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L2-BOUNDEDNESS OF THE CAUCHY INTEGRAL OPERATOR
FOR CONTINUOUS MEASURES

XAVIER TOLSA

1. Introduction. Letµ be a continuous (i.e., without atoms) positive Radon mea-
sure on the complex plane. The truncated Cauchy integral of a compactly supported
functionf in Lp(µ), 1≤ p ≤ +∞, is defined by

�εf (z) =
∫

|ξ−z|>ε

f (ξ)

ξ −z
dµ(ξ), z ∈ C, ε > 0.

In this paper, we consider the problemof describing in geometric terms thosemeasures
µ for which ∫

|�εf |2dµ ≤ C

∫
|f |2dµ, (1)

for all (compactly supported) functionsf ∈ L2(µ) and some constantC independent
of ε > 0. If (1) holds, then we say, following David and Semmes [DS2, pp. 7–8], that
the Cauchy integral is bounded onL2(µ).
A special instance to which classical methods apply occurs whenµ satisfies the

doubling condition
µ(2�) ≤ Cµ(�),

for all discs� centered at some point of spt(µ), where 2� is the disc concentric with
� of double radius. In this case, standard Calderón-Zygmund theory shows that (1)
is equivalent to ∫ ∣∣�∗f

∣∣2dµ ≤ C

∫
|f |2dµ, (2)

where
�∗f (z) = sup

ε>0
|�εf (z)|.

If, moreover, one can find a dense subset ofL2(µ) for which

�f (z) = lim
ε→0

�εf (z) (3)
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exists a.e. (µ) (i.e., almost everywhere with respect toµ), then (2) implies the a.e.
(µ) existence of (3), for anyf ∈ L2(µ), and∫

|�f |2dµ ≤ C

∫
|f |2dµ,

for any functionf ∈ L2(µ) and some constantC.
For a generalµ, we do not know if the limit in (3) exists forf ∈ L2(µ) and almost

all (µ) z ∈ C. This is why we emphasize the role of the truncated operators�ε.
Proving (1) for particular choices ofµ has been a relevant theme in classical

analysis in the last thirty years. Calderón’s paper [Ca] is devoted to the proof of (1)
whenµ is the arc length on a Lipschitz graph with small Lipschitz constant. The
result for a general Lipschitz graph was obtained by Coifman, McIntosh, and Meyer
in 1982 in the celebrated paper [CMM]. The rectifiable curves�, for which (1) holds
for the arc length measureµ on the curve, were characterized by David [D1] as those
satisfying

µ
(
�(z,r)

) ≤ Cr, z ∈ �, r > 0, (4)

where�(z,r) is the closed disc centered atz of radiusr. It has been shown in [MMV]
that if µ satisfies the Ahlfors-David regularity condition

C−1r ≤ µ
(
�(z,r)

) ≤ Cr, z ∈ E, 0< r < diam(E),

whereE is the support ofµ, then (1) is equivalent toE being a subset of a rectifiable
curve satisfying (4).
A necessary condition for (1) is thelinear growth condition

µ
(
�(z,r)

) ≤ C0r, z ∈ spt(µ), r > 0, (5)

as shown, for example, in [D2, p. 56]. To find another relevant necessary condition,
we need to introduce a new object. The Menger curvature of three pairwise different
pointsx,y,z ∈ C is

c(x,y,z) = 1

R(x,y,z)
,

whereR(x,y,z) is the radius of the circumference passing throughx,y,z (with
R(x,y,z) = ∞ andc(x,y,z) = 0, if x,y,z lie on the same line). If two among the
pointsx,y,z coincide, we letc(x,y,z) = 0. The relation between the Cauchy kernel
and Menger curvature was found by Melnikov in [Me2]. It turns out that a necessary
condition for (1) is (see [MV] and [MMV])∫

�

∫
�

∫
�

c(x,y,z)2dµ(x)dµ(y)dµ(z) ≤ C1µ(�), (6)

for all discs�. The main result of this paper is that, conversely, (5) and (6) are
also sufficient for (1). It is not difficult to realize that (6) can be rewritten as�(1) ∈
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BMO(µ), whenµ is doubling and satisfies (5). Therefore, our result can be understood
as aT (1)-theorem for the Cauchy kernel with anunderlying measure not necessarily
doubling. In fact, the absence of a doubling condition is the greatest problem we
must confront. We overcome the difficulty thanks to the fact that the operators to
be estimated have positive kernels. Following an idea of Sawyer, we resort to an
appropriate “goodλ-inequality” to obtain a preliminary weak form of theL2-estimate.
In a second step, we use an inequality of Melnikov [Me2] relating analytic capacity
to Menger curvature to prove the weak (1,1)-estimate for�ε, uniform in ε > 0. It
is worthwhile to mention that this part of the argument involves complex analysis
in an essential way and no real variables proof is known to the author. From the
weak (1,1)-estimate, we get the restricted weak-type (2,2) of�ε. By interpolation,
one obtains the strong-type(p,p), for 1< p < 2, and then by duality, one obtains
the strong-type(p,p), for 2< p < ∞. One more appeal to interpolation finally gives
the strong-type (2,2). For other applications of the notion of Menger curvature, see
[L] and [Ma2].
We now proceed to introduce some notation and terminology to state a more formal

and complete version of our main result. We say thatµ satisfies thelocal curvature
conditionif there is a constantC1 such that (6) holds for any disc� centered at some
point of spt(µ).
We say that the Cauchy integral is bounded onLp(µ) whenever the operators�ε

are bounded onLp(µ) uniformly on ε. Let M(C) be the set of all finite complex
Radon measures on the plane. Ifν ∈ M(C), then we set

�ε(ν)(z) =
∫

|ξ−z|>ε

1

ξ −z
dν(ξ).

We say that the Cauchy integral is bounded fromM(C) to L1,∞(µ), the usual space
of weakL1-functions with respect toµ, whenever the operators�ε are bounded from
M(C) to L1,∞(µ) uniformly onε.
We can now state our main result.

Theorem 1.1. Let µ be a continuous positive Radon measure onC. Then the
following statements are equivalent.
(1) µ has linear growth and satisfies the local curvature condition.
(2) The Cauchy integral is bounded onL2(µ).
(3) The Cauchy integral is bounded fromM(C) to L1,∞(µ).
(4) The Cauchy integral is bounded fromL1(µ) to L1,∞(µ).

Notice that if any of the statements (1), (2), (3), or (4) of Theorem 1.1 holds,
then the Cauchy integral is bounded onLp(µ), for 1 < p < ∞, by interpolation
and duality. Conversely, if there existsp ∈ (1,∞) such that the Cauchy integral is
bounded onLp(µ), then the Cauchy integral is bounded onL2(µ) by duality and
interpolation.
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Using the results of Theorem 1.1, in the final part of the paper we give a geometric
characterization of the analytic capacityγ+, and we show thatγ+ is semiadditive for
sets of area zero.
The paper is organized as follows. In Section 2 we define the curvature operator

K, and we prove that ifµ has linear growth and satisfies the weak local curvature
condition, thenK is bounded onLp(µ), for all p ∈ (1,∞). As a consequence, we
get that for eachµ-measurable subsetA ⊂ C,∫

A

∫
A

∫
A

c(x,y,z)2dµ(x)dµ(y)dµ(z) ≤ Cµ(A).

In Section 3 we explore the relation between the Cauchy integral, analytic capacity,
and curvature. In Section 4 we complete the proof of Theorem 1.1. Finally, in Section
5 we study the analytic capacityγ+.
A constant with a subscript, such asC0, retains its value throughout the paper,

while constants denoted by the letterC may change in different occurrences.

Acknowledgments.I would like to thank Mark Melnikov for introducing me to
this subject and for his valuable advice. Also, I wish to express my thanks to Joan
Verdera for many helpful suggestions and comments.

2. The curvature operator. Throughout the paper,µ is a positive continuous
Radon measure on the complex plane. Also, ifA ⊂ C is µ-measurable, we set

c2(x,y,A) =
∫
A

c(x,y,z)2dµ(z), x,y ∈ C,

and, ifA,B,C ⊂ C areµ-measurable, then

c2(x,A,B) =
∫
A

∫
B

c(x,y,z)2dµ(y)dµ(z), x ∈ C,

and

c2(A,B,C) =
∫
A

∫
B

∫
C

c(x,y,z)2dµ(x)dµ(y)dµ(z).

The total curvature ofA (with respect toµ) is defined as

c2(A) =
∫
A

∫
A

∫
A

c(x,y,z)2dµ(x)dµ(y)dµ(z).

Also, we define the curvature operatorK as

K(f )(x) =
∫

k(x,y)f (y)dµ(y), x ∈ C, f ∈ Ł1loc(µ),

wherek(x,y) is the kernel

k(x,y) =
∫

c(x,y,z)2dµ(z) = c2(x,y,C), x,y ∈ C.
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For aµ-measurableA ⊂ C, we set

KA(f )(x) =
∫

c2(x,y,A)f (y)dµ(y), x ∈ C, f ∈ Ł1loc(µ).

Thus,
K(f ) = KA(f )+KC\A(f ).

We say thatµ satisfies theweak local curvature conditionif there are constants
0< α ≤ 1 andC2 such that for each disc� centered at some point of spt(µ), there
exists a compact subsetS ⊂ � such that

µ(S) ≥ αµ(�) and c2(S) ≤ C2µ(S). (7)

In this section we prove the following result.

