Esperança Tauler Ferré Joaquín A. Proenza Fernández Departamento de Cristalografía, Mineralogía y Depósitos Minerales

CARACTERIZACIÓN MINERALÓGICA DEL PERFIL LATERÍTICO DE NI DE LOMA ORTEGA. REPÚBLICA DOMINICANA

Tamara Gallardo Alonso

Julio, 2008

RESUMEN

En este trabajo se ha caracterizado mineralógicamente y geoquímicamente dos sondeos (969-0303, sondeo estéril y 954-0307, sondeo fértil) de un perfil laterítico de Loma Ortega (República Dominicana), especialmente la zona que corresponde a la saprolita y protolito.

La empresa Falcondo Xstrata Nickel tiene el propósito de explotar el horizonte saprolítico de Loma Ortega. El objetivo principal de este trabajo es aportar nuevos datos que ayuden a una explotación rentable.

Para llevar a cabo este objetivo se han utilizado las técnicas analíticas siguientes: microscopía óptica, difracción de rayos X (DRX), microscopía electrónica con analizador de energías (SEM-EDS) y la microsonda electrónica (EMPA).

El horizonte saprolítico del sondeo 969-0303, está formado en la parte superior por: cuarzo, lizardita, óxidos de Mn y esmectita ferruginosa y la parte inferior por: lizardita y esmectita ferruginosa, principalmente. El horizonte saprolítico del sondeo 954-0307 está formado por: goethita, lizardita y maghemita. En el primer sondeo las fases minerales con contenido en Ni son: las esmectitas y los óxidos de Mn y en el segundo sondeo es la lizardita, respectivamente.

El sondeo 969-0303 estudiado corresponde a un depósito de lateritas tipo arcillas. Presenta un tramo esmectítico desarrollado con minerales portadores de Ni, pero con porcentajes bajos. El sondeo 954-0307 estudiado corresponde a un depósito de lateritas tipo silicatos hidratados. El cual presenta un tramo saprolítico muy desarrollado y enriquecido en minerales portadores de Ni.

ÍNDICE

	Páginas
1 INTRODUCCIÓN	4
1.1 Planteamiento y objetivos del trabajo	4
1.2 Muestras estudiadas	4
1.3 Técnicas analíticas	6
1.3.1 Microscopía óptica de luz transmitida y reflexada	6
1.3.2 Difracción de rayos X	7
1.3.3 Microscopio electrónico de barrido con analizador de	
energías (SEM-EDS)	8
1.3.4 Microsonda electrónica	9
2 CARACTERÍSTICAS GENERALES DE LOS PERFILES LATERÍTICOS	
NIQUELÍFEROS: LOS PERFILES TIPO SILICATOS HIDRATADOS	10
2.1 Clasificación de las lateritas niquelíferas	10
2.2 Mecanismos de formación y modificación	13
2.3 Distribución mundial de las lateritas niquelíferas	14
2.4 Lateritas de Ni tipo silicatos hidratados	14
3 MARCO GEOLÓGICO DE LA ZONA DE TRABAJO	17
3.1 Situación geográfica	17
3.2 Situación geológica	17
3.2.1 Introducción a la geología de la República Dominicana	17
3.2.2 Las peridiotitas de Loma Caribe	19
3.2.3 Los perfiles lateríticos de Ni de República Dominicana	20
3.2.4 Los perfiles lateríticos de Ni de Loma Ortega	24
4 CARACTERIZACIÓN GEOQUÍMICA	26
4.1 Perfil estéril (sondeo 969-0303)	26
4.2 Perfil fértil (sondeo 954-0307)	28
5 CARACTERIZACIÓN MINERALÓGICA	32
5.1 Perfil estéril (sondeo 969-0303)	32
5.2 Perfil fértil (sondeo 954-0307)	39
6QUÍMICA MINERAL	47
6.1 Cr- espinela	47
6.2 Olivino	47
6.3 Serpentina	47

6.4 Fases hidratadas de Si-Mg-Fe	48
6.5 Saponita	48
6.6 Fases de Mn	48
7 CONSIDERACIONES FINALES Y CONCLUSIONES	51
8 REFERENCIAS	53
9 ANEXOS	56

1. INTRODUCCIÓN

1.1.- Planteamiento y objetivos del trabajo

Los depósitos lateríticos de Ni y Co, desarrollados a partir de la meteorización química de rocas ultramáficas y máficas, representan el 70% de las reservas mundiales de níquel, y producen actualmente alrededor del 40% del Ni, que consume la industria (Gleeson et al., 2003; Dalvi et al., 2004). Además, los estudio de mercado del Ni coinciden en que la expansión en la capacidad de producción de este metal se deberá a la explotación de esta tipología de depósito (Dalvi et al., 2004; Ranieri, 2004). Geográficamente estos depósitos se encuentran restringidos entre latitudes de 22[°] N y 22[°] S, y son el resultado de la combinación de factores climáticos, litológicos, estructurales y geomorfológicos.

El Caribe contiene alrededor del 10% de los recursos mundiales de níquel laterítico (Dalvi et al., 2004), con los depósitos más importantes en el este de Cuba y en la Cordillera Central de la República Dominicana. Independientemente de su importancia económica, el conocimiento sobre la distribución de Ni y Co en las distintas fases minerales presentes en estos depósitos es sólo conocida a un nivel muy genérico. En la actualidad existen importantes lagunas en el conocimiento de las diferentes fases portadoras de Ni y Co. Por ejemplo, en las fases establecidas como portadoras de Ni (principalmente goethita y silicatos hidratados de Mg) y Co (fases de Mn), se desconoce si estos elementos están como iones adsorbidos en la superficie cristalina o como iones substituyendo en la estructura cristalina. Estas limitaciones están dadas, en parte, por las particularidades de las fases minerales que componen a las lateritas, las cuales mayoritariamente tienen granos de tamaño muy pequeño, son amorfas o de muy pobre cristalinidad.

El presente trabajo tiene como objetivo principal realizar una caracterización geoquímica y mineralógica de dos perfiles representativos del depósito laterítico de Ni Loma Ortega (Cordillera Central de la República Dominicana). Uno de estos perfiles no atravesó zona mineralizada; mientras que el otro perfil corto aproximadamente 15 metros de una zona con más de 1 % de Ni. Los temas específicos a investigar son:

- Caracterización geoquímica de los tipos de perfiles
- Caracterizar las principales fases portadoras de níquel y cobalto

1.2.- Muestras estudiadas

Las muestras estudiadas, como se ha comentado anteriormente, provienen de dos sondeos representativos del depósito laterítico de Ni Loma Ortega, tipo silicato

hidratado, localizado en la Cordillera Central de la República Dominicana. Las muestras han sido amablemente cedidas por la empresa *Falcondo Xstrata Nickel (*http://www.xstrata.com/operation/falcondobonao/), grupo que tiene la concesión del depósito.

Los sondeos estudiados son: el 969-0303 y el 954-0307, el primero estéril y el segundo fértil, respectivamente. El sondeo estéril (Fig. 1.1) tiene 30 metros de profundidad, con un protolito dunítico y con cuatro facies minerales, según los geólogos de mina. Las concentraciones de níquel a lo largo de todo el perfil son inferiores al 1.2%. Las muestras están indicadas sobre el perfil-esquemático de las facies de mina. La LO-1, LO-2, LO-4, LO-5 y LO-6 se encuentran a profundidades inferiores a 5m, en la facies de mina C (serpentina "blanda" o saprolita limonitizada). Las muestras LO-9, LO-13, LO-15, LO-16 se encuentran a profundidades entre 5 y 10 m, en la mezcla de facies de mina C, D, E y F, este tramo del perfil esta dominado por las facies E y D (serpentina dura o saprolita ss). La muestra LO-19 esta a profundidades de 16 m, en la facies E, zona saprolítica inferior. Y la muestra LO-23 se encuentra a profundidades de 23 m, en la facies de mina F, es la menos alterada, podría considerarse como el protolito.

Fig. 1.1. Perfiles esquemáticos del sondeo estéril (969-0303). Las muestras están indicadas sobre el perfil de las facies de mina.

El sondeo fértil (Fig. 1.2) tiene 50 metros de profundidad, con un protolito de harzburgita y dunita y con un predominio de las facies de mina denominadas C, D, E, y F. Un tramo significativo de este perfil presenta concentraciones de níquel >1%, y

hasta >3%. La muestra LO-51 se encuentra a profundidades inferiores a 5 m, en la facies de mina C (saprolita limonitizada). Las muestras LO-52, LO-53 y LO-54 se encuentran a profundidades entre 5 y 11 m, en la mezcla de facies de mina C, D y E (zona mineralizada). La muestra LO-55 esta a profundidades de 41 m, en la facies F, protolito.

Fig. 1.2. Perfiles esquemáticos del sondeo fértil (954-0307). Las muestras están indicadas sobre el perfil de las facies de mina.

1.3.- Técnicas Analíticas

1.3.1.- Microscopía óptica de luz transmitida y reflejada

Las diferentes asociaciones minerales, así como las relaciones texturales entre los minerales han sido estudiadas en láminas delgadas pulidas mediante microscopía de luz transmitida y reflejada. El equipo usado fue un microscopio óptico de polarización Nikon Eclipse LV100 POL del Departamento de Cristalografía, Mineralogía y Depósitos Minerales de la Facultad de Geología de la Universidad de Barcelona (Fig. 1.3).

Fig. 1.3. Microscopio óptico Nikon utilizado en el estudio del perfil laterítico de Loma Ortega.

1.3.2.- Difracción de rayos X

Las muestras fueron analizadas mediante DRX. Fracciones representativas de cada muestra, fueron pulverizadas en mortero de ágata hasta un tamaño de partícula inferior a 40 µm. Los análisis fueron realizados en los Servicios Científico-Técnicos de la Universidad de Barcelona. Se ha utilizado un Difractómetro Panalytical X'Pert PRO MPD ALFA1 con monocromador primario, con un ángulo de barrido de 4-100º de 20 con una longitud de paso de 0.017º de 20 y un tiempo de adquisición de 50.2 segundos. La radiación utilizada fue de la K α del Cu con λ =1.5418 Å. En las muestras que tenían mucho hierro se hizo uso del difractómetro de polvo Siemens D-5000 (Fig. 1.4) provisto de un monocromador secundario para disminuir el nivel de radiación de fondo del difractograma originado por el espectro de fluorescencia excitado en la muestra. Para la interpretación de los espectros de DRX se utilizado el programa X'Pert y la base de datos de difracción de minerales del International Center for Diffraction Mineral Data (JCPDS), se ha podido identificar las fases minerales de las muestras. El programa permite realizar un análisis semicuantitativo de las fases minerales presentes en las muestras. En algunas muestras se ha realizado el ajuste del perfil de difracción con el método de Rietveld y el programa Topas.

Fig. 1.4. Difractómetro de polvo Siemens D-500 (S1) con cargador automático de muestras (http://www.sct.ub.es/v2/wcat/s08/s08_3000.htm)

1.3.3. Microscopio electrónico de barrido con analizador de energías (SEM-EDS)

El microscopio electrónico utilizado es el *ESEM Quanta 200 FEI, XTE 325/D8395* (*Fig. 1.5*), el cual tiene acoplado un detector EDS para la adquisición de los espectros del RX (http://www.sct.ub.es/v2/wcat/s23/s23_0000.htm). Se ha trabajado con electrones secundarios para observar la morfología de los granos y electrones retrodispersados para apreciar la composición química de los granos. Se realizaron análisis cualitativos en los diferentes minerales de interés. Los análisis fueron realizados en los Servicios Científico-Técnicos de la Universidad de Barcelona.

Fig. 1.5. a) Estructura interna del SEM-EDS. b) y c) Fotografías del SEM y portamuestras (*ESEM Quanta 200 FEI, XTE 325/D8395*)

1.3.4-. Microsonda electrónica

La microsonda electrónica se ha utilizado para determinar la composición química cuantitativa de los minerales presentes en los diferentes horizontes del perfil. Los análisis han sido efectuados mediante una microsonda electrónica CAMECA SX-50 (Fig. 4.6), equipada con cuatro espectrómetros de dispersión de longitud de onda (WDS-*wavelenght dispersive spectrometer*). Los análisis fueron realizados en los Servicios Científico-Técnicos de la Universidad de Barcelona bajo las siguientes condiciones de trabajo: tensión de aceleración de 15-20 kv y una corriente sobre muestra de 20 nA. Se han medido sobre las lineas espectrales de K α del Fe, Mn y Ni con cristal de LiF; las K α del Mg, Si, Al, Na con un TAP y las K α del Ca, Cr, Ti y K con PET. Los patrones utilizados han sido ortoclasa (Si, Al,K), Fe₂O₃(Fe), periclasa (Mg), wollastinita (Ca), rodonita (Mn), NiO (Ni), Co₂O₃ (Co), rutilo (Ti), albita (Na), Cr₂O₃ (Cr).

Fig.4.6.FotografíadelamicrosondaelectrónicaCAMECASX50(http://www.sct.ub.es/v2/wcat/s25/s25_3000.htm)

2. CARACTERÍSTICAS GENERALES DE LOS PERFILES LATERÍTICOS NIQUELÍFEROS: LOS PERFILES TIPO SILICATOS HIDRATADOS

Las lateritas niquelíferas son materiales regolíticos. Se forman en zonas de relieve horizontal sobre rocas ígneas básicas o ultrabásicas, ricas en minerales ferromagnesianos como el olivino o el piroxeno (Freyssinet et al., 2005). Los minerales que forman las lateritas niquelíferas son, mayoritariamente, hidróxidos y óxidos de hierro (goethita, lepidocrocita, hematites), a menudo acompañados de sílice, y de hidróxidos y óxidos de aluminio y manganeso (Fig. 2.1). En general estos minerales se disponen en agregados terrosos o crustiformes, formando capas de espesor muy variable, que puede llegar a la decena de metros (Golightly, 1981).

Fig. 2.1. Solubilidad, a pH~7, de los minerales más comunes en un perfile laterítico (Golightly, 1981).

En general, los perfiles de meteorización lateríticos se caracterizan por tener una zona más superficial (laterita *s.s.*) muy rica en óxidos e hidróxidos de hierro y pobre en sílice. Esta laterita suele contener una zona especialmente rica en hierro (ferricreta o *iron-cap*) en la parte más superior, seguida de una zona de limonita que en algunos casos puede contener arcillas. De la laterita *s.s.* se pasa en profundidad a una saprolita (zona de roca alterada rica en filosilicatos donde aún se observa la textura de la roca madre o protolito) y finalmente a la roca madre.

2.1.- Clasificación de las lateritas niquelíferas

Se han distinguido tres grandes tipos de depósitos lateríticos de níquel (Brand et al., 1998; Elias, 2002; Gleeson et al., 2003; Freyssinet et al., 2005) (Fig. 2.2):

Lateritas niquelíferas tipo arcilla. La sílice ha sido parcialmente lixiviada del perfil de meteorización. El níquel se acumula en nontronitas y esmectitas (Fig. 2.3), en las partes altas e intermedias de la saprolita. Ejemplos de lateritas niquelíferas tipo arcilla son: Murri Murrin (Australia occidental, 3-5Mt; 0.99% de Ni) y Meseta de Sant Felipe, Camagüey (Cuba, 2-3Mt; 1.3% de Ni) (Gleeson et al., 2003).

- Lateritas niquelíferas tipo óxido. El Ni está asociado principalmente a goethita (Fig. 2.3.). También se suele encontrar Co (y Ni) asociado a óxidos de Mn ("asbolanas"). Tanto la goethita como los óxidos y hidróxidos de hierro presentan una alta capacidad de adsorción de Ni en su superficie. Ejemplos de lateritas niquelíferas de tipos óxidos son: Sampala (Indonesia, >5Mt; 1.34% de Ni) i Pinares de Mayarí (Cuba, 2-3Mt; 1.07% de Ni) (Gleeson et al., 2003).
- Lateritas niquelíferas tipo silicato hidratado. La mineralización se encuentra en la parte inferior de la saprolita; las menas minerales son silicatos de Mg-Ni hidratados (e.g. lizardita niquelífera (Fig. 2.3), "garnieritas"). Ejemplos de lateritas niquelíferas tipo silicato hidratado son: Sorowako (Indonesia, >5Mt; 1.8% de Ni) y Koniambo (Nueva Caledonia, 3-5Mt; 2.58% de Ni) (Gleeson et al., 2003).

Fig. 2.2. Perfiles esquemático de los diferentes depósitos de lateritas. a) lateritas tipo silicatos hidratados.B) lateritas tipo arcillas. C) lateritas tipo óxidos. (Modificado de Gleeson et al., 2003)

Las lateritas de Ni se consideran reservas económicamente explotables de Ni (y, comúnmente Co). Las concentraciones de Ni y Co se dan en uno o más horizontes o unidades dentro del perfil de meteorización (Golightly, 1981). Hay numerosos minerales portadores de Ni en las lateritas niquelíferas, éstos según Brand et al., (1998) se pueden clasificar en cuatro grandes grupos, según la asociación con el regolito (Fig. 2.3).

Fig. 2.3. Tabla resumen de las	fases minerales portadoras	de Ni. (Brand et al., 1998)
--------------------------------	----------------------------	-----------------------------

Mineral	Fórmula ideal	Grupo	Ni (%)	
Yacimientos de silicatos hidratados				
Lizardita	$Mg_3Si_2O_5(OH)_4$	Serpentina	0.15	

Lizardita niquelada	(Mg, Ni) ₃ Si ₂ O ₅ (OH) ₄	Serpentina	6.1
Népouita	$(Ni,Mg)_3Si_2O_5(OH)_4$	Serpentina	32.8
Ni análogo de lizardita			
Clinocrisotilo	$Mg_3Si_2O_5(OH)_4$	Serpentina	
Pecoraita	Ni ₃ Si ₂ O ₅ (OH) ₄	Serpentina	40.5
Ni análogo de clinocrisotil			
Antigorita	$(Mg,Fe)_3Si_2O_5(OH)_4$	Serpentina	0.1
Antigorita niquelada	$(Mg,Ni)_3Si_2O_5(OH)_4$	Serpentina	4.9
Bertherina			
Fe⁺² dominante, amesita es Mg	(Fe ⁺² ,Fe ⁺³ ,Mg) ₂₋₃ (Si,Al) ₂ O ₅ (OH) ₄	Serpentina	2.8
dominante			
Brindleyita	(Ni,Mg,Fe) ₂ Al(Si,Al)O ₅ (OH) ₄	Serpentina	22.6
Ni análogo de berthierita			
Talco	Mg ₃ Si ₄ O ₁₀ (OH) ₂	Talco	0.3
Willemseita (kerolita)	(Ni,Mg) ₃ Si ₄ O ₁₀ (OH) ₂	Talco	27.1
Ni análogo de talco			
Clinocloro	(Mg,Fe ⁺²)₅AI(Si₃AI)O ₁₀ (OH) ₈	Clorita	0.3
Clorita niquelada	(Mg,Fe ⁺² ,Ni)₅Al(Si ₃ Al)O ₁₀ (OH) ₈	Clorita	7.2
Nimita	(Ni,Mg,Al) ₆ (Si,Al) ₄ O ₁₀ (OH) ₈	Clorita	16.9
Ni análogo de clinocloro			
Sepiolita	Mg ₄ Si ₆ O ₁₅ (OH) ₂ 6H ₂ O	Sepiolita	0.4
Sepiolita niguelada	(Mg.Ni) ₄ Si ₆ O ₁₅ (OH) ₂ 6H ₂ O	Sepiolita	2.9
Falcondoita	(Ni,Mg) ₄ Si ₆ O ₁₅ (OH) ₂ 6H ₂ O	Sepiolita	24
Ni análogo de sepiolita		·	
7Å garnierita	Pobremente cristalina: variación	Serpentina	15.1
0	extremada		
10Å garnierita	Pobremente cristalina: variación	Talco	19.9
	extremada		
14Å garnierita	Pobremente cristalina: variación	Clorita	3.3
· · · · g-· · · · · ·	extremada		
Garniertia inclasificable	Pobremente cristalina: variación	Clorita, talco.	17.6
	extremada	serpentina	
		sepiolita	
		vermiculita	
Connarita	Ni₂Si₃O₅(OH)₄:		27.4
	pobremente cristalina		
Niquel-kerolita	(Mg Ni) Si Q. (OH)	Talco	15 7
Formalmente nimelita, variedad de	Pohremente cristalina: variación extrema	T aloo	10.1
willemseita			
wiierioeita			
Vacimientos de óxidos			
Goethita	EeO OH		1
Homatitos	Eq.O	Homotitos	+ 1 2
Asholana	$(C_2 N_i) (M_2^{+4} O_1) (OH) = 2H_1 O_2$	Tiematites	1-2 15 Ni i/o
	$(\bigcirc, \square)_{1-y}(\square) \bigcirc 2j_{2-x}(\bigcirc \square)_{2-2y+2x}.\square \square_{2} \bigcirc$		
Litioforita	$(A L i)Mn^{+4} \cap (O L)$		10/ NI 60/
Heterogenita			40/ NI
rieleiogenita	000.011		4 /0 INI
			13% 00

Yacimientos de arcillas silicatadas

2.2.- Mecanismos de formación y modificación

El desarrollo y características de las lateritas niquelíferas están influenciados por un conjunto de factores como el clima, el relieve, el drenaje entre otros como puede observarse en la siguiente tabla propuesta por Trescases (1975) (Fig. 2.4)

	Lateritas tipo silicatos	Lateritas tipo arcillas	Lateritas tipo óxidos
	hidratados		
Clima	Sabana húmeda-selva	Sabana húmeda;	Sabana; modificada a clima
		posiblemente formada o	semiárido
		modificada en clima	
		semiárido	
Relieve	Moderado	De moderado a bajo	De moderado a bajo
Drenaje	Buen drenaje	Mal drenaje	Bueno y mal drenaje
Tectónica	Favorecido por	No favorecido por	Favorecido por levantamiento
	levantamiento	levantamiento	
Estructura primaria	Favorecido por el aumento	Enriquecimiento en	Favorecido por el aumento
	de la erosión y	algunas fracturas,	de la erosión y
	enriquecimiento de Ni a lo	favorecido por la falta de	enriquecimiento de Ni a lo
	largo de fracturas abiertas	drenaje	largo de fracturas abiertas
Litología primaria (sólo	Peridotita>Dunita	Peridotita>>Dunita	Dunita y Peridotita
en rocas ultramáficas			
ricas en olivino)			

Fig. 2.4. Tabla-resumen de los controles de formación en las lateritas de Ni (Trescases, 1975)

Las condiciones comunes que se encuentran en los distintos tipos de lateritas son:

- Largos periodos de estabilidad tectónica. Probablemente las rocas ultramáficas se alteran más rápidamente que otro tipo litológicos (Thomas, 1994). Sin embargo, se han estimado unas tasas promedios de meteorización variables entre 10 y 20 m por millones de año, lo que implica que un perfil laterítico, sin erosión, puede desarrollarse entre 1 y 6 millones (Nahon and Tardy, 1992).
- Relieve moderado. La tasa de meteorización debe ser superior a la tasa de erosión de la superficie, lo que está favorecido por el bajo relieve. Trescases (1975) calculó que la tasa de saprolitización en los yacimientos de Thio, Nueva Caledonia, es de 40 a 50 m/ma. De lo contrario, el relieve debe ser suficiente para permitir la filtración de los productos químicos de la meteorización.
- Clima de subtropical a tropical húmedo. Es posible la formación bajo climas templados pero, requiere períodos más largos debido a las menores tasas de meteorización. Esta situación puede haber prevalecido en el sur de Australia, que se ha mantenido en latitudes medias o altas, aunque con períodos de climas subtropicales (Anand y Paine, 2002)

2.3.- Distribución mundial de las lateritas niquelíferas

Una distribución global de las lateritas de Ni se puede observar en la Fig. 2.5. La mayoría de los yacimientos se encuentran en zonas tropicales, húmedas (sudeste de Asia y Oceanía), en Sur América y el Caribe. Aunque también, hay muchos depósitos a latitudes más altas como: el suroeste de Australia, el oeste de Estados Unidos, Grecia, los Balcanes, los Urales de Kazajstán y Rusia central (Budel, 1982).

