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THE FREE ROOTS OF THE COMPLETE GRAPH

ENRIQUE CASANOVAS AND FRANK O. WAGNER

(Communicated by Carl G. Jockusch, Jr.)

Abstract. There is a model-completion Tn of the theory of a (reflexive) n-
coloured graph 〈X,R1, . . . , Rn〉 such that Rn is total, and Ri ◦Rj ⊆ Ri+j for
all i, j. For n > 2, the theory Tn is not simple, and does not have the strict
order property. The theories Tn combine to yield a non-simple theory T∞
without the strict order property, which does not eliminate hyperimaginaries.

1. Introduction

The first-order theory T2 of the random graph R is the model completion of the
theory of a graph. It is usually axiomatized by stating that R is a graph, and for
any two finite disjoint sets A, B there is an element a such that R(a, b) for all b ∈ A
and ¬R(a, b) for all b ∈ B. An n-th root of a binary relation R is a binary relation
S such that Sn = R, where Sn is the n-fold iterated composition S ◦ S ◦ . . . ◦ S.
For example, xS2y iff there is some z such that xSz ∧ zSy. If S is reflexive, we get
S ⊆ Sn and hence Sn ⊆ Sn+m.

The random graph is a square root of the complete graph. We shall investigate
the n-th roots of the complete graph. There are, of course, different n-th roots.
We are interested in studying the theory Tn of the free n-th root of the complete
graph. We can also see Tn as the model completion of the theory of an n-coloured
graph R1, . . . , Rn such that Rn is complete and RiRj ⊆ Ri+j for all i, j. (We
then get Ri = Ri1 for i ≤ n.) Whereas T2, the theory of the random graph, is
an ω-categorical simple theory, for n > 2 the theory Tn of the free n-th root is
ω-categorical without the strict order property, but it is not simple.

Another way to look at these graphs is the following: Define the distance d(a, b)
of two points a and b to be the minimal k such that aRkb holds (and d(a, a) = 0).
Then RiRj ⊆ Ri+j is equivalent to the triangle inequality, and our n-coloured
graphs are quantifier-freely bi-interpretable with metric spaces of diameter n and
distances in {0, 1, . . . , n}.

If we rename Ri from Tn as Si/n, then in this language the theories Tn combine
to a theory T∞ without the strict order property, which eliminates quantifiers and
is not simple. We will show that T∞ does not eliminate hyperimaginaries. This
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seems to be the first example of a theory without the strict order property and
without elimination of hyperimaginaries. All previously known examples involve
infinitesimals with respect to some partial order, and therefore have the strict order
property. It is still open whether there is a simple theory that does not eliminate
hyperimaginaries [1].

All our relations are reflexive and symmetric.

2. The theory Tn

Definition 1. Let R be a binary relation. We say that two sets A and B are
R-connected, denoted ARB, if R(a, b) for all a ∈ A and b ∈ B; they are R-disjoint,
written A¬RB, if ¬R(a, b) for all a ∈ A and b ∈ B.

Definition 2. T−n is the theory of all n-coloured graphs R1, . . . , Rn such that Rn
is total and RiRj ⊆ Rmin{i+j,n} for all 0 < i, j < n.

Remark 1. (1) T−n is a consistent universal theory; so it has existentially closed
models.

(2) Occasionally, to simplify notation, we shall call equality R0, and put R0 to
be equality, for any reflexive symmetric relation R. The axioms for T−n then also
hold if i = 0 or j = 0.

Proposition 1. An existentially closed model M of T−n satisfies the axiom scheme:
(†) For all finite disjoint A1, . . . , An, if AiRi+j Aj for all i + j ≤ n and

Ai ¬Rj−i Aj+1 for all i < j < n, then there is some m such that mRiAi
and m¬RiAi+1 for all i < n.

In other words, there exists a point of distance i to all points in Ai, for 1 ≤ i ≤ n,
unless this violates some triangle inequality.

Proof. Let A1, . . . , An be subsets of M satisfying the hypothesis of (†). Let M∗ be
the graph where we have added a point m∗ and relationsm∗Rmin{i+j,n}m

′ whenever
m′ ∈ M is Rj-related to a point in Ai, or i + j ≥ n, for all possible 0 ≤ i, j ≤ n.
Then, in particular, m∗RiAi. Suppose m,m′ ∈M and mRim′Rjm∗, with 0 < i, j.
If i + j ≥ n we get mRnm∗; so we may assume i + j < n. Then there is some
k ≤ j and m′′ ∈ Ak with m′Rj−km

′′, whence mRj−k+im
′′ and mRj+im

∗. On the
other hand, if m,m′ ∈M with mRim∗Rjm′, then either i+ j ≥ n and mRnm′, or
i + j < n and there are k ≤ i and ` ≤ j, and points m0 ∈ Ak and m1 ∈ A` with
mRi−km0 and m′Rj−`m1. Since m0Rk+`m1, we get mRi+jm′, and M∗ |= T−n .

