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Abstract
This paper focuses on the connection between the Brauer group and the0-cycles of
an algebraic variety. We give an alternative construction of the second l-adic Abel-
Jacobi map for such cycles, linked to the algebraic geometry of Severi-Brauer vari-
eties on X. This allows us then to relate this Abel-Jacobi map to the standard pairing
between0-cycles and Brauer groups (see [M], [ L]), completing results from [M] in
this direction. Second, for surfaces, it allows us to present this map according to the
more geometrical approach devised by M. Green in the framework of (arithmetic)
mixed Hodge structures (see [G]).

Needless to say, this paper owes much to the work of U. Jannsen and, especially,
to his recently published older letter [J4] to B. Gross.
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1. Introduction
Let X be a smooth, projective, geometrically irreducible variety of dimensionn over
a field k. The conjectural formula of A. A. Beilinson for the conjectural filtration
F · CH(X)Q of the Chow groups ofX reads (see [J3, page 259])

Gri CH j (X)Q ∼= ExtiMMk

(
1, h2 j −i (X)( j )

)
. (1.1)
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In the particular case of 0-cycles, Poincaré duality allows us to write this in the more
simple form

Gri CH0(X)Q ∼= ExtiMMk

(
hi (X),1

)
. (1.2)

Conjectures aside, there exist natural maps, in fact, with integral coefficients:

CH0(X) = F0 CH0(X)
10

n
−→ Ext0Gk

(
H0(X̄,Gm), k̄

∗
)
, (1.3)

A0(X) = F1 CH0(X)
11

n
−→ Ext1Gk

(
H1(X̄,Gm), k̄

∗
)
. (1.4)

The first one of these maps is just the degree map, and the second one, which is a
lifting of the Albanese map, is recalled in Section 2. The groups on the right-hand
side in (1.3) and (1.4) refer to extensions of discreteGk-modules (̄k is an algebraic
closure ofk, X̄ = X ⊗k k̄, andGk is the absolute Galois group ofk), a fact that
makes these groups bigger than we would like. Namely, if one takes instead, respec-
tively, Ext0(Gm,k,Gm,k) and Ext1(PicX/k,Gm,k), extensions as commutative group
schemes overk, then a similar construction should lead to isomorphisms

Gr0 CH0(X)Q
∼

−→ Ext0(Gm,k,Gm,k)Q, (1.5)

Gr1 CH0(X)Q
∼

−→ Ext1(PicX/k,Gm,k)Q, (1.6)

reminiscent of (1.2).
In this work we contribute the following.
(a) Based on the paper [J4], we construct in Sections 3 and 4 a natural map, with

T(X) ⊂ A0(X) denoting the Albanese kernel,

T(X) = F2 CH0(X)
12

n
−→ Ext2Gk

(
H2(X̄,Gm), k̄

∗
)
Q. (1.7)

Remark 1.8
Note that, in contrast with (1.3) and (1.4), we use rational coefficients here. We do
not dwell on the question of whether this is strictly necessary or not, but we take
advantage of it (see Remark 7.17 for a remark in this respect, due to J.-L. Colliot-
Thélène). Also, we do not make statements here that are comparable to (1.5) and
(1.6). On the positive side, however, the construction of12

n is very explicit.

(b) By means of Pontryagin duality, map (1.7) is shown in Section 5 to be equivalent
to the set of alll -adic higher Abel-Jacobi mappings (see [J3, pages 251–252 and 262–
263]; see also [R, pages 37–40])

T(X)
d2

n
−→ H2

cont

(
Gk, H2n−2(X̄,Ql (n))

)
, (1.9)
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l prime, l 6= char(k), provided homological and numerical equivalence coincide for
algebraic 1-cycles on̄X (see [K, page 379]) and thus unconditionally for surfaces and
for varieties in characteristic zero, among others (see [K, page 380]); see Theorem
5.1 and Remark 5.5.

(c) As one application, we discuss in Section 6 an alternative description of (1.9)
for surfaces, along the lines of M. Green in [G], thus relating both points of view (see
Corollary 6.15).

(d) Finally, in Section 7 we relate the map (1.7) to the standard pairing (see [M,
page 406])

CH0(X)⊗Z Br(X) −→ Br(k)

(see Theorem 7.8).

2. The map11
n

Let X be as in the introduction. We recall the definition of11
n. A reference for this

is [CTS]. Let z be a 0-cycle of degree zero ofX, and letZ ⊂ X be a 0-dimensional
closed subset containing the support|z| of z. Let Z̄ ⊂ X̄ be the 0-dimensional closed
subset obtained as the inverse image ofZ in X̄ = X ⊗k k̄. We also denote bȳZ ⊂ X̄
the reduced 0-dimensional subscheme supported by this set. Except for this, as a
rule in this paper, we denote by a bar the effect of taking base change fromk to the
algebraic closurēk of k or, else, to objects defined directly overk̄. We have an exact
sequence of discreteGk-modules

0 −→ H0(Z̄,Gm)/H0(X̄,Gm) −→ Pic(X̄, Z̄) −→ Pic(X̄) −→ 0. (2.1)

The group Pic(X̄, Z̄) consists of the isomorphism classes of couples(L̄ , θ̄ ) with
L̄ an invertible sheaf onX̄ and θ̄ : OZ̄

∼
−→ L̄ ⊗ OZ̄ an isomorphism. The

map Pic(X̄, Z̄) → Pic(X̄) is a forgetful one, sending[(L̄ , θ̄ )] to [L̄ ]. Given
ū ∈ H0(Z̄,Gm), the image of[ū] in Pic(X̄, Z̄) is [(OX̄, θ̄ )] with θ̄ standing now
for multiplication byū. (The notation for Pic(X̄, Z̄) can be traced back, at least, to a
paper by H. Gillet and R. Thomason [GT, page 243].)

The exact sequence (2.1) can be deduced alternatively from the cohomology se-
quence of the (self-defining) exact sequence of sheaves onX̄,

0 −→ Gm,X̄,Z̄ −→ Gm,X̄ −→ Gm,Z̄ −→ 0, (2.2)

or, which is the same thing, from the long exact sequence obtained from the first
hypercohomology spectral sequence of the two-term complexGm,X̄ → Gm,Z̄ .

We note that, unlessk is a perfect field, this is different from the sequence ob-
tained from the analogous exact sequence onX,

0 −→ Gm,X,Z −→ Gm,X −→ Gm,Z −→ 0,



450 GERALD E. WELTERS

by taking higher direct images by the structure mapX → Spec(k). (HereZ is under-
stood as the reduced 0-dimensional subscheme ofX supported by this set.) However,
by proper base change (see [Mi1, page 224]), the result is the same, when restricting
ourselves to thel -primary torsion parts, for primesl 6= char(k).

The norm map forZ → Spec(k) induces a morphism ofGk-modules which we
also denote asz,

H0(Z̄,Gm)/H0(X̄,Gm)
z

−→ k̄∗, (2.3)

and by pushing out (2.1) by (2.3), we obtain a 1-extension representing11
n([z]):

0 −→ k̄∗
−→ Ēz −→ Pic(X̄) −→ 0. (2.4)

Remark 2.5
Note that the result is indeed independent of the particular choice ofZ. This follows
from the functoriality properties inZ of (2.1), (2.2), and (2.3). Actually, the extension
Ēz can be described physically as follows. Writingz̄ =

∑r
i =1 ni x̄i ,

∑r
i =1 ni = 0, the

fiber of Ēz above the isomorphism class[L̄ ] ∈ Pic(X̄) of an invertible sheafL̄ on X̄
is given, up to canonical isomorphism, by

⊗r
i =1 L̄ (x̄i )

⊗
ni \{0̄}.

In order to compare now the map11
n : A0(X) → Ext1Gk

(Pic(X̄), k̄∗) with the (inte-

gral) l -adic Abel-Jacobi mapd1
n : A0(X) → H1

cont

(
Gk, H2n−1(X̄,Zl (n))

)
, we con-

sider the restriction map

Ext1Gk

(
Pic(X̄), k̄∗

)
−→ Ext1Gk

(
Pic(X̄)(l ), k̄∗

)
(2.6)

and the isomorphisms

Ext1Gk

(
Pic(X̄)(l ), k̄∗

)
∼= Ext1Gk

(
Pic(X̄)(l ), k̄∗(l )

)
(2.7)

∼= Ext1Gk

(
H1(X̄,Ql /Zl (1)),Ql /Zl (1)

)
(2.8)

∼= Ext1Gk

(
Zl , H2n−1(X̄,Zl (n))

)
(2.9)

∼= H1
cont

(
Gk, H2n−1(X̄,Zl (n))

)
. (2.10)

The isomorphism (2.7) is induced functorially by the change in the second argument.
(In Yoneda-Ext language, to go from the left-hand to the right-hand side, one takes
l -primary torsion submodules). The isomorphism (2.8) is given by the Kummer exact
sequence forGm,X̄ . At this point there is obviously no difference between extensions
as discreteGk-modules and extensions as discrete (l -primary) torsionGk-modules.
The isomorphism (2.9) is given then by applying Pontryagin duality twisted by (1)
(i.e., by taking Hom(−, k̄∗)) and using Poincaré duality. The extensions are now taken
in the category of continuousZl [Gk]-modules. The last isomorphism is tautological
(see [J1]).
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PROPOSITION2.11
The map d1n equals11

n followed by the restriction map (2.6) and the isomorphisms
(2.7)–(2.10).