Fig. 2.5. Situación geográfica de los yacimientos de lateritas niquelíferas (Modificada de Budel, 1982).

2.4.- Lateritas de Ni tipo silicatos hidratados

Las lateritas de Ni tipo silicatos hidratados son la tipología de lateritas niquelíferas de nuestro estudio. Las más conocidas se encuentran en regiones tectónicamente activas, de relieve moderado, como en el Sudeste de Asia y Oceanía, en América Central y el Caribe (Golightly, 1979).

En colinas y laderas, el nivel freático permanece por debajo del frente de meteorización. En la exposición del perfil laterítico, bajo condiciones meteóricas, el olivino es el primer mineral en alterarse. El resultado de su hidrólisis da como resultado la formación de goethita junto con ácido silícico y magnesio.

$$\begin{array}{cccc} ({\sf Fe},\,{\sf Mg})_2{\rm SiO}_4 & +\,{\sf 5H}^+ \rightarrow & {\sf H}_4{\rm SiO}_{4({\sf aq})}\,+ & {\sf FeOOH}\,+ & +\,{\sf Mg}^{+2} \\ & \\ {\sf olivino} & {\sf ácido\ silícico} & {\sf goethita} \end{array}$$

Cuando finaliza la hidrólisis del olivino comienza la del piroxeno y la de la serpentina. Y los productos son: esmectitas y óxidos de Fe con la lixiviación de Mg. Las esmectitas derivan de los clinopiroxenos, las nontronitas y montmorillontas derivan de clinopiroxeno ricos en Al y los minerales ferromagnésicos derivan de la serpentina.

2(Fe, Mg) ₃ Si ₂ O ₅ (OH) ₄	+ 3H ₂ O →	Mg ₃ Si ₄ O ₁₀ (OH) ₂ ·4H ₂ O +	2Mg ⁺² +	FeOOH +	30H
serpentina		saponita		goethita	

El níquel liberado por la meteorización del olivino y serpentina se mantiene en el perfil, mayoritariamente en la goethita, aunque también en la saponita (e.g. Brand and Butt, 2001).

Estas transformaciones causan un aumento de la porosidad de modo que las soluciones se infiltran rápidamente y son menos alcalinas, y por lo tanto, la densidad disminuye más del 50%. Los silicatos primarios son pseudomórfizados por oxihidróxidos de Fe y esmectitas. Los óxidos de Fe y las esmectitas continúan los procesos de hidrólisis, lixiviando casi por completo el Mg. Como consecuencia, en el horizonte superior dominan óxidos de hierro; o bien, caolinita o gibsita si las concentraciones de Al son muy altas. En esta etapa, la textura de la roca original es irreconocible debido al aumento de la porosidad entre las fracturas y la presencia de microfallas. Con la pérdida total de más del 70% de la masa inicial, la concentración residual por si sola puede dar más de un 1% en Ni. Cuando la vegetación es abundante, los suelos orgánicos producen soluciones con pH bajos, y durante el curso de meteorización, los óxidos de Fe en los horizontes superiores pueden ser disueltos y reprecipitar, lo que produce la lixiviación del Ni.

Finalmente, el Ni es transportado a las profundidades del perfil laterítico y puede ser readsorbido por goethita o bien reaccionar con los productos de la meteorización del olivino, serpentina y otros minerales para formar "garnierita" y otros silicatos de Mg hidratados. Los óxidos de Mn también se encuentran en la parte inferior de la zona de los óxidos con precipitaciones de Ni y sobre todo de Co (Golightly, 1979; Peletier, 1996).

El Ni también puede reemplazar al Mg en la serpentina.

 $\begin{array}{rl} Mg_{3}Si_{2}O_{5}(OH)_{4} & + Ni^{+2} \rightarrow & Mg_{2}NiSi_{2}O_{5}(OH)_{4} & + Mg^{+2} \\ \mbox{lizardita} & \mbox{lizardita niquelífera} \end{array}$

Debido al drenaje local en condiciones impuestas por la tectónica, estructura y topografía los resultados de los procesos de hidrólisis son compuestos silicatados y/o óxidos hidratados. La tasa de erosión elevada limita la profundidad de meteorización

en valores inferiores a 30 m, por lo tanto, en las zonas de menor relieve los perfiles lateríticos serán menos maduros (Budel, 1982).

3. MARCO GEOLÓGICO DE LA ZONA DE TRABAJO

3.1.- Situación geográfica

La República Dominicana (Fig. 3.1) ocupa la parte central y oriental de la isla La Española. Limita al norte y al este con el océano Atlántico, al sur con el Caribe y al oeste con Haití. Tiene un área de 48,442 km². Debido a su situación entre los paralelos 17° y 20°, las temperaturas son elevadas, oscilando las medias entre 25° y 28°C.

Fig. 3.1. Mapa geográfico de la República Dominicana (www.dominicanaonline.org/.../cpo_mapas1.asp)

3.2.- Situación geológica

3.2.1.- Introducción a la geología de la República Dominicana

La isla de la Española constituye un arco-isla multiepisódico, edificado a lo largo del intervalo de tiempo Cretácico Inferior – Eoceno (Lewis y Draper, 1990; Mann et al., 1991; Draper et al., 1994, 1996). Actualmente, la isla constituye un bloque topográficamente elevado, rodeado al N y al S por fondos oceánicos profundos situados a caballo del límite entre las placas Norteamericana y Caribeña. El desplazamiento transcurrente a lo largo de este límite desde el Eoceno, ha modificado la geometría del arco-isla, produciendo una cuenca de *pull-apart*, la Fosa Caimán, desarrollada sobre sustrato oceánico (Rosencrant et al., 1988). La deformación afecta también, al borde norte de la placa Caribeña, generando desgarres frágiles sinistros y

fallas inversas de dirección O-E a NO-SE, de decenas de kilómetros de longitud. Estas estructuras poseen una actividad tectónica muy reciente controlando la fisiografía de la Isla la Española, dominada por valles y alineaciones montañosas de dirección NO-SE como la Cordillera Central.

En las Antillas, formadas éstas por la cadena de islas de Cuba, la Española, Puerto Rico y las Islas Vírgenes, afloran segmentos del sistema Cretácico-Eoceno de arco-isla cirum-caribeña (AICC). El segmento AICC presente en la isla la Española es magmáticamente poco activo desde el Eoceno Medio-Superior, como consecuencia de su colisión con la plataforma carbonatada de las Bahamas (Fig. 3.2).

Fig. 3.2. a) Configuración actual de las placas en la región caribeña (mod. de Mann et al., 1991; Lebrón y Perfit, 1994; Pindell, 1994). La Isla de la Española se sitúa sobre la activa zona de desgarre sinestral que separa las placas Norteamericanas y Caribeña. b) Principales elementos tectónicos del sistema de arcoisla cirum-caribeño (AICC) de edad Cretácico-Eoceno. Notar como el *plateau* oceánico ocupa una posición de tras-arco, así como las cuencas de tras-arco del Yucatán, de las Antillas Mayores y de Granada. La plataforma carbonatada de Bahamas se desarrolló sobre la placa Norteamericana desde el Jurásico Superior.

La corteza de la placa Caribeña fue generada durante la creación de fondo oceánico como consecuencia de la separación de las placas Norte y Suramericana en el Jurásico Medio-Superior y Cretácico Inferior (Pindell y Barrett, 1990; Pindell, 1994). Los basaltos N-MORB (Lapierre et al., 1999) que intercalan niveles de chert con fauna de Jurásico Superior en el Complejo Duarte de la isla la Española (Montgomery et al., 1994), representan fragmentos emplazados de la corteza oceánica caribeña más antigua.

3.2.2.- Las peridotitas de Loma Caribe

Litológicamente, esta unidad consiste en harzburgitas, lherzolitas y dunitas, variablemente serpentinizadas, que incluyen pequeñas cuerpos de cromitita podiforme e intrusiones pequeñas de gabros piroxénicos y diques doleríticos (Lewis et al., 2006; Proenza et al., 2007). La asociación mineral está compuesta mayoritariamente por olivino y subordinariamente por ortopiroxeno, clinopiroxeno y cromita, cuyas variables proporciones modales dan lugar a una alternancia de capas duníticas y harzburgíticas. Posteriormente al estadio mantélico, las peridotitas fueron serpentinizadas durante su transporte tectónico a niveles altos de la corteza, que fue acompañado con una intensa deformación dúctil (Escuder Viruete et al., 2002). Durante la alteración, los minerales ígneos primarios fueron reemplazados por minerales del grupo de la serpentina (principalmente lizardita), talco y clorita. Los piroxenos y el olivino aparecen como relictos o como porfiroclastos aislados dentro de la masa serpentínica fibrosa. La foliación principal (Sp) en estas rocas está definida por la orientación plano-paralela de los minerales serpentiníticos y la disposición planar de venas boudinadas rellenas de serpentinitas. Dicha fábrica presenta a menudo un carácter no-coaxial, evidenciado por la orientación de los minerales retrógrados según dos familias de planos oblicuos, que definen una fábrica compuesta de tiempo S-C (Escuder Viruete et al., 2002) (Fig. 3.3).

Fig. 3.3. Mapa geológico esquemático del sector meridional de la Cordillera Central Dominicana. E.1:50.000 de Villa Altagracia y Arroyo Caña (Modificado. de Hernaiz Huerta et al., 2000)

3.2.3.- Los perfiles lateríticos de Ni de República Dominicana

Los perfiles lateríticos en República Dominicana según los criterios de los geólogos de la mina se divide en seis zonas. La división está basada en:

- Contenido de níquel y de hierro
- La textura
- La proporción de fragmentos rocosos
- La profundidad

Zona A: Limonita marrón

Esta zona se distingue por su tonalidad marrón oscuro y textura terrosa. Se sitúa en zonas llanas aunque puede estar ausente debido a la erosión. La zona A contiene los valores más altos en hierro de todo el perfil laterítico, en la zona alta 35% y van disminuyendo gradualmente hacia las zonas más bajas. La SiO₂, Al₂O₃ y MgO tienen unos porcentajes del 16%, del 18% y del 2%, respectivamente. La mineralogía es predominantemente de goethita con intercalaciones irregulares de gibsita, puede

haber cantos rodados dispersados de peridotita serpentinizada, vetas de sílice, Crespinelas, magnetita, óxidos y hidróxidos de Mn-Co (asbolanas). También pueden aparecer pisolitos de hematites de hasta 1 cm de diámetro. El contacto con la zona B es generalmente transicional. La mayoría de los elementos, incluyendo el cobalto, el silicio, el magnesio y el níquel han sido eliminados por lixiviación, con el consiguiente enriquecimiento en hierro.

Zona B: Limonita Ocre-marrón

La zona B tiene tonalidad de rojiza a marrón amarillento, se encuentra en zonas llanas o de suaves relieves. Es una zona muy compacta y tiene una textura tipo-arcilla con una cierta plasticidad. El contenido de cobalto aumenta hacia los niveles inferiores de la zona B (en los primeros 2 - 5 m). La mayoría del manganeso se encuentra como asbolana. La mineralogía consiste, sobre todo, en goethita, con cantidades menores de serpentina en los contactos con las zonas inferiores del perfil. Su contenido en cuarzo solamente es del 6% en peso, aunque de vez en cuando puede aumentar presentándose como vetas de sílice. El contacto de la zona B con las zonas C, D o E, acostumbra a ser gradacional y extremadamente irregular.

Zona C: Serpentina blanda

La zona C es de color verde con tonalidades de amarillentas a rojas. Es blanda y algo arcillosa, aunque puede tener cierta plasticidad. Cuando está seca acostumbra a desmenuzarse y adquiere colores de grises a marrón. En comparación con la zona limonítica, que ha sido afectada por suelos de *creep* y *slumps*, este material se forma generalmente *in situ*. Químicamente, la zona C se caracteriza por el aumento de níquel y elementos asociados (Co, Mn, S y Al). La mineralogía es típica de zona transicional entre capas ricas en hierro de las zonas de limonita y la zona inferior ultramáfica rica en magnesio. La fase mineral dominante es serpentina (lizardita) que junto con la goethita son las fases más abundantes en los contactos transicionales con la zona B. El cuarzo puede encontrarse localmente en la textura *boxwork*, llegando a porcentajes del 40% en la zona de mineralización del níquel. Hay vetas de cuarzo niquelífero criptocristalino acompañado por "garnieritas" o sepiolita-falcondoita de color verde. El contacto de la zona C con la zona D es irregular.

Zona D: Serpentina Dura

La zona D está formada por fragmentos angulosos de serpentina (20-50%), son cantos rodados de serpentina dura de 5-25 cm de diámetro cementados en una matriz de serpentina blanda. Los fragmentos de roca tienen tonalidades ocre-amarillo pálido o

gris oscuro y suelen presentar zonas de alteración concentradas de hasta 5 cm. Muchos de los cantos rodados son cortados por vetas de serpentina, que también se enriquecen en níquel. En esta zona D el perfil laterítico tiene un enriquecimiento de serpentina y alcanza su máximo por lo que se refiere a los porcentajes de Ni; la mayoría de las zonas superficiales están enriquecidas en níquel (Ni del hasta 3%) y hay una disminución interna gradual hacia la base (del 0.30% a 0.60% de níquel).

Zona E: Peridotita serpentinizada

La zona E es de color gris por la presencia de peridotita serpentinizada. La concentración de Ni es idéntica a la zona D, en cambio aumentan los minerales ferromagnesianos (olivino y enstatita). El 50-70% del volumen de esta peridotita son fragmentos masivos angulosos de diámetro 25 cm. Hay fracturas de hasta 5 mm de ancho, rellenas de "garnieritas". Las vetas de sílice siguen a lo largo de los planos pero suelen estar rellenas de serpentina, "garnieritas" y/o limonita amarilla. El contacto de la zona E con la zona F es muy irregular.

Zona F: Peridotita inalterada

La zona F está visiblemente inalterada, formada mayoritariamente por harzburgita de grano grueso, dunita negra granulosa y serpentinita negra con tonalidades verdosa. Esta zona suele carecer de mineralización, pero puede haber fracturas rellenas de "garnierita". La roca estéril está debajo de la mineralización, con contacto muy irregular. A veces algunas inclusiones de la zona E pueden dar mineralizaciones. Químicamente, tiene valores extremadamente bajos en níquel y hierro (0.37% y 6.8%, respectivamente) en cambio, los valores de magnesio son moderadamente altos (34%).

Esta descripción del perfil presenta gráficamente a continuación en la Fig. 3.4.

Fig. 3.4. Perfil laterítico esquemático según la descripción de los geólogos de mina

3.2.3.- Los perfiles lateríticos de Ni de Loma Ortega

El depósito laterítico de Ni de Loma Ortega es una de las áreas mineras que forman los depósitos lateríticos de Falcondo, cerca de Bonao, en la parte central de la República Dominicana. En general, y siguiendo la terminología utilizada por los geólogos de la mina el perfil laterítico es dividido en cuatros zonas (Fig. 3.5).

- Zona limonítica (limonita roja y limonita amarilla, facies A, y B).
- Zona de transición (saprolita limonitizada, facies C).
- Zona saprolítica s.s. (saprolita blanda y saprolita dura, facies D y E).
- Peridotitas no meteorizadas (protolito, facies F).

Fig. 3.5. Depósito laterítico de Loma Ortega. Corte orientado: ESE. LM, corresponde a zona limonítica. TR: zona transicional. SP: material saprolítico. FR: Peridiotitas no meteorizadas.

Como se observa en las Fig. 3.5 y 3.6 el depósito laterítico de Ni de Loma Ortega puede tener diques de gabros y tiene una familia de fallas que están controladas por la intensa meteorización. El drenaje es un factor clave para la formación de este depósito laterítico.

Fig. 3.5. Fotografías del depósito laterítico de Loma Ortega. A y B) dique de gabros. C y D) Horizontes ricos en óxidos.

4. CARACTERIZACIÓN GEOQUÍMICA

Los análisis geoquímicos de roca total han sido realizados en Canadá mediante Fluorescencia de rayos X, y cedidos por la empresa Falcondo Xstrata Nickel.

4.1.- Perfil estéril (sondeo 969-0303)

La litogeoquímica de los elementos mayores (SiO₂, MgO y Fe₂O₃) del perfil estéril muestra un marcado incremento en las concentraciones de Fe y Si y una disminución en las de Mg hacia la parte alta del perfil (zona de saprolita limonitizada) (Fig. 4.1a). El incremento de los contenidos de SiO₂ hacia la parte alta del perfil es una característica inusual de los perfiles tipo silicato hidratado. También, en la parte más alta del perfil los valores de MgO están alrededor del 15%, lo cual implica que una parte importante del Mg no ha sido completamente lixiviada del perfil de meteorización.

Los elementos minoritarios son el Al_2O_3 , el MnO, el Cr_2O_3 , el Ni y el Co (Fig. 4.1b). Los contenidos de Al_2O_3 y Cr_2O_3 en general presentan un incremento hacia la parte alta, donde, por ejemplo, los contenidos de Cr llegan alcanzar valores de hasta 4% en peso de Cr_2O_3 . Las concentraciones de Ni (Fig. 4.2) son muy bajas, aumentando ligeramente hacia la zona de saprolita limonitizada. Los contenidos de Co son muy bajos a lo largo de todo el sondeo, en comparación con los otros elementos minoritarios, aunque se aprecia un incremento desde la zona saprolítica a la de la saprolita limonitizada, donde los valores se duplican.

Fig. 4.1. a) Variación de los elementos mayores (SiO₂,MgO y FeO) con la profundidad del perfil laterítico estéril. b) Variación de los elementos menores (Cr₂O₃ y MnO) con la profundidad del perfil latéritico estéril.

Fig. 4.2. Variación del contenido de Ni con la profundidad del perfil laterítico estéril.

