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L2-BOUNDEDNESS OF THE CAUCHY INTEGRAL OPERATOR
FOR CONTINUOUS MEASURES

XAVIER TOLSA

1. Introduction. Letu be a continuous (i.e., without atoms) positive Radon mea-
sure on the complex plane. The truncated Cauchy integral of a compactly supported
function f in L? (1), 1 < p < 400, is defined by

(€sf(Z)=/ &du(é), zeC e>0.
|

E—7|>e E—z

In this paper, we consider the problem of describing in geometric terms those measures
u for which

/|<68f|2du < Cflflzdu, 1)

for all (compactly supported) functionge L?(x) and some constaudt independent
of ¢ > 0. If (1) holds, then we say, following David and Semmes [DS2, pp. 7-8], that
the Cauchy integral is bounded @ ().
A special instance to which classical methods apply occurs wheatisfies the
doubling condition
w(2A) < Cu(A),

for all discsA centered at some point of gpf), where 2\ is the disc concentric with
A of double radius. In this case, standard Calderén-Zygmund theory shows that (1)
is equivalent to

/|<6*f|2du50/|f|2du, (2)

where
€* f(z) = supl€, f (2)|.

e>0

If, moreover, one can find a dense subsek &f.) for which
€f(2) = gliLno%f () Q)
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exists a.e. () (i.e., almost everywhere with respect 49, then (2) implies the a.e.
(n) existence of (3), for any € L2(u), and

/|<6f|2du < Cflflzdu,

for any functionf € L?(1) and some constat.

For a general, we do not know if the limit in (3) exists fof € L?(u) and almost
all (n) z € C. This is why we emphasize the role of the truncated operé&tgrs

Proving (1) for particular choices g has been a relevant theme in classical
analysis in the last thirty years. Calderdn’s paper [Ca] is devoted to the proof of (1)
when i is the arc length on a Lipschitz graph with small Lipschitz constant. The
result for a general Lipschitz graph was obtained by Coifman, Mcintosh, and Meyer
in 1982 in the celebrated paper [CMM]. The rectifiable curefor which (1) holds
for the arc length measugeon the curve, were characterized by David [D1] as those
satisfying

/L(A(Z, r)) <Cr, zel,r>0, ()]

whereA(z, r) is the closed disc centeredzaf radiusr. It has been shown in [MMV]
that if u satisfies the Ahlfors-David regularity condition

clr<p(a@n)<cr, z€ E,0<r <diam(E),

wherekE is the support oft, then (1) is equivalent t& being a subset of a rectifiable
curve satisfying (4).
A necessary condition for (1) is thHmear growth condition

n(A(z,r)) < Cor, zesptin), r >0, (5)

as shown, for example, in [D2, p. 56]. To find another relevant necessary condition,
we need to introduce a new object. The Menger curvature of three pairwise different
pointsx,y,z € Cis

c(x,y,2) = Rxy.2)'
where R(x, y,z) is the radius of the circumference passing through, z (with
R(x,y,z) =00 andc(x,y,z) =0, if x, y, z lie on the same line). If two among the
pointsx, y, z coincide, we let(x, y, z) = 0. The relation between the Cauchy kernel
and Menger curvature was found by Melnikov in [Me2]. It turns out that a necessary
condition for (1) is (see [MV] and [MMV])

///C(x,y,z)sz(X)dM(y)du(z)SCW(A), (6)
AJAJA

for all discs A. The main result of this paper is that, conversely, (5) and (6) are
also sufficient for (1). It is not difficult to realize that (6) can be rewritter¢és) €
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BMO(u), whenu is doubling and satisfies (5). Therefore, our result can be understood
as ar (1)-theorem for the Cauchy kernel with anderlying measure not necessarily
doubling In fact, the absence of a doubling condition is the greatest problem we
must confront. We overcome the difficulty thanks to the fact that the operators to
be estimated have positive kernels. Following an idea of Sawyer, we resort to an
appropriate “good-inequality” to obtain a preliminary weak form of ti&-estimate.

In a second step, we use an inequality of Melnikov [Me2] relating analytic capacity
to Menger curvature to prove the weak (1,1)-estimatefgruniform ine > 0. It

is worthwhile to mention that this part of the argument involves complex analysis
in an essential way and no real variables proof is known to the author. From the
weak (1,1)-estimate, we get the restricted weak-type (2,2§.0By interpolation,

one obtains the strong-tyge, p), for 1 < p < 2, and then by duality, one obtains
the strong-typép, p), for 2 < p < co. One more appeal to interpolation finally gives
the strong-type (2,2). For other applications of the notion of Menger curvature, see
[L] and [Ma2].

We now proceed to introduce some notation and terminology to state a more formal
and complete version of our main result. We say fhaatisfies thdocal curvature
conditionif there is a constant’; such that (6) holds for any dist centered at some
point of sptu).

We say that the Cauchy integral is boundedIdt{i1) whenever the operatof&,
are bounded or.” (1) uniformly one. Let M(C) be the set of all finite complex
Radon measures on the planev ¥ M (C), then we set

1
C)(2) = / dv(e).
|E—z|>¢ §—z

We say that the Cauchy integral is bounded frtaC) to L1°°(u), the usual space
of weak L1-functions with respect tp., whenever the operato¥ are bounded from
M(C) to L1°°(u) uniformly one.

We can now state our main result.

TaEOorREM 1.1 Let 1 be a continuous positive Radon measure@nThen the
following statements are equivalent.

(1) u has linear growth and satisfies the local curvature condition.

(2) The Cauchy integral is bounded @rf(u).

(3) The Cauchy integral is bounded fromi(C) to L1 ().

(4) The Cauchy integral is bounded frobt () to L1 (w).

Notice that if any of the statements (1), (2), (3), or (4) of Theorem 1.1 holds,
then the Cauchy integral is bounded 0A(w), for 1 < p < oo, by interpolation
and duality. Conversely, if there exisgse (1, co) such that the Cauchy integral is
bounded onL? (1), then the Cauchy integral is bounded bA(x) by duality and
interpolation.
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Using the results of Theorem 1.1, in the final part of the paper we give a geometric
characterization of the analytic capacjty, and we show that, is semiadditive for
sets of area zero.

The paper is organized as follows. In Section 2 we define the curvature operator
K, and we prove that ift has linear growth and satisfies the weak local curvature
condition, thenk is bounded orL.?”(u), for all p € (1, 00). As a consequence, we
get that for eaclu-measurable subsdtc C,

///C(x,y,z)zdu(X)du(y)du(z)SCM(A)-
AJAJA

In Section 3 we explore the relation between the Cauchy integral, analytic capacity,
and curvature. In Section 4 we complete the proof of Theorem 1.1. Finally, in Section
5 we study the analytic capacify. .

A constant with a subscript, such &%, retains its value throughout the paper,
while constants denoted by the lettémay change in different occurrences.

Acknowledgments] would like to thank Mark Melnikov for introducing me to
this subject and for his valuable advice. Also, | wish to express my thanks to Joan
Verdera for many helpful suggestions and comments.

2. The curvature operator. Throughout the papey is a positive continuous
Radon measure on the complex plane. Alsd if C is u-measurable, we set

cz(x,y,A)=f c(x,y.29%du),  x.yeC,
A
and, if A, B, C c C areu-measurable, then

cz(x,A,B)://c(x,y,z)zd,u(y)du(z), x e,
AJB

and
?(A,B.C) = / / / c(x,y,2)2dux)du(y)du(z).
AJBJC

The total curvature ot (with respect tqu) is defined as
(A) = / f / c(x,y,2)%dux)du(y) dp(2).
AJAJA
Also, we define the curvature operatras
KD = [k fOrdn).  xeCf etbon,

wherek(x, y) is the kernel

k(x,y>=fc(x,y,z)2du<z>=c2<x,y,<C), x,yeC.
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For ap-measurablet ¢ C, we set

Ka(f)(x) = / R0y A fduly).  xeC, fetd (.

