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ABSTRACT
Objectives: Neuritin 1 gene (NRN1) is involved in neurodevelopment processes and synaptic
plasticity and its expression is regulated by brain-derived neurotrophic factor (BDNF). We aimed to
investigate the association of NRN1 with schizophrenia-spectrum disorders (SSD) and bipolar
disorders (BPD), to explore its role in age at onset and cognitive functioning, and to test the
epistasis between NRN1 and BDNF. Methods: The study was developed in a sample of 954 SSD/BPD
patients and 668 healthy subjects. Genotyping analyses included 11 SNPs in NRN1 and one
functional SNP in BDNF. Results: The frequency of the haplotype C-C (rs645649–rs582262) was
significantly increased in patients compared to controls (P¼ 0.0043), while the haplotype T-C-C-T-
C-A (rs3763180–rs10484320–rs4960155–rs9379002–rs9405890–rs1475157) was more frequent in
controls (P¼ 3.1� 10�5). The variability at NRN1 was nominally related to changes in age at onset
and to differences in intelligence quotient, in SSD patients. Epistasis between NRN1 and BDNF was
significantly associated with the risk for SSD/BPD (P¼ 0.005). Conclusions: Results suggest that: (i)
NRN1 variability is a shared risk factor for both SSD and BPD, (ii) NRN1 may have a selective impact
on age at onset and intelligence in SSD, and (iii) the role of NRN1 seems to be not independent of
BDNF.
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Introduction

Schizophrenia and bipolar disorder are psychiatric

disorders characterised by a prevalence of �2–3%,

which increases up to 3.5% when other affective and

non-affective psychotic disorders such as schizoaffective

or schizophreniform disorders are also included (Perala

et al. 2007). A growing body of research suggests that

schizophrenia-spectrum disorders (SSD) and bipolar

disorders (BPD) share several epidemiological, clinical,

neurobiological and genetic characteristics, raising

important questions about the boundaries and distinct-

iveness of these psychiatric disorders.

On the one hand, they have a number of symptoms in

common particularly in acute episodes, with regard to the

presence of psychotic symptoms; their age at onset is

quite similar; and, although there must be neurochemical

differences, several findings emphasise the likelihood of

dopamine dysregulation in both (Murray et al. 2004).

Available evidence also supports that a generalised

deficit is present across SSD and BPD, even though
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quantitative differences may exist (Hill et al. 2013). In view

of these similarities, the integration of categorical and

dimensional approaches has been suggested of particular

interest to the complete understanding of psychotic

disorders (Peralta and Cuesta 2007).

On the other hand, an important genetic overlap

between SSD and BPD has been classically reported by

both epidemiological (Gottesman 1991; Lichtenstein

et al. 2006) and molecular studies (Owen et al. 2007).

More recently, genome-wide approaches have evidenced

a substantial shared polygenic contribution involving

thousands of common genetic variants of small effect to

the aetiology of these disorders (Lee et al. 2013).

These shared genetic risk factors, along with the

clinical and cognitive similarities, have led to the notion

that these severe mental disorders can be placed in the

same aetiopathological continuum, probably represent-

ing different phenotypic manifestations of common

underlying processes.

In the search for specific genetic factors related to

these disorders, studies face a number of challenges that

arise from the genetic and phenotypic complexity of

these disorders. To this respect, it has been recently

indicated that combining disorders with similar genetic

risk profiles improves power to detect shared risk loci

(Ruderfer et al. 2014). Similarly, genotype–phenotype-

based approaches and the use of features with strong

aetiological significance have been suggested as a useful

strategy to reduce heterogeneity and to identify specific

genetic factors associated with such traits (Rasetti and

Weinberger 2011; Swerdlow et al. 2015). Then, the

observed variability on traits such as cognitive impair-

ments and age at onset among patients may reflect

differences in the distribution of aetiological factors and

possibly also differences underlying vulnerability. To this

respect, heritability estimates indicate that genetic

factors contribute significantly to age at onset of

psychotic symptoms (Hare et al. 2010) and to general

cognitive functioning (Deary et al. 2009). Moreover,

cognitive impairments are present in 70% of the patients

with schizophrenia (Palmer et al. 1997) and twin studies

have shown that a large genetic overlap underlies the

observed comorbidity between these two phenotypes

(Toulopoulou et al. 2007, 2010). Also, the earlier forms of

these disorders usually present severe clinical and

cognitive expression, high incidence of treatment refrac-

tion and poor outcome (Rapoport et al. 2005; Joseph

et al. 2008). Accordingly, cognitive and clinical traits

associated to age at onset may provide leads for

recognising and studying biological differences across

diagnostic boundaries (Ongur et al. 2009).