Theorem 2.1. Letµ be a positive Radon measure with linear growth that satisfies
the weak local curvature condition. ThenK is bounded fromLp(µ) to Lp(µ), 1<

p < ∞, and fromM(C) to L1,∞(µ).

Corollary 2.2. Letµ be a positive Radon measure with linear growth that sat-
isfies the weak local curvature condition. Then there exists a constantC such that for
all µ-measurable setsA,B ⊂ C,

c2(A,B,C) ≤ C
√
µ(A)µ(B).

In particular,
c2(A) ≤ Cµ(A).

Proof. SinceK is of strong-type (2,2),

c2(A,B,C) =
∫
A

K(χB)dµ

≤ ‖χA‖L2(µ) ‖K(χB)‖L2(µ)
≤ C

√
µ(A)µ(B).

From Corollary 2.2 it follows that ifµ has linear growth, the local and the weak
local curvature conditions are equivalent.
Some remarks about Theorem 2.1 are in order. The proof of theLp-boundedness of

the curvature operator is based on a “goodλ-inequality.” The fact thatK is a positive
operator seems to be essential to proving theLp-boundedness ofK without assuming
thatµ is a doubling measure. Recall that in [S1], [S2], and [SW] the boundedness
of somepositiveoperators inLp(µ) is studied without assuming thatµ is doubling,
too. Our proof is inspired by these papers.
We consider the centered Hardy-Littlewood maximal operator

Mµ(f )(x) = sup
r>0

1

µ
(
�(x,r)

) ∫
�(x,r)

|f |dµ.
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As is well known,Mµ is bounded onLp(µ) for all p ∈ (1,∞) and fromM(C) to
L1,∞(µ). This follows from the usual argument, by the Besicovitch covering lemma
(see [Ma1, p. 40]).
We now prove some lemmas for the proof of Theorem 2.1.

Lemma 2.3. If µ has linear growth with constantC0 and f ∈ L1loc(µ), then for
all x ∈ C andd > 0 we have∫

|x−y|≥d

1

|x−y|2 |f (y)|dµ(y) ≤ 4C0
d

Mµf (x).

In particular, ∫
|x−y|≥d

1

|x−y|2 dµ(y) ≤ 4C0
d

.

The proof of this lemma is straightforward. One has only to integrate on annuli
centered atx. See [D1, Lemma 3], for example.
The next lemma shows how the Menger curvature of three points changes as one

of these points moves. Before stating the lemma, let us remark that ifx,y,z ∈ C are
three pairwise different points, then elementary geometry shows that

c(x,y,z) = 2d(x,Lyz)

|x−y||x−z| ,

whered(x,Lyz) stands for the distance fromx to the straight lineLyz passing through
y,z.

Lemma 2.4. Let x,y,z ∈ C be three pairwise different points, and letx′ ∈ C be
such that

C−1|x−y| ≤ |x′ −y| ≤ C|x−y|, (8)

whereC > 0 is some constant. Then

∣∣c(x,y,z)−c
(
x′,y,z

)∣∣ ≤ (4+2C)

∣∣x−x′∣∣
|x−y||x−z| . (9)

Proof. Sincex �= y, we havex′ �= y by (8). If x′ = z, thenc(x′,y,z) = 0. In this
case, (9) is straightforward:

∣∣c(x,y,z)−c
(
x′,y,z

)∣∣ = c(x,y,z) ≤ 2

|x−y| = 2

∣∣x−x′∣∣
|x−y||x−z| .
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For x′ �= y andx′ �= z, we have∣∣c(x,y,z)−c
(
x′,y,z

)∣∣ = ∣∣∣∣∣ 2d(x,Lyz)

|x−y||x−z| − 2d
(
x′,Lyz

)
|x′ −y||x′ −z|

∣∣∣∣∣
= 2

∣∣∣∣d(x,Lyz)|x′ −y||x′ −z|−d(x′,Lyz)|x−y||x−z|
|x−y||x−z||x′ −y||x′ −z|

∣∣∣∣
≤ 2

|d(x,Lyz)−d(x′,Lyz)| |x′ −y||x′ −z|
|x−y||x−z||x′ −y||x′ −z|

+2d(x′,Lyz

) ∣∣∣∣ |x′ −y||x′ −z|−|x−y||x−z|
|x−y||x−z||x′ −y||x′ −z|

∣∣∣∣
= A+B. (10)

To estimate the termA, notice that|d(x,Lyz)−d(x′,Lyz)| ≤ |x−x′|, and so

A ≤ 2
|x−x′|

|x−y||x−z| .
We turn now to the termB in (10). We have∣∣ ∣∣x′ −y

∣∣∣∣x′ −z
∣∣−|x−y||x−z| ∣∣

= ∣∣(|x′ −y|−|x−y|) |x′ −z|+(|x′ −z|−|x−z|) |x−y| ∣∣
≤ ∣∣x′ −x

∣∣∣∣x′ −z
∣∣+ ∣∣x′ −x

∣∣|x−y|.
Thus, using thatd(x′,Lyz) ≤ |x′ −y| andd(x′,Lyz) ≤ |x′ −z|, we obtain

B ≤ 2
∣∣x−x′∣∣( d

(
x′,Lyz

)∣∣x′ −z
∣∣

|x−y||x−z||x′ −y||x′ −z| + d
(
x′,Lyz

)|x−y|
|x−y||x−z||x′ −y||x′ −z|

)

≤ 2

∣∣x−x′∣∣
|x−y||x−z| +2

∣∣x−x′∣∣
|x′ −y||x−z|

≤ (2+2C)

∣∣x−x′∣∣
|x−y||x−z| .

Now, adding the inequalities obtained forA andB, we get (9).

The following lemma is a kind of “maximum principle” for Menger curvature,
which is essential in the proof of Theorem 2.1.

Lemma 2.5. Let us suppose thatµ has linear growth with constantC0. LetA,B ⊂
C beµ-measurable, and assume that for someβ we have

c2(x,A,B) ≤ β, x ∈ A.

Then there exists a constantβ ′ depending onC0 andβ such that

c2(x,A,B) ≤ β ′, x ∈ C. (11)
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Proof. It is enough to prove the lemma assuming thatA is compact. Other-
wise, we can consider an increasing sequence of compact setsAn ⊂ A such that
µ(A\⋃∞

n=1An) = 0. Then we havec2(x,An,B) ≤ c2(x,A,B) ≤ β, for all x ∈ An.
Applying the lemma toAn, it follows thatc2(x,An,B) ≤ β ′, for all x ∈ C. Hence, by
monotone convergence, we conclude thatc2(x,A,B) = limn→∞ c2(x,An,B) ≤ β ′.
Therefore, we assume thatA is compact. We only have to prove inequality (11)

whenx �∈ A. Let r > 0 be the distance fromx to A. Then we splitc2(x,A,B) as

c2(x,A,B) = c2
(
x,A∩�(x,4r),B∩�(x,4r)

)
+c2

(
x,A∩�(x,4r),B \�(x,4r)

)
+c2

(
x,A\�(x,4r),B∩�(x,4r)

)
+c2

(
x,A\�(x,4r),B \�(x,4r)

)
.

(12)

We estimate each term on the right-hand side of (12) separately. For the first, using
c(x,y,z) ≤ 2|y−x|−1 ≤ 4r−1, we have

c2
(
x,A∩�(x,4r),B∩�(x,4r)

) ≤ 4

r2

∫
|y−x|≤4r

∫
|z−x|≤4r

dµ(y)dµ(z)

≤ 4

r2
(C04r)

2

= 64C2
0.

For the second term in (12), we use Lemma 2.3:

c2
(
x,A∩�(x,4r),B \�(x,4r)

) ≤
∫
y∈A∩�(x,4r)

∫
|z−x|>4r

4

|z−x|2 dµ(y)dµ(z)

≤
∫
y∈A∩�(x,4r)

C

r
dµ(y)

≤ C.

The third term is estimated like the second one withz replaced byy.
Finally, we consider the last term in (12). By the definition ofr, there exists a

point x′ ∈ A∩�(x,2r). Then, ify ∈ A\�(x,4r) andz ∈ B \�(x,4r), we have by
Lemma 2.4:

c(x,y,z) ≤ c
(
x′,y,z

)+C
r

|y−x||z−x| .
Hence,

c2
(
x,A\�(x,4r),B \�(x,4r)

)
≤ C

∫
y∈A\�(x,4r)

∫
z∈B\�(x,4r)

r2

|y−x|2|z−x|2 dµ(y)dµ(z)

+2
∫
y∈A\�(x,4r)

∫
z∈B\�(x,4r)

c(x′,y,z)2dµ(y)dµ(z)
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≤ Cr2
(∫

|y−x|>4r
1

|y−x|2 dµ(y)
)(∫

|z−x|>4r
1

|z−x|2 dµ(z)
)

+2c2(x′,A,B
)

≤ C+2β,

where the last inequality follows from the fact thatx′ ∈ A. The proof is complete.

Lemma 2.6. Let µ be a positive Radon measure that has linear growth (with
constantC0) and satisfies the weak local curvature condition (7) (with constants
0< α ≤ 1 andC2). Then there exists some constantβ depending onC0, C2, andα
such that for each disc� centered at some point ofspt(µ) there exists aµ-measurable
subsetS ⊂ � such that

µ(S) ≥ α

4
µ(�) and c2(x,S,�) ≤ β, x ∈ C.