Thus,
K(f)=Ka(f)+Kc\alf).

We say thatu satisfies thaveak local curvature conditioif there are constants
0 < a < 1 andC> such that for each disa centered at some point of gpf), there
exists a compact subs&tc A such that

u(S) = ap(A) and (S) < Cou(S). (7
In this section we prove the following result.

THEOREM 2.1 Letu be a positive Radon measure with linear growth that satisfies
the weak local curvature condition. Théhis bounded fronL?(u) to LP (), 1 <
p < 0o, and fromM (C) to L1 ().

CoroLLARY 2.2 Letu be a positive Radon measure with linear growth that sat-
isfies the weak local curvature condition. Then there exists a conStanth that for
all u-measurable setd, B c C,

?(A, B,C) < C/u(A)u(B).

In particular,
?(A) < Cu(A).

Proof. SinceK is of strong-type (2,2),

c?(A,B,C) =/ K(xp)du
A

< lxall 2200 1K )l 20
< C\/u(A)u(B). O

From Corollary 2.2 it follows that ifx has linear growth, the local and the weak
local curvature conditions are equivalent.

Some remarks about Theorem 2.1 are in order. The proof dffHeoundedness of
the curvature operator is based on a “gaeidiequality.” The fact thaK is a positive
operator seems to be essential to provingltheboundedness &€ without assuming
that i is a doubling measure. Recall that in [S1], [S2], and [SW] the boundedness
of somepositiveoperators inL? (u) is studied without assuming thatis doubling,
too. Our proof is inspired by these papers.

We consider the centered Hardy-Littlewood maximal operator

M;/.(f)(x) =sup

1
—— du.
r>0 M(A(X,F)) A(x,r)|f| o
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As is well known,M,, is bounded orl.” () for all p € (1, 00) and fromM(C) to
L1°°(w). This follows from the usual argument, by the Besicovitch covering lemma
(see [Mal, p. 40)).

We now prove some lemmas for the proof of Theorem 2.1.

1

Lemma 2.3 If o has linear growth with constar@o and f € Lig,

all x e C andd > 0 we have

(), then for

1 4Cqo
/| @l = .
x—yl|=

In particular,

1 4Co
dp(y) < —.
/|-x—y|>d |X—y|2 d

The proof of this lemma is straightforward. One has only to integrate on annuli
centered akt. See [D1, Lemma 3], for example.

The next lemma shows how the Menger curvature of three points changes as one
of these points moves. Before stating the lemma, let us remark that it € C are
three pairwise different points, then elementary geometry shows that

2d(x, Ly;)

Cx’ 9Z= 9
R e P TP

whered (x, L) stands for the distance fromto the straight line. ,, passing through
¥,z

LemmA 2.4 Letx, y,z € C be three pairwise different points, and lgte C be
such that

Clx—yl < ¥ =yl < Clx—yl, )

whereC > 0is some constant. Then

=]

lx = yllx —z|’

|C(x’yvl)—c(x/,)’»z)| S (4+2C) (9)

Proof. Sincex # y, we havex’ # y by (8). If x’ =z, thenc(x’, y,z) = 0. In this
case, (9) is straightforward:

¢ =]

2
lee,y,2)—c(x',y,2)| = clx,y,2) < = -
lx =yl lx — yllx —z
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Forx’ # y andx’ # z, we have

2d(x, Ly;) 2d(x',Ly;)
lx—yllx—z| |x'=yllx" -z

ety ) —e(¥ sy, 2)| =

d(x,Ly)|x"—y||x"—z| —d(x', Ly;)|x —yl|x —z|
lx —yllx —z[|x" — yllx" —z|
2|d(x,Lyz)—d(xCLyz)|Ix/—yllx/—zl
lx = yllx —z||x" = y|[x" —z]
+2d(x' Ly) Ix" = yl|x" —z| —|x — y|lx —z]
lx = yllx —z[lx" = yllx" —z|

=A+B. (10)

:2‘

To estimate the term, notice thatid(x, L,;) —d(x’,L,;)| < |x —x’|, and so

|x — x|

A<

lx —yllx—z|”
We turn now to the ternB in (10). We have
[ = yllx" 2| = lx = yllx =zl
=[x =yl =lx =y I =zl + (I —z] = |x —z]) [x =yl |
< | =x]|fx"—z|+|x = x|lx = yl.

Thus, using thadl (x', L,;) < |x'—y| andd(x’, L,;) < |x" —z|, we obtain

/! /I _ , _
B <2[x—x'| ( A L)' d(x', Lyz)lx—yl )

lx = yllx —zllx" = yllx'—z| * |x—yllx —z|[x' = yl||x' —z]

!x—x" ’x—x”
Ix—=yllx—z]  [x'=yllx—z]
R
=< (2+2C)¥.
lx —yllx —z|
Now, adding the inequalities obtained farand B, we get (9). O

The following lemma is a kind of “maximum principle” for Menger curvature,
which is essential in the proof of Theorem 2.1.

LeEmma 2.5 Let us suppose that has linear growth with constarify. LetA, B C
C be u-measurable, and assume that for sofhere have

A(x,A,B)<B, xeA.
Then there exists a constafit depending orCg and 8 such that
Ax,A,By<p, xeC (11)
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Proof. It is enough to prove the lemma assuming thatis compact. Other-
wise, we can consider an increasing sequence of compacidgets A such that
n(A\UU2 1 A,) = 0. Then we have?(x, A,, B) < c?(x, A, B) < g, for all x € A,.
Applying the lemma to4,,, it follows thatc?(x, A,, B) < 8/, for all x € C. Hence, by
monotone convergence, we conclude #fdk, A, B) = lim,_o c2(x, A,, B) < B'.

Therefore, we assume thdtis compact. We only have to prove inequality (11)
whenx ¢ A. Letr > 0 be the distance from to A. Then we split?(x, A, B) as

cz(x, A,B) = cz(x, ANA(x,4r), BﬂA(x,4r))
+c?(x, ANA(x, 4r), B\ A(x,4r))
+c?(x, A\ A(x,4r), BN A(x,4r))
+c?(x, A\ A(x,4r), B\ A(x,4r)).

(12)

We estimate each term on the right-hand side of (12) separately. For the first, using
c(x,v,2) <2ly—x|"t <4r~1 we have

2 _4
c (x,AﬂA(x,4r),BﬂA(x,4r)) <3
’
I

y—x|<4r

/ du()duz)
|z—x|<4r

4

< —(Codr)?
r

= 64C2.

For the second term in (12), we use Lemma 2.3:

A(x, ANA(x,4r), B\ A(x,4r)) 5[ du(y)du(z)

YEANA(x,4r) /zx|>4r |z _x|2

C
< —du(y)
yeANA(x,4r) T

<C.

The third term is estimated like the second one witieplaced byy.
Finally, we consider the last term in (12). By the definitionrofthere exists a
pointx’ € ANA(x,2r). Then, ify € A\ A(x,4r) andz € B\ A(x, 4r), we have by

Lemma 2.4: ,

c(x,y,2) <c(x',y,z) +C——.
ly —x|lz—x]
Hence,

?(x, A\A(x,4r), B\ A(x, 4r))

2
-
=c| / — du(Mdp()
yeA\A(,4r) JzeB\A(x,4r) |V —X[7z2 — x|

+2/ / c(x',y, 22dp(y)dp(2)
yeA\A(x,4r) Jze B\ A(x,4r)
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, 1 1
<cr ( / zdu(y)) < / 5 du(z))
ly—x|>4r |y —X| lz—x|>4r 12— X]

+2c2(x’,A,B)
<C+28,

where the last inequality follows from the fact thdte A. The proof is completé.]

