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BEST APPROACH REGIONS FOR POTENTIAL SPACES 

JOSE A. RAPOSO AND JAVIER SORIA 

(Communicated by J. Marshall Ash) 

ABSTRACT. We characterize the approach regions so that the non-tangential 
maximal function is of weak-type on potential spaces, for which we use a simple 
argument involving Carleson measure estimates. 

1. INTRODUCTION 

The classical theorem of Fatou, about the non-tangential convergence of the 
harmonic extension of functions in LP(IR'), has been widely studied in the recent 
years. Nagel and Stein ([NS]) have found a characterization of those regions for 
which Fatou's theorem remains valid. As Littlewood showed ([Li]), convergence on 
tangential directions fails for some functions in LP(IR'). However, Nagel, Rudin and 
Shapiro ([NRS]) were able to show that if one considers functions in some particular 
subspaces (potential spaces), with an appropriate regularity, then it is possible to 
find a tangential approach region, so that Fatou's theorem holds true. 

The main result we prove below is in the spirit of [NS]; namely, we find a char- 
acterization of the approach regions for which the associated maximal operator is 
of weak-type, with respect to the spaces considered in [NRS]. The condition that 
we obtain (Theorem 2.6(b)) says that the measure of the cross section at level t of 
the region is of the order of r(t)', where r is determined by the potential space. In 
particular, when we deal with LP(IR'), then r(t) ; t and we obtain the main theo- 
rem of [NS]. As a consequence, we give an example of such a region, not contained 
in any of those considered in [NRS]. 

The techniques we use in the proof of the theorem are based on the work of 
Andersson and Carlsson ([AC]), for the case of non-tangential approach regions, 
and an extension of the notion of Carleson measure to general domains ([CS]). 

Let us first set up some of the definitions we need in the sequel (see also [CS]). 

Definition 1.1. - An open set Q c Rn+1 is an approach region if 0 E O. For 
x E in we set Q. = x + Q. 

- If P is the Poisson kernel in Rn7, Pt(y) = t-P(t'y) and f n LP(1Rt), the 
maximal operator associated to Q is 

Nof(x)= sup If*Pt(y)I. 
(yjt)EQ. 
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For the following set of definitions we will consider a function r: R+ R+. 
Later on, this function will be chosen in a particular way, satisfying some extra 
conditions. 

Definition 1.2. Fix r: R+ R+. 
- rr(x) = { (y, t); Ix -yI < r(t) }. 
- Given a set E C Ri, we define the r-tent, 

Tr(E) = Rn+1 \ U pr(X). 
xWE 

- Given an outer measure , in Rn++l we say that it is an r-Carleson measure if 
there exists a constant C > 0 such that, for every (x, t) e R+ 

IL (Tr(B(x, t))) < Ctn. 

Remark 1.3. If r(t) = t, we deal with the classical situation of cones, tents and Car- 
leson measures. Also, we could have chosen cubes instead of balls in the definition 
of r-Carleson measures. 

There are some equivalent ways to define these tents. 

Proposition 1.4. (a) Tr (E) = {(y, t); B(y, r(t)) c E} = {(y, t); d (y, RI \ E) > 
r(t) }. 

(b) Tr(B(x t)) = x + Tr(B(O, t)). 

Proof. (a) can be proved as in Lemma 5(iii) of [CS] and (b) is easy. L 

In order to obtain estimates for the maximal operator, we need to consider 
arbitrary open sets. An important example is given by the following result. 

Proposition 1.5. If , is an r-Carleson measure, then there exists C > 0 such that 
for all open sets G C Rh, lt(Tr(G)) < CIGI. 

Proof. Let G C Ri be an open set. We find a Whitney decomposition of G (see 
[St]), given by a sequence of cubes {Qk}k with disjoint interior so that G = Uk Qk, 

and diam (Qk) d (Qk, RIT\G). Now, it suffices to show that there exists a constant 
C= 0(n) > 0 so that if Qk = CQk, then 

Tr(G) C UTr(Q*)k 
k 

Choose (y,t) E Tr(G). Then d(y,RIh \ G) > r(t). Let k E Z so that y E Qk. 