4.2.- Perfil fértil (sondeo 954-0307)

Los contenidos de Fe_2O_3 se incrementan hacia la parte alta del perfil, de manera análoga a la tendencia observada en el perfil estéril. Este incremento está relacionado en ambos perfiles con el aumento de las proporciones modales de oxihidróxidos de Fe. Los contenidos de SiO₂ también aumentan hacia la parte alta del perfil (profundidad inferior a 10 m), particularmente en el horizonte de saprolita limonitizada. Por otra parte, los contenidos de MgO, con la excepción de algunas muestras anómalas, tienen muy poca variación en intervalos comprendidos entre los 10 y 40 metros, en cambio experimentan una marcada disminución hacia la parte alta del perfil (Fig. 4.3a). Los contenidos de Al_2O_3 , y de Ni presentan un comportamiento diferente al observado en el perfil estéril. El Al_2O_3 , tiene concentraciones máximas en la zona intermedia del perfil y las concentraciones más bajas en la zona saprolitica limonitizada. Los contenidos de Cr_2O_3 y de MnO aumentan hacia la parte alta del perfil, una tendencia similar a la observada en el perfil estéril (Fig. 4.3b). Los porcentajes de Ni en la zona mineralizada son el doble o el triple que en perfil 969-0303 (Fig. 4.4).

Fig. 4.3. a) Variación de los elementos mayores (SiO₂,MgO y FeO) con la profundidad del perfil laterítico estéril. b) Variación de los elementos menores (Cr₂O₃ y MnO) con la profundidad del perfil latéritico fértil.

Fig. 4.4. Variación del contenido de Ni con la profundidad del perfil laterítico fértil.

5. CARACTERIZACIÓN MINERALÓGICA

5.1.- Perfil estéril (sondeo 969-0303)

En este sondeo que representa al perfil laterítico estéril, las concentraciones de Ni no superan al 1% en peso. El sondeo alcanza una profundidad de 25 m. Se divide en cuatro zonas según la mineralogía del perfil laterítico. Estas zonas son: protolito, saprolita inferior, saprolita superior y saprolita limonitizada.

Protolito. Las muestras de esta zona (profundidad > 20 m) son muy compactas, de color marrón verdoso. Están formadas, principalmente, por olivinos (forsterita) alterados por los bordes y a lo largo de las fracturas a lizardita, piroxenos (enstatita) alterados por los bordes y siguiendo las lineas de exfoliación a lizardita. Como mineral accesorio se observan granos idiomórficos de Cr-espinelas (Fig. 5.1 a y b).

Saprofita inferior. Las muestras provienen de la zona del testigo entre 15 y 20 m, de color marrón, con cierta tonalidad rojiza y/o ocre. Pueden presentar vetas blanquinosas duras. Algunos granos de olivino están totalmente alterados y reemplazados por óxidos de hierro. En algunos granos, los bordes están alterados a lizardita, la enstatita está totalmente bastitizada. La Cr-espinela accesoria conserva la morfología euédrica primaria (Fig 5.2 a y b). Se observan abundantes fracturas de aproximadamente 100 µm de ancho que están totalmente rellenas de lizardita (Fig.5.3 a y b).

Los resultados de los análisis realizados con DRX muestran la lizardita como mineral mayoritario y Cr-espinela como mineral accesorio (Fig. 5.4).

Fig. 5.4. Espectro DRX de una muestra de la saprolita inferior donde se analizó una sóla fase mineral, lizardita (lineas azules).

Saprofita superior. Se encuentra a profundidades entre 5 y 15m, las muestras siguen siendo marrones pero con tonalidades más rojizas y más terrosas. En estas muestras se observa una primera generación de cuarzo microcristalino en vetas que tienen más de 300 µm de ancho. El cuarzo ha cristalizado en las paredes de las vetas y ha sido cubierto por una fase criptocristalina de color rojo intenso que no presenta comportamiento óptico y que corresponde a una esmectita rica en Fe (Fig. 5.5 a y b). Los granos de olivino totalmente alterados a óxidos de hierro, también han quedado rodeados de este cuarzo microcristalino (Fig. 5.6 a y b). Algunos granos de olivino están totalmente alterados a lizardita (Fig. 5.7 a y b).

En la zona de la saprolita superior las muestras analizadas con DRX presentan lizardita y cuarzo junto con maghemita y una esmectita muy rica en hierro, espectro de DRX (Fig. 5.8).

Fig. 5.8. Espectro de DRX de la zona saprolítica superior donde se analizó: saponita (linea verde), lizardita (linea azul), cuarzo (linea amarilla) y hematites (linea roja)

Saprolita limonitizada. Las muestras están entre 0 y 2.5 m, es decir la parte del testigo más cerca de la superficie. Las muestras son de color marrón ocre y son menos compactas; presentan una patina ocre muy terrosa. La composición es muy similar a las muestras correspondientes a la saprolita superior pero con más porosidad y vetas. El cuarzo ha cristalizado en las paredes de las vetas y la fase esmectítica rica en Fe está rellenando el resto de estas (Fig. 5.9 a y b). Los olivinos están totalmente alterados a óxidos de Fe y rodeados de una matriz formada por lizardita y óxidos de Fe. Los cristales de Cr-espinelas conservan su morfología euédrica y solamente con el microscopio electrónico se puede observar que presentan una ligera alteración en los bordes de grano (Fig. 5.10 a y b).

Las imágenes de SEM-EDS de estas muestras han sido estudiadas con detalle y se ha observado que los granos de olivino empiezan a alterarse por los bordes a óxidos de Fe (Fig. 5.11 a). En las vetas se ha podido comprobar que había lizardita con óxidos de Mn, probablemente asbolanas (Fig. 5.11 b). Se ha podido analizar la fase mineral criptocristalina de color rojo que rellenaba las vetas con el EDS del Microscopio Electrónico y puede corresponder a una esmectita rica en Fe (Fig. 5.12 a, b y c).

conservan su morfología euédrica (sn).

conservan su morfología euédrica (nc.)

En los espectros de DRX de estas muestras (Fig. 5.13) se observa cuarzo y lizardita mayoritariamente con hematites y goethita, junto con una esmectita rica en Fe que corresponde a la fase mineral de color rojo que rellenaba las vetas analizada con SEM-EDS y Cr-espinela como mineral accesorio.

Fig. 5.13. Espectro de DRX de la saprolita limonitizada, donde se analizó: saponita (linea verde), Lizardita (linea azul), cuarzo (linea amarilla) y maghemita (linea púrpura)

5.2.- Perfil fértil (sondeo 954-0307)

Este sondeo representa al perfil laterítico fértil, las concentraciones de Ni superan al 1.2% llegando a valores de 3.1%. El sondeo es de 45 m. Se divide en tres zonas según la mineralogía del perfil laterítico: protolito, saprolita *s*.*s* y saprolita limonitizada

Protolito. Las muestras de mano son masivas, de color gris y/o ocre con pátinas verdes y negras y corresponden a profundidades superiores a 30 m. Las muestras están muy serpentinizadas, y no se han observado minerales ígneos primarios. Presentan una marcada foliación, definida por los granos de lizardita, el cual es el mineral más abundante. Se observan vetas rellenas de lizardita. Algunos granos de ortopiroxeno conservan su foliación (Fig. 5.14).

El espectro de difracción de rayos X (Fig. 5.15) de muestras de esta zona permite identificar lizardita como fase abundante acompañado de maghemita como fase mineral minoritaria.

Saprolita s.s. Muestras entre 5 y 15 metros del sondeo. Las muestras de roca son menos compactas y más terrosas, de color ocre con pátinas verdes y negras En esta zona se encuentran olivinos alterados a lizardita y a óxidos de Fe (Fig. 5.16 a y b). Se encuentran vetas rellenas por cuarzo microcristalino. También se observa una fractura con un bandeado formado por una fase hidratada, no identificada, de Si-Fe-

Mg acompañada de óxidos de hierro y manganeso (Fig. 5.17a, b y c). Con el objetivo de conseguir un análisis cuantitativo de los elementos químicos presentes en este bandeado se realizó un *mapping* de rayos X con la microsonda de: Mg, Si, Fe y Ni (Fig. 5.18), se puede observar que el bandeado es producto de los contenidos de Mg y Si. Este tipo de zonación dentro de vetas es similar al producido por mecanismo de "crack-seal" (Andreani et al, 2004).

Las fases minerales identificadas mediante la DRX (Fig. 5.19) son: cuarzo y lizardita en mayor proporción y goethita con maghemita en menor cantidad.

Fig. 5.19. Espectro de DRX de la zona mineralizada donde se analizó: lizardita (linea azul), cuarzo (linea amarilla), hematites (linea roja) y maghemita (linea púrpura).

Saprolita limonitizada. Los resultados corresponden a muestras de menos de 5m de la superfície. Se aprecian vetas rellenas de cuarzo que cortan los granos de olivino totalmente alterados a goethita. El cuarzo se encuentra en el relleno de vetas formando textura *boxwork* (Fig. 5.20a y b). Como mineral accesorio se sigue encontrando Cr-espinela, con morfología euédrica. En las vetas mediante las imágenes de microscopía electrónica y los análisis de EDS se observa que están rellenas de óxidos de Fe,Ni y Mn (Fig. 5.21a, b y c).

En el análisis mineralógico mediante difracción de rayos X de las muestras de la saprolita limonitizada (Fig. 5.22) se observa la presencia de: cuarzo 71.5(19)%, goethita 26.0(19)%, maghemita 1.47(24)% y hematites 1.07(39)%, en peso. Ha sido necesario realizar un ajuste del perfil de difracción, con el método de Rietveld y el programa Topas, para identificar y cuantificar correctamente las fases minerales presentes. La goethita es una fase mineral abundante muy poco cristalina que únicamente se ha podido identificar al realizar el ajuste del perfil de difracción. En el análisis se ha determinado los parámetros de celda del cuarzo a=4.91596 (11),

c=5.40775 (18) Å, grupo espacial P3₂21 con tamaño de partícula 450 nm, la goethita, a=9.9949 (88) , b=3.0270 (24) y c=4.6150(42) Å, grupo espacial Pnma y que el tamaño de los cristales es muy pequeño (12nm). La hematites, a=5.0256 (85), c=13.792(29) Å, R3c y tamaño de partícula 40 nm y la maghemita, a=8.3435(19) Å, P4₃32 y tamaño de partícula 103 nm son fases muy poco abundantes.

Fig. 5.22. Perfil de difracción de rayos X ajustado por el Método de Rietveld con el programa Topas. En azul perfil experimental, en rojo perfil calculado, en lila perfil calculado de la goethita, en la parte inferior la diferencia entre el perfil experimental y el perfil calculado. En la parte superior derecha aparece el valor del análisis cuantitativo para las fases minerales. (análisis realizado por el Dr. Salvador Galí del Departamento de Cristalografía, Mineralogía y Depósitos Minerales).

En la tabla (Fig. 5.23) se presentan las diferentes fases minerales en base a la zona del perfil laterítico y al sondeo al que pertenecen.

La parte superior de los dos perfiles lateríticos corresponde a la saprolita limonitizada. En los dos sondeos hay gran abundancia de cuarzo, las muestras están muy silicificadas como ha podido observarse en el estudio mediante el microscopio óptico. En el perfil estéril, además, las muestras presentan lizardita y una esmectita rica en hierro. En el perfil fértil hay goethita junto con pequeñas cantidades de hematites y maghemita.

En la zona saprolítica del sondeo fértil (954-0307) se observa la presencia de lizardita que va aumentando con la profundidad del sondeo y disminuyendo la cantidad de goethita. Las muestras de esta parte del sondeo ya no están silicificadas. En el perfil estéril (969-0303) la proporción de cuarzo y de la esmectita van disminuyendo con la profundidad del sondeo y aumenta la proporción de lizardita.

La lizardita es la fase mineral dominante en las muestras del sondeo en la zona del protolito en ambos tipos de perfiles.

			S	ONDEO	969-0303	3			S	ONDEC) 954-030)7			
		Qtz	Lz	Fe- Sm	Mgh	Hem	Mg- Chr	Fo			Gt	Lz	Mgh	Qtz	Hem
	LO-1	xxx	х	хх						LO-51	xx		x	xxx	х
ta	LO-2	xxx	х	ХХ			х		ta ada						
proli	LO-4	xx	х	хх	х				proli nitiz:						
Sa	LO-5	xx	х	хх	х				Sa limo						
	LO-6	хх	х	хх	х										
		Qtz	Lz	Fe- Sm	Mgh	Hem	Mg- Chr	Fo			Gt	Lz	Mgh	Qtz	Hem
	LO-9	х	хх	х						LO-52	хх	х	х		
ta ,	LO-13	х	хх	х						LO-53	ХХ	хх	х		
Iprol	LO-15	х	хх	х		х			SS	LO-54	х	хх	х		
S	LO-16	х	хх	х		x			olita						
Saprolita	LO-19		xx	x				x	Sapr						
		Qtz	Lz	Fe-	Mgh	Hem	Mg-	Fo			Gt	Lz	Mgh	Qtz	Hem
				Sm			Chr								
Protolito	LO-23		XXX						Protolito	LO-55		XXX	x		

Fig. 5.23. Tabla-resumen de las fases minerales encontrados con DRX en los dos sondeos.

x: poco abundante o fases minerales accesorias. xx: abundante. xxx: muy abundante.

6. QUÍMICA MINERAL

6.1.- Cr-espinela

Las Cr-espinelas analizadas, preservan zonas inalteradas en los centros de los granos. Los contenidos de SiO_2 , Tabla 1 de Fig. 6.1, son invariablemente bajos (< 0.2 % en peso) y no se correlacionan con el contenido de los otros óxidos mayores en la Cr-espinela. Sólo los análisis realizados en estos núcleos de granos homogéneos han sido considerados para la interpretación de la Cr-espinela ígnea primaria.

La composición de la Cr-espinelas analizadas es remarcablemente homogénea en términos de #Cr [Cr/(Cr+Al)] y #Mg [Mg/(Mg+Fe²⁺)] (Fig. 6.2). El #Cr varía entre 0.87 y 0.90, correspondiendo a contenidos de Cr_2O_3 entre 60.40 y 63.9 % en peso, y de Al_2O_3 entre 4.7 y 6.1 % en peso. El #Mg oscila entre 0.44 y 0.50.

Tabla 1 de la Fig. 6.1.- Datos de la composición química de Cr-espinela de Loma Ortega. (Consultar los anexos la totalidad de los datos)

Chr	SiO2	TiO2	AI2O3	Cr2O3	Fe2O3(c)	FeO	V2O3	MnO	MgO	ZnO	NiO	CoO	Sum Ox%
10-2	0 10	0.04	6.00	62 45	1 87	21 27		0 44	7 34		0.04	0.05	99 60
202	0,10	0,04	0,00	02,40	1,07	21,27		0,44	1,04		0,04	0,00	00,00
LO-4	0,11	0,03	5,32	63,14	1,37	23,18	-	0,51	6,05	-	0,03	0,03	99,77
LO-16	0,03	0,04	5,29	63,50	1,56	21,33	0,24	0,37	7,16	0,23	0,03	0,01	99,82
LO-21	0,06	0,02	4,94	63,30	2,12	21,52	0,17	0,45	6,95	0,15	0,09	0,06	99,83
LO-53	0,05	0,05	5,81	62,49	1,90	21,20	0,21	0,36	7,25	0,29	0,01	0,06	99,66

Fig. 6.2. #Cr [Cr/(Cr+Al)] *vs.* #Mg [Mg/(Mg+Fe)] en la Cr-espinela accesoria (los puntos rojos pertenecen a análisis de Loma Ortega). Los campos composicionales de las Iherzolita, harzburgita y dunita de las peridotitas de Loma Caribe también son mostrados, a manera de comparación (Proenza *et al.*, 2007).

6.2.- Olivino

Los contenidos de forsterita $[100(Mg/(Mg+Fe^{2+})]$ varía entre 81.5 y 86.9, mientras que los contenidos de Ni analizados varían entre 0.1 y 0.47 % en peso, Fig. 6.3.

Tabla 1 de Fig 6.3.- Composición química de olivino de Loma Ortega. (Consultar los anexos la totalidad de los datos)

Olivino	SiO2	TiO2	AI2O3	Cr2O3	FeO	MnO	MgO	CaO	NiO	Sum Ox%
Sondeo 969-0303										
LO-19	41,14	0,00	0,02	0,02	8,36	0,12	50,22	0,00	0,36	100,26
LO-21	41,05	0,00	0,00	0,02	7,77	0,11	51,92	0,01	0,47	101,35

6.3.- Serpentina

Las serpentinas pobres en Ni (sondeo 969-0303) tienen contenidos de Ni entre 0.04 y 0.30 % en peso, de FeO entre 2.10 y 10 % en peso, y de Al_2O_3 entre 0.01 y 0.08% en peso. En cambio, las serpentinas niquelíferas (sondeo 954-0307) tienen contenidos de Ni entre 0.5 y 1.44 % en peso, de FeO entre 2.3 y 2.51 % en peso, y de Al_2O_3 entre 0.02 y 0.07 % en peso, Fig. 6.4.

Tabla 1 de Fig. 6.4.- Composición química de lizardita de Loma Ortega. (Consultar los anexos la totalidad de los datos)

lizardita	SiO2	TiO2	AI2O3	Cr2O3	Fe2O3	MgO	CaO	NiO	Na2O	MnO	K2O	H2O(c)	Sum Ox%
Sondeo 969-0303													
LO-4	45,20	0,00	0,02	0,01	2,01	39,68	0,01	0,10	0,00	0,01	0,00	13,02	100,05
LO-10	40,90	0,01	0,00	0,02	6,02	37,08	0,06	0,69	0,01	0,10	0,00	12,39	97,27
LO-19	42,14	0,02	0,01	0,03	3,92	40,42	0,00	0,26	0,00	0,04	0,00	12,79	99,64
LO-21	41,37	0,00	0,00	0,01	4,79	40,40	0,02	0,29	0,00	0,05	0,00	12,74	99,66
Sondeo 954-0307													
LO-53	44,45	0,02	0,07	0,05	2,55	38,80	0,04	1.00	-	0,04	0,03	12,91	99,92

6.4.- Fases hidratadas de Si-Mg-Fe

Las fases hidratadas de Si-Mg-Fe tienen contenidos de SiO₂ entre 26.68 y 50.22% en peso, de MgO entre 10 y 30.4% en peso, de FeO entre 3.5 y 58.21% y de Ni entre 0.04 y 0.54% en peso, Fig. 6.5.

Tabla 1 de Fig. 6.5.- Composición química de las fases de Mg-Fe-Si de Loma Ortega. (Consultar los anexos la totalidad de los datos)

Fases Mg-Fe-Si	Mg Ox%	Si Ox%	Ca Ox%	Ti Ox%	Cr Ox%	Mn Ox%	Fe Ox%	Co Ox%	Ni Ox%	Sum Ox%
Sondeo 969-0303										
LO-2	23,58	44,89	0,01	0,00	0,06	0,01	2,47	0,05	0,71	71,91
LO-10	32,35	42,15	0,05	0,02	0,08	0,03	5,59	0,01	0,78	81,06
LO-16	0,44	0,22	0,00	0,03	0,00	0,01	91,98	0,08	0,04	92,84
LO-19	21,67	52,22	0,18	0,00	0,00	0,01	8,72	0,02	0,43	83,43

6.5.- Esmectita

La esmectita rica en Fe, tiene contenidos de SiO₂ entre 31 y 44.89%, de MgO entre 27.5 y 28.69%, de FeO entre 2.47 y 3.10%, de AI_2O_3 0.13% y de NiO entre 0.67 y 0.85%.

6.6.- Fases de Mn

Los óxidos de Mn analizados en ambos perfiles presentan altos contenidos de Co (6.5 % en peso), y de Ni (hasta 16 % en peso). Los contenidos de MnO_2 varían entre 30 y 53 % en peso, y los de Al_2O_3 son extremadamente bajos (< 0.30 % en peso) Fig. 6.6. Estas composiciones son características de asbolanas ricas en Ni (Fig. 6.6).

Tabla 1 de Fig.6.6.- Composición química de óxidos de Mn de Loma Ortega. (Consultar los anexos la totalidad de los datos)

Ox. de Mn	Mg Ox%	Al Ox%	Si Ox%	K Ox%	Ca Ox%	Ti Ox%	Cr Ox%	Mn Ox%	Fe Ox%	Co Ox%	Ni Ox%	Sum Ox%
Sondeo 969-0303												
LO-4	10,84	0,28	11,23	0,00	0,98	0,02	0,08	27,98	10,35	4,06	12,53	78,41
LO-10	5,98	0,00	4,92	0,00	0,08	0,05	0,06	11,46	59,31	0,08	0,58	82,56
Sondeo 954-0307												
LO-51	0,00	0,03	0,59	0,06	0,04	0,00	0,04	52,82	0,19	0,48	16,06	70,81

Figura 6.6. A) Composición química (en términos de Mn-Al-Co) de las asbolanas presente en el depósito de Loma Ortega (puntos rojos), a manera de comparación también se muestra el campo composicional de la litioforita descrita en las lateritas de Nueva Caledonia (Llorca y Monchoux, 1991) y en las de Cuba Oriental (Labrador et al., 2006). B) Composición química (en términos de Al-Co-Ni) de las asbolanas analizadas e Loma Ortega. Análisis realizados mediante microsonda electrónica.