LeEmMMA 2.6. Let u be a positive Radon measure that has linear growth (with
constantCo) and satisfies the weak local curvature condition (7) (with constants
0 < @ < 1and(Cy). Then there exists some constgntiepending orCop, C2, and«
such that for each disa centered at some point spt(.) there exists au-measurable
subsetS C A such that

M(S)z%,u(A) and 2(x,5,A)<p, xeC.

Proof. Let A be a disc centered at some point of(gpt Because of (7) there
exists a subsefy C A such that

1(So) = ap(A) and c2(So) < C2u(So).

By Chebysheyv, there exists a subSetc Sp such that

1
H(SD) = S (S0) = %u(A)

and
cz(x7 SO? SO) S 2C27 X € Sl.

Then, for allx € S1, we haver?(x, S1, S1) < 2Co. Applying Lemma 2.5, we conclude
that there is some constaﬁg such thai?(x, S1, S1) < Cé, for all x € C. Therefore,

/

2 / 2C2
(81,81, A) = Cou(A) < " m(S1).

Applying Chebyshev again, we find a subSet $1 such that

1
uis) = Su(s) = %u(m

and

C/
A(x,81,A) < —2, xes.
o

Thus, for allx € S, we havec?(x, S, A) < 4C5/a, and by Lemma 2.5 we get some
constantg such that?(x, S, A) < g, for all x € C. O
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LEmMA 2.7. Supposeu has linear growth with constanfy. Let Q ¢ C be a
square andf € Lt _(u), f > 0. Set

loc

fi=fxo and fo=f—fi.

Lete > 0 and R > 2 be given. Then there exists some cons@gt, depending on
R, &, and Cp, such that for allx, xg € Q and for allw € RQ\ 20 we have

K(f2)(x) = (A+e)K(f)(w)+CpreM,(f)(x0).
Proof. We splitK (f2)(x) as
K(fz)(X)=/ / c(x, 3,22 f () dp(y)du(z)
yg20Q JzeC
=/ / c(x, ¥, 22 f () dp(y)du(z) (13)
y€2Q Jz€3RQ

+ / / c(x, ¥, 202 f () dp(y) du(z).
y¢€20 JzZ3RQ

To estimate the first integral on the right-hand side of (13), we apply Lemma 2.3:

/ / c(x,y, 202 f () dp(y)du(z)
y¢20 Jz€3RQ

1
SC/ / ——/Mdp®y) | du(2)
2e3rQ \Jly—xol>(1(0)/2) |y — ol

1
C —M d
< /zeml(g) k0 dn(2)

< CM, f(x0), (14)

wherel(Q) is the side length 0D.
We split the second integral on the right-hand side of (13) into two parts:

/ / c(x, ¥, 22 () dp(y)du(z)
y¢€20 Jz¢3RQ

_ / / c(t, v, D2 () dp () dp ()
ye3RQ\20 Jz¢3RQ

+ / / et v, D2 () () dpc2). (15)
y€3RQ Jz¢3RQ
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To estimate the first integral on the right-hand side of (15), we apply Lemma 2.3
again:

/ / c(x, 3,22 f () dp(y)du(z)
ye3RO\2Q Jz¢3RQ
1
= C/ f) </ 5 du(z)> du(y)
y€3R0\20 Iz xo|>21(0) 12 —xol

C -
< /} rona O Q) du(y)
< CM,, f (x0). (16)

Finally, we only have to estimate the second integral on the right-hand side of (15).
If y,z € 3RQ, sincex, xg,w € RQ, we can apply Lemma 2.4 and obtain

[
ey, 9) — .y, < C—— &
|y —xollz — xol
Then
2 1(0) 2
c(x,y,2)° < (C(a), y,z)+C—>
|y — xollz —xol

1(Q) )2.

< (48)c,y,22+C(1+e7Y) (—
|y — xollz —xol

Therefore, applying Lemma 2.3 twice,

/ / c(x, ¥, 22 f () dp(y)du(z)
y€3RQ Jz¢3RQ

< (1+8) / f c(@, 3. D2 (1) dp(y) dp(z)
y€3RQ Jz¢3RQ

2
+C(1+e7t / / Q) S dup(y)du(z)
y#3R0 Jze3R0 |y — |y —x0l?lz —xol?

< (A+e)Kf(w)+C(1+eH)I(0)?

1 1
X/ s F () du(y) 5 du(z)
ly—xol>2(Q) |y — X0l lz—xol>21(0) 12— %ol
< A+)Kf (@) +C(1+e )M, f (x0). (17)
Adding inequalities (14), (16), and (17), the lemma is proved. O

It is easy to check that if > 0, thenK (f) is lower-semicontinuous. That is, the
setQ; :={x € C: K(f)(x) > A} is open for each.. Our proof of Theorem 2.1 uses
Whitney's decomposition of this open set. In the next lemma, we state the precise
version of the decomposition we need.
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LemMma 2.8 If Q c Cis open,Q # C, thenQ can be decomposed as

o
Q=]Jox
k=1

where Q; are dyadic closed squares with disjoint interiors such that for some con-
stantsk > 20 and D > 1, the following hold:
(i) 200k C ©2;
(i) ROkNQC #0;
(i) for each square),, there are at mosD squaresQ ; such thatl0Q,N10Q; #
@.

Moreover, ifu is a positive Radon measure énand . (2) < +o0o, we can choose
some subfamilyQy, }i>1 of { Ok }x>1 such thatl0Q, N10Qy, =9, ifi £ j,and

°° 1
1 (U Qs,-> > S,
i=1

Proof. Whitney’s decomposition for closed squares satisfying (i), (ii), and (iii) is a
well-known result. See, for example, [St1, pp. 167-169] or [S2]. Let us prove that we
can choose some subfamil@y, }i>1 C {Q«}r>1 as stated in the lemma. We assume
that the squarefQy }x>1 are ordered in such a way thatQ,,) > w(Q,), if m < n.

We takeQ,, = Q1. By induction, ifQ,,, ..., O, have been chosen, then we define
Qs,., as the squar@; such that

100, N10Q, = --- = 100, N10Q;, = (18)

andk is minimal with this property. In other word€);, ,, is the square satisfying
(18) of maximalu-measure.

Observe that, by condition (iii), there are at mést- 1) D squaresQ; such that
100y intersects some of the squareg0, ..., 10Q;, ,. So atleast one of the squares
1001, ...,1004-1)p+1 does not intersect any of the squareg1Q...,10Q;, ;.
Thens, must satisfy

sn <(m—1)D+1 (29)

Now, since{u(Qx)}k>1 IS nonincreasing, by (19) we have

nD
7 ( U Qk) < Du(Qu-yp+1) < Du(Qy,)-

k=(n—-1)D+1

Therefore,

i=1 n=1 k=(n—-1)D+1

u(@@)fiu( Llj Qk)SDgM(an)'
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Proof of Theorem 2.1.We prove that there exists©n < 1 such that for alt > 0
there is somé > 0 for which the following “goodi-inequality” holds:

plx s K(f)(x) > A+, My f(x) <62} < A=—nmui{x: K(H(x) > A}, (20)

for f € LP(w), f > 0. LetQ) ={x € C: Kf(x) > A}. ThenQ, is open. Decompose

Q, as
o0
=],
k=1

according to Lemma 2.8. Choose a subfani};c; of { O« }x>1 in such a way that
10QiﬂlOQj =@,ifi,jel,i#j,and

1
M (U Q,-) > S ).

iel

We denote by the set of indices$ € I such that there exists somge Q; Nsptu
so thatM, f(x;) < éi. Also, we denotel, = I \ I;. For eachi € I1, we define
A; = A(x;,3[(Q;)). Then we have

Q; C30Q; CA; C100; C ;.