Linkage data have provided positional evidence

implicating the short arm of chromosome 6 in the risk

for SSD and also in their associated cognitive deficits

(Straub et al. 1995; Schwab et al. 1995; Hallmayer et al.

2005). The most studied gene included in this chromo-

somal region is Dysbindin-1 gene (DTNBP1, 6p22.3),

which has been consistently associated with SSD and

BPD (Schwab and Wildenauer 2009) as well as with age at

onset and cognitive deficits (Wessman et al. 2009; Fatjo-

Vilas et al. 2011). Also in this region, and far less explored,

there is the Neuritin 1 gene (NRN1, 6p25.1), also called

candidate plasticity-related gene 15 (cpg15) (Nedivi et al.

1993). During early embryonic development, NRN1 is

expressed in multiple brain regions and acts as a survival

factor for neural progenitors and differentiated neurons

(Putz et al. 2005). Later in development, NRN1 promotes

growth and stabilisation of axonal and dendritic arbours

along with synapse formation and maturation (Cantallops

et al. 2000; Javaherian and Cline 2005). NRN1 continues to

be expressed in the adult brain, where its expression is

correlated with activity-dependent functional synaptic

plasticity (Corriveau et al. 1999; Harwell et al. 2005; Flavell

and Greenberg 2008). Furthermore, the expression of

NRN1 is regulated by neurotrophins such as brain-derived

neurotrophic factor (BDNF, 11p13) (Naeve et al. 1997;

Karamoysoyli et al. 2008). BDNF promotes the differen-

tiation and growth of developing neurons in central and

peripheral nervous systems (Buckley et al. 2007) and its

intracellular distribution and activity-dependent secre-

tion is altered by the Met variant of a functional

polymorphism in the BDNF gene, which consists of a

valine (Val) substitution for methionine (Met) at codon 66

(Val66Met). Interestingly, BDNF gene polymorphisms

have been associated with clinical characteristics – such

as age at onset – and cognitive functioning in both SSD

and BPD (Krebs et al. 2000; Rybakowski et al. 2006).

According to all the above mentioned, NRN1 was

already defined as a candidate gene for neurodevelop-

ment disorders by Chandler et al. (2010), who reported

the effect of NRN1 polymorphic variation on general

intelligence impairments in patients with schizophrenia.

We considered the interest of investigating the implica-

tion of NRN1 in the aetiology not only of schizophrenia,

but also across the SSD and BD continuum. Moreover,

we also aimed to extend the previous study on the

relationship of NRN1 with cognitive impairments by

testing the effect of this gene on age at onset, a

characteristic that is related to cognitive performance.

Since synaptic plasticity alterations have been sug-

gested to be present both in SSD and BPD (Craddock

et al. 2006), we hypothesised that sequence variability of

the gene would be related to the risk for developing any

of these disorders. Considering the described involve-

ment of NRN1 in cognitive processes, we also hypoth-

esised that NRN1 gene could exert its effect not only by
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modulating general cognitive functioning, but also age

at onset. Finally, given that NRN1 is a BDNF-regulated

gene, we explored the statistical epistasis between NRN1

and BDNF as a proxy analysis of their involvement in

common biological pathways.

Materials and methods

Sample

The patients’ sample comprised 954 individuals of

Spanish Caucasian origin. They were drawn from con-

secutive admissions to three Child and Adolescent

Psychiatry Units and four Adult Psychiatric Units, and

were evaluated by experienced psychiatrists. All of them

met the DSM-IV-TR diagnosis criteria: 73% SSD (49%

schizophrenia, 11% schizophreniform disorder, 8% schi-

zoaffective disorder, 5% psychotic disorder NOS) and

27% bipolar disorder I or II. Exclusion criteria included:

age above 65 years, major medical illnesses that could

affect brain functions, substance-induced psychotic dis-

order, neurological conditions, history of head trauma

with loss of consciousness and having at least one

parent not from Spanish Caucasian origin. Patients were

diagnosed based on the following schedules: KSADS

(Kaufman et al. 1997) for patients up to 17 years of age,

and SCID (First et al. 1997) or CASH (Andreasen et al.