7. CONSIDERACIONES FINALES Y CONCLUSIONES

• La Cr-espinela es el único mineral ígneo primario que sobrevive a los estadios más avanzados del proceso de laterización (parte alta del perfil laterítico). Su composición química, analizada en zonas inalteradas, es un excelente indicador petrogénetico que nos permite conocer el tipo de peridotita (roca madre) a partir de la cual se desarrolló el perfil meteorización.

• En los dos perfiles estudiados no aparece la zona limonítica *ss*, de aspecto terroso y poco consolidado, y dominada por oxihidróxidos de Fe. Las muestras estudiadas de las partes más superiores de los dos perfiles son compactas con una débil película ocre y con restos de fragmentos de color amarillo claro. Éstas se corresponden con el denominado horizonte de saprolita fina o saprolita limonitizada.

 En el sondeo fértil (sondeo 954-0307) la principal fase portadora de Ni es la lizardita (NiO >1 % en peso) que se encuentra en la zona de saprolita ss, junto con la goethita que va su porcentaje disminuyendo con la profundidad. En todo el fértil no se ha detectado la presencia de esmectitas. El perfil puede ser clasificado como tipo silicato hidratado.

En el perfil estéril (sondeo 969-0303) las fases analizadas que tienen contenidos significativos de Ni son: la asbolana y la esmectita rica en hierro (hasta 1.7% en peso de NiO). La esmectita rica en hierro se encuentra rellenando vetas en la saprolita limonitizada y en la saprolita superior, en la parte alta del perfil laterítico. La composición química de esta fase (ver anexos) es: 25.75%Si, 9.50% Al, 34.35% Fe, 1.9% Mg, valores muy similares a los descritos por Gaudin et al., (2004) en el estudio de esmectitas férricas del depósito Murin Murrin (Western Australia) que se forman por reemplazamiento de granos serpentinizados de forsterita o aparecen rellenando vetas previas. Concretamente nuestros análisis coinciden mejor con las esmectitas de vetas descritas por Gaudin et al. (2004). Por otra parte, en el perfil estéril la lizardita producto de la alteración del olivino no contiene Ni. Además, no se han detectado proporciones modales significativas de goethitas y litioforita en las muestras analizadas, únicamente pequeñas cantidades de maghemita, hematites, las cuales no contienen Ni. Todas estas características, sobre todo la presencia de esmectita a los largo de todo el perfil de meteorización, sugiere que el denominado perfil estéril se corresponde más con un perfil tipo arcilla que con un perfil tipo silicato hidratado. Otro argumento a favor de esta hipótesis, es la extensa silicificación presente a lo largo de todo el perfil estéril, característica típica de los perfiles tipo arcilla.

• En los yacimientos de lateritas niquelíferas, el Ni y el Co pueden ser incorporados en óxidos e hidróxidos de Mn (Elias et al., 1981, Llorca y Monchoux, 1991). En general, en los perfiles de meteorización laterítica todos los materiales negros ricos en Mn, Co y Ni, mayoritariamente amorfos o de muy baja cristalinidad, han sido denominados "asbolanas". Estos productos negros constituyen excelentes guías de la mineralización. Las principales fases de Mn que contienen Ni y Co en los dos perfiles estudiados son asbolanas. En cambio, la litioforita (fase de Mn-Ni-Co-Al) un mineral característico de los perfiles lateríticos tipo óxidos de Cuba Oriental (Labrador et al., 2006; 2007) no fue detectada. Por tanto, nuestros resultados sugieren que la asbolana es característica de los perfiles tipo silicato hidratado, mientras que la litioforita es característica de los perfiles tipo óxido.

8. REFERENCIAS

- Andreani, M., Baronnet, A., Boullier, A.M., Gratier, J.P. (2004). A microestructural study os a "crack-seal" type serpentine vein using SEM and Tem Techniques. *Eur. J. Mineral,* 16, pp585-595.
- Ariosa, J.D., Lavaut, W., Bergues, P.S., Díaz, R., (2003) Modelo geológico descriptivo para los yacimientos lateríticos de Fe-Ni-Co en la faja ofiolitica Mayarí-Baracoa de Cuba oriental. *Minería y Geologia Nos* 1-2, pp 19-36.
- Dalvi A.D., Bacon, W.G., Osborne R.C. (2004): Past and future of nickel laterite projects. In: Imrie W. P., Lane D. M. (eds.), International Nickel Laterite Symposium TMS 2004 – 133rd Annual Meeting and Exhibition, Charlotte, N. Carolina, 23.
- Elias, M. (2002): nickel laterite deposits Geological overview, resources and exploration. En cooke, D., Pontgratz, J., eds. *Giant ore deposits. Characteristics, genesis and exploration*: CODES Special Publication 4, Hobart, University of Tasmania, 205-220.
- Elias, M., Donaldson, M.J., Giorgetta, N. (1981): Geology, mineralogy, and chemisty of lateritic nickel-cobalt deposits near kalgoorlie, Western Asutralia. *Economic Geology*, 76, 1775-1783.
- Freyssinet, Ph., Butt, C.R.M., Morris, R.C., Piantone, P. (2005). One-forming processes related to latheritic Weathering. *Society of Economic Geologist, Inc.* Economic Geology 100th Aniversary Volume. pp 681-722.
- Gaudin, A., Grauby, O., Noack, Y., Decarreau, A., Petit, S. (2004) Accurate crystal chemistry of ferric smectites from the lateritic nickel ore of Murrin Murrin (Western Asutralia). I. XRD and multi-scale chemical approached. *Clay Minerals*, 39, 301-315.
- Gleeson S. A., (2005). Nickel laterites through geological time. Salt Lake City Annual Meeting (October 16–19, 2005)
- Gleeson S. A., Butt C. R. M., Elias M. (2003) Nickel laterites: A review. SEG Newsletter 54, 11-18.
- Gleeson, S.A., Herrington, R.J., Durango, J., Velázquez, C.A., Koll, G. (2004): The mineralogy and geochemistry of de Cerro Matoso S.A. Ni laterite deposit, Montelíbano, Colombia. *Economic Geology*, 99, 1197-1213.
- Golightly J.P. (1979): Nickeliferous laterite deposits: a general description. In: Evans D. J., Shoemaker R. S., Velman H. (eds.), International Laterite Symposium, New Orleans, Society of Mining Engineers, 38-56.

- Golightly J.P. (1981): Nickeliferous laterite deposits. *Economic Geology* 75th Anniversary Volume, 710-735.
- Labrador, M., Proenza, J.A., Gali, S., Melgarejo, J.C., Tauler, E., Rojas-Purón, A., Muñoz-Gómez, N., Rodríguez-Vega, A., (2006) XXVI Reunión de la sociedad española de mineralogía.
- Lewis, J.F., Draper, G., Proenza, J.A., Espaillat, J., Jimenez. J. (2006): Ophiolite-Related Ultramafic Rocks (Serpentinites) in the Caribbean Region: A Review of their Occurrence, Composition, Origin, Emplacement and Nickel Laterite Soils. *Geologica Acta* (vol 4(1), in press).
- Lithgow. E.W., (1993). Nickel laterites of Central Dominican Republic. Part I. Mineralogy and ore dressing. The Paul E. Queneau International Symposium Extractive Metallurgy of Copper, Nickel and Cobalt Volume I: Fundamental Aspects. The Minerals, Metals & Materials Society.
- Llorca, S., Monchoux, P. (1991): Supergene cobalt minerals from New Caledonia. *Canadian Mineralogist*, 29, 149-161.
- Manceau, A., Schlegel, M.L., Musso, M., Solé, V.A., Gauthier, C., Petit, P.E. & Trolard, F. (2000): Crystal chemistry of trace elements in natural and synthetic goethite. *Geochimica Cosmochimica Acta*, 64, 3643-3661.
- Mendialdua, J., Casanova, R., Rueda, F., Rodriguez, A., Mantilla, M., Quiñones, J., Alarcón, L., Escalante, E., Hoffman. P. (2003) Caracterizaci´on por XPS de lateritas estándar. *Revista mexicana de Física*. 49 suplemento, 3, pp 207-210
- Miranda, J., Miranda, J.R., Chaviano, L., (2002). Nuevo parámetro químicomineralógico de pronóstico minero-metalúrgico, que permite el perfeccionamiento de los procesos industriales de los minerales lateríticos. *Revista Cubana de Química*. Vol. XIV, 1, pp 78-83
- Nzokwe, G.Y., Ferré, E.C., Fifarek, R., Banerjee), S.K., Dyar, M.D., Hamilton, V.E., Maurizot. P., Tessarolo, C., (2007). Laterites developed on a peridotitic bedrock and magnetic similitudes with Martian regoliths *Geophysical Research Abstracts*, Vol. 9
- Pelletier, B. (1996): Serpentines in nickel silicate ore from New Caledonia. En: E.J. Grimsey i I. Neuss (eds.), Nickel'96. Conference proceedings Kalgoorlie, Australian Institute of Mining and Metallurgy, Publication Series, No. 6/96 pp. 197-205.
- Proenza, J.A., Zaccarini, F., Lewis, J.F., Longo, F., Garuti, G., (2007): Chromian spinel composition and the platinum-group minerals of the PGE-Rich Loma Peguera chromitites, Loma Caribe peridotite, Dominican Republic. *The Canadian Mineralogist.* Vol 45, pp 631-648.

- Ramsay, J.G., (1980) The crack-seal mechanism of rock deformation. *Nature.* Vol 284, 13, pp135-139-
- Ranieri S. (2004): Nickel market dynamics. In: Imrie W. P., Lane D. M. (eds.), International Nickel Laterite Symposium TMS 2004 – 133rd Annual Meeting and Exhibition, Charlotte, N. Carolina, 3-22.
- Tauler, E., Buen, H., Proenza, J.A., Gali, S., Melgarejo, J.C., Labrador, M., Marrero, N. (2007) Tres generaciones de serpentina en el perfil lateritico niquelífero del NE de Cuba. XXVII Reunión de la sociedad española de mineralogía.
- Trescasses J.J. (1975): L'Evolution Geochimique Supergene des Roches Ultrabasiques en Zone Tropicale: Formations des Gisements Nickeliferes de Nouvelle-Caledonie. ORSTOM Mem. 78, 278 pp. Paris.
- Troly, G., Esterle, M. Pelletier, B., Reibell, W., Nickel Diposits in New Caledonia some factors influencing their formation. International Laterite Symposium
- Viruete J.E., Joubert, M., Urien, P., Friedman, R., Weis, D., Ullrich, T., Pérez-Estaún,
 A. (2008): Caribbean island-arc rifting and back-arc basin development in the
 Late Cretaceos: Geochemical, isotopic and geochronological evidence from
 Central Hispaniola. *Lithos*, doi:10.1016/ j.lithos.2008.01.003
- di Yorio, C., Vivas, R., Rus, J., Betancourt, E. (2006). Estudio de la extracción de Ni, Co y Fe en lateritas por medio de lixivación ácida en columnas. *Revista de metalurgia*, Vol. 42, Nº 1, pp 41-48

ANEXOS

	Páginas
1. Fichas resum: microscopía óptica, DRX, SEM.EDS	
(sondeo 969-0303)	1
2. Fichas resumen: microscopía óptica, DRX, SEM.EDS	
(sondeo 9654-0307)	16
3. Tablas: química mineral	24
4 Tablas: Falcondo Xstrata Nickel	29

maghemita (linea púrpura)

Microscopía óptica

Muestra	Observaciones	Profundidad (m)
	Agregado terroso de color marrón. Fácilmente disgregable.	0.8-0.95
Imagen de muestra de mano LO-2		

Espectro de DRX la de la muestra LO -2 se analizó: saponita (linea verde), lizardita (linea azul), Mg-cromita (linea gris) y cuarzo (linea amarilla).

Muestra	Observaciones	Profundidad (m)
	Agregado terroso de color marrón. Fácilmente disgregable.	2.5-2.7
Imagen de muestra de mano LO-4		

Espectro de DRX de la muestra LO-4 se analizó: saponita (linea verde), lizardita (linea azul), cuarzo (linea amarilla) y maghemita (linea púrpura).

Muestra	Observaciones	Profundidad (m)
Imagen de muestra de mano LO-5	Agregado terroso y compacta de color rojizo-ocre.	3-3.25

Espectro DRX de la muestra LO-5 donde se analizó: saponita (linea verde), lizardita (línea azul), cuarzo (línea amarilla) y maghemita (linea púrpura).

Espectro de DRX de la muestra en forma de agregado orientado y tratada con etilen glicol (en azul) y calentada a 550° (en verde)

Muestra	Observaciones	Profundidad (m)
	Agregado terroso de color marrón. Fácilmente disgregable.	3.7-4.1
Imagen de muestra de mano LO-6		

amarilla) y maghemita (linea púrpura).

Muestra	Observaciones	Profundidad (m)
0 1 2 3 cm	Agregado terroso y compacto de color marrón-ocre.	5-5.3
Imagen de muestra de mano LO-9		

Muestra	Observaciones	Profundidad (m)
	Agregado terroso compacto de color marrón con costras de color ocre.	6.65-6.8
Imagen de muestra de mano LO-13		

amarilla).

Microscopía óptica

Muestra	Observaciones	Profundidad (m)
	Agregado terroso compacto de color marrón con costras de color ocre.	7.70-7.90
Imagen de muestra de mano LO-15		

Microscopía óptica Image: Sime of the system of the

Muestra	Observaciones	Profundidad (m)
	Agregado terroso compacto de color marrón con costras de color ocre.	9.05-9.25
Imagen de muestra de mano LO-16		

amarilla) y cromita (línea gris).

Muestra	Observaciones	Profundidad (m)
	Agregado compacto de color marrón con vetas de color verde y marrón.	15.40 -15.6
Imagen de muestra de mano LO-19		

Espectro de DRX de la muestra LO-19 donde se analizó: saponita (linea verde), lizardita (línea azul) y forsterita (línea rosa).

Muestra	Observaciones	Profundidad (m)
	Agregado compacto de color marrón con costras de color ocre.	22.9-23
Imagen de muestra de mano LO-23		

Microscopía óptica

Espectro de DRX la de la muestra LO -51 donde se analizó: cuarzo (línea amarilla), maghemita (línea púrpura) y hematites (línea rojo).

SONDEO 954-0307

Espectro de DRX la de la muestra LO -52 donde se analizó: lizardita (línea azul), cuarzo (línea amarilla), maghemita (línea púrpura) y hematites (línea rojo).

Muestra	Observaciones	Profundidad (m)
Imagen de muestra de mano LO-53	Muestra ocre con pátinas verdes y negras.	10.40-10.70

Espectro de DRX la de la muestra LO -53 donde se analizó: garnierita (linea negra), lizardita (linea azul) y cuarzo (linea amarilla).

SEM-EDS

Microsonda electrónica

Muestra	Observaciones	Profundidad (m)
Imagen de muestra de mano LO-54	Agregado compacta de color marrón con costras ocres y negras.	9.60-9.80

Muestra	Observaciones	Profundidad (m)
Muestra	Observaciones Agregado muy compacta con costras ocres.	Profundidad (m) 41.3-41.4
Imagan da muastra da mana LO 54		

													Sum			Al/Al												
Chr	SiO2	TiO2	AI2O3	Cr2O3	Fe2O3(c)	FeO	V2O3	MnO	MgO	ZnO	NiO	CoO	Ox%	Si	Ti	IV	AI VI	Cr	Fe3+	Fe2+	V	Mn2+	Mg	Zn	Ni	Со	Cr#	Mg#
Sondeo 906-0303																												
LO-2	0,10	0,04	6,00	62,45	1,87	21,27	-	0,44	7,34	-	0,04	0,05	99,60	0,00	0,00	0,00	0,24	1,70	0,05	0,61	-	0,01	0,38	-	0,00	0,00	0,87	0,38
LO-2	0,14	0,07	6,04	62,21	1,92	21,63	-	0,43	7,16	-	0,07	0,10	99,77	0,01	0,00	0,00	0,25	1,69	0,05	0,62	-	0,01	0,37	-	0,00	0,00	0,87	0,37
LO-2	0,13	0,05	6,05	62,39	1,47	21,87	-	0,46	6,93	-	0,00	0,12	99,47	0,00	0,00	0,00	0,25	1,70	0,04	0,63	-	0,01	0,36	-	0,00	0,00	0,87	0,36
LO-2	0,19	0,09	6,00	62,58	1,45	21,58	-	0,47	7,22	-	0,07	0,08	99,72	0,01	0,00	0,00	0,24	1,70	0,04	0,62	-	0,01	0,37	-	0,00	0,00	0,88	0,37
LO-2	0,20	0,08	6,10	62,68	1,36	21,59	-	0,43	7,30	-	0,07	0,07	99,88	0,01	0,00	0,00	0,25	1,70	0,04	0,62	-	0,01	0,37	-	0,00	0,00	0,87	0,38
LO-2	0,08	0,02	5,93	63,04	2,43	19,77	-	0,38	8,42	-	0,06	0,09	100,22	0,00	0,00	0,00	0,24	1,69	0,06	0,56	-	0,01	0,43	-	0,00	0,00	0,88	0,43
LO-2	0,14	0,08	6,10	62,76	1,73	20,68	-	0,26	7,97	-	0,05	0,00	99,76	0,01	0,00	0,00	0,25	1,70	0,04	0,59	-	0,01	0,41	-	0,00	0,00	0,87	0,41
LO-2	0,21	0,10	5,91	62,92	2,04	20,14	-	0,34	8,32	-	0,09	0,10	100,17	0,01	0,00	0,00	0,24	1,69	0,05	0,57	-	0,01	0,42	-	0,00	0,00	0,88	0,42
LO-2	0,17	0,06	5,94	63,03	1,59	20,47	-	0,43	7,92	-	0,08	0,11	99,80	0,01	0,00	0,00	0,24	1,71	0,04	0,59	-	0,01	0,40	-	0,00	0,00	0,88	0,41
LO-4	0,08	0,02	5,53	62,49	1,19	22,45	-	0,40	6,29	-	0,06	0,09	98,60	0,00	0,00	0,00	0,23	1,73	0,03	0,66	-	0,01	0,33	-	0,00	0,00	0,88	0,33
LO-4	0,08	0,08	5,58	62,91	1,13	22,47	-	0,46	6,40	-	0,03	0,17	99,32	0,00	0,00	0,00	0,23	1,73	0,03	0,65	-	0,01	0,33	-	0,00	0,01	0,88	0,34
LO-4	0,10	0,05	5,59	62,64	0,73	22,66	-	0,48	6,13	-	0,07	0,08	98,52	0,00	0,00	0,00	0,23	1,74	0,02	0,67	-	0,01	0,32	-	0,00	0,00	0,88	0,33
LO-4	0,11	0,06	5,30	63,20	0,88	22,89	-	0,37	6,16	-	0,02	0,10	99,09	0,00	0,00	0,00	0,22	1,75	0,02	0,67	-	0,01	0,32	-	0,00	0,00	0,89	0,32
LO-4	0,13	0,05	5,45	62,70	1,71	21,40	-	0,40	7,14	-	0,04	0,08	99,09	0,00	0,00	0,00	0,22	1,72	0,05	0,62	-	0,01	0,37	-	0,00	0,00	0,89	0,37
LO-4	0,11	0,03	5,32	63,14	1,37	23,18	-	0,51	6,05	-	0,03	0,03	99,77	0,00	0,00	0,00	0,22	1,74	0,04	0,67	-	0,02	0,31	-	0,00	0,00	0,89	0,32
LO-4	0,09	0,04	5,31	62,65	1,65	22,44	-	0,41	6,36	-	0,06	0,14	99,15	0,00	0,00	0,00	0,22	1,73	0,04	0,66	-	0,01	0,33	-	0,00	0,00	0,89	0,34
LO-4	0,05	0,04	5,15	62,93	1,19	22,84	-	0,45	5,97	-	0,05	0,13	98,80	0,00	0,00	0,00	0,21	1,75	0,03	0,67	-	0,01	0,31	-	0,00	0,00	0,89	0,32
LO-10	0,10	0,03	5,80	62,66	1,68	22,90	-	0,40	6,33	-	0,00	0,17	100,09	0,00	0,00	0,00	0,24	1,71	0,04	0,66	-	0,01	0,33	-	0,00	0,01	0,88	0,33
LO-10	0,09	0,02	5,82	63,15	1,10	23,03	-	0,42	6,23	-	0,00	0,15	100,00	0,00	0,00	0,00	0,24	1,73	0,03	0,67	-	0,01	0,32	-	0,00	0,00	0,88	0,33
LO-16	0,05	0,05	5,32	63,30	1,56	20,74	0,18	0,27	7,49	0,18	0,02	0,14	99,30	0,00	0,00	0,00	0,22	1,73	0,04	0,60	0,01	0,01	0,39	0,00	0,00	0,00	0,89	0,39
LO-16	0,07	0,05	5,43	63,95	1,10	21,45	0,22	0,41	7,10	0,31	0,05	0,08	100,22	0,00	0,00	0,00	0,22	1,74	0,03	0,62	0,01	0,01	0,36	0,01	0,00	0,00	0,89	0,37
LO-16	0,07	0,05	5,34	63,31	1,19	21,50	0,31	0,32	7,00	0,24	0,02	0,10	99,46	0,00	0,00	0,00	0,22	1,74	0,03	0,62	0,01	0,01	0,36	0,01	0,00	0,00	0,89	0,37
LO-16	0,05	0,05	5,41	63,19	1,70	21,94	0,23	0,34	6,84	0,19	0,01	0,13	100,09	0,00	0,00	0,00	0,22	1,72	0,04	0,63	0,01	0,01	0,35	0,01	0,00	0,00	0,89	0,36
LO-16	0,03	0,04	5,29	63,50	1,56	21,33	0,24	0,37	7,16	0,23	0,03	0,01	99,82	0,00	0,00	0,00	0,22	1,73	0,04	0,62	0,01	0,01	0,37	0,01	0,00	0,00	0,89	0,37
LO-19	0,06	0,08	5,23	62,95	1,61	23,28	0,27	0,49	5,86	0,29	0,00	0,13	100,25	0,00	0,00	0,00	0,21	1,73	0,04	0,68	0,01	0,01	0,30	0,01	0,00	0,00	0,89	0,31
LO-19	0,08	0,07	5,13	60,35	2,72	21,92	0,26	0,45	6,16	0,38	0,02	0,11	97,63	0,00	0,00	0,00	0,22	1,70	0,07	0,65	0,01	0,01	0,33	0,01	0,00	0,00	0,89	0,33
LO-19	0,05	0,07	5,75	64,19	1,43	19,55	0,26	0,29	8,60	0,11	0,07	0,09	100,46	0,00	0,00	0,00	0,23	1,72	0,04	0,55	0,01	0,01	0,43	0,00	0,00	0,00	0,88	0,44
LO-19	0,08	0,07	5,13	62,64	2,01	23,75	0,34	0,52	5,55	0,34	0,01	0,14	100,58	0,00	0,00	0,00	0,21	1,72	0,05	0,69	0,01	0,02	0,29	0,01	0,00	0,00	0,89	0,29
LO-19	0,06	0,05	5,51	62,39	1,80	23,62	0,21	0,40	5,70	0,24	0,03	0,10	100,11	0,00	0,00	0,00	0,23	1,72	0,05	0,69	0,01	0,01	0,30	0,01	0,00	0,00	0,88	0,30
LO-21	0,06	0,02	4,94	63,30	2,12	21,52	0,17	0,45	6,95	0,15	0,09	0,06	99,83	0,00	0,00	0,00	0,20	1,73	0,06	0,62	0,01	0,01	0,36	0,00	0,00	0,00	0,90	0,36
LO-21	0,06	0,07	4,73	62,90	1,66	21,74	0,22	0,47	6,50	0,25	0,03	0,12	98,76	0,00	0,00	0,00	0,20	1,75	0,04	0,64	0,01	0,01	0,34	0,01	0,00	0,00	0,90	0,35
LO-21	0,04	0,05	4,68	63,22	1,65	22,16	0,18	0,40	6,39	0,18	0,00	0,09	99,03	0,00	0,00	0,00	0,19	1,75	0,04	0,65	0,01	0,01	0,33	0,01	0,00	0,00	0,90	0,34
LO-21	0,13	0,05	4,77	63,02	1,59	21,52	0,24	0,41	6,79	0,21	0,08	0,10	98,92	0,01	0,00	0,00	0,20	1,74	0,04	0,63	0,01	0,01	0,35	0,01	0,00	0,00	0,90	0,36
LU-21	0,05	0,04	4,94	63,16	1,74	21,29	0,27	0,41	6,94	0,31	0,00	0,10	99,27	0,00	0,00	0,00	0,20	1,74	0,05	0,62	0,01	0,01	0,36	0,01	0,00	0,00	0,90	0,37