On the other hand, since the weak local curvature condition holds, by Lemma 2.6 we
know that there is some constaghtsuch that for each disd;, i € I1, there exists a
u-measurable subss&t C A; such that

WS = %M(Ai), A(x,Si, A < B, forallx e C, (21)

wherepg depends oy, Co, anda. Fori € I, we defineA; = S; = Q;.
SinceA;NA; =9,ifi,jel,i# j, wehave

u (U S,») DY)

iel iel

= 2 D nQ)
iel
= EM(QA)

Therefore,

(smUs) (1——) 10(S2,). (22)

iel
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We prove below that for eache I; we have
o
n(Sin{x: Kf(x) > A+e)r}) < apHAD:

if 8 =3(e, ) is small enough. Then, by (22) and (23),

PKf > A4+e)r, M, f <A} <u <QA\US,->

iel

(23)

+u ((U Si) NKf>A+e)A, M, f < 8A}>

iel

= (1-35) @)+ n(Sin{Kf > A+e)r})
iely
= (1-35) 1@+ 55 2o k()
ielh
= (1—E+8—D>M( )

= (1-55) .

Then, takingy = «/(8D), (20) follows.
We now prove (23). Observe that, due to (21),fer I1, we have

K, (XSi)(X) = cz(x, Si, A,') <B, forallxeC.

Then, ifi € I, we have
4
plx € St Ka,(fxa;)(x) > (e/Hr} < 87/5 K (fxa;)du

4
= _/fXA,'KA,' (XS,)dM

/ fdu

—AM(A DMy f (xi)

'8 w(A;)

= @M(A i)

(24)

where the last inequality holds provided we choése (¢a/32Dg). In fact, we set

5=8(e.a) = min{ — fr ¢
= E,0) = T~ YA A~ [
4CR /a4 32DB 4C3



L2-BOUNDEDNESS OF THE CAUCHY OPERATOR 283

whereCp /4 is the constant given by Lemma 2.7 afiglis some constant, which we
define later.

Due to the properties of Whitney’s decomposition, there exists a ppint(R Q; \
20,)N S, and if moreovei € I1, then by Lemma 2.7,

K(Fx0120,) 0 = (1+3) KF @)+ CroejaMiuf (x)
= (1+3) 4+ Cresasn = (1+3) 0
Consequently, it € Q;,i € I, andK f (x) > (1+¢)A, then
K(f120)(x) > ). (25)
We prove that
Koy, (fx20;,) () < Z)», xeQ;,iel. (26)
SinceK = Ka, +Kc\a,, (25) and (26) give
Ko, (fx8)(0) = Ko, (£ x20,) () > Z0 27)

providedx € Q;, i € I1, andK f (x) > (14+¢)1. Now (23) is a consequence of (24).
Let us check that (26) holds:

Koy, (fx20) )

1
S ( / 5 du(z)> duy)
y€20; zgn; |y —z

1
< C/ F) (/ —zdu(1)> du(y) (because ®; C A;)
ve20; ly—zi=1(0n/2 |y =2l

f(»dup(y) (by Lemma 2.3)

<C——
Z(Ql) yEZQ,‘
< C3M, f(x;) (definingCs appropriately)

= ZA (by the choice o).

Hence (20) follows.
It is well known (see [St2, p. 152] or [D2, p. 60]) that from (20), one gets, for
p € (1,+00),

IKfllLry < CollMu fllLegy < Cpll fllLe o, (28)
provided f > 0 and
inf(1, K(f)) € L (w). (29)
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Let us see that iff has compact support and is bounded by some condtatfiten
(29) holds. Suppose that g C A(0, R). ThenK (f) < A-K(xa(.r))- FOrx €
C\ A(0, 2R), with d = |x|, we have

K(xa0.r)®)

=c?(x, A0, R), C) = c?(x, A(0, R), A0, 2d)) +c?(x, A(0, R), C\ A(0, 2d)).
(30)

Now we estimate the first term on the right-hand side:

4
2raoma02)z [ [ 2
YeA(O,R) JzeA(0,2d) |y — X|

1
scf [ du»duc)
yeA©,R) Jzea(0,24) d

1
< CQ/ du(y)
yeA(O,R)

1
-cZ / xao.r () di(y)
yeEA(x,2d)

<CM,xa©,Rr) (X).

The second term on the right-hand side of (30) is estimated as

a2 dp(y)dp(z)

1
<C p / du(y)
yeA(O,R)

1
= CE/ Xa0,R) (V) du(y)
yeEA(x,2d)

<CMyxa@,R) (X).

?(x, A0, R), C\ A(0, 2d)) 5/ /
yeA(O,R) /|z—x|>d

Thus,

inf (1, K(f)) <inf (1, A-K(xa@©.r) < xa0,28) +A-CM,xA©,R):

and so infl, K(f)) € L?(u). Now, (28) holds forf > 0 bounded with compact
support, and a routine argument shows tkiat bounded orl.” (w).

The boundedness & from M (C) into L1 (x) can be proved as follows. One
checks easily that (20) also holds for a positive finite measwré/ (C):

pfx: KW)(x) > A+e)r, Muv(x) <81} < (L—nufx : KW)(x) > A},

wherekK (v) andM,,v are defined in the obvious way. As before, this inequality yields
the desired weak (1,1)-estimate. O
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The curvature operatd behaves like a Calderén-Zygmund operator. Moreover, it
enjoys the very nice property of being a positive operatqu. i§ a doubling measure
with linear growth that satisfies the local curvature condition, it can be checked
that K is bounded fromi 2, (1) to LY(n) and fromL>(u) to BMO(). Then, by
interpolation,K is bounded or.” (w), for p € (1, 00).

3. Relation of curvature with the Cauchy integral and analytic capacity. The
relation between the Cauchy integral and curvature stems from the following formula
[Me2], whose proof is a simple calculation (see [MV], for example).

LemMa 3.1 Letx,y, z € C be three pairwise different points. Then

1 1 1
N 2:2R< _ _ _) 31
oy D= 2R e TGy G-o0-n) &Y

For anyu-measurable set C C, we set

c2(A) = / / f ryzeacCey, 02dp)dp(y) du(z).

lx—yl>¢
lx—z|>¢
ly—zl>e¢

The following lemma is a generalization of an identity proved in [MV].

LemMma 3.2 Suppose that has linear growth, and considér: C — [0, 1] to
be u-measurable. Then, for any-measurable set ¢ C, we have

2 / 6. Gea) Zhdpe

=/// eyl = £€(X. 3, 22 XA () XA (N(2) dp(x) dp(y) du(2)

[x—z|>¢
ly—zl>e¢
~4Re[ 0T D du+0(u(w) (32)
and
) =6 [ [ F it 0 (). (33)

Proof. By (31),

/// oyl = €06, ¥, D7 XA ) XA (D) dpu(x) du(y) dpu(z)

ly—zl>¢
lz—x|>¢
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=2 [ [ e

ly—zl>e¢
lz—x|>¢
xRe( t 1 1_>d ) dp () dp ()
G-0G-2  G-NGy) (-2 _g ) MUK
=I[+I1+III. (34)

We first estimate the integrat

1
I=2Re/// oyl o e XA XAWA(@D) ———m=="dpu(x) dpu(y) d(2)
oyl>e y—x)(z—x)

lz—x|>¢

1
—2Ref// =y > e XA XaW(2) —————=dpux)du(y)du(z)
lz—x|>¢ (y—x)(z—x)

ly—zl<e

=11+ D.