Proof. Let � be a disc centered at some point of spt(µ). Because of (7) there
exists a subsetS0 ⊂ � such that

µ(S0) ≥ αµ(�) and c2(S0) ≤ C2µ(S0).

By Chebyshev, there exists a subsetS1 ⊂ S0 such that

µ(S1) ≥ 1

2
µ(S0) ≥ α

2
µ(�)

and
c2(x,S0,S0) ≤ 2C2, x ∈ S1.

Then, for allx ∈ S1, we havec2(x,S1,S1) ≤ 2C2. Applying Lemma 2.5, we conclude
that there is some constantC′

2 such thatc
2(x,S1,S1) ≤ C′

2, for all x ∈ C. Therefore,

c2(S1,S1,�) ≤ C′
2µ(�) ≤ 2C′

2

α
µ(S1).

Applying Chebyshev again, we find a subsetS ⊂ S1 such that

µ(S) ≥ 1

2
µ(S1) ≥ α

4
µ(�)

and

c2(x,S1,�) ≤ 4C′
2

α
, x ∈ S.

Thus, for allx ∈ S, we havec2(x,S,�) ≤ 4C′
2/α, and by Lemma 2.5 we get some

constantβ such thatc2(x,S,�) ≤ β, for all x ∈ C.



278 XAVIER TOLSA

Lemma 2.7. Supposeµ has linear growth with constantC0. Let Q ⊂ C be a
square andf ∈ L1loc(µ), f ≥ 0. Set

f1 = f χ2Q and f2 = f −f1.

Let ε > 0 andR > 2 be given. Then there exists some constantCR,ε, depending on
R, ε, andC0, such that for allx,x0 ∈ Q and for allω ∈ RQ\2Q we have

K(f2)(x) ≤ (1+ε)K(f )(ω)+CR,εMµ(f )(x0).

Proof. We splitK(f2)(x) as

K(f2)(x) =
∫
y �∈2Q

∫
z∈C

c(x,y,z)2f (y)dµ(y)dµ(z)

=
∫
y �∈2Q

∫
z∈3RQ

c(x,y,z)2f (y)dµ(y)dµ(z)

+
∫
y �∈2Q

∫
z �∈3RQ

c(x,y,z)2f (y)dµ(y)dµ(z).

(13)

To estimate the first integral on the right-hand side of (13), we apply Lemma 2.3:∫
y �∈2Q

∫
z∈3RQ

c(x,y,z)2f (y)dµ(y)dµ(z)

≤ C

∫
z∈3RQ

(∫
|y−x0|>

(
l(Q)/2

) 1

|y−x0|2f (y)dµ(y)

)
dµ(z)

≤ C

∫
z∈3RQ

1

l(Q)
Mµf (x0)dµ(z)

≤ CMµf (x0), (14)

wherel(Q) is the side length ofQ.
We split the second integral on the right-hand side of (13) into two parts:∫

y �∈2Q

∫
z �∈3RQ

c(x,y,z)2f (y)dµ(y)dµ(z)

=
∫
y∈3RQ\2Q

∫
z �∈3RQ

c(x,y,z)2f (y)dµ(y)dµ(z)

+
∫
y �∈3RQ

∫
z �∈3RQ

c(x,y,z)2f (y)dµ(y)dµ(z). (15)
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To estimate the first integral on the right-hand side of (15), we apply Lemma 2.3
again:∫

y∈3RQ\2Q

∫
z �∈3RQ

c(x,y,z)2f (y)dµ(y)dµ(z)

≤ C

∫
y∈3RQ\2Q

f (y)

(∫
|z−x0|>2l(Q)

1

|z−x0|2 dµ(z)
)
dµ(y)

≤ C

∫
y∈3RQ\2Q

f (y)
1

l(Q)
dµ(y)

≤ CMµf (x0). (16)

Finally, we only have to estimate the second integral on the right-hand side of (15).
If y,z �∈ 3RQ, sincex,x0,ω ∈ RQ, we can apply Lemma 2.4 and obtain

|c(x,y,z)−c(ω,y,z)| ≤ C
l(Q)

|y−x0||z−x0| .

Then

c(x,y,z)2 ≤
(
c(ω,y,z)+C

l(Q)

|y−x0||z−x0|
)2

≤ (1+ε)c(ω,y,z)2+C
(
1+ε−1)( l(Q)

|y−x0||z−x0|
)2

.

Therefore, applying Lemma 2.3 twice,∫
y �∈3RQ

∫
z �∈3RQ

c(x,y,z)2f (y)dµ(y)dµ(z)

≤ (1+ε)

∫
y �∈3RQ

∫
z �∈3RQ

c(ω,y,z)2f (y)dµ(y)dµ(z)

+C
(
1+ε−1)∫

y �∈3RQ

∫
z �∈3RQ

l(Q)2

|y−x0|2|z−x0|2f (y)dµ(y)dµ(z)

≤ (1+ε)Kf (ω)+C
(
1+ε−1)l(Q)2

×
∫

|y−x0|>2l(Q)

1

|y−x0|2f (y)dµ(y)

∫
|z−x0|>2l(Q)

1

|z−x0|2 dµ(z)

≤ (1+ε)Kf (ω)+C
(
1+ε−1)Mµf (x0). (17)

Adding inequalities (14), (16), and (17), the lemma is proved.

It is easy to check that iff ≥ 0, thenK(f ) is lower-semicontinuous. That is, the
set*λ := {x ∈ C : K(f )(x) > λ} is open for eachλ. Our proof of Theorem 2.1 uses
Whitney’s decomposition of this open set. In the next lemma, we state the precise
version of the decomposition we need.
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Lemma 2.8. If * ⊂ C is open,* �= C, then* can be decomposed as

* =
∞⋃
k=1

Qk,

whereQk are dyadic closed squares with disjoint interiors such that for some con-
stantsR > 20 andD ≥ 1, the following hold:
(i) 20Qk ⊂ *;
(ii) RQk ∩*c �= ∅;
(iii) for each squareQk, there are at mostD squaresQj such that10Qk∩10Qj �=

∅.
Moreover, ifµ is a positive Radon measure onC andµ(*) < +∞, we can choose
some subfamily{Qsi }i≥1 of {Qk}k≥1 such that10Qsi ∩10Qsj = ∅, if i �= j , and

µ

( ∞⋃
i=1

Qsi

)
≥ 1

D
µ(*).

Proof. Whitney’s decomposition for closed squares satisfying (i), (ii), and (iii) is a
well-known result. See, for example, [St1, pp. 167–169] or [S2]. Let us prove that we
can choose some subfamily{Qsi }i≥1 ⊂ {Qk}k≥1 as stated in the lemma. We assume
that the squares{Qk}k≥1 are ordered in such a way thatµ(Qm) ≥ µ(Qn), if m< n.
We takeQs1 = Q1. By induction, ifQs1, . . . ,Qsn have been chosen, then we define

Qsn+1 as the squareQk such that

10Qk ∩10Qs1 = ·· · = 10Qk ∩10Qsn = ∅ (18)

andk is minimal with this property. In other words,Qsn+1 is the square satisfying
(18) of maximalµ-measure.
Observe that, by condition (iii), there are at most(n−1)D squaresQk such that

10Qk intersects some of the squares 10Qs1, . . . ,10Qsn−1. So at least one of the squares
10Q1, . . . ,10Q(n−1)D+1 does not intersect any of the squares 10Qs1, . . . ,10Qsn−1.
Thensn must satisfy

sn ≤ (n−1)D+1. (19)

Now, since{µ(Qk)}k≥1 is nonincreasing, by (19) we have

µ

 nD⋃
k=(n−1)D+1

Qk

 ≤ Dµ
(
Q(n−1)D+1

) ≤ Dµ
(
Qsn

)
.

Therefore,

µ

( ∞⋃
i=1

Qi

)
≤

∞∑
n=1

µ

 nD⋃
k=(n−1)D+1

Qk

 ≤ D

∞∑
n=1

µ
(
Qsn

)
.
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Proof of Theorem 2.1.We prove that there exists 0< η < 1 such that for allε > 0
there is someδ > 0 for which the following “goodλ-inequality” holds:

µ{x : K(f )(x) > (1+ε)λ,Mµf (x) ≤ δλ} ≤ (1−η)µ{x : K(f )(x) > λ}, (20)

for f ∈ Lp(µ),f ≥ 0. Let*λ = {x ∈ C : Kf (x) > λ}. Then*λ is open. Decompose
*λ as

*λ =
∞⋃
k=1

Qk,

according to Lemma 2.8. Choose a subfamily{Qi}i∈I of {Qk}k≥1 in such a way that
10Qi ∩10Qj = ∅, if i,j ∈ I , i �= j , and

µ

(⋃
i∈I

Qi

)
≥ 1

D
µ(*λ).

We denote byI1 the set of indicesi ∈ I such that there exists somexi ∈ Qi ∩sptµ
so thatMµf (xi) ≤ δλ. Also, we denoteI2 = I \ I1. For eachi ∈ I1, we define
�i = �(xi,3l(Qi)). Then we have

Qi ⊂ 3Qi ⊂ �i ⊂ 10Qi ⊂ *λ.

On the other hand, since the weak local curvature condition holds, by Lemma 2.6 we
know that there is some constantβ such that for each disc�i, i ∈ I1, there exists a
µ-measurable subsetSi ⊂ �i such that

µ(Si) ≥ α

4
µ(�i), c2(x,Si,�i) ≤ β, for all x ∈ C, (21)

whereβ depends onC2, C0, andα. For i ∈ I2, we define�i = Si = Qi .
Since�i ∩�j = ∅, if i,j ∈ I , i �= j , we have

µ

(⋃
i∈I

Si

)
≥ α

4

∑
i∈I

µ(�i)

≥ α

4

∑
i∈I

µ(Qi)

≥ α

4D
µ(*λ).