We want to prove that (y,t) E Tr(QZ), which is equivalent (by Proposition 1.4) 
to showing that B(y, r(t)) C Q*. Let Xk be the center of Qk. If jz - YI < r(t), 
then Iz - Xkl < r(t) + diam (Qk)/2. Therefore, it all reduces to finding C, so that 
r(t) < Cdiam(Qk). Let u ? G and x E Qk: 

r(t) < d (y, R \ G) < Iy-xi + Ix-uI < diam (Qk)+ IX-UI. 

Taking the infimum on u and x, we finally obtain 

r(t) < diam (Qk) + d (Qk, Rn\ G) < Cdiam (Qk). 
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2. BEST APPROACH REGIONS 

We now give the characterization of those approach regions for which the maxi- 
mal operator NQ is of weak-type on a certain space. It is very interesting to observe 
that the boundedness properties of this operator are determined by the geometry 
of the regions. We make this clearer by introducing the following sets. 

Definition 2.1. Let Q C Rn+j be an approach region and r: R+ R+. We 
define, 

- Qx(t) ={Y; (Yyt) eX 
- Sr (x t) = {y; Qy n Tr(B(x, t)) $7 0}. 
- ILQ(E) = {x;Qx nE $7 0}1, E c Rn+1 

As in [NRS], we introduce the following potential space (associated now to a 
finite measure). 

Definition 2.2. Let v be a positive finite measure in Rn. For 1 < p < xc we define 

LzP(-n) f; f = F * dv, F E LP(Rfn)}, 

endowed with the quotient norm IIf ILP = inf {FI IFIp; f = F * dv}. We will denote 
by V(x, t) = Vt(x) = Pt * dv(x), the harmonic extension of v. 

Remark 2.3. Some interesting examples are given when dv(x) = Go(x) dx, where 
Go is the Bessel potential (see [St]). Observe also that if v = 6, the Dirac delta, 
then LP = LP. 

Definition 2.4. Let Q be an approach region and r: R+ t +. We say that 
Q satisfies the r condition if Fr(x,t) c Q, for all (x,t) E Q, where Fr(x,t) = 

{(y, s); y - xj < r(s) -r(t) }. 
Observe that if r(t) = t, this is equivalent to the cone condition assumed in [NS]. 

The following result gives very precise information on the region Fr determined by 
a measure v. The proof is easy and we will omit it (see also [NRS]). 

Proposition 2.5. Let v be a positive finite measure in Rn and let 1 < p < 00. Set 
r(t) = 14 H/". Then, r is a continuous increasing function, 0 < r(t) < 00, t > 0 
and t-ir(t) ( 

jjpjjP,)-P/n as t - 00. Moreover, if dv(x) = k(x) dx, with 

k E L1 \ LP', then r(t) - 0 as t - 0 (and hence r is onto) and r(t)/t - 0 as 
t - 0. Also, if v is an atomic measure, then r(t) t t, for t > 0. 

We now give the proof of our main result. We will restrict the hypothesis to a 
particular choice of v (see Remark 2.7 for some extensions). 

Theorem 2.6. Let k E L1(RTn) be a positive radially decreasing kernel and let 
1 < p < 0. Assume k 0 LP'(Rn). Set dv(x) = k(x) dx and r(t) = P/ . Let Q 
be an approach region satisfying the r condition. Then, the following are equivalent: 

(a) Nn : LIP(Rn) - LP'(Rin) is bounded. 
(b) There exists C > 0 such that, for all t > O JQ(t)j < Cr(t)n. 
(c) There exists C > 0 such that, for alf (xt) E R n+j, ISr(Xt)l < Ctn. 
(d) ILQ is an r-Carleson measure. 
(e) There exists C > 0 such that, for all f E LIP(Rn) and A > O0 

{x; Nnf(x) > A}l < C| {x; Nrrf (x) > A}l 1 
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Proof. (a) =X (b). Fix t > 0. Since 

IIVtIIiP= sup f Vt(x)F(-x)dx = sup lVt*F(O)I, 
JjFjjp=1 Jkn JjFjjp=1 

we can find F E LP, IjFjjp = 1 such that A -IVt * F(0)I > IIVtIIp/2. Let x E ]Rn so 
that (Ot) E Qx and f =F*dv. Then IQ(t)I = I{y;(0,t) E Qy and 

Nnf(x)= sup IVs *F(y)I>IVt*F(O)I=A. 
(Y,s)EQR, 

Hence, x E {NQf > A/2} and 

C~~~~ 
IQ(t)I < IfNnf > A/211 < AC IlfIlPp < Cr(t). 