We clearly have

h
h= 2Re[ / ( [ = du(z)> ( [ du(y)> du(X)}
A \J|z—x|>e Z—X x—y|>e Y —X

=2 Re/ Geh(x)-6cxa(x)du(x). (35)
A

Now we proceed to estimate the integfal Notice that ifly —z| <& < |z —x]|,
then

’ 1 1 B y—2z - 1
(y—x)z=x) |y—x? ly—x12G@=x)| = ly—x|?
and so
‘ 1 2
— | < 5
O—x)z—x)| " |y—x]
Thus,

1
|12I§4/// |x—y\>sXA(x)XA(y)h(Z)|y_x|2dﬂ(x)dﬂ()’)dﬂ(z)

lz—x|>¢
ly—zl=e

1
< C€/XA(X) (/ zdu(y)> dp(x)
[x—y|>e |y —x|
< Cu(A). (36)

Interchanging the roles aof andy, it easily follows that

1I=1 (37)
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We turn now our attention td//:

1
111=2Re/// e = XA XAWA(@) ————=—="du(x)d(y)dp(z)
d>e (x—=2)(y—2)

lz—x|>¢

1
—ZRG/// y—z > e XA XAW(2) —————=-du(x)dpn(y)du(z)
x—2)(y—2)

e
=111+ 11D.
We have
11 =2 ReU (/ xalx) du(x)) (/ xa() d,u(y)) h(z)du(z)}
lz—x|>e X —2Z ly—z|>¢ -2
=2Re [ [€:xA ) ?h(z) du(2). (38)

We need an estimate fdd I>. If |[x —y| <& < |y —z|, then

1 1 _ xX—y _ 1
x—2)(y—2) Ix—zI?| |Ix—z20=2)| lx—z*
and so
1 2
—_— S 2°
x—2)(y—2)| |x—2
Therefore,

1
|111] §4f/f ly—zl > e XA(X) XA (¥)h(2) |x_z|2du(X)du(y)du(z)

lz—x|>¢
x—yl=e

1
< CS/XA(X) (/ 5 du(z)> dp(x)
|z—x|>¢ |x —z]

= Cu(A). (39)

Because of (35), (36), (37), (38), and (39), we get
I+11+111= 4Re/ Ch(x) Boxa(x)du(x)
A
+2 / 66 x4 (2)12h(2) A (2) + O (11(A)).

From this equation and (34), we finally obtain (32). Identity (33) follows readily from
(32) by takingh = 4. O
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The analytic capacity of a compact sek c Cis

’

Y(E) = S}Jplf/(oo)

where the supremum is taken over all analytic functignsC\ E — C such that
| 1 <1, with the notationf’(co) = lim,_ » z(f (z) — f(c0)).

Melnikov proved an inequality that relates curvature to analytic capacity, which we
proceed to describe. Lét ¢ C be compact, and assume thatsupports a positive
Radon measurg that has linear growth with consta@iy and such that

?(E,p) = / / / c(x,y,2)2dux)du(y)du(z) < +oo.
EJEJE

Then Melnikov’s inequality [Me2] is

u(E)3/?
(u(E)+c2(E, w)"/?

Y(E) = Cq (40)

whereCy4 > 0 is some constant depending only 65 For our purposes, we need a
slightly improved version of (40), which we state as Theorem 3.3. Given a compactly
supported measure € M(C), we denote by6(v) the locally integrable function
(1/z)*v.

THeEOREM 3.3 Let E Cc C be compact, and let be a positive Radon measure
supported orE that has linear growth with constagi and such that?(E, i) < co.
Then there exists a complex finite measusipported ort such that||v|| < w(E),
|6(v)(2)| < 1forall z € EC, |€(v)(z)| < 1for almost all (with respect to Lebesgue

u(E)¥?

measure) € C, and
‘fdv
W(E)+c2(E, 1))

whereCy is some positive constant depending@n

1/2°

>Cy
(

Proof. Given a positive integer, seté = 1/n. In [Me2], Melnikov shows that
there exist finitely many discAj.”), pairwise disjoint, such thak, = Uj Ai.”) C

Vs(E) (whereVs(E) is thes-neighborhood of), 27 Zj radius(Aj.”)) < u(E), and

y(En > co PO
T (B +(E )P

Leth, be the Ahlfors function oF,,. (That is,k, is analytic on the complement &f,,
| f(2)| <1,z€ C\E,, andf'(0c0) = y(E,).) Setv, = h,(z)dz, wheredz = dzr,,
I, = 9E, (a finite union of disjoint circumferences), amg(z),z € I';;, are the
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boundary values of,,. Then€(v,)(z) = h,(2),z € ES, and€(v,)(z) =0,z € ﬁjn.
Hence,|6(v)(z)| < 1, for almost all (with respect to Lebesgue measure) C.
Moreovet,|v, || < n(E), for eachn.

Passing to a subsequence if necessary, we can assumg that in the weak
x-topology of M (C), for somev € M (C), and we also assume thétv,,) — A in the
weaksx-topology ofL>° (C) (with respect to Lebesgue measure), for sanael. > (C).
Since(v,) converges in the sense of distributionsé@), we geté(v) = h.

We clearly have
‘/du lim /dv,,
n—oo

and sov fulfills the required conditions. O

n—oo

4. Boundedness of the Cauchy integral.We state now some known results,
which we use in the proof of Theorem 1.1. The following proposition is basic for the
study of the boundedness of the Cauchy integral fadiC) to L1 (u).

ProrosiTiON 4.1 Let X be a locally compact Hausdorff spage,be a positive
Radon measure o, andT be a linear operator bounded from the spade X) of
complex finite Radon measures &ninto ¢o(X), the space of continuous functions
on X vanishing atoo. Suppose, furthermore, thdt*, the adjoint operator off,
boundedly send&f (X) into ¢o(X). Then the following statements are equivalent.

(a) There exists a constant such that

plx 1 T*v ()| > A} < C”/\L”, Vi > 0,

for all v e M(X).
(b) There exists a constait such that, for each Borel sét C X, we have

w(E) < Zsup{/hdu 1 h pu-measurable,

sptth) CE,0<h <1, |T(hdpn)(x)|<C,V¥x € X}

(c) There exists a constaft such that, for each compact sEtc X, we have
n(E)

< CsupH/dv

Moreover, the least constants in (a), (b), (c), which we denot€ QyC;, and C,
satisfy

‘v e M(X),sptv) C E, vl < w(E),|Tv(x)| <1, Vx e x}.

ATlc, <Cy<AC,,  ATICYP<c.<AC,+D),

for some constand > 0.
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The implication (a)= (b) is proved in [Ch, p. 107]. It is trivial that (b} (c),
and (c)= (a) can be proved as in [Mu, pp. 78-79] or [Ve2]. We give a sketch of the
argument for (c)= (a).

Proof. Suppose that (c) holds. Let! be the constant that appears in (c). For
A > 0andd € [0, 27), let

Epo={xeX:T*v(x) e A(re'’, pr/4)}.