Proof
This follows, by Poincaŕe duality, from the description ofd1

n given in [J1] (see also
[J2, page 139] or [J4, page 261]). We give the details. For allr ∈ N, the exact diagram

0 // H2n−1
(
X̄,Z/ l r Z(n)

)
// H2n−1

(
X̄\Z̄,Z/ l r Z(n)

)
//

0 // H2n−1
(
X̄,Z/ l r Z(n)

)=

OO

// (· · · )

OO

//

// H2n
Z̄

(
X̄,Z/ l r Z(n)

)
// H2n

(
X̄,Z/ l r Z(n)

)
// 0

// Z/ l r Z

z

OO

// 0

OO

(2.12)

gives, by taking Hom(−, µ̄l r ) and using Poincaré duality,

0 // H0(X̄, µl r )

��

// H0(Z̄, µl r )

z

��

//

0 // µ̄l r //

// H1
c

(
X̄\Z̄,Z/ l r Z(1)

)
��

// H1
(
X̄,Z/ l r Z(1)

)
=

��

// 0

// (· · · ) // H1
(
X̄,Z/ l r Z(1)

)
// 0

(2.13)

The top row in diagram (2.13) is given by the cohomology sequence of the exact
sequence ofl r -torsion subsheaves in (2.2),

0 −→ µl r ,X̄,Z̄ −→ µl r ,X̄ −→ µl r ,Z̄ −→ 0 (2.14)

(thusµl r ,X̄,Z̄ = j̄ !µl r ,X̄\Z̄ , where the letter̄j denotes the inclusion map̄X\Z̄ ↪→ X̄),
whence it is the sequence ofl r -torsion submodules of the corresponding part of the
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cohomology sequence of (2.2). By the construction of (2.4), it follows that the bottom
row in (2.13) equals the sequence ofl r -torsion submodules in (2.4),

0 −→ µ̄l r −→ l r Ēz −→ l r Pic(X̄) −→ 0. (2.15)

From this it follows that the image of11
n([z]) in Ext1Gk

(
H1(X̄,Ql /Zl (1)),Ql /Zl (1)

)
is represented by the inductive limit of these sequences, asr varies. Taking now the
Pontryagin dual of this and twisting the result by (1) is tantamount to taking the pro-
jective limit of the bottom sequences in (2.12), asr varies. By [J1], [J2, page 139],
and [J4, page 261], this isd1

n([z]).

3. Construction of12
n

We keepX as before. Letz be a 0-cycle ofX of degree zero such that11
n([z]) = 0.

In the notation of Section 2, there exists a morphism ofGk-modules

Pic(X̄, Z̄)
z̃

−→ k̄∗ (3.1)

restricting to the mapz of (2.3) onH0(Z̄,Gm)/H0(X̄,Gm). The map̃z is determined
up to a morphism ofGk-modules Pic(X̄) → k̄∗.

We now construct, for all 0-dimensional closed subsetsZ ⊂ X (including the
improper caseZ = ∅), explicit 2-extensions of discreteGk-modules in the style of
(2.1),

0 −→ Pic(X̄, Z̄) −→ (· · · ) −→ (· · · ) −→ Br(X̄) −→ 0, (3.2)

defining a canonical elementαZ ∈ Ext2Gk
(Br(X̄),Pic(X̄, Z̄)) (see (3.14) and (3.15)).

For Z1 ⊂ Z2, we have natural maps of exact sequences

0 // Pic(X̄, Z̄2)

��

// (· · · )

��

// (· · · )

��

// Br(X̄)

=

��

// 0

0 // Pic(X̄, Z̄1)
// (· · · ) // (· · · ) // Br(X̄) // 0

(3.3)

implying that, under the restriction morphism

Ext2Gk

(
Br(X̄),Pic(X̄, Z̄2)

)
−→ Ext2Gk

(
Br(X̄),Pic(X̄, Z̄1)

)
,

αZ2 maps toαZ1. Moreover, we show that, forZ = ∅, α∅ is a torsion element in
Ext2Gk

(Br(X̄),Pic(X̄)) (see Proposition (3.16)). We then give the following.

Definition 3.4
Let z be a 0-cycle of degree zero onX, such that11

n([z]) = 0. Let Z ⊂ X be
any 0-dimensional closed subset containing the support|z| of z. Then12

n([z]) ∈

Ext2Gk
(Br(X̄), k̄∗)Q is the image ofαZ under the morphism (3.1),12

n([z]) = z̃(αZ).
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Remark 3.5
(a) It is shown later in Section 3 that the result indeed depends only on the rational

equivalence class[z] of z (see Proposition 3.17). So far, we consider this as
attached to the cyclez itself, and we write, correspondingly,12

n(z).
(b) Forzfixed andZ containing|z|, the class12

n(z) does not depend on the chosen
z̃ because the variation is measured by a homomorphic image ofα∅, which is
a torsion element and whence is zero when tensored withQ.

(c) For fixedz, the result does not depend onZ either, because of the functoriality
in Z (see diagram (3.3)).

(d) If z = z′
+ z′′ with z′ andz′′ 0-cycles of degree zero such that11

n([z
′
]) = 0

and11
n([z

′′
]) = 0, then12

n(z) = 12
n(z

′) + 12
n(z

′′). To see this, it suffices to
takeZ so as to contain|z′

| ∪ |z′′
| and to choosẽz = z̃′

+ z̃′′.

Definition 3.4 therefore yields a morphism

T(X)
12

n
−→ Ext2Gk

(
Br(X̄), k̄∗

)
Q. (3.6)

This follows from the inclusionT(X)Q ⊂ Ker(11
n)Q. We have indeed, more gener-

ally, in the notation of Section 2, a commutative diagram

Alb(X) // Ext1Gk

(
Pic0(X̄), k̄∗

)

A0(X)

OO

11
n // Ext1Gk

(
Pic(X̄), k̄∗

)
OO

(3.7)

the upper horizontal map coming from the duality between the Albanese variety and
the Picard variety. And, second, the right-hand-side vertical map yields an isomor-
phism when tensored withQ. This follows from the exact sequence

0 −→ Pic0(X̄) −→ Pic(X̄) −→ NS(X̄) −→ 0 (3.8)

and from the fact that the abelian group NS(X̄) is finitely generated, whence that
ExtiGk

(NS(X̄), k̄∗)Q = 0 for i > 0. We single out this fact since we want to use it
again later on.

Remark 3.9
Let M̄ andN̄ be discreteGk-modules, withM̄ finitely generated as an abelian group.
Then ExtiGk

(M̄, N̄)Q = 0 for i > 0. This follows from [Mi2, Chapter I, Example 0.8]
together with [S, Section I.2, Corollaire 3].
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If X̄ is a surface, then Br(X̄) = H2(X̄,Gm) (see [Mi1, page 149]), and (3.6) is the
map announced in (1.7). In the general case we still have an embedding Br(X̄) ↪→
H2(X̄,Gm) (see [Mi1, page 142]) which is not known so far to be an isomorphism.
In Section 4, we give a cohomological definition for the map (1.7), and it is shown
there that it induces the map (3.6) by restriction. This (perhaps temporary) ambiguity
in our use of the symbol12

n causes no harm, however, since its precise meaning is
always clear from the context.

We now give a construction of (3.2). Because it is very explicit, it may not be
pleasant to read. The cohomological description given in Section 4 can be read inde-
pendently.

Construction of (3.2): Case Z= ∅

We treat this case first for the sake of clarity. In the first place, we derive a canonical
exact sequence ofGk-modules

0 −→ Pic(X̄) −→

∏
C̄⊂X̄

Pic(C̄) −→ B̃r(X̄) −→ Br(X̄) −→ 0 (3.10)

which is a prototype for other sequences in this section. Here, in the second term,
C̄ ⊂ X̄ runs over all closed irreducible curves ofX̄. This exact sequence isnot a
sequence of discreteGk-modules but of continuousGk-modules, when endowed (the
two middle terms) with a natural topology stemming from the interpretation of (3.10)
as a projective limit of exact sequences of discreteGk-modules. We come back to this
below.