1992) for adult patients. Age at onset of the first episode

was determined by means of these clinical schedules

and/or the SOS inventory (Perkins et al. 2000).

The control sample consisted of 668 Spanish

Caucasian unrelated adult healthy individuals. They

met the same exclusion criteria as patients. They were

recruited from university students and staff, and their

acquaintances, plus independent sources in the com-

munity. They were interviewed and excluded if they

reported a history of mental illness and/or treatment

with psychotropic medication.

All participants provided written consent after being

informed about the study procedures and implications.

In the case of patients below the age of 18, written

informed consent was also obtained from their parents

or legal guardians. The study was performed in accord-

ance with the guidelines of the institutions involved and

was approved by the local ethics committee of each

participating centre. All procedures were carried out

according to the Declaration of Helsinki.

Neurocognitive assessment

The general cognitive performance was evaluated in 607

patients and in 476 healthy subjects. Intellectual quotient

(IQ) was estimated using the Block Design and Vocabulary

or Information subtests of the WAIS-III (Wechsler 1997) or

WISC-IV (Wechsler 2004), in accordance with the method

suggested by Sattler (2001). Cognitive assessment was

carried out by experienced neuropsychologists. In

patients, the cognitive evaluation was conducted when

stabilisation of symptoms and readiness for cognitive

evaluation was decided by the clinical team.

Molecular analyses

Genomic DNA was extracted from peripheral blood cells

or from buccal mucosa using standard methods: the Real

Extraction DNA Kit (Durviz S.L.U., Valencia, Spain) or the

BuccalAmp DNA Extraction Kit (Epicentre�

Biotechnologies, Madison, WI, USA).

Coverage of NRN1 genomic sequence and �10 kb

upstream and downstream was achieved by including 11

tag SNPs (Table 1). The optimal set of SNPs that contained

maximum information about surrounding variants was

selected by using SYSNPs (http://www.sysnps.org/) with a

minor allele frequency (MAF)45%, using pairwise option

tagger (threshold of r2¼0.8). The SNPs included in the

study by Chandler et al. (2010) study were also con-

sidered. The SNP rs6265 (Val66Met) at BDNF gene was

also genotyped. Genotyping was performed using a

fluorescence-based allelic discrimination procedure

(Applied Biosystems Taqman 50-exonuclease assays).

Standard conditions were used. The genotyping call

rate for all SNPs was higher than 94.2% and all were in

Hardy–Weinberg equilibrium.

Statistical analyses

All data were processed using SPSS 21.0 software (SPSS

IBM, New York, USA). Haploview v4.1 (Barrett et al. 2005)

was used to estimate the Hardy–Weinberg equilibrium

and the linkage disequilibrium (LD) between NRN1 SNPs

(Supplementary Figure S1 available online). By means of

using the Solid Spine criteria three haplotype blocks

were identified (Block 1: SNP1-SNP3, Block 2: SNP4-SNP5

and Block 3: SNP6-SNP11) and a sliding window analysis

was conducted within each block.

The genetic power was calculated using Epi-info-v3.5.1

(Dean et al. 1991) by assuming an additive model, a

disease prevalence of 3% and considering the minor allele

frequencies observed in our sample. All markers had an

80% power to detect a genetic effect with an OR� 1.2.

Case–control associations were analysed using the

Unphased-v3.1.4 (Dudbridge 2003), using a cut-off

threshold for rare haplotypes of 1%. A 10,000-permuta-

tions procedure was applied to all tests to limit type II

error. The odds ratios (OR) were estimated from the

absolute number of alleles/haplotypes estimated in

patients and controls (EpiInfo-v3.5.1).
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Additive models as implemented in Plink 1.07 (Purcell

et al. 2007) were used to conduct lineal regression

analyses to explore the relationship between NRN1 and

age at onset and IQ. First, the relationship between the

NRN1 and age at onset was tested in the complete

patients’ sample (including gender and diagnosis group

as covariates) and also separately in each group

(adjusted by gender). Second, the relationship between

the NRN1 and IQ was tested in the complete patient’s

sample (including age at onset, months of evolution and

diagnosis group as covariates) and also separately in

SSD, BPD (adjusted for age at onset and months of

evolution) and controls. PLINK’s max(T) permutation

procedure with 10,000 iterations was performed.