Suppose there is m ∈ Aj+1 with m∗Rjm, for some j < n. Then there is i < j
and m′ ∈ Ai with mRj−im′, contradicting Aj+1 ¬Rj−i Ai. Since M is existentially
closed, we see that M |= (†). �

Definition 3. Tn is the theory T−n , together with the axiom scheme (†).

Remark 2. Let M |= Tn. Then Ri = Ri1 for all i ≤ n.

Proof. T−n implies R1Ri ⊆ Ri+1 for all i < n. Suppose that there are m,m′ ∈ M

with mRi+1m
′ and m¬Rim′. Put A1 = {m} and Ai = {m′}, and all other Aj = ∅.

Then the hypotheses of (†) are satisfied. So there is m′′ ∈ M with mR1m
′′Rim

′,
whence Ri+1 ⊆ R1Ri. It follows that R1Ri = Ri+1 for all i < n, whence Ri1 = Ri
for all i ≤ n by induction. �
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Remark 3. Iterating Proposition 1 yields the consistency of any configuration, un-
less it violates some triangle inequality.

Proposition 2. Tn is complete, ω-categorical, and eliminates quantifiers.

Proof. Let M and N be two models of Tn, and consider finite subsets A ⊆ M

and B ⊆ N with a partial isomorphism σ : A → B. Let m ∈ M − A. Put
Ai = {a ∈ A : d(m, a) = i} for i ≤ n, and Bi = σ(Ai). Then A1, . . . , An satisfy
the hypotheses of (†), as do B1, . . . , Bn. Since N |= Tn, we find n ∈ N − B such
that σ ∪ {m 7→ n} is a partial isomorphism. It follows that the family of partial
isomorphisms forms a back-and-forth system. Hence Tn is complete, ω-categorical,
and eliminates quantifiers. �
Remark 4. It follows that Tn is the model-completion of T−n . Note that algebraic
closure is trivial in Tn: acl(A) = A for any subset A.

Lemma 3. Let A be a finite set in a model of Tn, and p(x̄) a complete type over A.
Suppose (āi : i < ω) is an infinite A-indiscernible sequence in p with ā0 ∩ ā1 = ∅,
and R(x̄, ȳ) an A-definable reflexive and transitive relation satisfied by ā0ā1. Then
R(x̄, ȳ) ∧ p(x̄) ∧ p(ȳ) is equivalent to p(x̄) ∧ p(ȳ).

Proof. Note that p(x̄) is a single formula by ω-categoricity. Clearly we may as-
sume that p implies that all of its variables are distinct, and that R(x̄, ȳ) im-
plies p(x̄) ∧ p(ȳ). Write āi = (a0

i , a
1
i , . . .), put di,j(ā0, ā1) = d(ai0, a

j
1), and let

di,j = maxa∈A{|d(ai0, a)− d(a, aj0)|}; if A = ∅ put di,j = 0. By the triangle inequal-
ity di,j ≤ di,j(ā0, ā1) for any i, j. �

Claim 1. di,k ≥ |di,j − dj,k|.

Proof of Claim. We may assume di,j ≥ dj,k. Choose a ∈ A with di,j = |d(ai0, a) −
d(a, aj0)|. Then

0 ≤ di,j − dj,k ≤ |d(ai0, a)− d(a, aj0)| − |d(aj0, a)− d(a, ak0)|
≤ |d(ai0, a)− d(a, ak0)| ≤ di,k.

�

Note that di,i = 0 < d(ai0, a
i
1) for any i. Choose j0, j1 such that d(aj00 , a

j1
1 ) =

d > dj0,j1 is maximal possible; if d = 1 take j0 = j1.

Claim 2. The complete type∧
i<ω

p(x̄i) ∧
∧
i<i′

[
d(xj0i , x

j1
i′ ) = d− 1 ∧

∧
(j,j′) 6=(j0,j1)

d(xji , x
j′

i′ ) = dj,j′ (ā0, ā1)
]

is consistent.

Proof of Claim. Suppose not. By Remark 3 this means that some triangle inequal-
ity is violated. Obviously the triangle will have to involve xj0i x

j1
i′ as a non-maximal

edge, for some i, i′, and it cannot be degenerate. There are three cases:
(1) The third point is some a ∈ A.

This immediately contradicts our choice of d > dj0,j1 .
(2) The third point is some xji′′ , and the maximal side has length ≤ d.