CoveringC by disksA(rei?, pi/4), one can see (as in [Mu, pp. 78-79] or [Ve2])
that (a) follows if, for allA > 0 andé € [0, 27),

(Erg) < c”kl”. (a1)

Let us see that (41) holds. There is a compaci#sgt C E; g such thaj(Fy ¢) >
1(E>.0)/2. Letn € M(X) be such that sph) C Fy.e, [nll < n(Fig), [Tn(x)] <1
for all x € X, andu(F; 0) < 2p~1|[dn|. Then

gm(m) < / Aeiedn‘

< /T*(u)dn‘—i—‘/(AeiQ—T*(v))dn

P
—A
+ 22l

< f T(n)dv

0
<l +Z)»M(FA,0)~

Thereforew(Ej 9) < 2u(Fi ) < 8|[vIl/(pA). O
See also [Vel] for an interesting application of Proposition 4.1.

Remark 4.2. To apply the lemma, we use a standard technique. We ref6labg
the regularized operat&,, defined as

Gev(x) = /re(x — ) dv(y),
wherev is a complex finite measure and whegds the kernel

,  if|z] > &,

N|N|I—‘

re(z) =
—, if |z <e.
o2
Then%.v is the convolution of the complex measurwith the uniformly continuous
kernelr,, and so6.v is a continuous function.
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Also, we have
Xe
e’

1
re(z) = —*
Z

wherey, is the characteristic function @f(0, ¢). If v is a compactly supported Radon
measure, we have the identity

Assume now thafé(v)| < A a.e. with respect to Lebesgue measure. Since

Lo

‘ Xe
e

we obtain|€. (1) (z)| < A, for all z € C.
Also, notice that

~ 1
|6 (1) (x) — 6. (V) (x)| = =

/l | (y—x)dv(y)| < CoM,v(x).  (42)
y—x|<e

Hence, ifu has linear growthg, is of strong-type(p, p) uniformly in ¢ if and only
if €. is of strong-type(p, p) uniformly in e. Also, €. is bounded fromM (C) into
L1°(u) uniformly in ¢ if and only if the same holds fo€, .

For the proof of Theorem 1.1, the following proposition is also necessary.

ProrosiTioN 4.3 Let u be a positive continuous Radon measure(@nilf the
Cauchy integral is bounded ab” (1), for somep € (1, 00), or if it is bounded from
LY(w) into LY*°(w), thenu has linear growth.

The proof of this result can be found in [D2, p. 56]. Let us remark that, in fact, in
[D2, p. 56] David states only that if the Cauchy integral operator is of strong-type
(p, p), for somep € (1, 00), thenu has linear growth. With some minor changes in
the proof, one can check that if the Cauchy integral is of weak-type (1,1) uthners
linear growth also.

4.1. Proof of the equivalence between th&boundedness of the Cauchy inte-
gral and the linear growth condition plus the local curvature conditionuof If the
Cauchy integral operator is of strong-type (2,2)has linear growth by Proposition
4.3 andu satisfies the local curvature condition by (33) of Lemma 3.2.

Assume now thap has linear growth and satisfies the local curvature condition.
First we show that the Cauchy integral operator is bounded fai@) into L1°° ().
That is, we prove the implicatiofl) = (3) of Theorem 1.1.

We see that the operafég, the adjoint ofég, is bounded frond (C) into L1-°° ()
uniformly in &, which is equivalent to the uniform boundednesséef. M(C) —>
L1>°(u). Todo so, we apply Proposition 4.1 to the oper@prtakingx = C. (Notice
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that €, and%* are bounded fron (C) into 6o(C), with the norm depending on
¢.) We show that statement (c) of Proposition 4.1 holds; that is, for each compact
set E ¢ C and eache > 0, there exists some complex finite measure M (C)
such thatu(E) < C| [ dv| (with C independent of), spi(v) C E, ||v]| < w(E), and
|, (v)(x)| < 1forallx eC.
Sinceu has linear growth and satisfies the local curvature condition, the curvature
operator is bounded ob?(u). Hence ¢2(E) < Cu(E). If we apply Theorem 3.3 to
the compact sef and the measung, z, we conclude that there exist a constégt> 0
and a complex measurec M (C) such that sg) C E, ||v|| < w(E), |[6(v)(x)| < 1
forall x € E€, |6(v)| <1 a.e. with respect to Lebesgue measure, and

Jo

with Cs > 0. By Remark 4.2 we havk%g(u)(x)l <1, for all x € C. The measure
has all the required properties, and hence the Cauchy integral is boundedf{i@jn
into L1 ().
Now, we prove that the Cauchy integral operator is of restricted weak-type (2,2).
That is, for eachu-measurable set ¢ C and allx > 0,

1(E)¥?
1(E)+c2(E, 1))

> Csu(E),

> Ca 12
( /

A
plx e C:[6:(xa) ()| > A} < C%’

whereC is some constant independentsof
Set

E, = {x eC: |<68XA(x)| >)»}.

Since%g is bounded fromM (C) into L1 () uniformly in ¢, by (b) of Proposition
4.1 there exists a constafitsuch that for alk > 0 there is a function : C — [0, 1]
such thati(x) =0, if x € E;,

M(E,\)SZ/ hdu, and |€.(h)(x)|<C, forallxeC.
E)

By (42) we get6.(h)(x)| < C+ Co, for all x € C.
Applying (32) we obtain

2
w(Ey) < 2/ hdp < ﬁ/ (GexalZhd

E
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1
< ﬁ//ﬁx—yl = €Y, D2 XA XA dp) dp(y) dp(2)

lx—z| >¢
ly—z| > ¢
4 _ C
s /A €T du| + 500

1 C C
= ﬁ(KXA’XA>+ﬁ/A|<€e(XA)idM+ﬁM(A)

C C
< ﬁ/Ame(XA)M,U«‘FPM(A)-

The only task left is to estimate the integﬁl|<6£(XA)|du. By (33), sinceK is of
strong-type (2,2), we obtain

/A|‘€e(xA)|dM < u(a)v2 (/A |(€8(XA)|2d,u)l/2

< Cp()3(c(A) +pu(A)
< Cu(A).

Therefore €, is of restricted weak-type (2,2) uniformly en

Finally, since the Cauchy integral is of weak-type (1,1) and of restricted weak-
type (2,2), by interpolation (see [Gu, p. 59] or [StW, p. 197]) we conclude that it
is of strong-type(p, p), for 1 < p < 2. By duality, it is of strong-typd p, p), for
2 < p < o0, and again by interpolation it is of strong-type (2,2).

4.2. Proof of the remaining implications in Theorem 1.X\Me have provedl) <
(2) and(1) = (3). On the other hand, it is obvious th&) = (4). So if we show that
(4) = (1), the proof of Theorem 1.1 will be complete.

Suppose that the Cauchy integral operator boundedly sehde) into L1 ().
By Proposition 4.3 we know that has linear growth. To prove that satisfies the
local curvature condition, we need the following lemma.

LemMma 4.4. Letu be a positive Radon measure @nSuppose tha€, is bounded
from L1(w) into L1°°(w) uniformly ine; that is, there exists some constanisuch
that

wlx: 6 f ()| > 1) gc”f”#

’

forall A >0, f € LY(u), ande > 0. Then there exists a constafit depending orC
such that for any compact setc C there is au-measurable functioh : C — [0, 1]
(independent of) such that, for alle > 0,

h(x)=0, forallx¢E, (43)
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w(E) <8 [ hdu, (44)
|6h(x)| < C’, forallx ¢ E and a.e. ) x € C, (45)

and, for alle > O,
|6sh(x)| < C"+Co, forallxeC. (46)

Proof. Observe that (46) follows from (45), since for eack 0 we have

€y (x)| = ‘(iz)(g*(@(h)>(x) <Cg, foralxeC,
TE

and by (42),
[66(0) ()] < |@e(h) | g, +Collhll o) < Co+Co.  Torallx e C.