We view the Brauer group Br(Y) of a varietyY as the set of equivalence classes
of Severi-Brauer varieties overY (see [Gr1], [Gr2], [Gr3], [Mi1, Chapter III, Section
4, and Chapter IV]). A Severi-Brauer varietyP → Y (or P for short) of relative
dimensionn − 1,n ≥ 1, overY is a proper flat morphism withPn−1 as geometric
fibres. Actually, it is a projective morphism. Given such a Severi-Brauer variety, the
open subset Div1P/Y of the relative Hilbert scheme HilbP/Y which parametrizes effec-
tive divisors of degree 1 on the fibres ofP → Y is a Severi-Bauer variety of relative
dimensionn − 1 overY and is called the dualPˇ of P. Given Severi-Brauer vari-
etiesPi of relative dimensionsni − 1, i = 1,2, the open subset Div1,1

P1×Y P2/Y of the
Hilbert scheme HilbP1×Y P2/Y which parametrizes effective divisors of bidegree(1,1)
on the fibres ofP1×Y P2 → Y is a Severi-Brauer variety overY of relative dimension
n1n2−1. We denote its dual byP1∗ P2 (see [Gr1, page 64]), and we call this theSegre
productof P1 and P2. There is a canonical embeddingP1 ×Y P2 ↪→ P1 ∗ P2 over
Y, which restricts to the Segre embedding on the geometric fibres. Given a Severi-
Brauer varietyP overY, one has a canonical isomorphism of Severi-Brauer varieties
P∗Pˇ

∼
−→ P(A )with A a well-defined locally free sheaf of finite rank onY, actually

aOY-algebra. The Segre product is functorial inP1 andP2 for isomorphisms, and we
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denote byf1 ∗ f2 : P1 ∗ P2
∼

−→ P′

1 ∗ P′

2 the isomorphism induced by isomorphisms

fi : Pi
∼

−→ P′

i , i = 1,2, of Severi-Brauer varieties.
If E1 andE2 are locally free sheaves of finite rank onY, one has a canonical

isomorphism of Severi-Brauer varietiesP(E1) ∗ P(E2)
∼

−→ P(E1 ⊗ E2), natural in
E1 and E2. A Severi-Brauer varietyP

π
→ Y is isomorphic to a projective bundle

P(E ) if and only if there exists an invertible sheaf4 on P, restricting toOPn−1(1) on
the geometric fibres. Given such a4, the canonical epimorphismπ∗(R0π∗4) → 4

induces a canonical isomorphismP
∼

−→ P(R0π∗4) and a canonical relative iso-
morphism4

∼
−→ OP(R0π∗4)

(1). If Pi , i = 1,2, are Severi-Brauer varieties that
each admit an invertible sheaf4i , i = 1,2, satisfying the above property, then
we obtain a similar object41 ∗ 42 on P1 ∗ P2 from the canonical isomorphism
P1∗P2

∼
−→ P(R0π1∗41)∗P(R0π2∗42)

∼
−→ P(R0π1∗41⊗R0π2∗42) by pulling back

OP(R0π1∗41⊗R0π2∗42)
(1). If P is a Severi-Brauer variety that admits an invertible sheaf

4 as above, then one has canonically a similar object4ˇon Pˇand a canonical relative
isomorphism4∗4ˇ

∼
−→ OP(A )(1). Namely, from the isomorphismP

∼
−→ P(R0π∗4)

we obtain an isomorphismPˇ
∼

−→ P(R0π∗4)
∗, whence a sheaf4ˇby pulling back

OP(R0π∗4)∗
(1). The rest then follows from the existence of a canonical isomorphism

A
∼

−→ (R0π∗4) ⊗ (R0π∗4)
∗. The passage from(P, 4) to (P ,̌ 4ˇ) is (contravari-

antly) functorial for isomorphisms.
Two Severi-Brauer varietiesP and P′ over Y are said to be equivalent,P ∼

P′, if and only if there exist locally free sheavesE andE ′ of finite rank onY and
an isomorphism overY: P ∗ P(E ) ∼

−→ P′
∗ P(E ′). For a Severi-Brauer varietyP,

we denote by[P] its class in the Brauer group Br(Y). The addition law is given
by [P1] + [P2] = [P1 ∗ P2]. The zero element is represented byY = P(OY), and
−[P] = [Pˇ]. More generally, givend ∈ N, the open subset Divd

P/Y of the relative
Hilbert scheme HilbP/Y which parametrizes effective divisors of degreed on the
fibres of P → Y is a Severi-Brauer variety overY, representing−d[P]. Moreover,
one finds that[P] = 0 if and only if P is isomorphic to a projective bundleP(E )
(see [Gr1, page 64]). It follows that, givend ∈ N, one hasd[P] = 0 if and only if
there exists an invertible sheaf onP restricting toOPn−1(d) on the geometric fibres
of P → Y. For example, the existence of the relative canonical sheafωP/Y implies
n[P] = 0. The following fact plays a fundamental role in what follows.

PROPOSITION3.11
Let C̄ be a curve over an algebraically closed fieldk̄. ThenBr(C̄) = 0. Let Cs be a
proper curve over a separably closed field ks. ThenBr(Cs) = 0.

Proof (See [Gr3, page 89, Corollaire 1.2, page 132, and Corollaire 5.8])
We now construct the exact sequence (3.10) from right to left. We have dwelt already
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on the group Br(X̄), and we describe next the group̃Br(X̄) and the map onto Br(X̄).
Given a Severi-Brauer varietȳP over X̄, it follows from Proposition (3.11) that, for all
closed irreducible curves̄C ⊂ X̄, there exists an invertible sheafξ̄C̄ on the restriction
P̄C̄ of P̄ → X̄ to C̄ ⊂ X̄ such that̄ξC̄ restricts toOPn−1(1) on the geometric fibres
of P̄C̄ → C̄. We defineB̃r(X̄) to be the set of equivalence classes of couples(P̄, ξ̄ )
with P̄ a Severi-Brauer variety over̄X and ξ̄ standing for a choice of āξC̄ as above
for all C̄, modulo the equivalence relation(P̄, ξ̄ ) ∼ (P̄′, ξ̄ ′) if and only if there exist
locally free sheaves̄E and Ē ′ of finite rank onX̄, an isomorphismP̄ ∗ P(Ē ) ∼

−→

P̄′
∗ P(Ē ′) over X̄, and a relative isomorphism̄ξ ∗ OP(Ē )(1)

∼
−→ ξ̄ ′

∗ OP(Ē ′)(1). By

this we mean, for allC̄, a relative isomorphism̄ξC̄ ∗ OP(ĒC̄)
(1)

∼
−→ ξ̄ ′

C̄
∗ OP(Ē ′

C̄
)(1)

over the induced isomorphism̄PC̄ ∗ P(ĒC̄)
∼

−→ P̄′

C̄
∗ P(Ē ′

C̄
). It is straightforward to

check that this is indeed an equivalence relation. We write[(P̄, ξ̄ )] for the equivalence
class of(P̄, ξ̄ ). Moreover, we define(P̄1, ξ̄1) ∗ (P̄2, ξ̄2) = (P̄1 ∗ P̄2, ξ̄1 ∗ ξ̄2) with
(ξ̄1 ∗ ξ̄2)C̄ = ξ̄1,C̄ ∗ ξ̄2,C̄ for all C̄ ⊂ X̄. This induces an addition law in the quotient
setB̃r(X̄). The zero element is represented by(X̄, Ō) with ŌC̄ = OC̄ for all C̄. Also,
−[(P̄, ξ̄ )] = [(P̄ ,̌ ξ̄ ˇ)] with ξ̄ ˇC̄ = (ξ̄C̄)ˇ for all C̄. The surjectioñBr(X̄) → Br(X̄) is
the forgetful map sending[(P̄, ξ̄ )] to [P̄].