Therefore,

µ

(
*λ \

⋃
i∈I

Si

)
≤
(
1− α

4D

)
µ(*λ). (22)
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We prove below that for eachi ∈ I1 we have

µ
(
Si ∩

{
x : Kf (x) > (1+ε)λ

}) ≤ α

8D
µ(�i), (23)

if δ = δ(ε,α) is small enough. Then, by (22) and (23),

µ{Kf > (1+ε)λ,Mµf ≤ δλ} ≤ µ

(
*λ \

⋃
i∈I

Si

)

+µ

((⋃
i∈I

Si

)
∩{Kf > (1+ε)λ,Mµf ≤ δλ}

)
≤
(
1− α

4D

)
µ(*λ)+

∑
i∈I1

µ
(
Si ∩

{
Kf > (1+ε)λ

})
≤
(
1− α

4D

)
µ(*λ)+ α

8D

∑
i∈I1

µ(�i)

≤
(
1− α

4D
+ α

8D

)
µ(*λ)

=
(
1− α

8D

)
µ(*λ).

Then, takingη = α/(8D), (20) follows.
We now prove (23). Observe that, due to (21), fori ∈ I1, we have

K�i

(
χSi

)
(x) = c2

(
x,Si,�i

) ≤ β, for all x ∈ C.
Then, if i ∈ I1, we have

µ
{
x ∈ Si : K�i

(
f χ�i

)
(x) > (ε/4)λ

} ≤ 4

ελ

∫
Si

K�i

(
f χ�i

)
dµ

= 4

ελ

∫
f χ�i

K�i

(
χSi

)
dµ

≤ 4β

ελ

∫
�i

f dµ

≤ 4β

ελ
µ(�i)Mµf (xi)

≤ 4βδ

ε
µ(�i)

≤ α

8D
µ(�i), (24)

where the last inequality holds provided we chooseδ ≤ (εα/32Dβ). In fact, we set

δ = δ(ε,α) =min

{
ε

4CR,ε/4
,

εα

32Dβ
,

ε

4C3

}
,
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whereCR,ε/4 is the constant given by Lemma 2.7 andC3 is some constant, which we
define later.
Due to the properties of Whitney’s decomposition, there exists a pointωi in (RQi \

2Qi)∩*c
λ, and if moreoveri ∈ I1, then by Lemma 2.7,

K
(
f χC\2Qi

)
(x) ≤

(
1+ ε

4

)
Kf (ωi)+CR,ε/4Mµf (xi)

≤
(
1+ ε

4

)
λ+CR,ε/4δλ ≤

(
1+ ε

2

)
λ.

Consequently, ifx ∈ Qi , i ∈ I1, andKf (x) > (1+ε)λ, then

K
(
f χ2Qi

)
(x) >

ε

2
λ. (25)

We prove that

KC\�i

(
f χ2Qi

)
(x) ≤ ε

4
λ, x ∈ Qi, i ∈ I1. (26)

SinceK = K�i
+KC\�i

, (25) and (26) give

K�i

(
f χ�i

)
(x) ≥ K�i

(
f χ2Qi

)
(x) >

ε

4
λ, (27)

providedx ∈ Qi, i ∈ I1, andKf (x) > (1+ε)λ. Now (23) is a consequence of (24).
Let us check that (26) holds:

KC\�i

(
f χ2Qi

)
(x)

≤ C

∫
y∈2Qi

f (y)

(∫
z �∈�i

1

|y−z|2 dµ(z)
)
dµ(y)

≤ C

∫
y∈2Qi

f (y)

(∫
|y−z|≥l(Qi)/2

1

|y−z|2 dµ(z)
)
dµ(y) (because 3Qi ⊂ �i)

≤ C
1

l(Qi)

∫
y∈2Qi

f (y)dµ(y) (by Lemma 2.3)

≤ C3Mµf (xi) (definingC3 appropriately)

≤ ε

4
λ (by the choice ofδ).

Hence (20) follows.
It is well known (see [St2, p. 152] or [D2, p. 60]) that from (20), one gets, for

p ∈ (1,+∞),

‖Kf ‖Lp(µ) ≤ Cp‖Mµf ‖Lp(µ) ≤ C′
p‖f ‖Lp(µ), (28)

providedf ≥ 0 and

inf (1,K(f )) ∈ Lp(µ). (29)
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Let us see that iff has compact support and is bounded by some constantA, then
(29) holds. Suppose that spt(f ) ⊂ �(0,R). ThenK(f ) ≤ A ·K(χ�(0,R)). For x ∈
C\�(0,2R), with d = |x|, we have

K
(
χ�(0,R)

)
(x)

= c2
(
x,�(0,R),C

) = c2(x,�(0,R),�(0,2d)
)+c2

(
x,�(0,R),C\�(0,2d)

)
.

(30)

Now we estimate the first term on the right-hand side:

c2
(
x,�(0,R),�(0,2d)

) ≤
∫
y∈�(0,R)

∫
z∈�(0,2d)

4

|y−x|2 dµ(y)dµ(z)

≤ C

∫
y∈�(0,R)

∫
z∈�(0,2d)

1

d2
dµ(y)dµ(z)

≤ C
1

d

∫
y∈�(0,R)

dµ(y)

= C
1

d

∫
y∈�(x,2d)

χ�(0,R)(y)dµ(y)

≤ CMµχ�(0,R)(x).

The second term on the right-hand side of (30) is estimated as

c2
(
x,�(0,R),C\�(0,2d)

) ≤
∫
y∈�(0,R)

∫
|z−x|>d

4

|z−x|2 dµ(y)dµ(z)

≤ C
1

d

∫
y∈�(0,R)

dµ(y)

= C
1

d

∫
y∈�(x,2d)

χ�(0,R)(y)dµ(y)

≤ CMµχ�(0,R)(x).

Thus,

inf
(
1,K(f )

) ≤ inf
(
1,A ·K(χ�(0,R))

) ≤ χ�(0,2R)+A ·CMµχ�(0,R),

and so inf(1,K(f )) ∈ Lp(µ). Now, (28) holds forf ≥ 0 bounded with compact
support, and a routine argument shows thatK is bounded onLp(µ).
The boundedness ofK fromM(C) into L1,∞(µ) can be proved as follows. One

checks easily that (20) also holds for a positive finite measureν ∈ M(C):

µ
{
x : K(ν)(x) > (1+ε)λ,Mµν(x) ≤ δλ

} ≤ (1−η)µ{x : K(ν)(x) > λ},
whereK(ν) andMµν are defined in the obvious way. As before, this inequality yields
the desired weak (1,1)-estimate.
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The curvature operatorK behaves like a Calderón-Zygmund operator. Moreover, it
enjoys the very nice property of being a positive operator. Ifµ is a doubling measure
with linear growth that satisfies the local curvature condition, it can be checked
thatK is bounded fromH 1

at (µ) to L1(µ) and fromL∞(µ) to BMO(µ). Then, by
interpolation,K is bounded onLp(µ), for p ∈ (1,∞).

3. Relation of curvature with the Cauchy integral and analytic capacity. The
relation between the Cauchy integral and curvature stems from the following formula
[Me2], whose proof is a simple calculation (see [MV], for example).

Lemma 3.1. Let x,y,z ∈ C be three pairwise different points. Then

c(x,y,z)2 = 2Re

(
1

(y−x)(z−x)
+ 1

(z−y)(x−y)
+ 1

(x−z)(y−z)

)
. (31)

For anyµ-measurable setA ⊂ C, we set

c2ε (A) =
∫ ∫ ∫

x,y,z ∈ A

|x−y| > ε

|x−z| > ε

|y−z| > ε

c(x,y,z)2dµ(x)dµ(y)dµ(z).

The following lemma is a generalization of an identity proved in [MV].

Lemma 3.2. Suppose thatµ has linear growth, and considerh : C −→ [0,1] to
beµ-measurable. Then, for anyµ-measurable setA ⊂ C, we have

2
∫

|�ε(χA)|2hdµ

=
∫ ∫ ∫

|x−y| > ε

|x−z| > ε

|y−z| > ε

c(x,y,z)2χA(x)χA(y)h(z)dµ(x)dµ(y)dµ(z)

−4Re
∫
A

�ε(χA)�ε(h)dµ+O
(
µ(A)

)
(32)

and

c2ε (A) = 6
∫
A

∣∣�ε(χA)
∣∣2dµ+O

(
µ(A)

)
. (33)

Proof. By (31),∫ ∫ ∫
|x−y| > ε

|y−z| > ε

|z−x| > ε

c(x,y,z)2χA(x)χA(y)h(z)dµ(x)dµ(y)dµ(z)
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= 2
∫ ∫ ∫

|x−y| > ε

|y−z| > ε

|z−x| > ε

χA(x)χA(y)h(z)

×Re
(

1

(y−x)(z−x)
+ 1

(z−y)(x−y)
+ 1

(x−z)(y−z)

)
dµ(x)dµ(y)dµ(z)

= I +II +III. (34)

We first estimate the integralI :

I = 2Re
∫ ∫ ∫

|x−y| > ε

|z−x| > ε

χA(x)χA(y)h(z)
1

(y−x)(z−x)
dµ(x)dµ(y)dµ(z)

−2Re
∫ ∫ ∫

|x−y| > ε

|z−x| > ε

|y−z| ≤ ε

χA(x)χA(y)h(z)
1

(y−x)(z−x)
dµ(x)dµ(y)dµ(z)

= I1+I2.