The effect of NRN1 and BDNF interaction was tested

on: (i) the risk for developing SSD or BPD, (ii) age at onset

(adjusted for sex and diagnosis) and IQ (adjusted for age

at onset and months of evolution), in patients. Epistasis

was explored using the model-based multifactor dimen-

sionality reduction (MB-MDR) approach by applying

‘mbmdr’ R-package (Calle et al. 2010). This method

merges multi-locus genotypes in order to overcome the

dimensionality problem and to increase the power to

detect gene interactions associated with disease or

phenotype. It also allows adjusting for confounding

effects and correcting for multiple testing by 1000

permutations approach. In all analyses, the significance

cut-off was established at P value of 0.05.

Results

Sample characteristics

Table 2 shows the main sociodemographic and clinical

data of the sample. Variables that showed differences

between groups were used as covariates when appro-

priate (see Statistical analyses section).

Association analysis of NRN1 and schizophrenia-

spectrum and bipolar disorders

There were no differences between sampling groups as

regards the genotypic distribution of each polymorph-

ism (data not shown), and genotype frequencies showed

no gender differences within groups (patients and

controls; data not shown).

SNP1 (G allele), SNP4 (C allele) and SNP5 (C allele)

were significantly more frequent among patients com-

pared to controls (�2¼4.81 P¼ 0.028, �2¼5.05 P¼ 0.024

and �2¼8.04 P¼ 0.004, respectively). After multiple

correction adjustment only the association of SNP5

remained significant (OR(95%CI)¼ 1.27(1.07–1.49),

empirical P value¼ 0.044)).

Haplotypes associated with SSD and BPD are given in

Table 3. The frequency of the haplotype G-C (Block 1:

SNP1-SNP2) and haplotype C-C (Block 2: SNP4-SNP5) was

significantly increased in patients than in controls. The

result in Block 2 remained significant after permutation

procedure; then, this haplotype was considered a risk

haplotype for SSD and BPD. On the contrary, the

haplotype T-C-C-T-C-A (Block 3: SNP6-SNP11) had higher

frequencies in controls. Results in Block 3 also remained

significant after multiple testing and could be interpreted

as reflecting a protective effect of this haplotype. Note

that other haplotypes included in the haplotype in Block

3 were also detected (Supplementary Table S1 available

online). These results remained essentially unchanged

when only SSD patients and controls were included.

NRN1 and age at onset of the disorders

Patients carrying two copies of the T allele at SNP2

(15.33%) presented a lower age at onset than those not

carrying this allele (b¼ –0.772 P¼ 0.029). Patients homo-

zygous for the C allele of SNP10 (7.80%) also showed later

age at onset than those not carrying this allele (b¼ 0.918

Table 1. SNPs genotyped in Neuritin 1 gene (NRN1, chromosome 6p25.1, from 598233 to 6007633 bp).

SNP Position Region
Distance from

SNP1
Distance from
previous SNP Allelesa MAFb

SNP1 rs2208870 5992490 Intergenic A/G 0.333
SNP2 rs12333117 5994992 Downstream 2502 2502 C/T 0.402
SNP3 rs582186 6001381 Intronic 8891 6389 A/G 0.393
SNP4 rs645649 6004959 Intronic 12469 3578 C/G 0.356
SNP5 rs582262 6007991 Upstream 15501 3032 G/C 0.273
SNP6 rs3763180 6009848 Upstream 17358 1857 G/T 0.437
SNP7 rs10484320 6010437 Upstream 17947 589 C/T 0.236
SNP8 rs4960155 6010539 Upstream 18049 102 T/C 0.492
SNP9 rs9379002 6012391 Intergenic 19901 1852 T/G 0.27
SNP10 rs9405890 6012721 Intergenic 20231 330 T/C 0.309
SNP11 rs1475157 6017169 Intergenic 24679 4448 A/G 0.176

The table includes the dbSNP number, the genomic and gene position and the alleles of the 11 SNPs genotyped along the gene (UCSC Genome Browser on
Human Mar. 2006 Assembly (hg18), http://genome.ucsc.edu/cgi-bin/hgTracks).

aThe less frequent allele (minor allele) is placed second.
bMAF refers to Minor Allele Frequency observed in the 1000 Genomes project (Abecasis et al. 2012).
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P¼ 0.016). The haplotype C-A (SNP10-11) was associated

with age at onset: (b¼ 0.956 P¼ 0.015) and also several

haplotypes within Block 3 (all including the C-A haplo-

type) (Supplementary Table S2 available online).