The map
∏

C̄⊂X̄ Pic(C̄) → B̃r(X̄) sends([L̄C̄])C̄⊂X̄ to [(X̄, λ̄)] with λ̄C̄ = L̄C̄

for all C̄ ⊂ X̄. This element belongs to the kernel of̃Br(X̄) → Br(X̄). Conversely,
given [(P̄, ξ̄ )] ∈ B̃r(X̄) such that[P̄] = 0 in Br(X̄), there exist locally free sheaves
Ē , Ē ′ of finite rank onX̄ and an isomorphism of Severi-Brauer varietiesP̄∗P(Ē ) ∼

−→

X̄ ∗ P(Ē ′) = P(Ē ′). By the seesaw principle, this implies the existence of a relative
isomorphismξ̄ ∗ OP(Ē )(1)

∼
−→ λ̄ ∗ OP(Ē ′)(1) for a suitableλ̄ as above, and hence

(P̄, ξ̄ ) ∼ (X̄, λ̄); that is,[(P̄, ξ̄ )] lies in the image of the above map.
The map Pic(X̄) →

∏
C̄⊂X̄ Pic(C̄) sends[L̄ ] to ([L̄ ⊗ OC̄])C̄⊂X̄ . The image

of this map is the kernel of the preceding one. Namely, given([L̄C̄])C̄⊂X̄ as above,
one has(X̄, λ̄) ∼ (X̄, Ō) if and only if there exist locally free sheaves̄E and Ē ′

of finite rank onX̄, an isomorphismP(Ē ) ∼
−→ P(Ē ′), and a relative isomorphism

λ̄ ∗ OP(Ē )(1)
∼

−→ OP(Ē ′)(1). If this is given, then we deduce, again by seesaw, a

relative isomorphismL̄ ⊗ OP(Ē )(1)
∼

−→ OP(Ē ′)(1) for a suitable invertible sheafL̄

on X̄, whenceλ̄C̄
∼

−→ L̄ ⊗ OC̄ for all C̄ ⊂ X̄. Conversely, if this occurs, then the
preceding condition is satisfied for̄E = OX̄ andĒ ′

= L̄ .
It remains to be shown that the map Pic(X̄) →

∏
C̄⊂X̄ Pic(C̄) is injective. By

repeated application of [SGA2, Expośe XII, Corollaire 3.6], we reduce this to the case
whereX̄ is a surface. Then letL̄ be an invertible sheaf on̄X such thatOC̄

∼= L̄ ⊗OC̄
for all closed irreducible curves̄C ⊂ X̄. Consider a Lefschetz pencil on̄X, and let
ḡ : X̄′

→ P1
k̄

be the morphism obtained by blowing up the basis locus. It suffices to

show that the pullbackL̄ ′ of L̄ to X̄′ is trivial. We haveḡ∗(R0ḡ∗L̄
′) ∼= L̄ ′ and
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R0ḡ∗L̄
′ ∼= OP1

k̄
since this is now (relatively) isomorphic to the restriction ofL̄ ′ to

any of the exceptional divisors. Hence the result follows.

We also need a more refined version of this, to the effect that we may choose a fi-
nite set of closed irreducible curves̄C1, . . . , C̄r on X̄ such that the restriction map
Pic(X̄) →

∏r
i =1 Pic(C̄i ) is injective. To this end, we choose first a finite set of such

curves such that their classes generate the group Num1(X̄) of algebraic 1-cycles on
X̄ modulo numerical equivalence. WriteN = | Tors NS(X̄)|. If an invertible sheaf
L̄ on X̄ restricts to the trivial sheaf on each of these curves, then[L̄ ⊗N

] belongs to
Pic0(X̄) ⊂ Pic(X̄). Consider then a smooth irreducible curveC̄, an iterated hyper-
plane section of̄X. By weak Lefschetz, the restriction morphism Pic0(X̄) → Pic0(C̄)
has a finite kernel (ofp-torsion if char(k) = p > 0 and trivial otherwise). Adding
this curve to the previous list yields, therefore, a restriction map with a finite kernel.
Adding then for each nontrivial element in this kernel a curve where this element has
a nontrivial restriction, the claimed list is complete.

Let S̄be a finite set of closed irreducible curves ofX̄ such that
(1) S̄ is closed under conjugation byGk and
(2) Pic(X̄) ↪→

∏
C̄∈S̄ Pic(C̄) via the restriction map.

Then the construction of (3.10) may be repeated verbatim, replacing the set of all
closed irreducible curves̄C ⊂ X̄ by this setS̄ and obtaining an exact sequence of
discreteGk-modules

0 −→ Pic(X̄) −→

∏
C̄∈S̄

Pic(C̄) −→ B̃rS̄(X̄) −→ Br(X̄) −→ 0. (3.12)

Moreover, if S̄1 ⊂ S̄2, then the sequence (3.12) forS̄2 maps onto the sequence for
S̄1, with fixed ends. Thus all these sequences represent one and the same element
α∅ ∈ Ext2Gk

(Br(X̄),Pic(X̄)). As S̄ varies, the sequences (3.12) form a projective
system, and the projective limit is (3.10).

Construction of (3.2): The general case
We build on (3.10). Endowing everything with a trivialization above the points of
Z̄ and taking this trivialization into account in the definition of the corresponding
equivalence relations, we construct first a sequence of (nondiscrete)Gk-modules

0 −→ Pic(X̄, Z̄) −→

∏
C̄⊂X̄

Pic(C̄, Z̄ ∩C̄) −→ B̃r(X̄, Z̄) −→ Br(X̄) −→ 0. (3.13)

(The last term actually should read Br(X̄, Z̄), but this coincides with Br(X̄).) In the
second term, the product is taken over all closed irreducible curvesC̄ ⊂ X̄.

To defineB̃r(X̄, Z̄), we consider 4-tuples(P̄, ξ̄ , f̄ , ϕ̄) described as follows. The
first two items are as before:̄P → X̄ is a Severi-Brauer variety, say, of relative
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dimensionn − 1, andξ̄ symbolizes a choice of an invertible sheafξ̄C̄ on P̄C̄ for all
C̄ ⊂ X̄, restricting toO(1) on the geometric fibres of̄PC̄ → C̄. Moreover, f̄ :

Pn−1
Z̄

∼
−→ P̄Z̄ is an isomorphism, and̄ϕ stands for a selection, for all̄C ⊂ X̄, of a

relative isomorphism̄ϕC̄ : OPn−1
Z̄∩C̄
(1)

∼
−→ ξ̄C̄ ⊗ OP̄Z̄∩C̄

over the restriction off̄ above

Z̄∩C̄. One defines an equivalence relation for these 4-tuples by setting(P̄, ξ̄ , f̄ , ϕ̄) ∼

(P̄′, ξ̄ ′, f̄ ′, ϕ̄′) if and only if there exist locally free sheavesĒ andĒ ′ of finite rank on
X̄ and an isomorphism̄g : P̄∗P(Ē ) ∼

−→ P̄′
∗P(Ē ′) over X̄ and a relative isomorphism

ψ̄ : ξ̄ ∗ OP(Ē )(1)
∼

−→ ξ̄ ′
∗ OP(Ē ′)(1) such that the composite relative isomorphisms

(ξ̄C̄ ⊗ OP̄Z̄∩C̄
) ∗ OP(ĒZ̄∩C̄)

(1)
ψ̄C̄ // (ξ̄ ′

C̄
⊗ OP̄Z̄∩C̄

) ∗ OP(Ē ′

Z̄∩C̄
)(1)

(ϕ̄′

C̄
∗1)−1

��
OPn−1

Z̄∩C̄
(1) ∗ OP(ĒZ̄∩C̄)

(1)

ϕ̄C̄∗1

OO

OPn′−1
Z̄∩C̄

(1) ∗ OP(Ē ′

Z̄∩C̄
)(1)

are independent from̄C at every point of Z̄ ∩ C̄. The verification of this fact
(and similar ones below) is a straightforward exercise. The set of equivalence
classes thus obtained is̃Br(X̄, Z̄), and we write[(P̄, ξ̄ , f̄ , ϕ̄)] for the class of
(P̄, ξ̄ , f̄ , ϕ̄). An addition law is defined iñBr(X̄, Z̄) by setting[(P̄1, ξ̄1, f̄1, ϕ̄1)] +

[(P̄2, ξ̄2, f̄2, ϕ̄2)] = [(P̄1 ∗ P̄2, ξ̄1 ∗ ξ̄2, f̄1 ∗ f̄2, ϕ̄1 ∗ ϕ̄2)].
(
This bears implicitly the

choice of an (arbitrary) isomorphismPn1−1
Z̄

∗ Pn2−1
Z̄

∼
−→ Pn1n2−1

Z̄
and a relative

isomorphismOPn1−1

Z̄

(1) ∗ OPn2−1

Z̄

(1)
∼

−→ OPn1n2−1

Z̄

(1).
)

The zero element is repre-

sented by(X̄, Ō,1,1), where the two last symbols stand for the canonical identifi-
cationsP0

Z̄

∼
−→ Z̄ andOP0

Z̄∩C̄
(1)

∼
−→ OZ̄∩C̄ for all C̄. Furthermore, one checks that

−[(P̄, ξ̄ , f̄ , ϕ̄)] = [(P̄ ,̌ ξ̄ ,̌ ( f̄ ˇ)−1, (ϕ̄ˇ)−1)]. The epimorphism̃Br(X̄, Z̄) → Br(X̄)
is the forgetful map, sending[(P̄, ξ̄ , f̄ , ϕ̄)] to [P̄].