We clearly have

I1 = 2Re

[∫
A

(∫
|z−x|>ε

h(z)

z−x
dµ(z)

)(∫
|x−y|>ε

χA(y)

y−x
dµ(y)

)
dµ(x)

]
= 2Re

∫
A

�εh(x) ·�εχA(x)dµ(x). (35)

Now we proceed to estimate the integralI2. Notice that if|y − z| ≤ ε < |z− x|,
then ∣∣∣∣ 1

(y−x)(z−x)
− 1

|y−x|2
∣∣∣∣ = ∣∣∣∣ y−z

|y−x|2(z−x)

∣∣∣∣ ≤ 1

|y−x|2 ,
and so ∣∣∣∣ 1

(y−x)(z−x)

∣∣∣∣ ≤ 2

|y−x|2 .
Thus,

|I2| ≤ 4
∫ ∫ ∫

|x−y| > ε

|z−x| > ε

|y−z| ≤ ε

χA(x)χA(y)h(z)
1

|y−x|2 dµ(x)dµ(y)dµ(z)

≤ Cε

∫
χA(x)

(∫
|x−y|>ε

1

|y−x|2 dµ(y)
)
dµ(x)

≤ Cµ(A). (36)

Interchanging the roles ofx andy, it easily follows that

II = I. (37)
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We turn now our attention toIII :

III = 2Re
∫ ∫ ∫

|y−z| > ε

|z−x| > ε

χA(x)χA(y)h(z)
1

(x−z)(y−z)
dµ(x)dµ(y)dµ(z)

−2Re
∫ ∫ ∫

|y−z| > ε

|z−x| > ε

|x−y| ≤ ε

χA(x)χA(y)h(z)
1

(x−z)(y−z)
dµ(x)dµ(y)dµ(z)

= III1+III2.

We have

III1 = 2Re

[∫ (∫
|z−x|>ε

χA(x)

x−z
dµ(x)

)(∫
|y−z|>ε

χA(y)

(y−z)
dµ(y)

)
h(z)dµ(z)

]
= 2Re

∫
|�εχA(z)|2h(z)dµ(z). (38)

We need an estimate forIII2. If |x−y| ≤ ε < |y−z|, then∣∣∣∣ 1

(x−z)(y−z)
− 1

|x−z|2
∣∣∣∣ = ∣∣∣∣ x−y

|x−z|2(y−z)

∣∣∣∣ ≤ 1

|x−z|2 ,

and so ∣∣∣∣ 1

(x−z)(y−z)

∣∣∣∣ ≤ 2

|x−z|2 .

Therefore,

|III2| ≤ 4
∫ ∫ ∫

|y−z| > ε

|z−x| > ε

|x−y| ≤ ε

χA(x)χA(y)h(z)
1

|x−z|2 dµ(x)dµ(y)dµ(z)

≤ Cε

∫
χA(x)

(∫
|z−x|>ε

1

|x−z|2 dµ(z)
)
dµ(x)

≤ Cµ(A). (39)

Because of (35), (36), (37), (38), and (39), we get

I +II +III = 4Re
∫
A

�εh(x) ·�εχA(x)dµ(x)

+2
∫

|�εχA(z)|2h(z)dµ(z)+O
(
µ(A)

)
.

From this equation and (34), we finally obtain (32). Identity (33) follows readily from
(32) by takingh = χA.
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The analytic capacityγ of a compact setE ⊂ C is
γ (E) = sup

f

∣∣f ′(∞)
∣∣,

where the supremum is taken over all analytic functionsf : C\E −→ C such that
|f | ≤ 1, with the notationf ′(∞) = limz→∞ z(f (z)−f (∞)).
Melnikov proved an inequality that relates curvature to analytic capacity, which we

proceed to describe. LetE ⊂ C be compact, and assume thatE supports a positive
Radon measureµ that has linear growth with constantC0 and such that

c2(E,µ) ≡
∫
E

∫
E

∫
E

c(x,y,z)2dµ(x)dµ(y)dµ(z) < +∞.

Then Melnikov’s inequality [Me2] is

γ (E) ≥ C4
µ(E)3/2(

µ(E)+c2(E,µ)
)1/2 , (40)

whereC4 > 0 is some constant depending only onC0. For our purposes, we need a
slightly improved version of (40), which we state as Theorem 3.3. Given a compactly
supported measureν ∈ M(C), we denote by�(ν) the locally integrable function
(1/z)∗ν.
Theorem 3.3. Let E ⊂ C be compact, and letµ be a positive Radon measure

supported onE that has linear growth with constantC0 and such thatc2(E,µ) < ∞.
Then there exists a complex finite measureν supported onE such that‖ν‖ ≤ µ(E),
|�(ν)(z)| < 1 for all z ∈ Ec, |�(ν)(z)| ≤ 1 for almost all (with respect to Lebesgue
measure)z ∈ C, and ∣∣∣∣∫ dν

∣∣∣∣ ≥ C4
µ(E)3/2(

µ(E)+c2(E,µ)
)1/2 ,

whereC4 is some positive constant depending onC0.

Proof. Given a positive integern, setδ = 1/n. In [Me2], Melnikov shows that
there exist finitely many discs�(n)

j , pairwise disjoint, such thatEn ≡ ⋃
j �

(n)
j ⊂

Vδ(E) (whereVδ(E) is theδ-neighborhood ofE), 2π
∑

j radius(�
(n)
j ) ≤ µ(E), and

γ (En) ≥ C4
µ(E)3/2(

µ(E)+c2(E,µ)
)1/2 .

Lethn be the Ahlfors function ofEn. (That is,hn is analytic on the complement ofEn,
|f (z)| ≤ 1, z ∈ C\En, andf ′(∞) = γ (En).) Setνn = hn(z)dz, wheredz = dz�n ,
�n = ∂En (a finite union of disjoint circumferences), andhn(z),z ∈ �n, are the
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boundary values ofhn. Then�(νn)(z) = hn(z),z ∈ Ec
n, and�(νn)(z) = 0,z ∈ ◦

En.
Hence,|�(ν)(z)| ≤ 1, for almost all (with respect to Lebesgue measure)z ∈ C.
Moreover,‖νn‖ ≤ µ(E), for eachn.
Passing to a subsequence if necessary, we can assume thatνn → ν in the weak

∗-topology ofM(C), for someν ∈ M(C), and we also assume that�(νn) → h in the
weak∗-topology ofL∞(C) (with respect to Lebesguemeasure), for someh ∈ L∞(C).
Since�(νn) converges in the sense of distributions to�(ν), we get�(ν) = h.
We clearly have ∣∣∣∣∫ dν

∣∣∣∣ = ∣∣∣∣ limn→∞

∫
dνn

∣∣∣∣ = lim
n→∞γ (En),

and soν fulfills the required conditions.

4. Boundedness of the Cauchy integral.We state now some known results,
which we use in the proof of Theorem 1.1. The following proposition is basic for the
study of the boundedness of the Cauchy integral fromM(C) to L1,∞(µ).

Proposition 4.1. Let X be a locally compact Hausdorff space,µ be a positive
Radon measure onX, andT be a linear operator bounded from the spaceM(X) of
complex finite Radon measures onX into �0(X), the space of continuous functions
on X vanishing at∞. Suppose, furthermore, thatT ∗, the adjoint operator ofT ,
boundedly sendsM(X) into �0(X). Then the following statements are equivalent.
(a)There exists a constantC such that

µ
{
x : |T ∗ν(x)| > λ

} ≤ C
‖ν‖
λ

, ∀λ > 0,

for all ν ∈ M(X).
(b) There exists a constantC such that, for each Borel setE ⊂ X, we have

µ(E) ≤ 2sup

{∫
hdµ : h µ-measurable,

spt(h) ⊂ E,0≤ h ≤ 1, |T (hdµ)(x)| ≤ C, ∀x ∈ X

}
.

(c) There exists a constantC such that, for each compact setE ⊂ X, we have

µ(E)

≤ C sup

{∣∣∣∣∫ dν

∣∣∣∣ : ν ∈ M(X),spt(ν) ⊂ E,‖ν‖ ≤ µ(E), |T ν(x)| ≤ 1, ∀x ∈ X

}
.

Moreover, the least constants in (a), (b), (c), which we denote byCa, Cb, andCc,
satisfy

A−1Ca ≤ Cb ≤ ACa, A−1C1/3
a ≤ Cc ≤ A(Ca +1),

for some constantA> 0.
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The implication (a)⇒ (b) is proved in [Ch, p. 107]. It is trivial that (b)⇒ (c),
and (c)⇒ (a) can be proved as in [Mu, pp. 78–79] or [Ve2]. We give a sketch of the
argument for (c)⇒ (a).

Proof. Suppose that (c) holds. Letρ−1 be the constant that appears in (c). For
λ > 0 andθ ∈ [0,2π), let

Eλ,θ = {
x ∈ X : T ∗ν(x) ∈ �

(
λeiθ ,ρλ/4

)}
.