When the same analysis was conducted only includ-

ing SSD patients, the results for SNP10 and haplotype

SNP10-11 remained significant while SNP2 did not

(Supplementary Table S3 available online). In an additive

way, carrying two copies of the haplotype C-A was

associated with later SSD age at onset (Figure 1A).

However, these results were not significant after

permutation procedure. No association was detected

within BPD patients’ group.

NRN1 and cognitive functioning

In SSD patients, the same haplotypes within Block 3

contributed to IQ scores (Supplementary Table S4

available online). A linear trend was detected between

the number of copies of these haplotypes and higher IQ

scores (Figure 1B), meaning that subjects carrying these

haplotypes showed better general cognitive

Table 3. NRN1 most significant haplotypes associated to the risk for schizophrenia-spectrum and
bipolar disorders. Frequency estimates in patients and controls, significance levels and OR of the
case-control comparison are given.

SNP1

SNP2

rs2208870

rs12333117

G
I
C

SNP3 rs582186

SNP4

SNP5

rs645649

rs582262

C
I
C

SNP6

SNP7

SNP8

SNP9

SNP10

SNP11

rs3763180

rs1048432

rs4960155

rs9379002

rs9405890

rs1475157

T
I
C
I
C
I
T
I
C
I
A

Ca- Freqa 34.3 25.9 0.1
Co- Freqb 30.7 21.4 1.5
�2

OR (CI 95%)c
4.26
1.18 (1.01–1.37)

7.99
1.28 (1.08–1.51)

17.45
0.09 (0.02–0.37)

Global P value 0.11 0.038 0.001
Individual haplotype P value 0.037y 0.0043* 0.000031**

aCa- Freq refers to each haplotype frequency within cases.
bCo- Freq refers to each haplotype frequency within controls.
cChi-squared tests and OR were estimated from the absolute number of observed haplotypes in cases and controls.
yNot significant after performing 10,000 permutations, adjusted P value from permutation test P¼ 0.1748.
*Significant adjusted level based on 10,000 permutations, adjusted P value from permutation test P¼ 0.0219.
**Significant adjusted level based on 10,000 permutations, adjusted P value from permutation test P¼ 0.002.

Table 2. Sample description and statistical comparisons between patients and controls.

All Patients (n¼954) SSD (n¼697) BPD (n¼257) Controls (n¼668)

Male (%) 65.6% 71.2% 50.6%** 46.7%*
Age at interview 32.33 (13.10) 31.79 (12.83)** 33.9 (13.71)** 27.05 (9.99)*
Years of education 10.13 (4.06) 9.58 (3.82) 11.98 (4.29)** 13.87(2.87)*
Age at onset 21.54 (6.47)a,b 20.72 (5.33)a 23.88(8.53)a,** –
Months of evolution 146.24 (137.6) 140.35 (140.07) 162.93 (129.25) –
Current IQ 89.80 (15.26)c 89.02 (15.37)c 92.86 (14.48)c,** 99.48 (13.64)c,*

Proportion (%) or mean scores (standard deviation) are given. SSD, schizophrenia-spectrum disorders; BPD, bipolar disorders.
aInformation about age at onset was available for the 73.5% of patients (74.3% SSD and 71.2% BPD).
b35.29% were classified as early-onset (first psychotic episode occurred before 18 years of age).
cInformation about IQ was available for 63.6% of patients (69.4% SSD and 47.8% BPD) and 71.25% of healthy subjects.
*Controls differed significantly from patients (P50.001).
**BPD patients differed significantly from SSD patients (P50.03).
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performance than non-carrier subjects. However, after

permutation analyses these results did not remain

significant. No significant association with IQ was

detected between these polymorphisms either in the

whole patients’ sample, in BPD or in healthy subjects.