The map
∏

C̄⊂X̄ Pic(C̄, Z̄ ∩ C̄) → B̃r(X̄, Z̄) sends ([L̄C̄, θ̄C̄])C̄⊂X̄ to
[(X̄, λ̄,1, ϑ̄)], where λ̄C̄ = L̄C̄ for all C̄ ⊂ X̄ and ϑ̄ stands for the collection
(θ̄C̄)C̄⊂X̄ . This element obviously belongs to the kernel ofB̃r(X̄, Z̄) → Br(X̄). Con-
versely, given[(P̄, ξ̄ , f̄ , ϕ̄)] ∈ B̃r(X̄, Z̄) such that[P̄] = 0 in Br(X̄), we have seen
already that there exist locally free sheavesĒ and Ē ′ of finite rank on X̄, an iso-
morphismḡ : P̄ ∗ P(Ē ) ∼

−→ P(Ē ′), and, for a suitablēλ as before, a relative iso-
morphismψ̄ : ξ̄ ∗ OP(Ē )(1)

∼
−→ λ̄ ∗ OP(Ē ′)(1). We exhibit aϑ̄ as above such that

(P̄, ξ̄ , f̄ , ϕ̄) ∼ (X̄, λ̄,1, ϑ̄), thereby showing that the chosen element belongs to the
image of our map. To this end, we consider the composite isomorphism

Pn−1
Z̄

∗ P(ĒZ̄)
f̄ ∗1

−→ P̄Z̄ ∗ P(ĒZ̄)
ḡ

−→ P(Ē ′

Z̄
)

and choose an arbitrary relative isomorphismγ̄ : OPn−1
Z̄
(1)∗OP(ĒZ̄)

(1)
∼

−→ OP(Ē ′

Z̄
)(1).
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Then the composition of relative isomorphisms

(ξ̄C̄ ⊗ OP̄Z̄∩C̄
) ∗ OP(ĒZ̄∩C̄)

(1)
ψ̄C̄ // (λ̄C̄ ⊗ OZ̄∩C̄) ∗ OP(Ē ′

Z̄∩C̄
)(1)

OPn−1
Z̄∩C̄
(1) ∗ OP(ĒZ̄∩C̄)

(1)

ϕ̄C̄∗1

OO

OP(Ē ′

Z̄∩C̄
)(1)

γ̄−1
oo

is an isomorphism ofOP(Ē ′

Z̄∩C̄
)-modules, and therefore it determines an isomorphism

θ̄C̄ : OZ̄∩C̄
∼

−→ λ̄C̄ ⊗ OZ̄∩C̄. By its very construction,̄ϑ = (θ̄C̄)C̄⊂X̄ yields the
claimed equivalence.

The map Pic(X̄, Z̄) →
∏

C̄⊂X̄ Pic(C̄, Z̄∩C̄) sends[(L̄ , θ̄ )] to ([(L̄ ⊗OC̄, θ̄ |Z̄∩

C̄)])C̄⊂X̄ . The image of the latter element iñBr(X̄, Z̄) is represented by(X̄, λ̄,1, ϑ̄)
with λ̄C̄ = L̄ ⊗ OC̄ for all C̄ ⊂ X̄, andϑ̄ standing for the collection(θ̄ |Z̄ ∩ C̄)C̄⊂X̄ .
Now one finds(X̄, λ̄,1, ϑ̄) ∼ (X̄, Ō,1,1) by takingĒ = OX̄ , Ē ′

= L̄ , ḡ = 1X̄ , and
ψ̄ = id : L̄ → OP(L̄ )(1). Thus the image of the above map is contained in the kernel
of the preceding one. We show the opposite inclusion. In the notation of the preceding
paragraph, let([L̄C̄, θ̄C̄])C̄⊂X̄ be such that(X̄, λ̄,1, ϑ̄) ∼ (X̄, Ō,1,1). Then, as we
have already seen, there exists an invertible sheafL̄ on X̄ and isomorphisms̄βC̄ :

L̄ ⊗ OC̄
∼

−→ L̄C̄ for all C̄ ⊂ X̄. These are such that the isomorphisms(β̄C̄|Z̄ ∩

C̄)−1
◦ θ̄C̄ : OZ̄∩C̄

∼
−→ L̄ ⊗ OZ̄∩C̄ are independent from̄C at the points ofZ̄ ∩ C̄,

whence they define an isomorphismθ̄ : OZ̄
∼

−→ L̄ ⊗OZ̄ , and hence([(L̄C̄, θ̄C̄)])C̄⊂X̄
is the image of[(L̄ , θ̄ )] ∈ Pic(X̄, Z̄).

Finally, we show the injectivity of Pic(X̄, Z̄) →
∏

C̄⊂X Pic(C̄, Z̄ ∩ C̄). Given
[(L̄ , θ̄ )] mapping to zero, we know already that̄L ∼= OX̄ , and we may as-
sume that, actually,L̄ = OX̄ . Then θ̄ ∈ H0(Z̄,O∗

Z̄
), and we have to show that

θ̄ ∈ H0(X̄,O∗

X̄
) = k̄∗. Let C̄ ⊂ X̄ be a closed irreducible curve containingZ̄. Then,

by hypothesis,̄θ ∈ H0(C̄,O∗

C̄
) = k̄∗, and the result follows.

Let S̄be a finite set of closed irreducible curves ofX̄ such that
(1) S̄ is closed under conjugation byGk,
(2) Pic(X̄) ↪→

∏
C̄∈S̄ Pic(C̄) via the restriction maps, and

(3) any two points ofZ̄ can be connected by a chain of subsetsZ̄ ∩ C̄, C̄ ∈ S̄.
(We sayS̄ is adequatefor Z.)

Then the construction of (3.13) can be repeated as it stands, replacing the set of all
closed curves̄C ⊂ X̄ by S̄, and one obtains an exact sequence of discreteGk-modules

0 −→ Pic(X̄, Z̄) −→

∏
C̄∈S̄

Pic(C̄, Z̄ ∩ C̄) −→ B̃rS̄(X̄, Z̄) −→ Br(X̄) −→ 0.

(3.14)



460 GERALD E. WELTERS

(Assumptions (2) and (3) are made to ensure exactness at the term Pic(X̄, Z̄).) More-
over, if S̄1 ⊂ S̄2, then we have a natural map of sequences from (3.14) forS̄2 to (3.14)
for S̄1. Thus all these extensions represent the same element

αZ ∈ Ext2Gk

(
Br(X̄),Pic(X̄, Z̄)

)
. (3.15)

As S̄varies, the sequences (3.12) form a projective system, and the projective limit is
(3.13).

If Z1 ⊂ Z2, then one has a natural restriction map from the sequence (3.13) for
Z2 to the sequence (3.13) forZ1. By choosingS̄adequate for both ofZ1 andZ2, we
obtain a similar map from the sequence (3.14) forZ2 to the sequence (3.14) forZ1.
This fulfills the announcement made about (3.3), and shows that the morphism

Ext2Gk

(
Br(X̄),Pic(X̄, Z̄2)

)
−→ Ext2Gk

(
Br(X̄),Pic(X̄, Z̄1)

)
induced by the restriction map Pic(X̄, Z̄2) → Pic(X̄, Z̄1) sendsαZ2 to αZ1.

We show next that the classα∅ is a torsion element.

PROPOSITION3.16
Let X be a smooth, projective, geometrically irreducible variety over a field k.
In the notation introduced at the beginning of Section 3, one hasα∅ = 0 in
Ext2Gk

(Br(X̄),Pic(X̄))Q.

Proof
We choose a finite set̄S of closed irreducible curves̄C ⊂ X̄, which is closed under
conjugation and such that the restriction map yields a monomorphism Pic(X̄) ↪→∏

C̄∈S̄ Pic(C̄). Thenα∅ is the class of the extension (3.12):

0 −→ Pic(X̄) −→

∏
C̄∈S̄

Pic(C̄) −→ B̃rS̄(X̄) −→ Br(X̄) −→ 0.

Without loss of generality, we may assume that the curves of the setS̄ generate the
group Num1(X̄) and thatS̄ contains at least one smooth iterated hyperplane section
of X̄. We show that the map Pic(X̄) →

∏
C̄∈S̄ Pic(C̄) has a left inverse in theQ-

localized category of the category of discreteGk-modules, and this settles the proof.
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We have a commutative, exact, self-defining diagram of discreteGk-modules

0 0 0

0 // Tors NS(X̄) // NS(X̄)

OO

// ∏
C̄∈S̄Z

OO

// D′′

OO

// 0

0 // Pic(X̄)

OO

// ∏
C̄∈S̄Pic(C̄)

OO

// D

OO

// 0

0 // Pic0(X̄)

OO

// ∏
C̄∈S̄Pic0(C̄)

OO

// D′

OO

// 0

0

OO

0

OO

Tors NS(X̄)

OO

0

OO

Since the group Tors NS(X̄) has in particular a finite exponent, this diagram yields
a 9-lemma diagram in theQ-localized category, in which, by Remark 3.9, the two
middle columns (in particular) and the top row are split. It suffices then to show
that the same thing holds for the bottom row to conclude the desired result. Let
C̄ ∈ S̄be a smooth iterated hyperplane section ofX̄. One has an isogeny Pic0(X̄) →

Pic0(C̄)
∼

−→ J(C̄) → Alb(X̄), and by composition with the inverse isogeny, we de-
duce an abstract group-theoreticalQ-left inverse for Pic0(X̄) → Pic0(C̄). Summing
then over the finite set of conjugates of this map, one easily constructs the claimed
inverse.