CoveringC by disks�(λeiθ ,ρλ/4), one can see (as in [Mu, pp. 78–79] or [Ve2])
that (a) follows if, for allλ > 0 andθ ∈ [0,2π),

µ(Eλ,θ ) ≤ C
‖ν‖
λ

. (41)

Let us see that (41) holds. There is a compact setFλ,θ ⊂ Eλ,θ such thatµ(Fλ,θ ) ≥
µ(Eλ,θ )/2. Let η ∈ M(X) be such that spt(η) ⊂ Fλ,θ , ‖η‖ ≤ µ(Fλ,θ ), |T η(x)| ≤ 1
for all x ∈ X, andµ(Fλ,θ ) ≤ 2ρ−1 ∣∣∫ dη

∣∣. Then
ρ

2
λµ(Fλ,θ ) ≤

∣∣∣∣∫ λeiθdη

∣∣∣∣
≤
∣∣∣∣∫ T ∗(ν)dη

∣∣∣∣+ ∣∣∣∣∫ (
λeiθ −T ∗(ν)

)
dη

∣∣∣∣
≤
∣∣∣∣∫ T (η)dν

∣∣∣∣+ ρ

4
λ‖η‖

≤ ‖ν‖+ ρ

4
λµ(Fλ,θ ).

Therefore,µ(Eλ,θ ) ≤ 2µ(Fλ,θ ) ≤ 8‖ν‖/(ρλ).
See also [Ve1] for an interesting application of Proposition 4.1.

Remark 4.2. To apply the lemma, we use a standard technique. We replace�ε by
the regularized operator̃�ε, defined as

�̃εν(x) =
∫

rε(x−y)dν(y),

whereν is a complex finite measure and whererε is the kernel

rε(z) =


1

z
, if |z| > ε,

z

ε2
, if |z| ≤ ε.

Then�̃εν is the convolution of the complex measureν with the uniformly continuous
kernelrε, and sõ�εν is a continuous function.
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Also, we have

rε(z) = 1

z
∗ χε

πε2
,

whereχε is the characteristic function of�(0,ε). If ν is a compactly supported Radon
measure, we have the identity

�̃εν = 1

z
∗ χε

πε2
∗ν = χε

πε2
∗�ν.

Assume now that|�(ν)| ≤ A a.e. with respect to Lebesgue measure. Since∥∥∥ χε

πε2

∥∥∥
L1(C)

= 1,

we obtain|�̃ε(ν)(z)| ≤ A, for all z ∈ C.
Also, notice that∣∣�̃ε(ν)(x)−�ε(ν)(x)

∣∣ = 1

ε2

∣∣∣∣∫|y−x|<ε

(y−x)dν(y)

∣∣∣∣ ≤ C0Mµν(x). (42)

Hence, ifµ has linear growth,�ε is of strong-type(p,p) uniformly in ε if and only
if �̃ε is of strong-type(p,p) uniformly in ε. Also, �ε is bounded fromM(C) into
L1,∞(µ) uniformly in ε if and only if the same holds for̃�ε.

For the proof of Theorem 1.1, the following proposition is also necessary.

Proposition 4.3. Let µ be a positive continuous Radon measure onC. If the
Cauchy integral is bounded onLp(µ), for somep ∈ (1,∞), or if it is bounded from
L1(µ) into L1,∞(µ), thenµ has linear growth.

The proof of this result can be found in [D2, p. 56]. Let us remark that, in fact, in
[D2, p. 56] David states only that if the Cauchy integral operator is of strong-type
(p,p), for somep ∈ (1,∞), thenµ has linear growth. With some minor changes in
the proof, one can check that if the Cauchy integral is of weak-type (1,1), thenµ has
linear growth also.

4.1. Proof of the equivalence between theL2-boundedness of the Cauchy inte-
gral and the linear growth condition plus the local curvature condition ofµ. If the
Cauchy integral operator is of strong-type (2,2),µ has linear growth by Proposition
4.3 andµ satisfies the local curvature condition by (33) of Lemma 3.2.
Assume now thatµ has linear growth and satisfies the local curvature condition.

First we show that the Cauchy integral operator is bounded fromM(C) intoL1,∞(µ).
That is, we prove the implication(1) ⇒ (3) of Theorem 1.1.
We see that the operator̃�∗

ε , the adjoint of̃�ε, is bounded fromM(C) intoL1,∞(µ)

uniformly in ε, which is equivalent to the uniform boundedness of�ε : M(C) −→
L1,∞(µ). To do so, we apply Proposition 4.1 to the operator�̃∗

ε , takingX = C. (Notice
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that �̃ε and �̃∗
ε are bounded fromM(C) into �0(C), with the norm depending on

ε.) We show that statement (c) of Proposition 4.1 holds; that is, for each compact
setE ⊂ C and eachε > 0, there exists some complex finite measureν ∈ M(C)
such thatµ(E) ≤ C

∣∣∫ dν
∣∣ (with C independent ofε), spt(ν) ⊂ E, ‖ν‖ ≤ µ(E), and

|�̃ε(ν)(x)| ≤ 1 for all x ∈ C.
Sinceµ has linear growth and satisfies the local curvature condition, the curvature

operator is bounded onL2(µ). Hence,c2(E) ≤ Cµ(E). If we apply Theorem 3.3 to
the compact setE and themeasureµ|E , we conclude that there exist a constantC4> 0
and a complex measureν ∈ M(C) such that spt(ν) ⊂ E, ‖ν‖ ≤ µ(E), |�(ν)(x)| < 1
for all x ∈ Ec, |�(ν)| ≤ 1 a.e. with respect to Lebesgue measure, and

∣∣∣∣∫ dν

∣∣∣∣ ≥ C4
µ(E)3/2(

µ(E)+c2(E,µ)
)1/2 ≥ C5µ(E),

with C5 > 0. By Remark 4.2 we have|�̃ε(ν)(x)| ≤ 1, for all x ∈ C. The measureν
has all the required properties, and hence the Cauchy integral is bounded fromM(C)
into L1,∞(µ).
Now, we prove that the Cauchy integral operator is of restricted weak-type (2,2).

That is, for eachµ-measurable setA ⊂ C and allλ > 0,

µ
{
x ∈ C : ∣∣�ε(χA)(x)

∣∣> λ
} ≤ C

µ(A)

λ2
,

whereC is some constant independent ofε.
Set

Eλ = {
x ∈ C : ∣∣�εχA(x)

∣∣> λ
}
.

Since�̃∗
ε is bounded fromM(C) into L1,∞(µ) uniformly in ε, by (b) of Proposition

4.1 there exists a constantC such that for allε > 0 there is a functionh : C−→ [0,1]
such thath(x) = 0, if x �∈ Eλ,

µ(Eλ) ≤ 2
∫
Eλ

hdµ, and
∣∣�̃ε(h)(x)

∣∣ ≤ C, for all x ∈ C.

By (42) we get|�ε(h)(x)| ≤ C+C0, for all x ∈ C.
Applying (32) we obtain

µ(Eλ) ≤ 2
∫
Eλ

hdµ ≤ 2

λ2

∫
|�εχA|2hdµ
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≤ 1

λ2

∫ ∫ ∫
|x−y| > ε

|x−z| > ε

|y−z| > ε

c(x,y,z)2χA(x)χA(y)h(z)dµ(x)dµ(y)dµ(z)

+ 4

λ2

∣∣∣∣∫
A

�ε(χA)�ε(h)dµ

∣∣∣∣+ C

λ2
µ(A)

≤ 1

λ2

〈
KχA,χA

〉+ C

λ2

∫
A

∣∣�ε(χA)
∣∣dµ+ C

λ2
µ(A)

≤ C

λ2

∫
A

∣∣�ε(χA)
∣∣dµ+ C

λ2
µ(A).

The only task left is to estimate the integral
∫
A

|�ε(χA)|dµ. By (33), sinceK is of
strong-type (2,2), we obtain∫

A

∣∣�ε

(
χA

)∣∣dµ ≤ µ(A)1/2
(∫

A

∣∣�ε

(
χA

)∣∣2dµ)1/2
≤ Cµ(A)1/2

(
c2(A)+µ(A)

)1/2
≤ Cµ(A).

Therefore,�ε is of restricted weak-type (2,2) uniformly onε.
Finally, since the Cauchy integral is of weak-type (1,1) and of restricted weak-

type (2,2), by interpolation (see [Gu, p. 59] or [StW, p. 197]) we conclude that it
is of strong-type(p,p), for 1< p < 2. By duality, it is of strong-type(p,p), for
2< p < ∞, and again by interpolation it is of strong-type (2,2).

4.2. Proof of the remaining implications in Theorem 1.1.We have proved(1) ⇔
(2) and(1) ⇒ (3). On the other hand, it is obvious that(3) ⇒ (4). So if we show that
(4) ⇒ (1), the proof of Theorem 1.1 will be complete.
Suppose that the Cauchy integral operator boundedly sendsL1(µ) into L1,∞(µ).

By Proposition 4.3 we know thatµ has linear growth. To prove thatµ satisfies the
local curvature condition, we need the following lemma.