Epistasis between NRN1 and BDNF

Two order gene–gene interaction models were devel-

oped and revealed that the combination of the BDNF

Val/Val genotype with different NRN1 variants (SNP1 (GG:

b¼ 0.654 P¼ 0.001), SNP3 (AA: b¼ 0.514 P¼ 0.003) and

Figure 1. Relationship between NRN1 and age at onset and IQ in SSD patients. Linear regression graphs showing the relationship
between SSD patients’ NRN1 haplotypes and: (A) age at onset, (B) IQ. For illustration purposes, the haplotype dump option was used
to estimate individual haplotype phases. Considering only those haplotypes estimated with a probability�95%, each subject was
defined according to its haplotype dose. (A) The haplotype C-A (SNP10-11) was selected to represent graphically the described
association between NRN1 and age at onset (b¼ 0.89 P¼0.019). SSD patients were classified as: 47.01% non-carriers (0), 45.41% one-
copy carriers (1) and 7.58% two-copy carriers (2). (B) The haplotype C-T-G-C-A (SNP7-11) was selected to represent graphically the
detected association between NRN1 variability and IQ within SSD patients (b¼ 4.02 P¼0.022). SSD patients were classified as: 82.2%
non-carriers (0), 16.9% one-copy carriers (1) and 0.9% two-copy carriers (2).
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SNP9 (TG: b¼ 0.457 P¼ 0.0004)) was related to an

increased risk for developing both SSD and BPD. In

contrast, BDNF Met/Met was associated with a lower risk

in combination with NRN1 SNP2 (TT: b¼ –2.185

P¼ 0.0052). After permutation analysis, the interaction

BDNFxNRN1SNP9 remained significant (P¼ 0.005). No

significant epistatic effect was detected on age at

onset and IQ after permutation.

Discussion

This case–control based approach adds to the only one

previous Neuritin 1 gene association study developed by

Chandler et al. (2010) in a sample of 336 patients with

schizophrenia and 172 controls. Unlike Chandler and

collaborators, in our sample of 954 patients and 668

healthy subjects we report that NRN1 sequence variabil-

ity accounts for a modest proportion of the risk for these

disorders. On the one hand, we have identified a two

SNP haplotype (SNP4-SNP5: C-C) that is associated with

the risk for these disorders. As expected, due to the

polygenic architecture of the studied disorders, the

effect of this haplotype is small although significant

(OR¼ 1.28). On the other hand, we have observed

haplotypes in the 5 upstream region that have a

protective effect. Although significance for these asso-

ciations persisted after permutation procedure, the low

frequency of the protective haplotypes in the population

has to be considered when evaluating the attributable

risk associated to these genetic variants.

The present study also provides new evidence of

interest as regards understanding the heterogeneity in

age at onset and cognitive performance of SSD and BPD.

Our results suggest that NRN1 variability has a role in

SSD age at onset, pointing towards a specific effect on

modifying neurodevelopment processes related to the

time of emergence of these disorders. Although these

results should be interpreted cautiously because they

are only significant at an uncorrected level, it is

interesting to note that the C allele of SNP10, which is

included in the above described protective haplotype, is

associated with a later age at onset of SDD. Then, taking

into account that the 51% of SSD patients are carriers of

this allele (358 C carriers vs 339 TT), together with the

particularly poor prognosis associated to schizophrenia

in childhood and adolescence in contrast to the adult

manifestation (Clemmensen et al. 2012), this modulatory

effect is of non-dismissible potential clinical interest.

Our study also shows the association between this

gene and intelligence in SSD. This selective impact of

NRN1 on intelligence may suggest its involvement in

processes underlying cognitive functioning, which are

described to be more quantitatively impaired in SSD

(Hill et al. 2013). Again, although results did not reach

significance after permutation, it is of interest that the

haplotypes identified in the present study contain the

same haplotype that Chandler et al. (2010) described to

be associated with better fluid intelligence in schizo-

phrenia patients and not in healthy subjects (SNP10-

SNP11: C-A).

In all, our results suggest in a convergent manner that

allelic variants in Block 3 of NRN1 could represent a

protective factor, not only due to their association to a

reduction of the risk for SSD and BPD, but also because

within SSD patients, these variants are related to a later

of age at onset and a better cognitive performance. This

lends support to the notion that specific genetic

variability could play a role in defining illness subgroups

and points towards the interest of understanding the

pathways from genotype to clinical phenotype, which

will be crucial for new classification systems and to for

the development of novel therapeutic strategies.