We end this section by proving the following (see Remark 3.5(a); see also Remark
5.5).

PROPOSITION3.17
In the notation at the beginning of Section 3, if[z] = 0, then12

n(z) = 0.

Proof
Since12

n is additive (see Remark 3.5(d)), we may assume thatz = divC( f )with C ⊂

X a reduced irreducible curve andf ∈ k(C)∗. To shortcut discussions, we reduce
the question to the particular case whereC is a geometrically integral curve. To this
end, observe that, if̄C1, . . . , C̄r are the reduced curves supported by the irreducible
components of the subschemeC̄ ⊂ X̄, then there existf̄i ∈ k̄(C̄i )

∗, i = 1, . . . , r ,
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such thatz̄ =
∑r

i =1 divC̄i
( f̄i ). Let k ⊂ k1 ⊂ k̄ be a finite extension such that all

of the C̄i and the f̄i are defined overk1. Writing for a momentX1 = X ⊗k k1 and
writing F2Z0(X) for the inverse image ofT(X) ⊂ CH0(X) in Z0(X), we have a
commutative diagram

F2Z0(X)

��

12
n // Ext2Gk

(
Br(X̄), k̄∗

)
Q� _

��

F2Z0(X1)
12

n // Ext2Gk1

(
Br(X̄), k̄∗

)
Q

where we have included the statement that the right-hand-side vertical map is injec-
tive. (This accounts for the claimed reduction to the case of a geometrically integral
curveC.) Indeed, ifG is a profinite group,H is a closed subgroup of finite index
d, andM and N are discreteG-modules, then, for alli ≥ 0, the kernel of the map
ExtiG(M, N) → ExtiH (M, N) is killed byd. Namely, in the notation of [S, pages I-12
and I-13], if [E·

] ∈ ExtiG(M, N), then one has natural morphisms of exact sequences
of discreteG-modulesE·

→ M H
G (E

·) andM H
G (E

·) → E· such that the composition
E·

→ E· is the multiplication byd. If [E·
] = 0 in ExtiH (M, N), then[M H

G (E
·)] = 0

in ExtiG(M, N) and whenced[E·
] = 0 in ExtiG(M, N).

Thus suppose now that the curveC is geometrically integral. LetN
ν

→ C be the
normalization ofC. This is a geometrically irreducible smooth projective curve over
k. We havez = ν∗(zN) with zN = divN( f ). Write ZN = |zN | for the support ofzN ,
and writeZ̄N for the inverse image of this set in̄N. One has a commutative diagram

H0(Z̄,Gm)/H0(X̄,Gm)

'

��

// Pic(X̄, Z̄)

��
H0(Z̄,Gm)/H0(C̄,Gm)

ν∗

��

// Pic(C̄, Z̄)

ν∗

��
H0(Z̄N,Gm)/H0(N̄,Gm)

// Pic(N̄, Z̄N)

the upper vertical maps being the restriction maps. We recall from [CTS, page 424]
the way to construct in this case a naturalGk-morphism̃zN : Pic(N̄, Z̄N) → k̄∗ (see
(3.1)) extending the morphismzN : H0(Z̄N,Gm)/H0(N̄,Gm) → k̄∗ (see (2.3)).
Given [(L̄, θ̄ )] ∈ Pic(N̄, Z̄N), let Z̄N ⊂ Ū ⊂ N̄ be an open subset such thatL̄ is
trivial overŪ . Choose an isomorphism̄8 : OŪ

∼
−→ L̄ ⊗OŪ , and letσ̄ ∈ H0(N̄, L̄ ⊗

KN̄) be the rational section of̄L that it defines. The trivialization̄θ : OZ̄N

∼
−→
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L̄ ⊗ OZ̄N
allows us to viewσ̄ as a true function at the points ofZ̄N . One puts then

z̃N[(L̄, θ̄ )] =
f̄ (div(σ̄ ))

σ̄ (div( f̄ ))

(of course, div( f̄ ) = z̄N). The result is independent of the choice of8̄ due
to Weil reciprocity (see [CTS, page 424]), and̃zN restricts indeed tozN on
H0(Z̄N,Gm)/H0(N̄,Gm).

We put̃zC = z̃N ◦ ν∗ and take now̃z in (3.1) as the composition of the restriction
map Pic(X̄, Z̄) → Pic(C̄, Z̄)with z̃C. Let S̄be a finite set of closed irreducible curves
of X̄ adequate forZ and containing the curvēC. The commutative diagram

Pic(X̄, Z̄)

z̃
��

// ∏
C̄′∈S̄ Pic(C̄′, Z̄ ∩ C̄′)

z̃C◦pC̄
vvlllllllllllllll

k̄∗

with pC̄ the projection map
∏

C̄′∈S̄ Pic(C̄′, Z̄ ∩ C̄′) → Pic(C̄, Z̄) now implies (see
(3.14) and (3.15)) that̃z(αZ) = 0.

4. A cohomological description ofαZ

We keep the assumptions and notation from Section 3. The exact sequence ofGk-
modules (3.10) hints at the exact sequence of sheaves onX̄,

0 −→ Gm,X̄ −→

∏
C̄⊂X̄

Gm,C̄ −→ Ḡ −→ 0, (4.1)

where the product in the second term is taken over all closed irreducible curvesC̄ ⊂ X̄
and whereḠ stands for the quotient sheaf. If cohomology were to commute with
infinite products (which it does not), then, by Proposition (3.11), the sequence (3.10)
would follow from the cohomology sequence of (4.1), modulo comparison ofB̃r(X̄)
with H1(X̄, Ḡ ). We get this, nevertheless, by working with finite setsS̄ of (closed,
irreducible) curves on̄X. However, in this case the mapGm,X̄ →

∏
C̄∈S̄Gm,C̄ is not

injective, and we must interpret things accordingly.
Let Z ⊂ X be a 0-dimensional closed subset. LetS̄ be a finite set of closed

irreducible curves of̄X adequate forZ (see Section 3). The restriction map

Gm,X̄,Z̄ −→

∏
C̄∈S̄

Gm,C̄,Z̄∩C̄ (4.2)

yields a two-term complex, and we consider the long exact sequence deduced from
the first hypercohomology spectral sequence of this complex. This is the same as the
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long exact sequence of hypercohomology of the exact sequence of complexes

0 −→

( ∏
C̄∈S̄

Gm,C̄,Z̄∩C̄

)
[−1] −→ (4.2) −→ Gm,X̄,Z̄[0] −→ 0. (4.3)

PROPOSITION4.4
Let S̄ be chosen as above. Then the exact sequence (3.14) is obtained by restriction to
Br(X̄), from the long exact sequence of hypercohomology of (4.3).

Proof
From the exact sequences of type (2.2) which define these sheaves, we de-
duce the equalities (see also (2.1) and (3.11))H1(X̄,Gm,X̄,Z̄) = Pic(X̄, Z̄),
H2(X̄,Gm,X̄,Z̄) = H2(X̄,Gm), H1(X̄,

∏
C̄∈S̄Gm,C̄,Z̄∩C̄) =

∏
C̄∈S̄ Pic(C̄, Z̄ ∩ C̄),

andH2(X̄,
∏

C̄∈S̄Gm,C̄,Z̄∩C̄) = 0. We extract, therefore, from the hypercohomology
sequence of (4.3) an exact sequence

Pic(X̄, Z̄) −→

∏
C̄∈S̄

Pic(C̄, Z̄ ∩ C̄) −→ H2(4.2) −→ H2(X̄,Gm) −→ 0. (4.5)

The first map in (4.5) is the restriction map, whence, by the very hypothesis on
S̄, it is injective. The rest of the statement follows then by exhibiting a mor-
phism ofGk-modulesB̃rS̄(X̄, Z̄) → H2(4.2), compatible with the identity map of∏

C̄∈S̄ Pic(C̄, Z̄ ∩ C̄) and the embedding map Br(X̄) ↪→ H2(X̄,Gm). We give an
explicit recipe, leaving the details to the reader. The exact diagram

0 //
∏

C̄∈S̄Gm,C̄,Z̄∩C̄
//
∏

C̄∈S̄Gm,C̄
//
∏

C̄∈S̄Gm,Z̄∩C̄
// 0

0 // Gm,X̄,Z̄

OO

// Gm,X̄

OO

// Gm,Z̄

OO

// 0

yields a quasi-isomorphism between the complex (4.2) and the total complex associ-
ated with the double complex deduced from the right-hand-side square:

0 −→ Gm,X̄

(
1
1

)
−→

( ∏
C̄∈S̄

Gm,C̄

)
⊕ Gm,Z̄

(1,−1)
−→

∏
C̄∈S̄

Gm,Z̄∩C̄ −→ 0.

Here we have indicated schematically the way in which the arrows are constructed
from the corresponding ones in the previous diagram.