Clearly impossible, because the other small side has length at least 1, since
all points are distinct.
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(3) The third point is some xji′′ , and the maximal side has length > d.
If xj0i x

j
i′′ is the maximal side, then it has length dj0,j by the maximal choice

of d. Therefore,

d(xj0i , x
j1
i′ ) = d− 1 ≥ dj0,j1 ≥ dj0,j − dj,j1 ≥ d(xj0i , x

j
i′′ )− d(xji′′ , x

j1
i′ ),

again a contradiction. �
Hence there is a realization (ā′i : i < ω), which is an A-indiscernible sequence by
quantifier elimination. We want to show that it is R-related. Put q(x̄ȳ) = tp(ā0ā1).
We claim that q(ā′0x̄) ∧ q(x̄ā′1) is consistent. But if not, then again by Remark 3
there is some triangle inequality that is violated. Since q(x̄0x̄)∧ q(x̄, x̄1)∧ q(x̄0, x̄1)
is realized by ā0ā1ā2 and thus is consistent, the triangle will have to involve a′j00
and a′j11 , and we get a contradiction as in the proof of Claim 2.

By transitivity of R we get R(ā′i, ā
′
j) for i < j. It follows iteratively that we find

an A-indiscernible sequence (ā′′i : i < ω) in p with R(ā′′0 , ā
′′
1), and di,i(ā′′0 , ā

′′
1) = 1

for all i except one, where the distance is zero. In other words, |ā′′0 ∩ ā′′1 | = 1, and⋂
i<ω āi is a single element a, say at position 0.
We now use induction on |x̄|. If this is 0, then there is nothing to show. If

|x̄| > 1, define
R′(x0, y0) ≡ ∃x1, y1, . . . , R(x̄, ȳ).

Clearly R′ is reflexive. Moreover, applying the inductive hypothesis to the Aa-
indiscernible sequence (ā′′i −a : i < ω), we see that the relation R(x̄, ȳ)∧x0 = y0 = a
is just p(x̄)∧ p(ȳ)∧x0 = y0 = a; note that this does not depend on the choice of a,
whose type over A is determined by p. In other words, two realizations of p with
the same first coordinate are R-related. Since R is transitive, R and R′∧p(x̄)∧p(ȳ)
are equivalent as formulas in x̄ȳ. In particular, R′ is transitive, and we may assume
R = R′. We have reduced to the case |x̄| = 1.

Let n′ be minimal such that p(x) implies aRn′x for some a ∈ A and put m =
min{n, 2n′}. Then p(x) ∧ p(y) implies xRmy.

Claim 3. For any 0 < i < m there are a, b, c |= p with d(a, b) = d(a, c) = i and
d(b, c) = i + 1. For any 0 < i ≤ m there are a, b, c |= p with d(a, b) = d(a, c) = i
and d(b, c) = i− 1.

Proof of Claim. We have to verify consistency with the triangle inequalities. Since
i > 0, they are clearly satisfied for the triangle abc. For a triangle with only one
point from {a, b, c} the triangle inequalities follow from consistency of p. Finally,
consider a′ ∈ A, say d(a′, a) = d(a′, b) = d(a′, c) = d ≥ m

2 . Hence 2d ≥ i + 1, and
the triangle inequality is satisfied for triangles with two points from {a, b, c}.

The second assertion is proved similarly. �

Since there are a 6= b |= p with |= R(a, b), say with d(a, b) = i ≤ m, we find
c |= p with d(a, c) = i and d(b, c) = i − 1 (or d(b, c) = i + 1 if i < m). Now
p(a) ∧ p(b) ∧ d(a, b) = i is a complete type tp(ab/A) by quantifier eliminiation,
which is satisfied by ca. Hence R(c, a), and R(c, b) by transitivity.

Thus either R(x, y) implies x = y, which is impossible, or R(x, y) is consistent
with d(x, y) = i for all 0 ≤ i ≤ m. Since these are all the possibilities for tp(xy/A)
consistent with p(x) ∧ p(y), we see that R(x, y) is equivalent to p(x) ∧ p(y). �

Theorem 4. Tn does not have the strict order property.
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Proof. Suppose R(x̄, ȳ) defines a partial reflexive order with infinite chains. By
Ramsey’s Theorem and compactness there is an infinite indiscernible proper R-
chain (āi : i < ω), where all ai satisfy the same type p(x̄). By indiscernibility the
sequence is disjoint over A =

⋂
i<ω āi; if āi = ā′iA, we consider the A-definable

relation R′(x̄′, ȳ′) = R(x̄′A, ȳ′A) on q(x̄′) = tp(ā′0/A). By Lemma 3 it is equivalent
to q(x̄′) ∧ q(ȳ′) and hence symmetric, a contradiction. �
Theorem 5. A definable equivalence relation on a complete type (over some param-
eters A) is definable (on that type) in the language of pure equality. In particular,
a definable equivalence relation on a complete 1-type is either equality or complete.