(b) =* (c). Let us first show that for (x,t) E RI++ , Sr(x,r(t)) = {y; (x,t) E QY}. 
In fact, if (x, t) E Qy, then Qy n Tr(B(x, r(t))) :$ 0, and by definition this implies 
y E Sr(X, r(t)). Conversely, if QY n Tr(B(x, r(t))) 7$ 0, there exists (z, s) E QY so 
that B(z, r(s)) C B(x, r(t)). Thus, we can find z' E QY (s) with Iz'-xI < r(t)-r(s), 
and since Q satisfies the r condition, (x, t) E QY. 

Thus, we easily obtain that ISr(x, r(t)) I = I Q(t) , and by Proposition 2.5, given 
t > 0 there exists t' > 0 so that r(t') = t. Hence, 

iSr(Xt)I = ISr(x5r(t'))I = IQ(t')I < Cr(t')n = Ctn. 

(c) =:> (d). It is clear that HL is an outer measure. Now, given (x, t) e ]Ri+l, 

pbQ (Tr (B(x,t))) = {y;Q YnTr,(B(x, t)) 7$ 0} = ISr(X t)I < Ct. 

(d) => (e). Since {x; Nrrf (X) > A} is an open set and 

If{x;Nnf(x) > A}J = ,u?n({(y,t) E R If * Pt(Y)I > A) 
(e) is a consequence of the fact that 

{(y t) e ; f * Pt (y) I> A} C Tr ({x; Nrr f () > A4) 
(see [CS]) and Proposition 1.5. 

(e) => (a). This is immediate since Nr, is always a bounded operator (see 
[NRS]). [ 

Remark 2.7. (i) In Theorem 2.6 one can still give partial results with weaker con- 
ditions. In fact, it suffices to observe that (a) * (b) holds for any measure v and 
any region Q. In (b) =* (c), the only condition we need on r is that r(O) = 0. For 
(c) =>. (d) and (d) => (e), nothing actually is needed a priori. 

(ii) If we define the Hardy-Littlewood maximal operator, associated to Q, 

MQf(x) = sup , 1B| If(z) I dz, 
(y~t)EQ. IB(ya t)I B(y0) 

then (if Q satisfies some mild conditions) Mnf NQ(If I), and we thus obtain a 
characterization of the boundedness of MQ (see [NS] and [SS]). 

(iii) As a consequence of the first remark and Proposition 2.5, it is easy to extend 
the characterization given in [NS], to atomic measures: 

Corollary 2.8. Let v be a positive, atomic and finite measure, and let Q be an 
approach region satisfying the cone condition. Let I < p < oo. Then, the operator 
NQ: LLP(Rn) - LP '(Rn) is bounded if and only if IQ(t)I < Ctn, for all t > 0. 



BEST APPROACH REGIONS FOR POTENTIAL SPACES 1109 

3. EXAMPLE 

The following construction shows that there exists an approach region under 
the hypothesis of Theorem 2.6, larger than those considered in [NRS], for which 
the maximal operator is bounded (and hence, there exists almost everywhere con- 
vergence of the harmonic extension of functions in the corresponding potential 
space). We use the same ideas as in the example of a non-nontangential region 
in [NS]. Given r as in the theorem, choose an increasing, C1 and convex function 

[: [0,1] -t +, with o(0) = o'(0) = 0, o(1) < 1 and so that t > p(r(t)) and 
t/r(0(t)) - o as t - 0. Define the sequences t1 = o(1),... ,tk = 0(tk_1), and 
Ykl = tk-1, with IYi = 1. Finally, set 

Q= UFr(yk,tk) 
k 

Then Q satisfies the r condition, Fr C Q, for every af > 0, Q ?2 Fr and ?Q(t)j < 
Cr(t)', for all t > 0. 
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