Now let (P̄, ξ̄ , f̄ , ϕ̄) be a 4-tuple representing an element ofB̃rS̄(X̄, Z̄). We at-
tach to this object a 2-hypercocycle for a suitable open covering ofX̄ (in the étale
topology), with values in the above complex. This defines then the map sought. Let
Ū = (Ūi )i ∈I be an open covering of̄X trivializing the Severi-Brauer varietȳP. Call
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n − 1 the relative dimension of̄P over X̄. For all i ∈ I , choose an isomorphism
h̄i : Pn−1

Ūi

∼
−→ P̄Ūi

. For all i, j ∈ I , let

θ̄i j : OPn−1
Ūi j

(1)
∼

−→ OPn−1
Ūi j

(1)

be a relative isomorphism over the isomorphismh̄−1
i h̄ j : Pn−1

Ūi j

∼
−→ Pn−1

Ūi j
. The for-

mula ᾱi jk = (θ̄ jk θ̄
−1
ik θ̄i j )

−1 defines then a 2-cocyclēα ∈ Z2(Ū ,Gm,X̄) representing
[P̄] ∈ Br(X̄) (see [Mi1, pages 123 and 143]; see also Remark 4.11(b)). GivenC̄ ∈ S̄
andi ∈ I , the inverse image of̄ξC̄ ⊗OC̄∩Ūi

by h̄i is isomorphic withOPn−1
C̄∩Ūi

(1) times

an invertible sheaf coming from̄C ∩ Ūi . Upon refining the coveringŪ suitably, we
may ensure that the latter invertible sheaf is trivial for allC̄ ∈ S̄ and alli ∈ I . Then,
for all C̄ ∈ S̄and alli ∈ I , let

µ̄i,C̄ : OPn−1
C̄∩Ūi

(1)
∼

−→ ξ̄C̄ ⊗ OC̄∩Ūi

be a relative isomorphism over the restriction ofh̄i . The formulaµ̄−1
i,C̄
µ̄ j,C̄ = β̄i j ,C̄ θ̄i j

defines then a 1-cochain̄β = {β̄i j ,C̄} ∈ C1
(
Ū ,

∏
C̄∈S̄Gm,C̄

)
, anddβ̄ is the image of

ᾱ. Next comesf̄ . For all i ∈ I , let

θ̄i : OPn−1
Z̄∩Ūi

(1)
∼

−→ OPn−1
Z̄∩Ūi

(1)

be a relative isomorphism over the isomorphism̄f −1
◦ h̄i : Pn−1

Z̄∩Ūi

∼
−→ Pn−1

Z̄∩Ūi
. We

define a 1-cochain̄γ = {γ̄i j } ∈ C1(Ū ,Gm,Z̄) by the formulaθ̄−1
i θ̄ j = γ̄i j θ̄i j , and

dγ̄ is the image ofᾱ. Finally, we considerϕ̄. For all C̄ ∈ S̄ and all i ∈ I , the
formula ϕ̄−1

C̄
µ̄i,C̄ = ε̄i,C̄ θ̄i above Z̄ ∩ C̄ ∩ Ūi defines a 0-cochain̄ε = {ε̄i,C̄} ∈

C0(Ū ,
∏

C̄∈S̄Gm,Z̄∩C̄). The coboundarydε̄ equals the image of̄β minus the image
of γ̄ . Taken together,(ᾱ, β̄ ⊕ γ̄ , ε̄) yield then the 2-hypercocycle defining the image
of [(P̄, ξ̄ , f̄ , ϕ̄)] in H2(4.2).

By completing the exact sequence (4.5) with zero on the left, we obtain a 2-
extension representing an element in Ext2

Gk
(H2(X̄,Gm),Pic(X̄, Z̄)) which depends

only onZ and which we denote again byαZ . Then we may repeat the procedure from
Section 3, starting with Definition 3.4 applied to this setting. This yields the map
12

n from (1.7), modulo the analogue of Remark 3.5. Furthermore, the proof of (3.16)
applies here too, showing thatα∅ = 0 in Ext2Gk

(H2(X̄,Gm),Pic(X̄))Q. And, finally,
Proposition 3.17 carries over without change, thereby completing the construction of
12

n from (1.7).
In Section 5 we compare this map12

n with the higher Abel-Jacobi mapd2
n in l -

adic theory. This happens through the computation of the mapsd2
j made by U. Jannsen
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in [J4]. A main role in that computation is played by the 2-extensionsχi (C·),

0 −→ Zi /Bi
−→ Ci /Bi

−→ Zi +1
−→ Zi +1/Bi +1

−→ 0,

attached to a complex(C·) in an abelian categoryC , and whose equivalence class in
Ext2C (H

i +1(C·), H i (C·)) depends only on the image of(C·) in the derived category
(see [J4, page 263]).

We denote byh : X → Spec(k) the structure map. We introduce also a ringR to
be R = Z if k is a perfect field andR = Z[1/p], p = char(k), otherwise. LetZ ⊂ X
be a 0-dimensional closed subset. LetS be a finite set of closed irreducible curves
of X such that the set̄S of the irreducible components of their inverse images inX̄
is adequate forZ. We consider the two-term complex of sheaves onX analogous to
(4.2),

Gm,X,Z −→

∏
C∈S

Gm,C,Z∩C, (4.6)

and the exact sequence of complexes of sheaves onX, similar to (4.3), built from it,

0 −→

( ∏
C∈S

Gm,C,Z∩C

)
[−1] −→ (4.6) −→ Gm,X,Z[0] −→ 0. (4.7)

Upon taking base change fromk to k̄ in (4.6) and (4.7), the result maps naturally to
(4.2) and (4.3), respectively. As a consequence, we have a commutative exact diagram
of discreteGk-modules

0 // Pic(X̄, Z̄) // ∏
C̄∈S̄ Pic(C̄, Z̄ ∩ C̄) // H2(4.2) // H2(X̄,Gm)

// 0

Pic(Xs, Zs)

OO

// R1h∗

( ∏
C∈S Gm,C,Z∩C

)
OO

// R2h∗(4.6)

OO

// H2(Xs,Gm)

OO

// 0

(4.8)

where the bottom row comes from the higher direct images sequence of (4.7) for
h; k ⊂ ks ⊂ k̄ is the separable closure ofk; Xs = X ⊗k ks; Zs ⊂ Xs is the 0-
dimensional closed subset obtained as the inverse image ofZ in Xs; and Ss is the
set of closed irreducible curves ofXs obtained from the inverse images of the curves
C ∈ S. The zero term at the right end of the bottom sequence is due to the vanishing of
R2h∗

( ∏
C∈SGm,C,Z∩C

)
, which in turn follows from Proposition 3.11 together with

the fact that the quotient sheaf of
( ∏

C∈SGm,C,Z∩C
)
⊗k ks ↪→

∏
Cs∈Ss

Gm,Cs,Zs∩Cs

on Xs has finite support. From (4.8) we deduce the exact diagram (the subscriptR
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standing for⊗Z R)

0 // Pic(X̄, Z̄)R // ∏
C̄∈S̄ Pic(C̄, Z̄ ∩ C̄)R //

0 // Pic(Xs, Zs)R

'

OO

// R1h∗

( ∏
C∈SGm,C,Z∩C

)
R

OO

//

// H2(4.2)R // H2(X̄,Gm)R
// 0

// R2h∗(4.6)R

OO

// H2(Xs,Gm)R

'

OO

// 0
(4.9)

The vertical isomorphism on the left-hand side follows from the isomorphism
Pic(Xs)R

∼
−→ Pic(X̄)R, and the right-hand-side vertical isomorphism follows from

this and by proper base change.

PROPOSITION4.10
Let, as before, Z⊂ X be a0-dimensional closed subset, and let S be a finite set
of closed irreducible curves of X such thatS̄ is adequate for Z. Then one has, in
Ext2Gk

(H2(X̄,Gm)R,Pic(X̄, Z̄)R), (αZ)R = −χ1(Rh∗ Gm,X,Z)R.