Tabla 1.- Composición química de la Cr-Espinela accesoria de Loma Ortega. Análisis realizados mediante microsonda.

													Sum			AI/AI												
Chr	SiO2	TiO2	AI2O3	Cr2O3	Fe2O3(c)	FeO	V2O3	MnO	MgO	ZnO	NiO	CoO	Ox%	Si	Ti	IV	AI VI	Cr	Fe3+	Fe2+	V	Mn2+	Mg	Zn	Ni	Со	Cr#	Mg#
Sondeo 954-0307																												
LO-53	0,05	0,08	5,81	62,43	1,71	21,27	0,23	0,39	7,21	0,18	0,00	0,07	99,44	0,00	0,00	0,00	0,24	1,71	0,04	0,61	0,01	0,01	0,37	0,01	0,00	0,00	0,88	0,38
LO-53	0,05	0,05	5,81	62,49	1,90	21,20	0,21	0,36	7,25	0,29	0,01	0,06	99,66	0,00	0,00	0,00	0,24	1,70	0,05	0,61	0,01	0,01	0,37	0,01	0,00	0,00	0,88	0,38
LO-53	0,07	0,01	5,77	62,18	1,46	21,49	0,18	0,39	6,85	0,23	0,01	0,08	98,72	0,00	0,00	0,00	0,24	1,71	0,04	0,63	0,01	0,01	0,36	0,01	0,00	0,00	0,88	0,36
LO-53	0,05	0,02	5,89	62,43	1,53	21,33	0,22	0,38	7,03	0,18	0,09	0,13	99,29	0,00	0,00	0,00	0,24	1,71	0,04	0,62	0,01	0,01	0,36	0,01	0,00	0,00	0,88	0,37
LO-53	0,08	0,03	5,80	62,27	1,44	21,45	0,22	0,35	6,98	0,16	0,08	0,07	98,93	0,00	0,00	0,00	0,24	1,71	0,04	0,62	0,01	0,01	0,36	0,00	0,00	0,00	0,88	0,37
LO-53	0,08	0,02	6,00	61,97	1,34	22,44	0,24	0,37	6,32	0,26	0,03	0,13	99,20	0,00	0,00	0,00	0,25	1,71	0,04	0,65	0,01	0,01	0,33	0,01	0,00	0,00	0,87	0,33
LO-53	0,02	0,04	5,92	61,13	1,99	22,21	0,16	0,40	6,25	0,32	0,00	0,13	98,58	0,00	0,00	0,00	0,24	1,70	0,05	0,65	0,01	0,01	0,33	0,01	0,00	0,00	0,87	0,33
LO-53 LO-53 LO-53	0,08 0,08 0,02	0,03 0,02 0,04	5,80 6,00 5,92	62,27 61,97 61,13	1,44 1,34 1,99	21,45 22,44 22,21	0,22 0,24 0,16	0,35 0,37 0,40	6,98 6,32 6,25	0,16 0,26 0,32	0,08 0,03 0,00	0,07 0,13 0,13	98,93 99,20 98,58	0,00 0,00 0,00	0,00 0,00 0,00	0,00 0,00 0,00	0,24 0,25 0,24	1,71 1,71 1,70	0,04 0,04 0,05	0,62 0,65 0,65	0,01 0,01 0,01	0,01 0,01 0,01	0,36 0,33 0,33	0,00 0,01 0,01	0,00 0,00 0,00	0,00 0,00 0,00	0,88 0,87 0,87	0,37 0,33 0,33

Tabla 2.- Composició química del olivino de Loma Ortega. Análisis realizados mediante microsonda.

Olivino	SiO2	TiO2	Al2O3	Cr2O3	FeO	MnO	MgO	CaO	NiO	Sum Ox%	Si	Ti	AI/AI IV	AI VI	Cr	Fe2+	Mn2+	Mg	Са	Ni
Sondeo 969-0303																				
LO-19	40,75	0,01	0,00	0,01	11,17	0,28	49,32	0,01	0,10	101,65	0,99	0,00	0,00	0,00	0,00	0,23	0,01	1,79	0,00	0,00
LO-19	40,94	0,04	0,00	0,02	8,27	0,12	52,04	0,00	0,41	101,84	0,98	0,00	0,00	0,00	0,00	0,17	0,00	1,86	0,00	0,01
LO-19	41,14	0,00	0,02	0,02	8,36	0,12	50,22	0,00	0,36	100,26	1,00	0,00	0,00	0,00	0,00	0,17	0,00	1,82	0,00	0,01
LO-19	41,38	0,00	0,00	0,00	8,34	0,17	51,17	0,01	0,46	101,53	0,99	0,00	0,00	0,00	0,00	0,17	0,00	1,83	0,00	0,01
LO-19	41,22	0,01	0,00	0,06	11,25	0,45	48,93	0,02	0,00	101,95	1,00	0,00	0,00	0,00	0,00	0,23	0,01	1,77	0,00	0,00
LO-19	41,44	0,02	0,00	0,03	8,49	0,11	51,14	0,00	0,40	101,64	0,99	0,00	0,00	0,00	0,00	0,17	0,00	1,83	0,00	0,01
LO-21	41,05	0,00	0,00	0,02	7,77	0,11	51,92	0,01	0,47	101,35	0,99	0,00	0,00	0,00	0,00	0,16	0,00	1,86	0,00	0,01
LO-21	41,23	0,04	0,00	0,01	7,96	0,15	52,02	0,00	0,34	101,74	0,99	0,00	0,00	0,00	0,00	0,16	0,00	1,86	0,00	0,01
LO-21	41,39	0,01	0,00	0,00	8,03	0,10	51,97	0,03	0,40	101,93	0,99	0,00	0,00	0,00	0,00	0,16	0,00	1,85	0,00	0,01
LO-21	41,29	0,00	0,00	0,02	7,83	0,14	51,69	0,01	0,37	101,35	0,99	0,00	0,00	0,00	0,00	0,16	0,00	1,85	0,00	0,01
LO-21	41,27	0,02	0,00	0,04	7,88	0,12	51,77	0,02	0,39	101,51	0,99	0,00	0,00	0,00	0,00	0,16	0,00	1,85	0,00	0,01

													Sum			Al/Al											
lizardita	SiO2	TiO2	AI2O3	Cr2O3	Fe2O3	MgO	CaO	NiO	Na2O	MnO	K2O	H2O(c)	Ox%	Si	Ti	IV	AI VI	Cr	Fe3+	Mg	Са	Ni	Na	Mn2+	К	OH	Sum Cat#
Sondeo 969-0303																											
LO-4	45,97	0,01	0,08	0,03	2,11	39,73	0,00	0,07	0,00	0,00	0,00	13,17	101,17	2,09	0,00	0,00	0,00	0,00	0,07	2,70	0,00	0,00	0,00	0,00	0,00	4,00	8,87
LO-4	45,20	0,00	0,02	0,01	2,01	39,68	0,01	0,10	0,00	0,01	0,00	13,02	100,05	2,08	0,00	0,00	0,00	0,00	0,07	2,73	0,00	0,00	0,00	0,00	0,00	4,00	8,88
LO-4	41,37	0,00	0,11	0,01	10,54	37,97	0,00	0,16	0,00	0,14	0,00	12,99	103,30	1,91	0,00	0,01	0,00	0,00	0,37	2,61	0,00	0,01	0,00	0,01	0,00	4,00	8,91
LO-4	46,79	0,00	0,06	0,00	2,24	38,86	0,00	0,05	0,00	0,00	0,00	13,21	101,22	2,12	0,00	0,00	0,00	0,00	0,08	2,63	0,00	0,00	0,00	0,00	0,00	4,00	8,84
LO-4	46,33	0,00	0,22	0,07	2,72	36,40	0,01	0,26	0,01	0,00	0,00	12,91	98,94	2,15	0,00	0,00	0,01	0,00	0,10	2,52	0,00	0,01	0,00	0,00	0,00	4,00	8,79
LO-4	45,75	0,00	0,20	0,05	2,88	36,88	0,00	0,24	0,01	0,04	0,00	12,88	98,92	2,13	0,00	0,00	0,01	0,00	0,10	2,56	0,00	0,01	0,00	0,00	0,00	4,00	8,81
LO-10	40,90	0,01	0,00	0,02	6,02	37,08	0,06	0,69	0,01	0,10	0,00	12,39	97,27	1,98	0,00	0,00	0,00	0,00	0,22	2,68	0,00	0,03	0,00	0,00	0,00	4,00	8,91
LO-19	42,14	0,02	0,01	0,03	3,92	40,42	0,00	0,26	0,00	0,04	0,00	12,79	99,64	1,98	0,00	0,00	0,00	0,00	0,14	2,83	0,00	0,01	0,00	0,00	0,00	4,00	8,95
LO-19	44,41	0,00	0,07	0,01	2,42	40,76	0,01	0,05	0,01	0,06	0,00	13,07	100,85	2,04	0,00	0,00	0,00	0,00	0,08	2,79	0,00	0,00	0,00	0,00	0,00	4,00	8,92
LO-19	44,97	0,01	0,07	0,01	2,32	40,25	0,02	0,07	0,01	0,00	0,00	13,09	100,81	2,06	0,00	0,00	0,00	0,00	0,08	2,75	0,00	0,00	0,00	0,00	0,00	4,00	8,90
LO-19	44,19	0,00	0,08	0,01	2,48	40,64	0,00	0,12	0,00	0,02	0,02	13,02	100,57	2,04	0,00	0,00	0,00	0,00	0,09	2,79	0,00	0,01	0,00	0,00	0,00	4,00	8,92
LO-19	41,47	0,00	0,00	0,00	5,15	40,81	0,01	0,31	0,02	0,00	0,02	12,84	100,63	1,94	0,00	0,00	0,00	0,00	0,18	2,84	0,00	0,01	0,00	0,00	0,00	4,00	8,97
LO-19	41,83	0,01	0,00	0,04	6,13	39,46	0,02	0,38	0,00	0,13	0,00	12,84	100,84	1,95	0,00	0,00	0,00	0,00	0,22	2,75	0,00	0,01	0,00	0,01	0,00	4,00	8,94
LO-19	38,76	0,01	0,02	0,04	12,56	35,47	0,06	0,38	0,01	0,19	0,00	12,44	99,94	1,87	0,00	0,00	0,00	0,00	0,46	2,55	0,00	0,02	0,00	0,01	0,00	4,00	8,90
LO-19	43,21	0,02	0,00	0,02	5,27	41,11	0,00	0,11	0,00	0,09	0,00	13,18	103,01	1,97	0,00	0,00	0,00	0,00	0,18	2,79	0,00	0,00	0,00	0,00	0,00	4,00	8,94
LO-21	44,35	0,01	0,02	0,06	2,59	40,56	0,03	0,04	0,00	0,03	0,00	13,05	100,76	2,04	0,00	0,00	0,00	0,00	0,09	2,78	0,00	0,00	0,00	0,00	0,00	4,00	8,92
LO-21	43,55	0,01	0,00	0,03	4,70	39,71	0,04	0,13	0,00	0,02	0,02	13,01	101,22	2,01	0,00	0,00	0,00	0,00	0,16	2,73	0,00	0,01	0,00	0,00	0,00	4,00	8,91
LO-21	38,96	0,00	0,02	0,02	6,77	40,08	0,03	0,47	0,00	0,02	0,01	12,49	98,88	1,87	0,00	0,00	0,00	0,00	0,25	2,87	0,00	0,02	0,00	0,00	0,00	4,00	9,01
LO-21	40,48	0,01	0,00	0,01	5,74	39,28	0,00	0,30	0,00	0,10	0,00	12,54	98,47	1,94	0,00	0,00	0,00	0,00	0,21	2,80	0,00	0,01	0,00	0,00	0,00	4,00	8,96
LO-21	40,82	0,00	0,00	0,00	5,23	40,31	0,02	0,32	0,00	0,03	0,02	12,67	99,43	1,93	0,00	0,00	0,00	0,00	0,19	2,84	0,00	0,01	0,00	0,00	0,00	4,00	8,98
LO-21	41,37	0,00	0,00	0,01	4,79	40,40	0,02	0,29	0,00	0,05	0,00	12,74	99,66	1,95	0,00	0,00	0,00	0,00	0,17	2,84	0,00	0,01	0,00	0,00	0,00	4,00	8,97
Sondeo 954-0307																											
LO-53	44,17	0,00	0,02	0,05	2,51	38,25	0,03	1,44	-	0,06	0,01	12,81	99,34	2,07	0,00	0,00	0,00	0,00	0,09	2,67	0,00	0,05	-	0,00	0,00	4,00	8,89
LO-53	44,67	0,01	0,05	0,01	2,37	38,92	0,02	1,40	-	0,01	0,03	12,96	100,46	2,07	0,00	0,00	0,00	0,00	0,08	2,68	0,00	0,05	-	0,00	0,00	4,00	8,89
LO-53	44,45	0,02	0,07	0,05	2,55	38,80	0,04	0,96	-	0,04	0,03	12,91	99,92	2,07	0,00	0,00	0,00	0,00	0,09	2,69	0,00	0,04	-	0,00	0,00	4,00	8,89
LO-53-	46,06	0,00	0,04	0,00	2,30	39,90	0,02	0,52	-	0,02	0,00	13,25	102,12	2,08	0,00	0,00	0,00	0,00	0,08	2,69	0,00	0,02	-	0,00	0,00	4,00	8,88
LO-53	44,11	0,01	0,04	0,00	2,37	37,86	0,00	1,28	-	0,12	0,02	12,73	98,53	2,08	0,00	0,00	0,00	0,00	0,08	2,66	0,00	0,05	-	0,01	0,00	4,00	8,88
LO-53	44,33	0,02	0,06	0,05	2,56	37,65	0,06	1,30	-	0,10	0,02	12,77	98,91	2,08	0,00	0,00	0,00	0,00	0,09	2,64	0,00	0,05	-	0,00	0,00	4,00	8,87

Tabla 3.- Composición química de la lizardita de Loma Ortega. Análisi realizados con microsonda

	Mg	Al	Si	K	Са	Ti	Cr	Mn	Fe	Со	Ni	Sum	Mg	Al	Si	К	Са	Ti	Cr	Mn	Fe	Со	Ni	Sum
Ox. de Mn	Ox%	Ox%	Ox%	Ox%	Ox%	Ox%	Ox%	Ox%	Ox%	Ox%	Ox%	Ox%	W%	W%	W%	W%	W%							
Sondeo 969-0303																								
LO-4	10,84	0,28	11,23	0,00	0,98	0,02	0,08	27,98	10,35	4,06	12,53	78,41	6,54	0,15	5,25	0,00	0,70	0,01	0,05	21,67	7,24	3,20	9,84	78,41
LO-4	6,38	0,32	3,28	0,00	0,09	0,01	0,09	29,73	14,89	5,24	14,06	74,14	3,85	0,17	1,53	0,00	0,07	0,01	0,06	23,03	10,41	4,12	11,05	74,14
LO-4	6,06	0,33	3,17	0,00	0,09	0,00	0,11	30,33	16,17	5,81	13,55	75,62	3,65	0,17	1,48	0,00	0,06	0,00	0,07	23,49	11,31	4,57	10,65	75,62
LO-4	5,26	0,26	6,05	0,00	0,10	0,02	0,05	24,46	20,65	5,56	12,04	74,47	3,17	0,14	2,83	0,00	0,07	0,01	0,04	18,95	14,44	4,38	9,46	74,47
LO-4	6,28	0,25	1,42	0,00	0,03	0,03	0,03	33,84	11,99	6,00	14,16	74,04	3,79	0,13	0,67	0,00	0,02	0,02	0,02	26,21	8,39	4,72	11,13	74,04
LO-4	6,06	0,16	6,00	0,00	0,05	0,00	0,10	24,50	21,80	4,90	10,50	74,09	3,66	0,09	2,80	0,00	0,04	0,00	0,07	18,97	15,25	3,85	8,25	74,09
LO-10-	5,98	0,00	4,92	0,00	0,08	0,05	0,06	11,46	59,31	0,08	0,58	82,56	3,61	0,00	2,30	0,00	0,06	0,03	0,04	8,88	41,48	0,06	0,45	82,56
LO-10-	3,85	0,04	6,61	0,00	0,28	0,02	0,02	58,61	8,91	0,09	0,61	79,07	2,32	0,02	3,09	0,00	0,20	0,01	0,01	45,39	6,23	0,07	0,48	79,07
Sondeo 954-0307																								
LO-51	0,00	0,03	0,59	0,06	0,04	0,00	0,04	52,82	0,19	0,48	16,06	70,81	0,00	0,02	0,28	0,05	0,03	0,00	0,03	40,91	0,13	0,38	12,62	70,81
LO-51	0,08	0,00	0,46	0,04	0,04	0,01	0,05	51,85	0,21	0,48	16,05	69,62	0,05	0,00	0,21	0,03	0,03	0,00	0,04	40,16	0,14	0,38	12,61	69,62
LO-51	0,12	0,01	0,70	0,21	0,09	0,00	0,01	53,97	0,15	0,70	14,00	70,40	0,07	0,00	0,33	0,17	0,06	0,00	0,01	41,80	0,11	0,55	11,00	70,40
LO-51-	0,03	0,01	0,40	0,12	0,08	0,00	0,02	53,01	0,12	0,68	14,93	69,69	0,02	0,01	0,19	0,10	0,06	0,00	0,01	41,06	0,09	0,53	11,73	69,69
LO-51	0,12	0,02	1,62	0,42	0,10	0,00	0,04	54,94	0,25	0,99	11,72	70,54	0,08	0,01	0,76	0,34	0,07	0,00	0,02	42,55	0,18	0,78	9,21	70,54
LO-51	0,17	0,00	0,52	0,19	0,06	0,00	0,03	53,54	0,16	0,61	14,83	70,27	0,10	0,00	0,24	0,15	0,04	0,00	0,02	41,47	0,11	0,48	11,66	70,27
LO-51	0,14	0,02	0,62	0,15	0,09	0,01	0,03	53,74	0,24	0,82	13,56	69,56	0,09	0,01	0,29	0,12	0,06	0,01	0,02	41,62	0,17	0,65	10,65	69,56
LO-51	3,99	0,01	4,44	0,07	0,30	0,03	0,01	34,27	8,32	4,10	14,05	69,66	2,41	0,00	2,08	0,06	0,22	0,02	0,01	26,54	5,82	3,23	11,04	69,66
LO-51	3,59	0,00	6,10	0,08	0,43	0,00	0,04	35,44	10,79	6,09	15,59	78,21	2,16	0,00	2,85	0,06	0,31	0,00	0,03	27,45	7,55	4,79	12,25	78,21
LO-51	5,04	0,03	1,05	0,05	0,39	0,00	0,00	29,81	10,10	6,51	11,91	65,06	3,04	0,02	0,49	0,05	0,28	0,00	0,00	23,09	7,06	5,12	9,36	65,06

