane

monolayer (the insertion volume constituting 468.9 Å3). According

to the previously developed model of membrane bending by

hydrophobic insertions [35] the effective spontaneous curvature of

such an insertion equals f*0:65 nm{1. The overall membrane

curvature generated by the insertions is proportional to their area

fraction in the membrane plane whose maximal value is limited by

a dense packing of the proteins on the membrane surface. For a

gp41 trimer the area of each of the three inserted side chains is

16 Å67 Å = 112 Å2, while the total area of the trimer projection

on the membrane plane is determined by the dimensions of the

ectodomains and constitutes, approximately, 800 Å2. Taking into

account these numbers, we obtain that a maximal area fraction of

the gp41 hydrophobic insertions is w~0:42 which results in a total

radius of curvature R~2= fwð Þ&7:5 nm.

Supporting Information

Figure S1 Schematic drawing of gp41 and of the expression

constructs employed to assemble gp41. TRX, thioredoxin fusion

protein; MBP, maltose binding protein; EK, enterokinase cleavage

site and flag sequence.

Found at: doi:10.1371/journal.ppat.1000880.s001 (4.09 MB TIF)

Figure S2 Size exclusion chromatography (SEC) analysis of

gp41. Gp41528-683 elutes from a S200 column at ,12 ml similar to

the elution profile of the marker protein aldolase (158 kDa)

consistent with its elongated shape. Notably the previously

determined trimeric core of gp41, gp41(541–665) elutes later at

14.5 ml consistent with a shorter trimeric rod [28][5]. The inset

shows the SDS-PAGE analysis of the complex formed by gp41

peptides containing residues flag-528 to 581 and residues flag-628

to 683.

Found at: doi:10.1371/journal.ppat.1000880.s002 (4.60 MB TIF)

Figure S3 Circular dichroism analysis of gp41 constructs.

Spectra were recorded at room temperature and normalized to

mean residue ellipticity. The presence of MPD in the buffer is

indicated in % (MPD). (A) The helical content of gp41528–683 was

calculated to be 89%. This corresponds well with the crystal

structure, revealing 20 residues out of 126 residues disordered or in

a non-helical conformation. Increasing concentrations of MPD (5,

10 and 40%) did not change the overall helical content. (B) Since

the Tm of gp41528–683 was 87.6uC, we tested whether high MPD

concentrations required for crystal formation might have affected

the interactions within gp41528–683. This showed that MPD

reduced the Tm of gp41528–683 to 82.2uC (5% MPD) and

74.7uC (10% MPD) as well as that of the gp41541–665 core.

Found at: doi:10.1371/journal.ppat.1000880.s003 (5.41 MB TIF)

Figure S4 Model of gp41528–683 membrane association. Resi-

dues Trp 678, Trp 680 and Tyr 681 insert their side chains into

one leaflet of the bilayer, thus inducing local membrane curvature.

The position of the TMR is represented by one TMR (green).

Found at: doi:10.1371/journal.ppat.1000880.s004 (3.06 MB TIF)

Figure S5 Surface representation of trimeric gp41528–683.

Exposed hydrophobic residues are colored in green. Note that

the MPER region forms an extended hydrophobic surface patch.

Found at: doi:10.1371/journal.ppat.1000880.s005 (4.61 MB TIF)

Figure S6 Comparison of the trimeric gp41 MPER with

conformations of MPER peptides. Overlay of the Ca atoms of

the NMR MPER peptide structures (A) (pdb entry 2PV6;

(ELDKWASLWNWFNITNWLWYIK) [17] (shown in cyan)

and (B) pdb entry 1JAV (KWASLWNWFNITNWLWYIK) [37]

(shown in green). Residues recognized by nAb 4E10 are indicated.

Found at: doi:10.1371/journal.ppat.1000880.s006 (2.38 MB TIF)

Figure S7 Overlay of Ca atoms of MPER present in the crystal

structure with the 4E10 peptide complex structure [16]. Side

chains of membrane-embedded MPER are shown as well as

hydrophobic side chains of the 4E10 heavy chain CDR3 region

(shown in salmon). W100 and L100C are oriented in a way that

permits membrane insertion as postulated [18]. W100B whose

orientation is determined by a water mediated polar contact could

contribute to membrane interaction upon flipping sideward.

Found at: doi:10.1371/journal.ppat.1000880.s007 (2.30 MB TIF)
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