In further interpreting these results, it is necessary to

consider the results obtained by whole genome

approaches. To our knowledge, NRN1 has not appeared

as a significant locus in the published GWAS for

schizophrenia and bipolar disorders. However, these

negative results could be influenced, for example, by the

small effect attributable to common variants or by the

heterogeneity of the samples. It should also be con-

sidered that NRN1 could be exerting its effect by means

of modifying more specific traits associated with psych-

otic disorders. In this regard, a genome-wide scan for

intelligence conducted in a general population sample

revealed suggestive linkage for IQ on 6p25.3–21.31 and

already highlighted NRN1 as a positional candidate gene

(Posthuma et al. 2005). Moreover, a subtype of schizo-

phrenia characterised by pervasive cognitive deficit was

also linked to 6p25–p22 region (Hallmayer et al. 2005).

More recently, a GWAS has established that common

variants (SNPs) may account for 40–50% of intelligence

variance (Davies et al. 2011) and a GWAS-based pathway

analysis has reported that general fluid intelligence

appears to be characterised by genes affecting quantity

and quality of neurons and therefore neuronal efficiency

(Christoforou et al. 2014). Among the genes included in

the top pathways identified in this study, there was the

BDNF, a regulator of NRN1 expression. According to all

these data and given the described gradual increase in

heritability of IQ from childhood to late adolescence

(Deary et al. 2009; Bouchard 2013) and the reported early

occurrence of intellectual impairment even years before

the onset of the psychotic symptoms (Cannon et al.

2002), it is plausible that those genes that influence

brain development, as NRN1, may be modulating illness
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traits, as IQ and age at onset, and ultimately influencing

the risk for these disorders.

Although the connection between the NRN1 sequence

variability and the risk for SSD and BPD is still unclear, the

consideration of the putative effects of the analysed

polymorphic sites on gene expression regulatory mech-

anisms represents a valuable resource to provide add-

itional meaning and importance to our association data.

Recent data has revealed the importance of intronic and

intergenic variants as regulatory elements of gene

expression (Dunham et al. 2012). The impact of non-

coding variants of the NRN1 SNPs can be examined using

HaploReg (Ward and Kellis 2012), which is a tool that uses

LD information from the 1000 Genomes Project to

provide data on the predicted chromatin state of the

queried SNPs, their sequence conservation mammals,

and their effect on regulatory motifs. As an example, SNP2

(rs12333117), associated with age at onset in the present

study, is located in a downstream region, in a DNAse

region (T-47D) and it is predicted to alter several motifs

that overlap the recognition sequences of transcription

factors such as AP-1/Jun, suggesting possible factor–

factor interactions. There is also evidence that this SNP

could modify the promoter histone mark H1, which plays

an active role in the formation of epigenetic silencing

marks (Yang et al. 2013). Another example refers to the

SNP4 (rs645649), included in the identified risk haplotype

and that is located in an intronic region where two

proteins bound: SUZ12 (involved in methylation pro-

cesses leading to transcriptional repression of the

affected target genes) and ZNF263 (implicated in basic

cellular processes as a transcriptional repressor).

Furthermore, several resources provide information

about the correlation between genotype and tissue-

specific gene expression levels, which may help in the

interpretation of molecular genetics association studies

(GTEx Project, www.gtexportal.org (Lonsdale et al. 2013);

BrainCloud, http://braincloud.jhmi.edu/ (Colantuoni et al.

2011)). In this regard, variations in NRN1 expression have

been associated with SNPs along the gene. Therefore,

although functional studies are needed, the association

of NRN1 sequence variants with SSD and BPD phenotypes

could be linked to the final availability or functionality of

the protein which, in turn, could dysregulate NRN1 role

on neurite outgrowth and arborisation and/or on neur-

onal processes associated with plasticity.

Finally, based on the analyses of epistasis between

NRN1 and BDNF, our data suggest that the interaction

between the Val/Val genotype (BDNF) and the TG

genotype (NRN1, SNP9: rs9379002) could modulate the

risk for SSD and BPD. Despite the fact that evidence of a

statistical interaction as we report here does not

necessarily map directly onto biological interaction, it

is of note that it is based on a previously described

effects of BDNF on NRN1 regulation (Naeve et al. 1997).