Tabla 4.- Composición química de los óxidos de manganeso de Loma Ortega. Análisi realizados con microsonda

Fases Mg-Fe-Si	Na Ox%	Mg Ox%	Al Ox%	Si Ox%	K Ox%	Ca Ox%	Ti Ox%	Cr Ox%	Mn Ox%	Fe Ox%	Co Ox%	Ni Ox%	Sum Ox%
Sondeo 969-0303													
LO-2	0,00	23,58	0,13	44,89	0,00	0,01	0,00	0,06	0,01	2,47	0,05	0,71	71,91
LO-2	0,00	27,01	0,13	31,80	0,00	0,00	0,00	0,07	0,00	3,10	0,00	0,85	62,97
LO-2	0,00	28,69	0,13	35,16	0,00	0,00	0,00	0,09	0,05	2,64	0,00	0,67	67,44
LO-10	0,00	32,35	0,00	42,15	0,00	0,05	0,02	0,08	0,03	5,59	0,01	0,78	81,06
LO-10	0,02	29,20	0,00	40,50	0,01	0,06	0,03	0,00	0,04	3,87	0,00	0,57	74,30
LO-10	0,01	26,76	0,01	43,45	0,00	0,10	0,02	0,00	0,03	8,17	0,00	1,13	79,68
LO-10	0,00	32,51	0,06	40,97	0,00	0,03	0,01	0,03	0,00	4,08	0,00	0,54	78,24
LO-10	0,00	48,76	0,01	39,27	0,00	0,02	0,04	0,00	0,13	8,93	0,00	0,45	97,62
LO-10	0,01	37,08	0,00	40,90	0,00	0,06	0,01	0,02	0,10	5,42	0,00	0,69	84,28
LO-10	0,01	32,56	0,01	39,51	0,00	0,06	0,00	0,03	0,02	5,35	0,00	0,78	78,33
LO-16-	0,00	0,31	0,00	0,20	0,00	0,00	0,00	0,00	0,01	101,20	0,07	0,15	101,97
LO-16-	0,01	0,34	0,00	0,16	0,00	0,00	0,04	0,01	0,00	102,48	0,15	0,13	103,37
LO-16-	0,00	0,44	0,00	0,22	0,00	0,00	0,03	0,00	0,01	91,98	0,08	0,04	92,84
LO-16-	0,01	26,50	0,00	42,16	0,02	0,11	0,00	0,00	0,12	11,58	0,04	0,54	81,12
LO-16-	0,02	8,61	0,00	19,39	0,06	0,18	0,00	0,01	1,39	58,21	0,04	0,85	88,77
LO-16	0,01	17,83	0,00	39,56	0,06	0,22	0,00	0,00	0,11	9,78	0,00	0,81	68,48
LO-16	0,02	28,55	0,00	38,51	0,02	0,09	0,00	0,01	0,02	7,11	0,04	0,48	74,89
LO-16	0,01	36,03	0,03	42,09	0,01	0,07	0,01	0,00	0,05	4,53	0,00	0,46	83,29
LO-16	0,00	39,54	0,04	46,68	0,01	0,01	0,00	0,10	0,02	2,00	0,00	0,17	88,60
LO-16	0,00	10,69	0,01	13,09	0,01	0,13	0,00	0,11	1,22	70,52	0,58	0,54	97,01
LO-19	0,00	12,98	0,00	50,69	0,02	0,40	0,00	0,04	0,00	14,48	0,03	0,37	79,05
LO-19	0,02	21,67	0,00	52,22	0,03	0,18	0,00	0,00	0,01	8,72	0,02	0,43	83,43
LO-19	0,02	11,78	0,00	46,40	0,05	0,26	0,03	0,00	0,02	14,67	0,04	0,38	73,65
LO-19	0,01	31,67	0,00	35,24	0,01	0,10	0,01	0,02	0,08	5,86	0,00	0,37	73,37
LO-19	0,01	33,86	0,00	40,34	0,01	0,06	0,02	0,04	0,04	4,42	0,00	0,42	79,22
LO-19	0,01	23,74	0,00	26,68	0,00	0,09	0,00	0,06	0,02	5,59	0,00	0,54	56,76
LO-19	0,00	24,01	0,00	49,75	0,00	0,10	0,00	0,00	0,05	4,90	0,00	0,41	79,26
LO-19	0,01	30,50	0,01	37,65	0,01	0,03	0,01	0,00	0,06	3,35	0,03	0,27	71,94

Tabla 5.- Composición química de las fases de Mg-Fe-Si de Loma Ortega. Análisi realizados con microsonda

Tabla 1 .- Composición química (roca total) del sondeo 969-0303

LAB NO.	ΗΟΥΟ	Sample ID	TOMADA	From	То	Mine Facies	Geol Facies	Ni	Fe	Со	MgO	SiO2	AI2O3	S	Cr2O3	MnO	Р
6-28644	0 969-0303	DR-001205	10/17/06	0,00	0,30	С	DB5	1,180	14,607	0,029	13,543	47,820	1,828	0,005	0,955	0,231	0,003
6-28645	0 969-0303	DR-001206	10/17/06	0,30	1,10	С	DB5	0,892	10,996	0,022	15,146	52,977	1,452	0,003	4,140	0,191	0,002
6-28646	0 969-0303	DR-001207	10/17/06	1,10	2,20	С	DB5	0,547	8,318	0,016	29,714	43,396	0,749	0,003	0,594	0,140	0,001
6-28647	0 969-0303	DR-001208	10/17/06	2,20	2,40	C/D	DB4/3	0,870	10,509	0,023	22,426	47,157	0,815	0,003	0,850	0,201	0,002
6-28648	0 969-0303	DR-001209	10/17/06	2,40	3,50	С	DB4	0,580	9,259	0,018	21,124	50,224	0,860	0,003	0,639	0,156	0,002
6-28649	0 969-0303	DR-001210	10/17/06	3,50	3,70	D/E	DN3/2	0,642	10,261	0,021	23,740	47,075	0,657	0,002	0,732	0,178	0,001
6-28650	0 969-0303	DR-001211	10/17/06	3,70	4,50	С	DB4	0,526	9,639	0,020	24,108	47,198	0,878	0,002	0,640	0,172	0,001
6-28651	0 969-0303	DR-001212	10/17/06	4,50	4,80	E/D	DN2/3	0,413	7,918	0,016	20,259	55,721	0,783	0,002	0,637	0,137	0,001
6-28652	0 969-0303	DR-001213	10/17/06	4,80	5,40	C/D	DB4/3	0,460	8,960	0,018	26,621	45,967	0,836	0,002	0,501	0,149	0,001
6-28653	0 969-0303	DR-001214	10/17/06	5,40	5,85	E/D	DN2/3	0,506	7,718	0,016	29,369	43,321	0,744	0,003	0,542	0,141	0,001
6-28654	0 969-0303	DR-001215	10/17/06	5,85	6,55	F/E	DI1/2	0,398	7,111	0,013	34,536	40,337	0,724	0,004	0,572	0,120	0,001
6-28655	0 969-0303	DR-001216	10/17/06	6,55	6,85	D/C	DB3/4	0,664	8,420	0,015	19,981	53,166	1,310	0,002	0,520	0,134	0,001
6-28656	0 969-0303	DR-001217	10/17/06	6,85	6,95	F/E	DI1/2	0,627	7,928	0,015	30,559	42,417	0,728	0,002	0,565	0,130	0,001
6-28657	0 969-0303	DR-001218	10/17/06	6,95	7,50	C/D	DB3/4	0,790	10,089	0,020	18,941	51,669	0,848	0,004	0,609	0,175	0,002
6-28658	0 969-0303	DR-001219	10/17/06	7,50	7,70	E	DN2	0,493	7,545	0,015	31,201	41,364	0,664	0,002	0,503	0,133	0,002
6-28659	0 969-0303	DR-001220	10/17/06	7,70	8,00	D	DN3	0,486	8,491	0,016	25,468	47,810	1,168	0,003	0,466	0,138	0,001
6-28660	0 969-0303	DR-001221	10/17/06	8,00	8,50	E/F	DI2/1	0,460	7,428	0,014	31,950	42,532	0,643	0,003	0,480	0,124	0,002
6-28661	0 969-0303	DR-001222	10/17/06	8,50	9,55	D/C	DB3/4	0,393	7,832	0,015	28,912	45,213	0,793	0,002	0,552	0,132	0,001
6-28662	0 969-0303	DR-001223	10/17/06	9,55	9,90	F/E	DI2/1	0,344	7,096	0,014	31,628	41,700	0,695	0,003	0,528	0,120	0,000
6-28663	0 969-0303	DR-001224	10/17/06	9,90	10,30	E/D	DN2/3	0,419	8,024	0,016	28,120	45,276	0,805	0,002	0,527	0,144	0,002
6-28664	0 969-0303	DR-001225	10/17/06	10,30	11,00	E/D	DN2/3	0,364	7,574	0,014	31,473	42,326	0,669	0,004	0,517	0,125	0,001
6-28665	0 969-0303	DR-001226	10/17/06	11,00	11,60	D	DN3	0,364	7,439	0,015	30,111	44,591	0,720	0,003	0,523	0,116	0,001
6-28666	0 969-0303	DR-001227	10/17/06	11,60	12,05	F/E	DI1/2	0,362	7,272	0,014	31,259	41,509	0,667	0,003	0,479	0,124	0,001
6-28667	0 969-0303	DR-001228	10/17/06	12,05	12,75	C/D	DB4/3	0,452	8,641	0,017	28,198	44,638	0,837	0,002	0,756	0,149	0,002
6-28668	0 969-0303	DR-001229	10/17/06	12,75	13,20	F/E	DI1/2	0,354	7,192	0,014	31,369	42,449	0,663	0,002	0,469	0,124	0,001