Proof. Suppose E(x̄, ȳ) is an A-definable equivalence relation on p(x̄) ∈ S(A);
clearly we may assume that A is finite, and inductively that the assertion is true
for all definable equivalence relations on tuples of smaller length. If E has infinite
classes, then by Ramsey’s Theorem and compactness there is an infinite E-related
A-indiscernible sequence (āi : i < ω) in p with ā0 6= ā1. By indiscernibility it is
disjoint over its common intersection B =

⋂
i<ω āi. We put āi = ā′iB and consider

the induced equivalence relation E′(x̄′, ȳ′) = E(x̄′B, ȳ′B) on q(x̄′) = tp(ā′0/AB).
By Lemma 3 it is equivalent to q(x̄′) ∧ q(ȳ′). If B = ∅, we are done; otherwise,
write x̄ = x̄′x̄′′ and ȳ = ȳ′ȳ′′ and consider

E′′(x̄′′, ȳ′′) ≡ ∃x̄′ȳ′ [p(x̄) ∧ p(ȳ) ∧E(x̄, ȳ)].

Then E′′(x̄′′, ȳ′′) ∧ p(x̄) ∧ p(ȳ) is equivalent to E(x̄, ȳ) by transitivity of E and the
fact that tp(x̄′′) = tp(ȳ′′) = tp(B) is fixed. Thus E′′ is a definable equivalence
relation on tp(B/A); since |B| < |āi|, the inductive hypothesis applies and E′′ is
definable on tp(B/A) in the language of pure equality, as is E.

On the other hand, if all classes are finite, the size of any class is bounded, and
E(ā, ā′) implies ā′ ∈ acl(ā) = ā. In other words, E corresponds to a subgroup of
Sym(|x̄|), and is definable on p by equality only. �
Theorem 6. Tn is not simple for n > 2.

Remark 5. Of course, T1 is the complete graph and T2 is the random graph, both
of which are simple.

Proof. Suppose n > 2, and let M be a monster model of Tn. By Remark 3 and
quantifier elimination there are an indiscernible subset A of M whose pairwise
distances are 2, and an element m /∈ A with mR1A. �
Claim 4. tp(m/A) forks over all proper A′ ⊂ A.

Proof of Claim. We may assume A = A′∪{a}. By Remark 3 we can construct a se-
quence a = a0, a1, . . . with d(ai, aj) = 3 and aiR2A

′ for all i < j < ω; by quantifier-
elimination the sequence is A′-indiscernible. However, R1(x, ai) ∧ R1(x, aj) is in-
consistent for i 6= j. �

It follows that tp(m/A) forks over all countable subsets, and Tn cannot be simple.
�

3. The limit theory T∞

If we rename, in the theory Tn, the relation Ri as Si/n, then for m,n < ω both
Tm and Tn are subtheories of Tmn in the language L = {Sp/q : 0 < p ≤ q < ω}.
We can thus put T∞ =

⋃
n<ω Tn. It is the model companion of the theory of all
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graphs {Sp/q : 0 < p ≤ q < ω} such that SiSj ⊆ Si+j for all i, j ∈ [0, 1] ∩ Q.
It can be axiomatized just as the union of the axioms for the different Tn in the
language {Sp/q : 0 < p ≤ q < ω}. Elimination of quantifiers, failure of the strict
order property, the characterisation of definable equivalence relations, and the lack
of simplicity transfer immediately from Tn to T∞.

Remark 6. If we want to consider T∞ as a metric space, we have to interpret
Sp/q(a, b) as d(a, b) ≤ p/q. Note that the predicate d(x, y) = p/q is not definable in
the limit theory T∞. A saturated model of T∞ will be a metric space of diameter 1
and distances contained in a non-standard unit interval [0, 1]∗. If I ⊆ [0, 1]∗ realizes
every 1-type over [0, 1]∩Q in the language {|x−y| ≤ p/q : 0 < p ≤ q < ω} precisely
once (for instance, I = [0, 1]∪ ([0, 1[∩Q) + ε, where ε is infinitesimal), we can take
all distances of any model of T∞ from I.

Since SiSj ⊆ Si+j for all i + j ≤ 1, the relation
∧

0<p≤q<ω Sp/q(x, y) is a type-
definable equivalence relation (in metric terms it means that x and y are infinitely
close). It cannot be the intersection of definable equivalence relations. Since there is
a unique 1-type over ∅, the only ∅-definable unary equivalence relations are equality
and the complete graph.

References

[1] Frank O. Wagner, Simple Theories, Kluwer Academic Publishers, Dordrecht, The Nether-
lands, 2000. MR 2001b:03035
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