Then, it could be hypothesised that the reported

functional effects of the BDNF Val66Met polymorphism

could impact on NRN1 availability or function, explaining

therefore the gene–gene interaction on the risk for

developing SSD and BPD and contributing to under-

stand the controversial results associated to single gene

analyses. To this respect, some studies have implicated

the BDNF Val allele in these disorders and, as the Val

allele is associated with increased synaptic plasticity and

growth (Egan et al. 2003), it has been suggested that this

allele could promote increased synaptic connections

between certain brain regions that underpin common

symptoms. However, recent meta-analyses have failed to

confirm the direct association of Val66Met polymorph-

ism with the risk for schizophrenia (Zhao et al. 2015) or

bipolar disorder (Gonzalez-Castro et al. 2014). On the

other hand, taking into account that BDNF exerts a direct

impact on neuronal growth and plasticity in the limbic

system (Conner et al. 1997; Rattiner et al. 2004), it should

be contemplated that G allele carriers of rs9379002

(SNP9, NRN1) show higher NRN1 expression than TT

homozygotes in the hypothalamus (GTEx Project). Then,

we could speculate that higher expression of both BDNF

and NRN1 could be underlying the detected epistatic risk

effect. To this respect, it is remarkable that a case-report

study suggested the relationship between a duplication

of NRN1 gene (i.e. increased gene dosage) and the white

matter and neurocognitive abnormalities observed in

one patient (Linhares et al. 2015). Accordingly, we would

have expected to detect the association not only with

the heterozygous TG genotype but also with the GG.

This lack of significant interaction could be explained by

the low frequency of GG genotype (7%) and the

corresponding low frequency of the combination of

Val/Val x GG (BDNFxNRN1SNP9). Therefore, although

further studies are needed, these results are in line

with recent trends in the field of molecular genetics,

which consider the importance of testing gene networks

rather than isolated gene effects for better understand-

ing the gene–phenotype relationship in complex dis-

orders (Gilman et al. 2012). Nonetheless, the fact that the

SNP9 is included in the protective haplotype while it is

detected to exert a risk effect when interacts with Val/Val

genotype could suggest that the effect of this SNP may

differ depending on the genetic background in which

the alleles are present (Moore 2003). Moreover, beyond

gene–gene interactions, the effect of environmental

factors should also be studied. In this regard, the fact

that NRN1 is classified as an immediate early gene

(Loebrich and Nedivi 2009), meaning that it can be

rapidly induced by extracellular stimuli and act as a
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transcription factor on downstream targets, highlights

the interest of analysing the combined effect of NRN1

and BDNF in gene-environment studies.

Some limitations of this study must be acknowledged.

First, the controls’ age range is partially overlapped with

the age range of incidence of SSD and BPD. However, due

to the fact that personal psychiatric history and treatment

was discarded, the percentage of false negatives would

be very low and should not interfere with the obtained

results. Second, the polygenic nature of mental disorders

and the minor effect of the common genetic variants limit

the power of our sample size, especially in the case of the

analyses split by diagnosis. In line with this, although the

use of features with strong aetiological significance has

been suggested as a useful strategy to increase the power

to detect genetic effects, the power of the analyses

targeting age at onset and neurocognition is reduced due

to the non-availability of data in all subjects. This

statistical power reduction could be related with the

loss of significant effects after permutation procedures.

Third, the antipsychotic treatment was not specified and,

therefore, cognitive analyses, although covaried by age at

onset and months of evolution, were not adjusted by

treatment type or duration. Fourth, in spite of the interest

of the selected polymorphism at BDNF due to its

functional effects, future studies should include other

genetic variants along this gene. Lastly, although the

permutation procedures have been applied, if multiple

testing is addressed for the overall analyses not all the

findings would remain significant. Then, although results

cannot be dismissed completely, since they come from a

directed hypothesis and they are partially in line with a

previous study (Chandler et al. 2010), their interpretation

should be conducted with caution and replication studies

are needed.

Overall, our results contribute, from a biological

approach, to the understanding of the genetic mechan-

isms involved in SSD and BPD and also of the relation-

ship between genetic variability and the clinical

heterogeneity of these disorders. Then, our findings

suggest the role of Neuritin 1 gene as a mixed

susceptibility/modifier gene (Fanous and Kendler 2008),

which increases the susceptibility to these disorders and

modifies certain presentations. However, new studies

should be developed to further acknowledge the

involvement of NRN1 and its interaction with other

genes in the aetiology of mental disorders.
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