Lemma 4.4. Letµ be a positive Radon measure onC. Suppose that�ε is bounded
fromL1(µ) into L1,∞(µ) uniformly inε; that is, there exists some constantC such
that

µ
{
x : ∣∣�εf (x)

∣∣> λ
} ≤ C

‖f ‖L1(µ)
λ

,

for all λ > 0, f ∈ L1(µ), andε > 0. Then there exists a constantC′ depending onC
such that for any compact setE ⊂ C there is aµ-measurable functionh : C−→ [0,1]
(independent ofε) such that, for allε > 0,

h(x) = 0, for all x �∈ E, (43)
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µ(E) ≤ 8
∫

hdµ, (44)

|�h(x)| ≤ C′, for all x �∈ E and a.e. (�2) x ∈ C, (45)

and, for allε > 0, ∣∣�εh(x)
∣∣ ≤ C′ +C0, for all x ∈ C. (46)

Proof. Observe that (46) follows from (45), since for eachε > 0 we have

∣∣�̃ε(h)(x)
∣∣ = ∣∣∣∣( 1

πε2
χε ∗�(h)

)
(x)

∣∣∣∣ ≤ C6, for all x ∈ C,

and by (42),

|�ε(h)(x)| ≤ ∥∥�̃ε(h)
∥∥
L∞(C)+C0‖h‖L∞(µ) ≤ C6+C0, for all x ∈ C.

So, givenE ⊂ C compact, we must show that there exists a functionh : C −→
[0,1] satisfying (43), (44), and (45). By the Lebesgue-Radon-Nikodym theorem, we
have

dµ|E = gd�2|E +dσ,

where�2 stands for the 2-dimensional Hausdorff measure,g ∈ L1(�2|E), g ≥ 0, and

σ is a positive finite Radon measure that is singular with respect to�2. So there is a
Borel setE0 ⊂ E such that�2(E0) = 0 andσ(E) = σ(E0).
Let us consider the caseσ(E0) ≤ µ(E)/2. Sinceµ(E) = ∫

E\E0 gd�2+σ(E0),

we have
∫
E\E0 gd�2 ≥ µ(E)/2. TakeN ∈ N andF ⊂ E \E0 compact such that

g(x) ≤ N , for all x ∈ F , andµ(F) = ∫
F
g d�2 ≥ µ(E)/4.

Since �̃ε is bounded fromL1(µ) into L1,∞(µ) uniformly in ε, we can apply
Proposition 4.1 to the spaceX = spt(µ). We conclude that there exists some function
hε : F −→ [0,1] so thatµ(F) ≤ 2

∫
hε dµ and |�̃εhε(x)| ≤ C, for all x ∈ spt(µ).

Also, by (42) we have

|�ε(hε)(x)| ≤ ∥∥�̃ε(hε)
∥∥
L∞(µ)

+C0‖hε‖L∞(µ) ≤ C+C0 = C′, for all x ∈ F .
(47)

There is a sequence{εk}k tending to zero such that(hεk )k converges weak∗ in
L∞(µ) to some functionh ∈ L∞(µ). Then it is straightforward to check that

µ(F) ≤ 2
∫

hdµ,

h(x) = 0, for all x �∈ F,
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and
‖h‖L∞(µ) ≤ 1.

Also, we have

lim
k→∞�εkhεk (x) = �h(x), (48)

for all x ∈ C, since∣∣�εkhεk (x)−�h(x)
∣∣ ≤ ∣∣�εkhεk (x)−�hεk (x)

∣∣+ ∣∣�hεk (x)−�h(x)
∣∣ = I +II. (49)

The termI tends to zero ask → ∞, since

I =
∣∣∣∣∫|y−x|≤εk

hεk (y)

y−x
dµ(y)

∣∣∣∣ ≤ ∫
|y−x|≤εk

1

|y−x|Nd�2(y) = 2πNεk. (50)

Now we consider the termII in (49):

II =
∣∣∣∣∫

F

1

y−x

(
hεk (y)−h(y)

)
dµ(y)

∣∣∣∣ .
Notice that, for any fixedx ∈ C, the functionχF (y)/(y − x) belongs toL1(µ), as
dµ|F = gd�2, with g bounded. Therefore,II tends to zero ask → ∞. Hence, (48)
holds.
By (47) and (48) we get that|�h(x)| ≤ C′, for all x ∈ F . It is easily checked that

�h is continuous onC. Therefore, by the maximum principle,|�h(x)| ≤ C′, for all
x ∈ C. Thush satisfies (43), (44), and (45).
Suppose now thatσ(E0) > µ(E)/2. LetG ⊂ E0 be compact withµ(G) ≥ µ(E)/4.

By Proposition 4.1 there exists some functionhε : G −→ [0,1] so thatµ(G) ≤
2
∫
hε dµ and|�̃εhε(x)| ≤ C, for all x ∈ spt(µ). As above, by (42) we obtain∣∣�ε(hε)(x)

∣∣ ≤ C, for all x ∈ G. (51)

We show that there is some constantC7 such that, for allw ∈ C satisfying
d(w,G) = 2ε, (52)

we have ∣∣�εhε(w)
∣∣ ≤ C7. (53)

Since�εhε(w) = �hε(w) by (52), we get that|�hε(x)| ≤ C7, for all x ∈ C, such that
d(x,G) > 2ε, by the maximum principle. Now, we can take a sequence{εk}k tending
to zero such that(hεk )k converges weak∗ in L∞(µ) to some functionh ∈ L∞(µ)

satisfying

µ(G) ≤ 2
∫

hdµ,
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h(x) = 0, for all x �∈ G,

and
‖h‖L∞(µ) ≤ 1.

Also, for all x �∈ G, we have

lim
k→∞�hεk (x) = �h(x).

As�2(G) = 0, (43), (44), and (45) hold.
Let us prove (53) forw satisfyingd(w,G) = 2ε. Letx0 ∈ G be such that|w−x0| =

2ε. We denote
hε,1 = hε ·χ�(x0,4ε)

and
hε,2 = hε −hε,1.

Then, by (51),∣∣�εhε(w)
∣∣ ≤ ∣∣�εhε(x0)

∣∣+ ∣∣�εhε(w)−�εhε(x0)
∣∣

≤ C+ ∣∣�εhε,1(w)
∣∣+ ∣∣�εhε,1(x0)

∣∣+ ∣∣�εhε,2(w)−�εhε,2(x0)
∣∣.

Now, since|hε| ≤ 1, it is easily checked that|�εhε,1(w)| ≤ C, |�εhε,1(x0)| ≤ C, and
|�εhε,2(w)−�εhε,2(x0)| ≤ C for some constantC; (53) follows.

We can now continue the proof of(4) ⇒ (1). By Corollary 2.2 we only have to
prove thatµ satisfies the weak local curvature condition. Given a disc� ⊂ C, there
exists a functionh : C−→ [0,1] (independent ofε) such that

µ(�) ≤ 8
∫

hdµ,

h(x) = 0, for all x �∈ �,

and
|�εh(x)| ≤ C, for all x ∈ C,

with C not depending on the disc�. Consider the set

S =
{
z ∈ � : h(z) ≥ 1

16

}
.

Then

µ(�) ≤ 8

(∫
S

hdµ+
∫
�\S

hdµ

)
≤ 8

(
µ(S)+ 1

16
µ(�\S)

)
= 8

(
µ(�)− 15

16
µ(�\S)

)
.
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Therefore,

µ(�\S) ≤ 14

15
µ(�),

and so

µ(S) ≥ 1

15
µ(�). (54)

By equation (33) applied to the measureh dµ, we have

c2ε (�,hdµ) = 6
∫
�

|�ε(h)|2hdµ+O
(
µ(�)

) ≤ Cµ(�),

for all ε > 0, and sinceh(x) ≥ (1/16), for x ∈ S, we obtain

c2ε (S) ≤ 163c2ε (S,hdµ) ≤ 163c2ε (�,hdµ) ≤ Cµ(�) ≤ Cµ(S),

for all ε > 0, and consequentlyc2(S) ≤ Cµ(S). Therefore, by (54),µ satisfies the
weak local curvature condition.

Remark 4.5.After this paper was written, Nazarov, Treil, and Volberg [NTV1]
obtained some results that are related to the ones proved here. In particular, they
proved that ifµ is a positive Radon measure onC (not doubling, in general) with
linear growth and ifT is a Calderón-Zygmund operator such that∫

|T χQ|2dµ ≤ Cµ(Q),

for all squaresQ ⊂ C, thenT is bounded onL2(µ). They also have shown that the
L2-boundedness ofT implies the weak (1,1)-boundedness.

5. A geometric characterization of the analytic capacityγ+. Theanalytic ca-
pacityγ+ (or capacityγ+) of a compact setE ⊂ C is defined as

γ+(E) = sup|f ′(∞)|,
where the supremum is taken over all analytic functionsf : C\E−→C, with |f | ≤ 1
on C \ E, which are theCauchy transformsof some positive Radon measureµ
supported onE. Obviously,

γ (E) ≥ γ+(E).

The analytic capacityγ was first introduced by Ahlfors [Ah] in order to study
removable singularities of bounded analytic functions. He showed that a compact set
is removable for all bounded analytic functions if and only if it has zero analytic
capacity. However, this did not solve the problem of characterizing these sets in
a geometric way (this is known as Painlevé’s problem), because of the lack of a
geometric or metric characterization of analytic capacity. In fact, it is not even known
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if analytic capacity as a set function is semiadditive; that is, if there is some absolute
constantC such that

γ (E∪F) ≤ C
(
γ (E)+γ (F )

)
,

for all compact setsE,F ⊂ C (see [Me1], [Su], [Vi], and [VM], for example).
On the other hand, as far as we know, the capacityγ+ was introduced byMurai [Mu,

pp. 71–72]. He introduced this notion only for sets supported on rectifiable curves,
and he obtained some estimates involvingγ+ about the weak (1,1)-boundedness of
the Cauchy transform on these curves.
Also, until now, no characterization ofγ+ in geometric or metric terms has been

known.
In the following theorem, we obtain a more precise version of inequality (40), and

we get a geometric and metric characterization ofγ+ for compact sets with area zero.