So, givenE C C compact, we must show that there exists a functianlC —
[0, 1] satisfying (43), (44), and (45). By the Lebesgue-Radon-Nikodym theorem, we
have
du g = gd¥Hi +do,

whereg¢? stands for the 2-dimensional Hausdorff measgre,L*(37;), ¢ > 0, and
o is a positive finite Radon measure that is singular with respei£to there is a
Borel setEqg C E such that2(Eg) = 0 ando (E) = o (Ep).

Let us consider the case(Eg) < u(E)/2. Sinceu(E) = [E\Eogd%z-i-a(Eo),
we havefE\Eogd%Z > u(E)/2. TakeN e N and F C E \ Eg compact such that
g(x) <N, forallx e F,andu(F) = [, gd¥? > u(E)/4.

Since?és is bounded fromL(x) into L1*°(u) uniformly in &, we can apply
Proposition 4.1 to the spacé= spt(n). We conclude that there exists some function
he : F — [0,1] so thatu(F) < 2 [ h.dp and |@.he(x)| < C, for all x € spt(w).
Also, by (42) we have

[6: (he) ()| < [@ehe) | o)+ Colllel ey < C+Co=C',  forallx € F.
(47)

There is a sequendey}; tending to zero such thah,, ); converges weak in
L (1) to some functiorh € L*°(u). Then it is straightforward to check that

n(F) SZ/hdM,

h(x)=0, forallx¢gF,
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and
7]l ooy < 1.

Also, we have
lemoo%gkhgk (x) = @h(x), (48)
for all x € C, since
|G fre, (X) —Ch(x)| < [Bephey (x) —Ghe, (x)| + |Chey (x) —6h(x)| =T+ 11. (49)

The term/ tends to zero ak — oo, since

1 =

h 1
f Mdu(y)’ < / NdH?(y) = 27 Ne.  (50)
ly—x|<er Y4 ly—x|<ex [V =X
Now we consider the term/ in (49):
1
11 = /—(hsk(y)—h(y))du(y) :
FY—X

Notice that, for any fixed e C, the functionyr(y)/(y —x) belongs toL(n), as
dur = gd¥%?, with g bounded. Thereford,/ tends to zero ak — oo. Hence, (48)
holds.

By (47) and (48) we get tha®h(x)| < C’, for all x € F. It is easily checked that
%h is continuous orC. Therefore, by the maximum principlgéh(x)| < C’, for all
x € C. Thush satisfies (43), (44), and (45).

Suppose now that(Eg) > u(E)/2. LetG C Eg be compact withu(G) > u(E)/4.
By Propositiog 4.1 there exists some functibn: G — [0,1] so thatu(G) <
2 [ hedp and|6.h.(x)| < C, for all x € spt(). As above, by (42) we obtain

|6s(he)(x)| <C, forallxeg. (51)
We show that there is some constéhtsuch that, for allw € C satisfying
d(w, G) = 2e, (52)
we have
|€che(w)| < C7. (53)

Since6 h.(w) = 6h.(w) by (52), we get thaféh.(x)| < C7, forall x € C, such that
d(x, G) > 2¢, by the maximum principle. Now, we can take a sequgngk tending
to zero such thath,, )x converges weak in L°°(w) to some functiom: € L™ (u)
satisfying

w(G) SZ/hdu,
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h(x)=0, forallx¢GaG,

and
IRl Loy < 1.

Also, for all x ¢ G, we have

lim @hg, (x) =€h(x).
k—o00

As #2(G) =0, (43), (44), and (45) hold.
Let us prove (53) fow satisfyingd (w, G) = 2¢. Letxg € G be such thatw —xg| =
2¢. We denote

he 1= he- XA(xo,4)

and
ha,Z = hs _hs,1~

Then, by (51),
|(€sh£ (w)} = ‘%shs(xo)’ + ‘%ehs(w) _%shs(xo)’
<C+ ’%shs,l(w)‘ + ‘(gsha,l(xoﬂ + |(68h8,2(w) _(Gshs,Z(xO)}-

Now, sinceli.| < 1, itis easily checked tha6 . 1(w)| < C, [6:he 1(x0)| < C, and
|Bohe 2(w) —€@ohs 2(x0)| < C for some constant; (53) follows. O

We can now continue the proof ¢#) = (1). By Corollary 2.2 we only have to
prove thatu satisfies the weak local curvature condition. Given a dist C, there
exists a functiorh : C — [0, 1] (independent of) such that

n(A) < S/hdﬂ,

h(x)=0, forallx¢A,

and
|6.h(x)| <C, forallxeC,

with C not depending on the dist. Consider the set

S:{zeAzh(z)zl—lB}.

M(A)fB(/hd,u—}—/ hd,u)
S A\S

1
<8 (M(S) + 1—6M(A \ S))

Then

15
=8 <M(A) ~ 1M A\ S)) :
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Therefore,
n(A\S) < E"u«(A),
— 15
and so
u(S) = iM(A). (54)
— 15

By equation (33) applied to the measuiré v, we have

@ hdp) =6 [ (6. Phdiu+ O(u(a)) = Cua).
A

for all ¢ > 0, and sincéi(x) > (1/16), for x € S, we obtain
c2(S) <16°c2(S. hdp) < 16°cZ(A, hdp) < Cu(A) < Cu(S),

for all ¢ > 0, and consequently?(S) < Cu(S). Therefore, by (54)u satisfies the
weak local curvature condition. O

Remark 4.5. After this paper was written, Nazarov, Treil, and Volberg [NTV1]
obtained some results that are related to the ones proved here. In particular, they
proved that ify is a positive Radon measure én(not doubling, in general) with
linear growth and iff" is a Calderon-Zygmund operator such that

/|TXQ|2dM < Cu().

for all squaresQ c C, thenT is bounded orL?(x). They also have shown that the
L2-boundedness df implies the weak (1,1)-boundedness.

5. A geometric characterization of the analytic capacityy,. Theanalytic ca-
pacity . (or capacityy. ) of a compact set C C is defined as

y+(E) = sup| f'(00)|,

where the supremum is taken over all analytic functipnsC\ E— C, with | f| <1
on C\ E, which are theCauchy transform®f some positive Radon measure
supported ort. Obviously,

Y(E) = y4+(E).

The analytic capacity was first introduced by Ahlfors [Ah] in order to study
removable singularities of bounded analytic functions. He showed that a compact set
is removable for all bounded analytic functions if and only if it has zero analytic
capacity. However, this did not solve the problem of characterizing these sets in
a geometric way (this is known as Painlevé’s problem), because of the lack of a
geometric or metric characterization of analytic capacity. In fact, it is not even known
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if analytic capacity as a set function is semiadditive; that is, if there is some absolute
constantC such that
Y(EUF) = C(y(E)+y(F)),

for all compact set&, F c C (see [Mel], [Su], [Vi], and [VM], for example).

On the other hand, as far as we know, the capacitwas introduced by Murai [Mu,
pp. 71-72]. He introduced this notion only for sets supported on rectifiable curves,
and he obtained some estimates involvingabout the weak (1,1)-boundedness of
the Cauchy transform on these curves.

Also, until now, no characterization ¢f. in geometric or metric terms has been
known.

In the following theorem, we obtain a more precise version of inequality (40), and
we get a geometric and metric characterizatiopofor compact sets with area zero.