0 969-0303	DR-001230	10/17/06	13,20	13,30	C/D	DB4/3	0,368	7,508	0,014	29,843	44,385	0,770	0,001	0,520	0,127	0,001
0 969-0303	DR-001231	10/17/06	13,30	13,80	F/E	DI1/2	0,336	6,936	0,013	33,335	40,279	0,680	0,004	0,491	0,114	0,001
0 969-0303	DR-001232	10/17/06	13,80	14,40	F	DI1	0,276	6,394	0,012	32,626	39,260	0,802	0,002	0,424	0,111	0,001
0 969-0303	DR-001233	10/17/06	14,40	14,75	D	DS3	0,315	6,683	0,012	32,576	41,276	0,731	0,002	0,467	0,108	0,001
0 969-0303	DR-001234	10/17/06	14,75	15,05	F	DI1	0,360	7,056	0,014	32,429	39,704	0,674	0,003	0,454	0,116	0,001
0 969-0303	DR-001235	10/17/06	15,05	15,35	D	DS3	0,378	7,654	0,015	30,140	41,069	0,778	0,002	0,480	0,133	0,001
0 969-0303	DR-001236	10/17/06	15,35	16,50	E/F	DN/I2/1	0,345	7,384	0,014	32,427	40,710	0,678	0,003	0,528	0,120	0,001
0 969-0303	DR-001237	10/17/06	16,50	18,00	E/F	DN/I2/1	0,313	7,000	0,013	32,592	39,940	0,765	0,003	0,459	0,111	0,001
0 969-0303	DR-001238	10/17/06	18,00	18,85	F	DI1	0,287	6,420	0,012	35,296	38,399	0,697	0,006	0,452	0,107	0,001
0 969-0303	DR-001239	10/17/06	18,85	19,30	Е	DN2	0,284	5,827	0,010	35,018	40,361	0,860	0,003	0,430	0,090	0,001
0 969-0303	DR-001240	10/17/06	19,30	19,90	F	DI1	0,310	6,507	0,012	33,294	39,200	0,709	0,004	0,459	0,113	0,001
0 969-0303	DR-001241	10/17/06	19,90	20,30	F	DI1/2	0,294	5,979	0,011	32,942	41,836	0,792	0,003	0,401	0,098	0,001
0 969-0303	DR-001242	10/17/06	20,30	21,25	F	DI1	0,332	6,811	0,013	33,517	38,818	0,810	0,004	0,466	0,118	0,001
	 O 969-0303 	O 969-0303DR-001230O 969-0303DR-001232O 969-0303DR-001233O 969-0303DR-001234O 969-0303DR-001236O 969-0303DR-001237O 969-0303DR-001238O 969-0303DR-001238O 969-0303DR-001238O 969-0303DR-001241O 969-0303DR-001241O 969-0303DR-001241O 969-0303DR-001241	O 969-0303DR-00123010/17/06O 969-0303DR-00123110/17/06O 969-0303DR-00123210/17/06O 969-0303DR-00123410/17/06O 969-0303DR-00123510/17/06O 969-0303DR-00123610/17/06O 969-0303DR-00123710/17/06O 969-0303DR-00123810/17/06O 969-0303DR-00123810/17/06O 969-0303DR-00124010/17/06O 969-0303DR-00124110/17/06O 969-0303DR-00124110/17/06O 969-0303DR-00124210/17/06	O 969-0303DR-00123010/17/0613,20O 969-0303DR-00123110/17/0613,30O 969-0303DR-00123210/17/0614,40O 969-0303DR-00123410/17/0614,75O 969-0303DR-00123410/17/0615,05O 969-0303DR-00123610/17/0615,05O 969-0303DR-00123610/17/0616,50O 969-0303DR-00123710/17/0616,50O 969-0303DR-00123810/17/0618,85O 969-0303DR-00124010/17/0619,30O 969-0303DR-00124110/17/0619,90O 969-0303DR-00124210/17/0620,30	O 969-0303DR-00123010/17/0613,2013,30O 969-0303DR-00123110/17/0613,3013,80O 969-0303DR-00123210/17/0613,8014,40O 969-0303DR-00123310/17/0614,4014,75O 969-0303DR-00123410/17/0614,7515,05O 969-0303DR-00123510/17/0615,0515,35O 969-0303DR-00123610/17/0615,3516,50O 969-0303DR-00123710/17/0616,5018,00O 969-0303DR-00123810/17/0618,8519,30O 969-0303DR-00124010/17/0619,3019,90O 969-0303DR-00124110/17/0619,3020,30O 969-0303DR-00124210/17/0620,3021,25	O 969-0303DR-00123010/17/0613,2013,30C/DO 969-0303DR-00123110/17/0613,3013,80F/EO 969-0303DR-00123210/17/0613,8014,40FO 969-0303DR-00123310/17/0614,4014,75DO 969-0303DR-00123410/17/0614,7515,05FO 969-0303DR-00123510/17/0615,0515,35DO 969-0303DR-00123610/17/0615,3516,50E/FO 969-0303DR-00123710/17/0616,5018,00E/FO 969-0303DR-00123810/17/0618,8519,30EO 969-0303DR-00124010/17/0619,3019,90FO 969-0303DR-00124110/17/0619,3020,30FO 969-0303DR-00124210/17/0620,3021,25F	O 969-0303DR-00123010/17/0613,2013,30C/DDB4/3O 969-0303DR-00123110/17/0613,3013,80F/ED11/2O 969-0303DR-00123210/17/0613,8014,40FD11O 969-0303DR-00123310/17/0614,4014,75DDS3O 969-0303DR-00123410/17/0614,7515,05FD11O 969-0303DR-00123510/17/0615,0515,35DDS3O 969-0303DR-00123610/17/0615,3516,50E/FDN/12/1O 969-0303DR-00123710/17/0616,5018,00E/FDN/12/1O 969-0303DR-00123810/17/0618,8519,30EDN2O 969-0303DR-00124010/17/0619,3019,90FD11O 969-0303DR-00124110/17/0619,3020,30FD11/2O 969-0303DR-00124110/17/0620,30Z1,25FD11	O 969-0303DR-00123010/17/0613,2013,30C/DDB4/30,368O 969-0303DR-00123110/17/0613,3013,80F/ED11/20,336O 969-0303DR-00123210/17/0613,8014,40FD110,276O 969-0303DR-00123310/17/0614,4014,75DDS30,315O 969-0303DR-00123410/17/0614,7515,05FD110,360O 969-0303DR-00123510/17/0615,0515,35DDS30,378O 969-0303DR-00123610/17/0615,0515,35DDN/12/10,345O 969-0303DR-00123710/17/0616,5018,00E/FDN/12/10,313O 969-0303DR-00123810/17/0618,8519,30EDN/20,284O 969-0303DR-00123910/17/0618,8519,30EDN20,284O 969-0303DR-00124110/17/0619,3019,90FD110,310O 969-0303DR-00124110/17/0619,3019,90FD110,310O 969-0303DR-00124110/17/0619,3019,90FD110,310O 969-0303DR-00124110/17/0619,3019,90FD11/20,294O 969-0303DR-00124110/17/0620,30FD11/20,294O 969-0303DR-00124110/17/0620,30FD11/20,313<	O 969-0303DR-00123010/17/0613,2013,30C/DDB4/30,3687,508O 969-0303DR-00123110/17/0613,3013,80F/ED11/20,3366,936O 969-0303DR-00123210/17/0613,8014,40FD110,2766,394O 969-0303DR-00123310/17/0614,4014,75DDS30,3156,683O 969-0303DR-00123410/17/0614,7515,05FD110,3607,056O 969-0303DR-00123510/17/0615,0515,35DDS30,3787,654O 969-0303DR-00123610/17/0615,3516,50E/FDN/12/10,3457,384O 969-0303DR-00123610/17/0616,5018,00E/FDN/12/10,3137,000O 969-0303DR-00123810/17/0618,8519,30EDN20,2845,827O 969-0303DR-00124910/17/0619,3019,90FD110,3106,507O 969-0303DR-00124010/17/0619,3019,90FD110,3106,507O 969-0303DR-00124110/17/0619,9020,30FD11/20,2945,979O 969-0303DR-00124110/17/0620,3021,25FD110,3326,811O 969-0303DR-00124110/17/0620,3021,25FD110,3326,811	O 969-0303DR-00123010/17/0613,2013,30C/DDB4/30,3687,5080,014O 969-0303DR-00123110/17/0613,3013,80F/ED11/20,3366,9360,013O 969-0303DR-00123210/17/0613,8014,40FD110,2766,3940,012O 969-0303DR-00123310/17/0614,4014,75DDS30,3156,6830,014O 969-0303DR-00123410/17/0614,7515,05FD110,3607,0560,014O 969-0303DR-00123510/17/0615,0515,35DDS30,3787,6540,015O 969-0303DR-00123610/17/0615,3516,50E/FDN/12/10,3457,3840,014O 969-0303DR-00123610/17/0616,5018,00E/FDN/12/10,3137,0000,013O 969-0303DR-00123810/17/0618,8519,30EDN20,2845,8270,010O 969-0303DR-00124910/17/0619,3019,90FD110,3106,5070,012O 969-0303DR-00124910/17/0619,9020,30FD11/20,2945,9790,011O 969-0303DR-00124110/17/0619,9020,30FD11/20,2945,9790,011O 969-0303DR-00124110/17/0620,30Z1,25FD110,3326,8110,013 <td>O 969-0303DR-00123010/17/0613,2013,30C/DDB4/30,3687,5080,01429,843O 969-0303DR-00123110/17/0613,3013,80F/EDI1/20,3366,9360,01333,335O 969-0303DR-00123210/17/0613,8014,40FDI10,2766,3940,01232,626O 969-0303DR-00123310/17/0614,4014,75DDS30,3156,6830,01232,576O 969-0303DR-00123410/17/0614,7515,05FD110,3607,0560,01432,429O 969-0303DR-00123510/17/0615,0515,35DDS30,3157,6540,01530,140O 969-0303DR-00123610/17/0615,0516,50E/FDN/12/10,3457,3840,01432,429O 969-0303DR-00123710/17/0616,5018,00E/FDN/12/10,3137,0000,01332,592O 969-0303DR-00123810/17/0618,8018,85FD110,2876,4200,01235,296O 969-0303DR-00124910/17/0619,3019,90FD110,3106,5070,01232,942O 969-0303DR-00124110/17/0619,3020,30FD11/20,2945,9790,01132,942O 969-0303DR-00124110/17/0619,3021,25FD110,3326,8110,013<</td> <td>O 969-0303DR-00123010/17/0613,2013,30C/DDB4/30,3687,5080,01429,84344,385O 969-0303DR-00123110/17/0613,3013,80F/EDI1/20,3366,9360,01333,33540,279O 969-0303DR-00123210/17/0613,8014,40FDI10,2766,3940,01232,62639,260O 969-0303DR-00123310/17/0614,4014,75DDS30,3156,6830,01432,42939,704O 969-0303DR-00123510/17/0614,7515,05FDI10,3607,0560,01432,42939,704O 969-0303DR-00123510/17/0615,0515,55DDS30,3157,6540,01530,14041,069O 969-0303DR-00123610/17/0615,5516,50E/FDN/12/10,3457,3840,01432,42740,710O 969-0303DR-00123710/17/0616,5018,00E/FDN/12/10,3137,0000,01332,59239,940O 969-0303DR-00123810/17/0618,8519,30EDN20,2845,8270,01035,01840,361O 969-0303DR-00124910/17/0619,3019,90FDI10,3106,5070,01232,24239,240O 969-0303DR-00124110/17/0619,9020,30FDI10,3106,5070,01132,942<td< td=""><td>O 969-0303DR-00123110/17/0613,2013,30C/DDB4/30,3687,5080,01429,84344,3850,770O 969-0303DR-00123110/17/0613,3013,80F/EDI1/20,3366,9360,01333,33540,2790,680O 969-0303DR-00123210/17/0613,8014,40FDI10,2766,3940,01232,62639,2600,802O 969-0303DR-00123310/17/0614,4014,75DDS30,3156,6830,01432,42939,7040,674O 969-0303DR-00123410/17/0614,7515,05FDI10,3607,0560,01432,42939,7040,674O 969-0303DR-00123510/17/0614,7515,05FDI10,3607,0560,01432,42939,7040,674O 969-0303DR-00123510/17/0615,0515,05DDS30,3787,6540,01432,42740,7100,678O 969-0303DR-00123710/17/0615,0516,50E/FDN/12/10,3137,0000,01332,52939,9400,765O 969-0303DR-00123910/17/0616,5018,8519,30E/FDN10,2845,8270,01035,01840,3610,869O 969-0303DR-00124910/17/0618,8519,30EDN20,2845,8270,01035,01840,3610,869O 969-0303</td><td>O 969-0303DR-00123010/17/0613,2013,30C/DDB4/30,3687,5080,01429,84344,3850,7700,001O 969-0303DR-00123110/17/0613,3013,80F/ED11/20,3366,9360,01333,33540,2790,6800,002O 969-0303DR-00123210/17/0614,4014,75DDS30,3156,6830,01232,57641,2760,7310,002O 969-0303DR-00123410/17/0614,7515,05FD110,3607,0560,01432,42939,7040,6740,002O 969-0303DR-00123510/17/0614,7515,05FD110,3607,0560,01432,42939,7040,6740,002O 969-0303DR-00123510/17/0615,3515,35DDS30,3157,3840,01432,42740,7100,6780,002O 969-0303DR-00123510/17/0615,3516,50E/FDN/12/10,3137,0000,01332,52939,9400,7650,003O 969-0303DR-00123510/17/0618,8519,30EDN120,3137,0000,01332,52939,9400,6750,003O 969-0303DR-00123510/17/0618,8519,30EDN20,2145,8270,01135,01840,3610,8600,004O 969-0303DR-00124510/17/0619,3019,90FD11<td>O 969-0303DR-00123310/17/0613,2013,30C/DDB4/30,3687,5080,01429,84344,3850,7700,0010,520O 969-0303DR-00123110/17/0613,8014,40F/ED11/20,3366,9360,01233,33540,2790,6800,0020,424O 969-0303DR-00123310/17/0614,4014,75DDS30,3156,6830,01232,62639,2600,8020,0020,424O 969-0303DR-00123410/17/0614,7515,05FD110,3607,0560,01432,42939,7040,6740,0030,454O 969-0303DR-00123510/17/0615,0515,35DDS30,3787,6540,01530,14041,0690,7780,0030,528O 969-0303DR-00123510/17/0615,3516,55E/FDN/12/10,3457,3840,01432,42740,7100,6780,0030,528O 969-0303DR-00123510/17/0615,3516,55E/FDN/12/10,3157,3840,01432,42740,7100,6780,0030,459O 969-0303DR-00123510/17/0618,8519,30E/FDN12/10,3137,00010,1332,5188,3990,6970,0030,451O 969-0303DR-00123610/17/0618,8519,30EDN20,2845,8270,01035,01840,3610,806</td><td>O 969-0303DR-00123010/17/0613,2013,2013,30C/DDB4/30,3687,5080,01429,84344,3850,7700,0010,5200,121O 969-0303DR-00123110/17/0613,3013,80F/ED11/20,3366,9360,01333,3540,2790,6800,0020,4240,114O 969-0303DR-00123310/17/0614,4014,75DDS30,3156,6830,01232,57641,2760,7310,0020,4640,118O 969-0303DR-00123310/17/0614,7515,05FD110,3607,0560,01432,42939,7040,6740,0030,4540,118O 969-0303DR-00123510/17/0615,0515,55DDS30,3187,6560,01432,42740,7100,6780,0020,4690,131O 969-0303DR-00123510/17/0615,3516,55E/FDN/12/10,3137,00530,14032,42740,7100,6780,0030,4590,111O 969-0303DR-00123510/17/0616,5518,05E/FDN/12/10,3137,00030,1233,5193,8390,6970,0030,4590,131O 969-0303DR-00123510/17/0618,8519,3018,85FD110,2876,8270,0133,5193,8390,6970,0030,4590,4500,450O 969-0303DR-00123510/17/</td></td></td<></td>	O 969-0303DR-00123010/17/0613,2013,30C/DDB4/30,3687,5080,01429,843O 969-0303DR-00123110/17/0613,3013,80F/EDI1/20,3366,9360,01333,335O 969-0303DR-00123210/17/0613,8014,40FDI10,2766,3940,01232,626O 969-0303DR-00123310/17/0614,4014,75DDS30,3156,6830,01232,576O 969-0303DR-00123410/17/0614,7515,05FD110,3607,0560,01432,429O 969-0303DR-00123510/17/0615,0515,35DDS30,3157,6540,01530,140O 969-0303DR-00123610/17/0615,0516,50E/FDN/12/10,3457,3840,01432,429O 969-0303DR-00123710/17/0616,5018,00E/FDN/12/10,3137,0000,01332,592O 969-0303DR-00123810/17/0618,8018,85FD110,2876,4200,01235,296O 969-0303DR-00124910/17/0619,3019,90FD110,3106,5070,01232,942O 969-0303DR-00124110/17/0619,3020,30FD11/20,2945,9790,01132,942O 969-0303DR-00124110/17/0619,3021,25FD110,3326,8110,013<	O 969-0303DR-00123010/17/0613,2013,30C/DDB4/30,3687,5080,01429,84344,385O 969-0303DR-00123110/17/0613,3013,80F/EDI1/20,3366,9360,01333,33540,279O 969-0303DR-00123210/17/0613,8014,40FDI10,2766,3940,01232,62639,260O 969-0303DR-00123310/17/0614,4014,75DDS30,3156,6830,01432,42939,704O 969-0303DR-00123510/17/0614,7515,05FDI10,3607,0560,01432,42939,704O 969-0303DR-00123510/17/0615,0515,55DDS30,3157,6540,01530,14041,069O 969-0303DR-00123610/17/0615,5516,50E/FDN/12/10,3457,3840,01432,42740,710O 969-0303DR-00123710/17/0616,5018,00E/FDN/12/10,3137,0000,01332,59239,940O 969-0303DR-00123810/17/0618,8519,30EDN20,2845,8270,01035,01840,361O 969-0303DR-00124910/17/0619,3019,90FDI10,3106,5070,01232,24239,240O 969-0303DR-00124110/17/0619,9020,30FDI10,3106,5070,01132,942 <td< td=""><td>O 969-0303DR-00123110/17/0613,2013,30C/DDB4/30,3687,5080,01429,84344,3850,770O 969-0303DR-00123110/17/0613,3013,80F/EDI1/20,3366,9360,01333,33540,2790,680O 969-0303DR-00123210/17/0613,8014,40FDI10,2766,3940,01232,62639,2600,802O 969-0303DR-00123310/17/0614,4014,75DDS30,3156,6830,01432,42939,7040,674O 969-0303DR-00123410/17/0614,7515,05FDI10,3607,0560,01432,42939,7040,674O 969-0303DR-00123510/17/0614,7515,05FDI10,3607,0560,01432,42939,7040,674O 969-0303DR-00123510/17/0615,0515,05DDS30,3787,6540,01432,42740,7100,678O 969-0303DR-00123710/17/0615,0516,50E/FDN/12/10,3137,0000,01332,52939,9400,765O 969-0303DR-00123910/17/0616,5018,8519,30E/FDN10,2845,8270,01035,01840,3610,869O 969-0303DR-00124910/17/0618,8519,30EDN20,2845,8270,01035,01840,3610,869O 969-0303</td><td>O 969-0303DR-00123010/17/0613,2013,30C/DDB4/30,3687,5080,01429,84344,3850,7700,001O 969-0303DR-00123110/17/0613,3013,80F/ED11/20,3366,9360,01333,33540,2790,6800,002O 969-0303DR-00123210/17/0614,4014,75DDS30,3156,6830,01232,57641,2760,7310,002O 969-0303DR-00123410/17/0614,7515,05FD110,3607,0560,01432,42939,7040,6740,002O 969-0303DR-00123510/17/0614,7515,05FD110,3607,0560,01432,42939,7040,6740,002O 969-0303DR-00123510/17/0615,3515,35DDS30,3157,3840,01432,42740,7100,6780,002O 969-0303DR-00123510/17/0615,3516,50E/FDN/12/10,3137,0000,01332,52939,9400,7650,003O 969-0303DR-00123510/17/0618,8519,30EDN120,3137,0000,01332,52939,9400,6750,003O 969-0303DR-00123510/17/0618,8519,30EDN20,2145,8270,01135,01840,3610,8600,004O 969-0303DR-00124510/17/0619,3019,90FD11<td>O 969-0303DR-00123310/17/0613,2013,30C/DDB4/30,3687,5080,01429,84344,3850,7700,0010,520O 969-0303DR-00123110/17/0613,8014,40F/ED11/20,3366,9360,01233,33540,2790,6800,0020,424O 969-0303DR-00123310/17/0614,4014,75DDS30,3156,6830,01232,62639,2600,8020,0020,424O 969-0303DR-00123410/17/0614,7515,05FD110,3607,0560,01432,42939,7040,6740,0030,454O 969-0303DR-00123510/17/0615,0515,35DDS30,3787,6540,01530,14041,0690,7780,0030,528O 969-0303DR-00123510/17/0615,3516,55E/FDN/12/10,3457,3840,01432,42740,7100,6780,0030,528O 969-0303DR-00123510/17/0615,3516,55E/FDN/12/10,3157,3840,01432,42740,7100,6780,0030,459O 969-0303DR-00123510/17/0618,8519,30E/FDN12/10,3137,00010,1332,5188,3990,6970,0030,451O 969-0303DR-00123610/17/0618,8519,30EDN20,2845,8270,01035,01840,3610,806</td><td>O 969-0303DR-00123010/17/0613,2013,2013,30C/DDB4/30,3687,5080,01429,84344,3850,7700,0010,5200,121O 969-0303DR-00123110/17/0613,3013,80F/ED11/20,3366,9360,01333,3540,2790,6800,0020,4240,114O 969-0303DR-00123310/17/0614,4014,75DDS30,3156,6830,01232,57641,2760,7310,0020,4640,118O 969-0303DR-00123310/17/0614,7515,05FD110,3607,0560,01432,42939,7040,6740,0030,4540,118O 969-0303DR-00123510/17/0615,0515,55DDS30,3187,6560,01432,42740,7100,6780,0020,4690,131O 969-0303DR-00123510/17/0615,3516,55E/FDN/12/10,3137,00530,14032,42740,7100,6780,0030,4590,111O 969-0303DR-00123510/17/0616,5518,05E/FDN/12/10,3137,00030,1233,5193,8390,6970,0030,4590,131O 969-0303DR-00123510/17/0618,8519,3018,85FD110,2876,8270,0133,5193,8390,6970,0030,4590,4500,450O 969-0303DR-00123510/17/</td></td></td<>	O 969-0303DR-00123110/17/0613,2013,30C/DDB4/30,3687,5080,01429,84344,3850,770O 969-0303DR-00123110/17/0613,3013,80F/EDI1/20,3366,9360,01333,33540,2790,680O 969-0303DR-00123210/17/0613,8014,40FDI10,2766,3940,01232,62639,2600,802O 969-0303DR-00123310/17/0614,4014,75DDS30,3156,6830,01432,42939,7040,674O 969-0303DR-00123410/17/0614,7515,05FDI10,3607,0560,01432,42939,7040,674O 969-0303DR-00123510/17/0614,7515,05FDI10,3607,0560,01432,42939,7040,674O 969-0303DR-00123510/17/0615,0515,05DDS30,3787,6540,01432,42740,7100,678O 969-0303DR-00123710/17/0615,0516,50E/FDN/12/10,3137,0000,01332,52939,9400,765O 969-0303DR-00123910/17/0616,5018,8519,30E/FDN10,2845,8270,01035,01840,3610,869O 969-0303DR-00124910/17/0618,8519,30EDN20,2845,8270,01035,01840,3610,869O 969-0303	O 969-0303DR-00123010/17/0613,2013,30C/DDB4/30,3687,5080,01429,84344,3850,7700,001O 969-0303DR-00123110/17/0613,3013,80F/ED11/20,3366,9360,01333,33540,2790,6800,002O 969-0303DR-00123210/17/0614,4014,75DDS30,3156,6830,01232,57641,2760,7310,002O 969-0303DR-00123410/17/0614,7515,05FD110,3607,0560,01432,42939,7040,6740,002O 969-0303DR-00123510/17/0614,7515,05FD110,3607,0560,01432,42939,7040,6740,002O 969-0303DR-00123510/17/0615,3515,35DDS30,3157,3840,01432,42740,7100,6780,002O 969-0303DR-00123510/17/0615,3516,50E/FDN/12/10,3137,0000,01332,52939,9400,7650,003O 969-0303DR-00123510/17/0618,8519,30EDN120,3137,0000,01332,52939,9400,6750,003O 969-0303DR-00123510/17/0618,8519,30EDN20,2145,8270,01135,01840,3610,8600,004O 969-0303DR-00124510/17/0619,3019,90FD11 <td>O 969-0303DR-00123310/17/0613,2013,30C/DDB4/30,3687,5080,01429,84344,3850,7700,0010,520O 969-0303DR-00123110/17/0613,8014,40F/ED11/20,3366,9360,01233,33540,2790,6800,0020,424O 969-0303DR-00123310/17/0614,4014,75DDS30,3156,6830,01232,62639,2600,8020,0020,424O 969-0303DR-00123410/17/0614,7515,05FD110,3607,0560,01432,42939,7040,6740,0030,454O 969-0303DR-00123510/17/0615,0515,35DDS30,3787,6540,01530,14041,0690,7780,0030,528O 969-0303DR-00123510/17/0615,3516,55E/FDN/12/10,3457,3840,01432,42740,7100,6780,0030,528O 969-0303DR-00123510/17/0615,3516,55E/FDN/12/10,3157,3840,01432,42740,7100,6780,0030,459O 969-0303DR-00123510/17/0618,8519,30E/FDN12/10,3137,00010,1332,5188,3990,6970,0030,451O 969-0303DR-00123610/17/0618,8519,30EDN20,2845,8270,01035,01840,3610,806</td> <td>O 969-0303DR-00123010/17/0613,2013,2013,30C/DDB4/30,3687,5080,01429,84344,3850,7700,0010,5200,121O 969-0303DR-00123110/17/0613,3013,80F/ED11/20,3366,9360,01333,3540,2790,6800,0020,4240,114O 969-0303DR-00123310/17/0614,4014,75DDS30,3156,6830,01232,57641,2760,7310,0020,4640,118O 969-0303DR-00123310/17/0614,7515,05FD110,3607,0560,01432,42939,7040,6740,0030,4540,118O 969-0303DR-00123510/17/0615,0515,55DDS30,3187,6560,01432,42740,7100,6780,0020,4690,131O 969-0303DR-00123510/17/0615,3516,55E/FDN/12/10,3137,00530,14032,42740,7100,6780,0030,4590,111O 969-0303DR-00123510/17/0616,5518,05E/FDN/12/10,3137,00030,1233,5193,8390,6970,0030,4590,131O 969-0303DR-00123510/17/0618,8519,3018,85FD110,2876,8270,0133,5193,8390,6970,0030,4590,4500,450O 969-0303DR-00123510/17/</td>	O 969-0303DR-00123310/17/0613,2013,30C/DDB4/30,3687,5080,01429,84344,3850,7700,0010,520O 969-0303DR-00123110/17/0613,8014,40F/ED11/20,3366,9360,01233,33540,2790,6800,0020,424O 969-0303DR-00123310/17/0614,4014,75DDS30,3156,6830,01232,62639,2600,8020,0020,424O 969-0303DR-00123410/17/0614,7515,05FD110,3607,0560,01432,42939,7040,6740,0030,454O 969-0303DR-00123510/17/0615,0515,35DDS30,3787,6540,01530,14041,0690,7780,0030,528O 969-0303DR-00123510/17/0615,3516,55E/FDN/12/10,3457,3840,01432,42740,7100,6780,0030,528O 969-0303DR-00123510/17/0615,3516,55E/FDN/12/10,3157,3840,01432,42740,7100,6780,0030,459O 969-0303DR-00123510/17/0618,8519,30E/FDN12/10,3137,00010,1332,5188,3990,6970,0030,451O 969-0303DR-00123610/17/0618,8519,30EDN20,2845,8270,01035,01840,3610,806	O 969-0303DR-00123010/17/0613,2013,2013,30C/DDB4/30,3687,5080,01429,84344,3850,7700,0010,5200,121O 969-0303DR-00123110/17/0613,3013,80F/ED11/20,3366,9360,01333,3540,2790,6800,0020,4240,114O 969-0303DR-00123310/17/0614,4014,75DDS30,3156,6830,01232,57641,2760,7310,0020,4640,118O 969-0303DR-00123310/17/0614,7515,05FD110,3607,0560,01432,42939,7040,6740,0030,4540,118O 969-0303DR-00123510/17/0615,0515,55DDS30,3187,6560,01432,42740,7100,6780,0020,4690,131O 969-0303DR-00123510/17/0615,3516,55E/FDN/12/10,3137,00530,14032,42740,7100,6780,0030,4590,111O 969-0303DR-00123510/17/0616,5518,05E/FDN/12/10,3137,00030,1233,5193,8390,6970,0030,4590,131O 969-0303DR-00123510/17/0618,8519,3018,85FD110,2876,8270,0133,5193,8390,6970,0030,4590,4500,450O 969-0303DR-00123510/17/

Tabla 2 .- Composición química (roca total) del sondeo 954-0307

LAB	НОҮО	Sample	TOMADA	From	То	Mine	Geol	Ni	Fe	Со	MgO	SiO2	AI2O3	S	Cr2O3	MnO	Р
NO.		ID				Facies	Facies										
6-28196	0 954-0307	DR-001816	10/02/06	0,00	0,50	С	HB5	0,522	11,937	0,028	2,105	67,534	0,821	0,008	0,906	0,192	0,003
6-28197	0 954-0307	DR-001817	10/02/06	0,50	1,00	С	HB5	0,502	12,557	0,029	2,076	68,211	0,789	0,008	0,948	0,205	0,003
6-28198	0 954-0307	DR-001958	10/02/06	1,00	1,65	С	HB5	0,692	11,988	0,026	4,699	65,409	0,640	0,004	0,839	0,209	0,002
6-28199	0 954-0307	DR-001818	10/02/06	1,65	2,40	С	HB5	0,752	8,960	0,019	9,889	67,925	0,597	0,003	0,661	0,153	0,002
6-28200	0 954-0307	DR-001819	10/02/06	2,40	2,95	С	HB5	2,624	12,845	0,032	23,820	44,069	0,863	0,004	1,015	0,238	0,002
6-28201	0 954-0307	DR-001820	10/02/06	2,95	3,55	С	HB5	2,273	7,495	0,017	31,078	42,354	1,605	0,004	0,537	0,125	0,001
6-28202	0 954-0307	DR-001821	10/02/06	3,55	4,55	C/D	HB4/3	1,290	11,795	0,024	16,539	55,083	0,662	0,003	0,790	0,202	0,002
6-28203	0 954-0307	DR-001822	10/02/06	4,55	5,00	С	DB5	2,731	8,510	0,018	31,201	40,484	0,702	0,005	0,668	0,148	0,001
6-28204	0 954-0307	DR-001823	10/02/06	5,00	5,35	E	DB2	1,939	9,885	0,021	24,826	46,036	0,671	0,004	0,644	0,185	0,001
6-28205	0 954-0307	DR-001824	10/02/06	5,35	6,05	С	DB5	2,684	7,979	0,016	29,629	40,505	0,709	0,006	0,518	0,135	0,000