Theorem 5.1. If E ⊂ C is compact, then

γ+(E) ≥ C sup
‖µ‖3/2(‖µ‖+c2(µ)

)1/2 , (55)

whereC > 0 is some absolute constant and the supremum is taken over all positive
Radon measuresµ supported onE such thatµ(�(x,r)) ≤ r, for all x ∈ C, r > 0. If,
moreover,�2(E) = 0, then

γ+(E) ≈ sup
‖µ‖3/2(‖µ‖+c2(µ)

)1/2 , (56)

where the supremum is taken as above.

The notationa ≈ b in (56) means that there is some positive absolute constantC

such thatC−1a ≤ b ≤ Ca. Using Theorem 5.1, we get the semiadditivity ofγ+.

Theorem 5.2. LetE,F ⊂ C be compact with�2(E) = �2(F ) = 0. Then

γ+(E∪F) ≤ C
(
γ+(E)+γ+(F )

)
,

whereC is some absolute constant.

Proof of Theorem 5.1.First we show that (55) holds. Letµ be a positive finite
Radon measure supported onE with linear growth with constant 1 and such that
c2(µ) < ∞. Suppose thatk = c2(µ)/‖µ‖ > 1. Then we set

σ = µ

k1/2
.

Notice thatσ has linear growth with constant less than or equal to 1 and

c2(σ ) = c2(µ)

k3/2
= k‖µ‖

k3/2
= ‖σ‖. (57)
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Furthermore,
‖σ‖3/2(‖σ‖+c2(σ )

)1/2 = 1

21/2
‖σ‖ = 1

(2k)1/2
‖µ‖.

Thus, by the definition ofk,

‖µ‖3/2(‖µ‖+c2(µ)
)1/2 = 1

(1+k)1/2
‖µ‖

=
(
2k

1+k

)1/2 ‖σ‖3/2(‖σ‖+c2(σ )
)1/2

≤ 21/2
‖σ‖3/2(‖σ‖+c2(σ )

)1/2 .
Therefore, taking (57) into account, to prove (55) we can assume that the supremum
is taken only over measuresµ, supported onE, having linear growth with constant 1
such thatc2(µ) ≤ ‖µ‖. Let us remark that this fact was already noticed in [Me2].
So, ifµ is a positive finite measure supported onE with linear growth with constant

1 and such that

c2(µ) ≤ ‖µ‖, (58)

we have to show that

γ+(E) ≥ C8‖µ‖, (59)

with C8> 0, since
‖µ‖3/2(‖µ‖+c2(µ)

)1/2 ≈ ‖µ‖,

because of (58).
By Chebyshev, from (58) we get

µ
{
x ∈ C : c2µ(x) > 2

} ≤ 1

2
c2(µ) ≤ 1

2
‖µ‖.

(Here we use the notationc2µ(x) instead ofc
2(x).) So if we set

σ = µ|{c2µ(x)≤2},

then

‖σ‖ ≥ 1

2
‖µ‖.

Also,
c2σ (x) ≤ 2, for σ -almost allx ∈ C.



300 XAVIER TOLSA

Notice thatσ has linear growth with constant 1 and satisfies

c2(σ|F ) ≤ 2σ(F ), (60)

for any Borel setF . Using Theorem 1.1, we get that the Cauchy transform is bounded
on L2(σ ) and is bounded also fromL1(σ ) into L1,∞(σ ), with the norm bounded
by some absolute constant. Therefore, by Lemma 4.4, there exists some absolute
constantC9 such that for any compact setF ⊂ C, there is aσ -measurable function
h : F −→ [0,1] such thatσ(F ) ≤ 8

∫
hdσ and|�(hdσ)(x)| ≤ C9, for all x �∈ F . In

particular, if we chooseF = E, we get

‖σ‖ ≤ 8
∫

hdσ,

for someσ -measurable functionh : E−→[0,1], and
|�h(x)| ≤ C9, for all x �∈ E.

Thus (59) holds.
For the second part of the theorem, assuming�2(E) = 0, we only have to show

that there exists some constantC such that

γ+(E) ≤ C sup
‖µ‖3/2(‖µ‖+c2(µ)

)1/2 . (61)

Let ν be some positive measure supported onE such that|�ν(x)| < 1 for all x �∈ E

andγ+(E) ≤ 2‖ν‖. Let us check thatν has linear growth. Let�(x,r) ⊂ C be some
closed disc. Recall that if∫

|z−x|=r

∫
1

|z−y| dν(y)d�1(z) < ∞, (62)

where�1 stands for the 1-dimensional Hausdorff measure, then

ν
(
�(x,r)

) = −1
2πi

∫
|z−x|=r

�ν(z)dz. (63)

See [Ga, p. 40], for example.
Notice that for allx ∈ C, (62) holds for a.e. (�1) r > 0 (this follows by Fubini). So

we get that for allx ∈ C, (63) holds for a.e. (�1) r > 0. Since�2(E) = 0, we also
get that for each fixedx, �1(∂�(x,r)∩E) = 0, for�1-almost allr > 0. Therefore,
by (63), for allx ∈ C, we have

ν
(
�(x,r)

) ≤ r, (64)

for �1-almost allr > 0, and by approximation this can be extended to allr > 0.
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Now, by Remark 4.2,|�̃εν(x)| ≤ C, for all x ∈ C and for some constantC not
depending onε, so |�εν(x)| ≤ C+1, for all x ∈ C by (42). Using the identity (33),
we obtain

c2(ν) ≤ C‖ν‖.
Therefore,

γ+(E) ≤ 2‖ν‖ ≤ C
‖ν‖3/2(‖ν‖+c2(ν)

)1/2 ,
and (61) follows.

We do not know if the second part of Theorem 5.1 holds for sets with positive area.
However, we have the following nonquantitative result.

Corollary 5.3. LetE ⊂ C be compact. Thenγ+(E) > 0 if and only ifE sup-
ports some positive finite Radon measureµ with linear growth such thatc2(µ) < ∞.

Proof. If �2(E) > 0, the result follows, choosingµ = �2|E . If �2(E) = 0, we
apply (56) of Theorem 5.1.

Proof of Theorem 5.2.The semiadditivity ofγ+ for sets of area zero follows from
(56) of Theorem 5.1 and the fact that the quantity

sup
‖µ‖3/2(‖µ‖+c2(µ)

)1/2 (65)

is semiadditive.
Arguing as in the proof of Theorem 5.1, we know that there is a positive finite

Radon measureµ with linear growth with constant 1,µ supported onE ∪F , such
that

γ+(E∪F) ≤ C10‖µ‖
and

c2µ(x) ≤ 2,

for µ-almost allx ∈ C. Then c2(µ|E) ≤ 2µ(E) and c2(µ|F ) ≤ 2µ(F). Thus, by
Theorem 5.1,γ+(E) ≥ C11µ(E) andγ+(F ) ≥ C11µ(F), whereC11 > 0 is some
absolute constant. Therefore,

γ+(E∪F) ≤ C10
(
µ(E)+µ(F)

) ≤ C
(
γ+(E)+γ+(F )

)
.

With some minor changes in the proof of Theorem 5.2, one can check that, in fact,
γ+ is countablysemiadditive on compact sets with area zero.

Remark 5.4. Let us define the capacitỹγ+. Given a compactE ⊂ C, we set
γ̃+(E) = sup‖µ‖,
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where the supremum is taken over all positive Radon measuresµ supported onE
such that|�µ| ≤ 1 a.e. (�2) in C. Obviously, if�2(E) = 0, then

γ̃+(E) = γ+(E).

However, we do not know if̃γ+(E) = γ+(E) or γ̃+(E) ≈ γ+(E) holds for compact
setsE with positive area. Arguing as in Theorem 5.1, it is easily seen that

γ̃+(E) ≈ sup
‖µ‖3/2(‖µ‖+c2(µ)

)1/2 ,
with the supremum taken as in Theorem 5.1, for any compact setE ⊂ C. Also, as in
Theorem 5.2,

γ̃+(E∪F) ≤ C
(
γ̃+(E)+ γ̃+(F )

)
,

for all compact setsE,F ⊂ C. So the notion of̃γ+ seems to be more natural than the
notion ofγ+.
On the other hand, observe that if we showed that

γ (E) ≈ γ+(E), (66)

for all setsE with �2(E) = 0, then by Theorem 5.2 we could obtain easily that
analytic capacity is a semiadditive function on compact sets. Of course, proving (66)
seems difficult. In fact, (66) clearly implies the conjecture of Melnikov stating that
γ (E) > 0 if and only ifE supports some positive finite measure with linear growth
and finite curvature.

Remark 5.5.Nazarov, Treil, and Volberg [NTV3] have shown that

γ+(E) > 0 if and only if γc(E) > 0,

whereγc(E) stands for
γc(E) = sup|f ′(∞)|,

with the supremum taken over all functionsf analytic onC\E, with |f | ≤ 1, which
are the Cauchy transforms of some complex measure. However, from their estimates,
one cannot derive thatγ+(E) ≈ γc(E). (It is not difficult to see that this would imply
(66).)
Nazarov, Treil, and Volberg informed the author that they know how to obtain

Theorem 5.1 with different arguments, using theT (b) obtained in [NTV2].
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