TaeoreM 5.1 If E C Cis compact, then

MEE
1/2°
(el + 2 ()Y

whereC > 0 is some absolute constant and the supremum is taken over all positive
Radon measures supported orE such thatu(A(x,r)) <r,forall x e C,r > 0. If,
moreover¥2(E) = 0, then

Y+(E) = C sup

(55)

v+ (E) ~ sup [l 77 (56)
(Ll +c2(w))

where the supremum is taken as above.

The notatiorz ~ b in (56) means that there is some positive absolute conétant
such thatC~ta < b < Ca. Using Theorem 5.1, we get the semiadditivity;af.

THEOREM 5.2 Let E, F ¢ C be compact wittit?(E) = %?(F) = 0. Then

Y+(EUF) < C (y4(E) +y4(F)),
whereC is some absolute constant.

Proof of Theorem 5.1.First we show that (55) holds. Let be a positive finite
Radon measure supported énhwith linear growth with constant 1 and such that
c?(n) < oo. Suppose that = ¢?(w) /||l > 1. Then we set

M
O’—m.

Notice thato has linear growth with constant less than or equal to 1 and

2
() kllpll
cz(a)z 372 :W:”U”'

(57)
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Furthermore,
llo||3/2

1 1
= loll = Il el
1/2 1/2 1/2
(||O'|| 02(0')) / 21/ (2k)V/

Thus, by the definition of,
I
(Il +c2u)?  A+kY

_< 2k )1/2 o )[3/2
1+k) (loll+c20)™?

|13/

Sl

<ot Mol
(ol +¢2(0)) "
Therefore, taking (57) into account, to prove (55) we can assume that the supremum
is taken only over measures supported orE, having linear growth with constant 1
such that?(u) < ||u||. Let us remark that this fact was already noticed in [Me2].

So, if u is a positive finite measure supported®mith linear growth with constant
1 and such that

A < |lull, (58)
we have to show that
Y+(E) = Cglinll (59)
with Cg > 0, since
ﬂ ~ el
(el +¢2()) 2

because of (58).
By Chebyshev, from (58) we get

1 1
ufr e Coef) > 2} < 5c2w) < Sl
(Here we use the notatiarf (x) instead ofc?(x).) So if we set

O = K2 (<2

then
M.

Also,
¢2(x) <2, foro-almostallx € C.
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Notice thato has linear growth with constant 1 and satisfies
*(oyr) < 20 (F), (60)

for any Borel sefr'. Using Theorem 1.1, we get that the Cauchy transform is bounded
on L2(¢) and is bounded also fromil(s) into L1-*°(o), with the norm bounded

by some absolute constant. Therefore, by Lemma 4.4, there exists some absolute
constantCg such that for any compact setc C, there is as-measurable function

h:F —> [0,1] such thab (F) <8 hdo and|6(hdo)(x)| < Co, forallx ¢ F. In
particular, if we choosé' = E, we get

loll < 8/hd0,
for someo-measurable functioh : E— [0, 1], and
|6h(x)| < Cy, forallx ¢ E.

Thus (59) holds.
For the second part of the theorem, assumiffgE) = 0, we only have to show
that there exists some constahsuch that

MRE

(el 4¢3
Let v be some positive measure supporteddosuch that6v(x)| < 1forallx ¢ E

andy, (E) < 2|v||. Let us check that has linear growth. Let (x,r) ¢ C be some
closed disc. Recall that if

y+(E) < Csup (61)

)1/2'

1
/ f dv(y) d3L(z) < oo, (62)
|z—x|=r lz—yl
where¥1 stands for the 1-dimensional Hausdorff measure, then
-1
U(A(x,r)) = —/ Gv(z)dz. (63)
2JTl |z—x|=r

See [Ga, p. 40], for example.

Notice that for allx € C, (62) holds for a.e.¥*) > 0 (this follows by Fubini). So
we get that for allv € C, (63) holds for a.e.%%) r > 0. Since#?(E) = 0, we also
get that for each fixed, #1(dA(x,r)NE) = 0, for %¢1-almost allr > 0. Therefore,
by (63), for allx € C, we have

v(AG ) <7, (64)

for 9¢1-almost allr > 0, and by approximation this can be extended to all0.
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Now, by Remark 4.2|%,v(x)| < C, for all x € C and for some constarff not
depending or, so|%.v(x)| < C+1, for all x € C by (42). Using the identity (33),
we obtain

(w) < Clvl.

Therefore,

Y+(E) =2Iv| =C——F—75-
(Il +c2w)
and (61) follows. O

We do not know if the second part of Theorem 5.1 holds for sets with positive area.
However, we have the following nonquantitative result.

CororLArY 5.3 Let E ¢ C be compact. Thep (E) > 0 if and only if E sup-
ports some positive finite Radon measureith linear growth such that?(u) < oo.

Proof. If %2(E) > 0, the result follows, choosing = %IZE. If #2(E) = 0, we
apply (56) of Theorem 5.1. O

Proof of Theorem 5.2.The semiadditivity ofy,. for sets of area zero follows from
(56) of Theorem 5.1 and the fact that the quantity

3/2
sup [l el (65)

(el +c20) 2

is semiadditive.

Arguing as in the proof of Theorem 5.1, we know that there is a positive finite
Radon measurg with linear growth with constant 1y supported onE U F, such
that

Y+(EUF) < Crolipll

and
Ax) <2,

for p-almost allx € C. Thenc?(ug) < 2u(E) and ¢?(ur) < 2u(F). Thus, by
Theorem 5.1y, (E) > C11u(E) andy,(F) > C11u(F), whereC11 > 0 is some
absolute constant. Therefore,

Y+ (EUF) < Cio((E) +1(F)) < C (y4(E)+y4 (F)). O

With some minor changes in the proof of Theorem 5.2, one can check that, in fact,
y4+ is countablysemiadditive on compact sets with area zero.

Remark 5.4. Let us define the capacity. . Given a compack c C, we set

Y4 (E) = supl|ull,
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where the supremum is taken over all positive Radon meaguagpported org
such thatéu| < 1 a.e. §¢2) in C. Obviously, if%2(E) = 0, then

V4 (E) =y (E).

However, we do not know i, (E) = y+(E) or y+(E) = vy, (E) holds for compact
setsk with positive area. Arguing as in Theorem 5.1, it is easily seen that

1%/

(ell +c2u)

with the supremum taken as in Theorem 5.1, for any compadi sefC. Also, as in
Theorem 5.2,

Y+(E) ~sup

V+(EUF) < C(74+(E)+74(F)),

for all compact set&, F c C. So the notion of;. seems to be more natural than the
notion of y,..
On the other hand, observe that if we showed that

Y(E) =y (E), (66)

for all setsE with %2(E) = 0, then by Theorem 5.2 we could obtain easily that
analytic capacity is a semiadditive function on compact sets. Of course, proving (66)
seems difficult. In fact, (66) clearly implies the conjecture of Melnikov stating that
y(E) > 0 if and only if E supports some positive finite measure with linear growth
and finite curvature.

Remark 5.5. Nazarov, Treil, and Volberg [NTV3] have shown that
y+(E) >0 ifandonlyif y.(E)>0,

wherey.(E) stands for
Ve(E) =sup| f' (o),

with the supremum taken over all functiofisanalytic onC\ E, with | f| < 1, which
are the Cauchy transforms of some complex measure. However, from their estimates,
one cannot derive that, (E) ~ y.(E). (Itis not difficult to see that this would imply
(66).)

Nazarov, Treil, and Volberg informed the author that they know how to obtain
Theorem 5.1 with different arguments, using #hé) obtained in [NTV2].
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