6-28206	0 954-0307	DR-001825	10/02/06	6,05	6,65	E/F	DN2/1	1,737	10,325	0,022	18,737	52,956	0,676	0,004	0,685	0,189	0,001
6-28207	0 954-0307	DR-001826	10/02/06	6,65	6,85	С	DB5	2,929	7,856	0,015	30,146	40,170	0,717	0,005	0,500	0,127	0,001
6-28208	0 954-0307	DR-001827	10/02/06	6,85	7,00	F	DN1/2	0,272	7,016	0,012	31,577	40,683	1,411	0,006	0,502	0,129	0,001
6-28209	0 954-0307	DR-001828	10/02/06	7,00	7,50	С	DB5	2,205	6,984	0,014	31,960	42,426	0,732	0,006	0,501	0,111	0,001
6-28210	0 954-0307	DR-001829	10/02/06	7,50	8,00	F/E	DN1/2	1,535	7,306	0,014	24,608	53,320	0,687	0,004	0,522	0,123	0,001
6-28211	0 954-0307	DR-001830	10/02/06	8,00	8,30	С	DB5	2,251	6,786	0,013	30,634	43,489	0,648	0,004	0,464	0,110	0,001
6-28213	0 954-0307	DR-001831	10/02/06	8,30	8,55	D	DN3	1,721	8,771	0,018	22,486	49,248	0,665	0,003	0,638	0,153	0,001
6-28214	0 954-0307	DR-001832	10/02/06	8,55	8,70	С	DB5	1,738	7,835	0,015	32,889	44,990	0,708	0,004	0,570	0,092	0,001
6-28215	0 954-0307	DR-001833	10/02/06	8,70	8,90	D	DB3	2,561	8,114	0,017	28,961	44,632	0,708	0,004	0,715	0,150	0,000
6-28216	0 954-0307	DR-001834	10/02/06	8,90	9,00	E	DB2	1,823	9,273	0,020	24,246	48,752	0,654	0,003	0,651	0,172	0,001
6-28217	0 954-0307	DR-001835	10/02/06	9,00	9,10	С	DB5/4	2,886	8,042	0,017	28,979	41,924	0,914	0,005	0,530	0,138	0,001
6-28218	0 954-0307	DR-001836	10/02/06	9,10	9,35	D/E	DB3/2	1,235	6,818	0,013	34,581	39,880	0,702	0,005	0,494	0,116	0,001
6-28219	0 954-0307	DR-001837	10/02/06	9,35	9,60	F	HI1	2,779	8,093	0,017	31,192	41,262	0,770	0,005	0,556	0,142	0,001
6-28220	0 954-0307	DR-001838	10/02/06	9,60	10,65	D/E	HB3/2	2,233	8,100	0,016	31,956	41,664	0,702	0,003	0,567	0,135	0,000
6-28221	0 954-0307	DR-001839	10/02/06	10,65	11,00	E	HB2	2,104	8,425	0,018	32,051	41,800	0,734	0,004	0,643	0,150	0,001
6-28222	0 954-0307	DR-001840	10/02/06	11,00	11,15	D	HB3	2,051	7,498	0,016	34,224	41,571	0,703	0,003	0,590	0,140	0,001
6-28223	0 954-0307	DR-001841	10/02/06	11,15	11,40	D/E	HB3/2	2,130	7,441	0,015	32,308	43,289	0,714	0,004	0,559	0,132	0,001
6-28224	0 954-0307	DR-001842	10/02/06	11,40	11,80	С	HB4	2,269	7,320	0,014	32,385	43,495	1,132	0,006	0,583	0,142	0,001
6-28225	0 954-0307	DR-001843	10/02/06	11,80	12,25	E/F	HN2/3	2,014	7,519	0,014	34,133	40,002	1,682	0,004	0,581	0,118	0,001
6-28226	O 954-0307	DR-001844	10/02/06	12,25	12,45	D/E	HB3/2	1,906	7,515	0,014	30,895	39,501	1,800	0,006	0,552	0,144	0,000
6-28227	O 954-0307	DR-001845	10/02/06	12,45	12,65	E/F	HN2/1	1,990	7,454	0,015	34,358	39,683	1,730	0,004	0,506	0,127	0,001
6-28228	0 954-0307	DR-001846	10/02/06	12,65	13,00	D	HB3	3,155	6,380	0,013	33,664	42,914	0,913	0,006	0,494	0,101	0,001
6-28229	0 954-0307	DR-001847	10/02/06	13,00	13,50	D	HB3	0,984	7,085	0,013	35,447	39,347	0,978	0,006	0,513	0,123	0,001
6-28230	0 954-0307	DR-001848	10/02/06	13,50	14,30	F	HI1	1,379	9,041	0,018	33,234	43,079	0,942	0,004	0,596	0,146	0,001
6-28231	0 954-0307	DR-001849	10/02/06	14,30	14,55	E/D	HB2/3	1,146	7,981	0,016	34,035	40,703	0,822	0,004	0,541	0,165	0,001
6-28232	0 954-0307	DR-001850	10/02/06	14,55	14,70	E/F	HN2/3	1,188	8,329	0,016	31,977	45,235	0,999	0,003	0,576	0,162	0,001
6-28233	0 954-0307	DR-001951	10/02/06	14,70	15,60	C/D	HB4/3	0,827	7,346	0,014	35,016	41,237	0,834	0,007	0,524	0,144	0,000
6-28234	0 954-0307	DR-001952	10/02/06	15,60	16,00	F	HN1	1,059	8,727	0,017	31,212	45,054	0,938	0,004	0,634	0,152	0,001
6-28235	0 954-0307	DR-001953	10/02/06	16,00	16,30	С	HB4	1,305	9,290	0,019	30,170	42,175	1,116	0,004	0,614	0,201	0,001
																	-

6-282370954-0307DR-00195510/02/0616,5016,70CHB41,3348,9530,01731,65338,9871,5180,0050,6566-282380954-0307DR-00195610/02/0616,7016,80E/FHN2/10,9619,5020,01930,37742,3642,0010,0040,7346-282390954-0307DR-00195710/02/0616,8017,00E/FHB2/30,9468,3450,01734,78140,8581,6310,0040,5396-282400954-0307DR-00195910/04/0617,0017,15D/CHB4/30,9659,7310,01933,65841,2992,0580,0040,6166-282410954-0307DR-00196010/04/0617,1517,45D/CHB3/41,0938,3880,01733,02640,5021,9810,0040,6046-282420954-0307DR-00196110/04/0617,4517,55E/FHI1/21,1507,4030,01432,76140,7781,8750,0060,5356-282430954-0307DR-00196210/04/0617,5517,80D/CHB4/31,1668,1710,01632,83340,6271,8290,0040,5756-282440954-0307DR-00196310/04/0617,8018,20EHN20,6356,9200,01235,09739,8061,4590,0060,546 <t< th=""><th>0,199 0,000 0,183 0,001 0,153 0,001 0,165 0,000 0,165 0,001 0,162 0,001 0,145 0,001 0,152 0,001 0,124 0,001 0,142 0,000</th></t<>	0,199 0,000 0,183 0,001 0,153 0,001 0,165 0,000 0,165 0,001 0,162 0,001 0,145 0,001 0,152 0,001 0,124 0,001 0,142 0,000
6-282380 954-0307DR-00195610/02/0616,7016,80F/FHN2/10,9619,5020,01930,37742,3642,0010,0040,7346-282390 954-0307DR-00195710/02/0616,8017,00F/DHB2/30,9468,3450,01734,78140,8581,6310,0040,5396-282400 954-0307DR-00195910/04/0617,0017,15D/CHB4/30,9659,7310,01933,65841,2992,0580,0040,6166-282410 954-0307DR-00196010/04/0617,1517,45D/CHB3/41,0938,3880,01733,02640,5021,9810,0040,6046-282420 954-0307DR-00196110/04/0617,1517,45D/CHB3/41,0938,3880,01733,02640,5021,9810,0040,6046-282430 954-0307DR-00196210/04/0617,5517,80D/CHB4/31,1668,1710,01632,83340,6271,8290,0040,5756-282440 954-0307DR-00196310/04/0617,8018,20EHN20,6356,9200,01235,09739,8061,4590,0060,5466-282450 954-0307DR-00196410/04/0618,2018,55FHI1/20,9678,7740,01734,69940,7091,3760,0040,503	0,1830,0010,1530,0010,1650,0000,1620,0010,1450,0010,1240,0010,1420,0000,1430,001
6-282390.954-0307DR-00195710/02/0616,8017,00E/DHB2/30,9468,3450,01734,78140,8581,6310,0040,5396-282400.954-0307DR-00195910/04/0617,0017,15D/CHB4/30,9659,7310,01933,65841,2992,0580,0040,6166-282410.954-0307DR-00196010/04/0617,1517,45D/CHB3/41,0938,3880,01733,02640,5021,9810,0040,6046-282420.954-0307DR-00196110/04/0617,4517,55E/FHI1/21,1507,4030,01432,76140,7781,8750,0060,5356-282430.954-0307DR-00196210/04/0617,5517,80D/CHB4/31,1668,1710,01632,83340,6271,8290,0040,5756-282440.954-0307DR-00196310/04/0617,8018,20EHN20,6356,9200,01235,09739,8061,4590,0060,5466-282450.954-0307DR-00196410/04/0618,2018,55FHI1/20,9678,7740,01734,69940,7091,3760,0040,503	0,153 0,001 0,165 0,000 0,162 0,001 0,145 0,001 0,152 0,001 0,124 0,001 0,142 0,000 0,143 0,001
6-282400.954-0307DR-00195910/04/0617,0017,15D/CHB4/30,9659,7310,01933,65841,2992,0580,0040,6166-282410.954-0307DR-00196010/04/0617,1517,45D/CHB3/41,0938,3880,01733,02640,5021,9810,0040,6046-282420.954-0307DR-00196110/04/0617,4517,55E/FHI1/21,1507,4030,01432,76140,7781,8750,0060,5356-282430.954-0307DR-00196210/04/0617,5517,80D/CHB4/31,1668,1710,01632,83340,6271,8290,0040,5756-282440.954-0307DR-00196310/04/0617,8018,20EHN20,6356,9200,01235,09739,8061,4590,0060,5466-282450.954-0307DR-00196410/04/0618,2018,55FH11/20,9678,7740,01734,69940,7091,3760,0040,503	0,1650,0000,1620,0010,1450,0010,1520,0010,1240,0010,1420,0000,1430,001
6-28241 0 954-0307 DR-001960 10/04/06 17,15 17,45 D/C HB3/4 1,093 8,388 0,017 33,026 40,502 1,981 0,004 0,604 6-28242 0 954-0307 DR-001961 10/04/06 17,45 17,55 E/F HI1/2 1,150 7,403 0,014 32,761 40,778 1,875 0,006 0,535 6-28243 0 954-0307 DR-001962 10/04/06 17,55 17,80 D/C HB4/3 1,166 8,171 0,016 32,833 40,627 1,829 0,004 0,575 6-28244 0 954-0307 DR-001963 10/04/06 17,80 18,20 E HN2 0,635 6,920 0,012 35,097 39,806 1,459 0,004 0,535 6-28245 O 954-0307 DR-001964 10/04/06 18,20 18,55 F HI1/2 0,967 8,774 0,017 34,699 40,709 1,376 0,004 0,503	0,162 0,001 0,145 0,001 0,152 0,001 0,124 0,001 0,142 0,000 0,143 0,001
6-28242 0 954-0307 DR-001961 10/04/06 17,45 17,55 E/F HI1/2 1,150 7,403 0,014 32,761 40,778 1,875 0,006 0,535 6-28243 0 954-0307 DR-001962 10/04/06 17,55 17,80 D/C HB4/3 1,166 8,171 0,016 32,833 40,627 1,829 0,004 0,575 6-28244 0 954-0307 DR-001963 10/04/06 17,80 18,20 E HN2 0,635 6,920 0,012 35,097 39,806 1,459 0,004 0,546 6-28245 0 954-0307 DR-001964 10/04/06 18,20 18,55 F HI1/2 0,967 8,774 0,017 34,699 40,709 1,376 0,004 0,503	0,145 0,001 0,152 0,001 0,124 0,001 0,142 0,000 0,143 0,001
6-28243 O 954-0307 DR-001962 10/04/06 17,55 17,80 D/C HB4/3 1,166 8,171 0,016 32,833 40,627 1,829 0,004 0,575 6-28244 O 954-0307 DR-001963 10/04/06 17,80 18,20 E HN2 0,635 6,920 0,012 35,097 39,806 1,459 0,006 0,546 6-28245 O 954-0307 DR-001964 10/04/06 18,20 18,55 F HI1/2 0,967 8,774 0,017 34,699 40,709 1,376 0,004 0,503	0,152 0,001 0,124 0,001 0,142 0,000 0,143 0,001
6-28244 O 954-0307 DR-001963 10/04/06 17,80 18,20 E HN2 0,635 6,920 0,012 35,097 39,806 1,459 0,006 0,546 6-28245 O 954-0307 DR-001964 10/04/06 18,20 18,55 F HI1/2 0,967 8,774 0,017 34,699 40,709 1,376 0,004 0,503	0,124 0,001 0,142 0,000 0,143 0,001
6-28245 O 954-0307 DR-001964 10/04/06 18,20 18,55 F HI1/2 0,967 8,774 0,017 34,699 40,709 1,376 0,004 0,503	0,142 0,000 0,143 0,001
	0,143 0,001
6-28246 O 954-0307 DR-001965 10/04/06 18,55 18,70 D/C HB4/3 0,887 7,828 0,015 32,889 39,496 1,350 0,006 0,511	
6-28247 O 954-0307 DR-001966 10/04/06 18,70 19,10 D/E HB3/2 0,684 6,919 0,012 34,052 39,261 1,741 0,007 0,503	0,134 0,000
6-28248 O 954-0307 DR-001967 10/04/06 19,10 19,40 F HI1 0,829 7,034 0,013 34,104 40,763 2,237 0,005 0,579	0,113 0,001
6-28249 O 954-0307 DR-001968 10/04/06 19,40 19,70 D/F HN3/2 0,587 7,205 0,013 34,814 39,860 1,660 0,007 0,529	0,130 0,001
6-28250 O 954-0307 DR-001969 10/04/06 19,70 20,00 F HI1 0,693 7,004 0,014 34,082 40,133 1,699 0,005 0,511	0,122 0,000
6-28251 O 954-0307 DR-001970 10/04/06 20,00 20,40 D/C HB3/2 0,340 7,335 0,013 35,720 40,313 1,513 0,006 0,492	0,130 0,000
6-28252 O 954-0307 DR-001971 10/04/06 20,40 21,35 F HI1 0,302 7,045 0,012 35,554 40,706 1,697 0,007 0,509	0,124 0,001
6-28253 O 954-0307 DR-001972 10/04/06 21,35 22,25 F HI1 0,368 7,438 0,014 34,488 40,172 1,657 0,006 0,564	0,132 0,001
6-28254 O 954-0307 DR-001973 10/04/06 22,25 23,50 F HI1/2 0,346 7,702 0,015 36,183 41,354 1,435 0,006 0,470	0,127 0,001
6-28255 O 954-0307 DR-001974 10/04/06 23,50 23,90 D/E HN2 0,376 7,605 0,015 33,898 40,244 1,483 0,004 0,537	0,149 0,001
6-28256 O 954-0307 DR-001975 10/04/06 23,90 24,25 D HB2/3 0,355 7,407 0,014 34,978 42,703 1,041 0,004 0,507	0,112 0,001
6-28257 O 954-0307 DR-001976 10/04/06 24,25 24,50 C/D HB3/4 0,330 7,273 0,014 35,673 40,784 1,054 0,004 0,452	0,139 0,000
6-28258 O 954-0307 DR-001977 10/04/06 24,50 25,10 D/E HN2 0,466 7,782 0,009 13,341 45,118 8,458 0,003 0,301	0,155 0,002
6-28259 O 954-0307 DR-001978 10/04/06 25,10 25,50 C HB5 0,322 7,455 0,014 35,898 41,357 1,391 0,005 0,492	0,145 0,000
6-28260 O 954-0307 DR-001979 10/04/06 25,50 26,00 D HN2 1,217 7,260 0,015 33,739 41,528 1,164 0,005 0,522	0,128 0,001
6-28261 O 954-0307 DR-001980 10/04/06 26,00 26,65 D/C HB3/4 0,376 7,315 0,014 34,977 40,925 1,344 0,004 0,492	0,127 0,000
6-28262 O 954-0307 DR-001981 10/04/06 26,65 27,25 F/E HI1/2 0,383 7,895 0,015 35,673 41,704 1,299 0,003 0,520	0,136 0,000
6-28263 O 954-0307 DR-001982 10/04/06 27,25 27,40 C/D HI3/4 0,332 7,168 0,014 34,529 41,070 1,127 0,005 0,429	0,126 0,001
6-28264 O 954-0307 DR-001983 10/04/06 27,40 27,60 F/E HI1/2 0,311 6,119 0,012 33,484 39,486 0,791 0,003 0,484	0,122 0,001

6-28265	O 954-0307	DR-001984	10/04/06	27,60	28,10	D/C	HB3/4	0,337	7,454	0,013	36,674	44,122	0,722	0,004	0,441	0,082	0,001
6-28266	0 954-0307	DR-001985	10/04/06	28,10	28,25	D	HB3	0,383	7,038	0,014	36,836	42,776	0,776	0,004	0,496	0,148	0,001
6-28267	0 954-0307	DR-001986	10/04/06	28,25	28,85	D	HB3	0,336	6,163	0,012	37,617	42,346	1,096	0,005	0,511	0,083	0,000
6-28268	0 954-0307	DR-001987	10/04/06	28,85	28,95	E/D	HN2/3	0,407	6,741	0,014	36,681	41,671	1,111	0,004	0,502	0,101	0,001
6-28269	0 954-0307	DR-001988	10/04/06	28,95	29,30	С	HB4	0,487	8,309	0,018	33,503	43,752	0,844	0,003	0,545	0,270	0,001
6-28270	0 954-0307	DR-001989	10/04/06	29,30	29,60	С	HB5	0,402	6,647	0,015	35,849	42,571	1,397	0,004	0,513	0,143	0,001
6-28271	0 954-0307	DR-001990	10/04/06	29,60	29,90	D	HB3	0,304	7,040	0,012	34,848	46,631	1,061	0,004	0,508	0,074	0,001
6-28272	0 954-0307	DR-001991	10/04/06	29,90	30,20	D	HB3	0,225	5,668	0,009	16,970	70,930	0,695	0,003	0,398	0,091	0,002
6-28273	0 954-0307	DR-001992	10/04/06	30,20	31,65	D	DN3/2	0,398	8,291	0,016	27,722	52,429	0,715	0,003	0,587	0,199	0,002
6-28274	0 954-0307	DR-001993	10/04/06	31,65	31,75	С	DB5	0,185	5,285	0,008	13,878	74,430	0,689	0,002	0,370	0,075	0,001
6-28275	0 954-0307	DR-001994	10/04/06	31,75	31,90	D	DN2	0,253	6,471	0,012	20,481	65,238	0,676	0,002	0,475	0,103	0,001
6-28276	0 954-0307	DR-001995	10/04/06	31,90	32,60	С	DB5	0,225	5,235	0,009	20,376	66,376	0,790	0,003	0,370	0,073	0,001
6-28277	0 954-0307	DR-001996	10/04/06	32,60	32,70	D	DN3	0,323	6,853	0,013	33,091	48,794	0,709	0,003	0,494	0,121	0,001
6-28278	0 954-0307	DR-001997	10/04/06	32,70	33,75	D	DN3	0,296	6,313	0,012	34,986	46,681	0,726	0,003	0,472	0,097	0,000
6-28279	0 954-0307	DR-001998	10/04/06	33,75	34,35	E	HN2	0,290	5,950	0,012	37,431	43,228	0,761	0,004	0,478	0,105	0,001
6-28280	0 954-0307	DR-001999	10/04/06	34,35	34,75	E	HI2	0,285	5,674	0,012	36,353	44,889	0,726	0,004	0,368	0,083	0,001
6-28281	0 954-0307	DR-002000	10/04/06	34,75	35,05	D/E	HN3/2	0,285	6,169	0,011	36,715	44,054	0,738	0,005	0,450	0,083	0,001
6-28282	0 954-0307	DR-002001	10/04/06	35,05	35,90	F	HI1/2	0,271	5,602	0,010	36,661	42,726	0,722	0,004	0,436	0,077	0,000
6-28283	0 954-0307	DR-002002	10/04/06	35,90	36,50	F	HI1/2	0,291	5,859	0,011	37,014	43,604	0,750	0,004	0,439	0,084	0,001
6-28284	0 954-0307	DR-002003	10/04/06	36,50	37,40	F	HI1/2	0,225	5,115	0,008	21,376	65,376	0,790	0,003	0,420	0,073	0,001