Proof
Let

0 // I · // J · // K · // 0

0 //
( ∏

C∈SGm,C,Z∩C
)
[−1]

OO

// (4.6)

OO

// Gm,X,Z[0]

OO

// 0

be a morphism of exact sequences of complexes of sheaves onX, with the sheaves in
the upper row injective and the vertical maps being quasi-isomorphisms. To simplify
the notation, we write hereI i

= (h∗I
i )R, and similarly forJ · andK ·. We have an
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exact commutative diagram

0 0 0

∗ // H2(I ·)

OO

// H2(J ·)

OO

// H2(K ·)

OO

// 0

0 // Z2(I ·)

OO

// Z2(J ·)

OO

// Z2(K ·)

OO

// 0

0 // I 1/B1(I ·)

OO

// J1/B1(J ·)

OO

// K 1/B1(K ·)

OO

// 0

H1(I ·)

OO

// H1(J ·)

OO

0 // H1(K ·)

OO

∗ //

0

OO

0

OO

0

OO

the arrow marked with a star being the map given by the snake lemma. The exact
sequence

0 −→ H1(K ·)
∗

−→ H2(I ·) −→ H2(J ·) −→ H2(K ·) −→ 0

is the bottom row of diagram (4.9), whence, by that diagram and Proposition 4.4, it
represents(αZ)R. Furthermore, the right-hand-side column in the above diagram rep-
resentsχ1(Rh∗ Gm,X,Z)R. If we replace, in that diagram,I 1/B1(I ·) and J1/B1(J ·)

by their images inZ2(I ·) and Z2(J ·), respectively, and bothH1(I ·) and H1(J ·) by
zero, then we obtain a new exact diagram in which the two exact sequences consid-
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ered remain unchanged, and which looks as follows:

0 0 0

∗ // U3

OO

// V3

OO

// W3

OO

// 0

0 // U2

OO

// V2

OO

// W2

OO

// 0

0 // U1

OO

// V1

OO

// W1

OO

// 0

0

OO

0

OO

// W0

OO

∗ //

0

OO

Writing this equivalently as

0 0 0

0 // (N1 ∩ N2)/N0 // N1/N0

OO

// N/N2

OO

// N/(N1 + N2)

OO

// 0

0 // N1

OO

// N

OO

// N/N1

OO

// 0

0 // N0

OO

// N2

OO

// N2/N0

OO

// 0

0

OO

0

OO

(N1 ∩ N2)/N0

OO

0

OO

we find that the two longer exact sequences indeed yield opposite extension classes
since they are obtained by composing the outer short exact sequences, in the two
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possible ways, in the following 9-lemma diagram:

0 0 0

0 // N1/(N1 ∩ N2) //

OO

N/N2 //

OO

N/(N1 + N2) //

OO

0

0 // N1/N0 //

OO

N/N0 //

OO

N/N1 //

OO

0

0 // (N1 ∩ N2)/N0 //

OO

N2/N0 //

OO

N2/(N1 ∩ N2) //

OO

0

0

OO

0

OO

0

OO

Remark 4.11
(a) There might be an elementary general principle of abstract nonsense at work
in Proposition 4.10. We have not looked further into this, except for the (present)
remark that the same proof applies to computeχ0(Rh∗ Gm,Y), where Y denotes
again a smooth, projective, geometrically irreducible variety over a fieldk. Namely,
if T ⊂ Y is any nonempty finite closed subset, one finds that−χ0(Rh∗ Gm,Y) ∈

Ext2Gk
(Pic(Ys), k∗

s) is represented by the exact sequence

0 −→ k∗
s −→ H0(Ts,Gm) −→ Pic(Ys, Ts) −→ Pic(Ys) −→ 0 (4.12)

(see also Section 2). The extension (4.12) is not zero in general because taking cup
product withχ0(Rh∗ Gm,Y) yields differentials of the Lyndon-Hochschild-Serre spec-
tral sequenceH i (Gk, H j (Ys,Gm)) ⇒ H i + j (Y,Gm) (see [J4, page 264]) and in par-
ticular, one has the exact sequence

0 −→ Pic(Y) −→ Pic(Ys)
Gk

∪χ0
−→ Br(k) −→ Br(Y). (4.13)

On the other hand,χ0(Rh∗ Gm,Y) is a torsion element killed by the greatest common
divisor of the integersd such thatY contains a closed pointy of degreed over the
base fieldk. Note indeed that, in the preceding notation, takingT = {y}, we have a
morphism ofGk-modulesH0(Ts,Gm) → k∗

s inducing multiplication byd in k∗
s .

(b) If Y is a Severi-Brauer variety overk, then Pic(Ys)
Gk = Pic(Ys) = Z, and

the image of 1∈ Z in (4.13) is commonly claimed in the literature (without proof)
to equal the class[Y] ∈ Br(k). This is in contrast with [Gr3, p. 129, lines 4 – 12],
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where it is claimed (also without proof) to be equal to[Yˇ] = −[Y]. The first of these
claims is equivalent to the statement that the sequence (4.12) represents in this case
−[Y] ∈ Br(k). By direct computation, we show that this is indeed so.

As in the proof of Theorem 7.8 (see Section 7), letξs be an invertible sheaf of
degree 1 onYs, and choose, for allσ ∈ Gk, a relative isomorphism̃σ : ξs

∼
−→ ξs

over the isomorphismσ : Ys
∼

−→ Ys. Then the class of the extension (4.12) in Br(k)
is represented by the 2-cocycleρ′ defined by the formulaρ′(σ, τ ) = σ̃−1τ̃−1(σ̃ τ )

for all σ, τ ∈ Gk. On the other hand, ifn − 1 = dimYs and f : Pn−1
ks

∼
−→ Ys is any

isomorphism overks, then the class ofYs in H1(Gk,Autks(P
n−1
ks

)) is represented by

the 1-cocycle defined byψ(σ) = f −1σ−1 f σ0 for all σ ∈ Gk. (In the right-hand-side
member of this formula,σ represents the automorphism ofYs defined byσ , while σ0

is the automorphism thatσ defines inPn−1
ks

.) Then, the class ofYs in Br(k) is minus
the image of[ψ] by the connecting map for the exact sequence

0 −→ AutPn−1
ks

(
OPn−1

ks
(1)

)
−→ Autks

(
Pn−1

ks
,OPn−1

ks
(1)

)
−→ Autks(P

n−1
ks

) −→ 0.

(The extension class of this sequence is the opposite of the class of the standard se-
quence 0→ k∗

s → GLn(ks) → PGLn(ks) → 0 which is used to define[Ys]). Let

f̃ : OPn−1
ks
(1)

∼
−→ ξs be a relative isomorphism overf . In the above notations, a

cochainψ̃ lifting the cocycleψ is defined by putting̃ψ(σ) = f̃ −1σ̃−1 f̃ σ̃0 for all
σ ∈ Gk. (Hereσ̃0 : OPn−1

ks
(1)

∼
−→ OPn−1

ks
(1) is the canonical relative isomorphism

overσ0 : Pn−1
ks

∼
−→ Pn−1

ks
.) One checks thatdψ̃ = ρ′, whence the image of[ψ] by

the connecting map for the above sequence equals the class of the extension (4.12) in
Br(k), and this ends the proof.

5. Comparison with the l -adic Abel-Jacobi mapd2
n

Let X be as in the introduction. Letl be a prime number different from char(k). We
compare the map12

n : T(X) → Ext2Gk
(H2(X̄,Gm), k̄∗)Q (see (1.7)) with thel -adic

Abel-Jacobi mapd2
n : T(X) → H2

cont

(
Gk, H2n−2(X̄,Ql (n))

)
(see (1.9)). To this end,

we first relate both target groups.
From the direct sum decompositionH2(X̄,Gm) =

⊕
l ′ H2(X̄,Gm)(l ′) with l ′

running over all prime integers, one obtains a product decomposition

Ext2Gk

(
H2(X̄,Gm), k̄

∗
)

=

∏
l ′

Ext2Gk

(
H2(X̄,Gm)(l

′), k̄∗
)
.

We consider the projection onto thel -factor

Ext2Gk

(
H2(X̄,Gm), k̄

∗
)
Q −→ Ext2Gk

(
H2(X̄,Gm)(l ), k̄

∗
)
Q.
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Next, the Kummer sequence forGm,X̄ gives the exact sequence of discreteGk-
modules

0 −→ NS(X̄)⊗ Ql /Zl −→ H2(X̄,Ql /Zl (1)
)

−→ H2(X̄,Gm)(l ) −→ 0.

This sequence is canonicallyQ-split, at least under the assumption that homological
equivalence and numerical equivalence coincide for algebraic 1-cycles onX̄ (see [K,
page 379]), whence unconditionally for surfaces and varieties in characteristic zero,
among others (see [K, page 380]). Namely, ifI1(X̄) denotes the image of the cy-
cle mapZ1(X̄) → H2n−2(X̄,Zl (n − 1)), the nondegeneracy modulo torsion of the
intersection productI1(X̄)⊗ NS(X̄) → Z implies that the composite map

H2(X̄,Ql /Zl (1)
) ∼

−→ HomZl

(
H2n−2(X̄,Zl (n − 1)),Ql /Zl

)
−→ HomZl

(
I1(X̄)⊗ Zl ,Ql /Zl

)
restricts to NS(X̄)⊗ Ql /Zl , giving aQ-isomorphism. It follows then that the induced
morphism

υ : Ext2Gk

(
H2(X̄,Gm)(l ), k̄

∗
)
Q → Ext2Gk

(
H2(X̄,Ql /Zl (1)), k̄

∗
)
Q

is split injective.
On the other hand, we have the tautological isomorphism

H2
cont

(
Gk, H2n−2(X̄,Ql (n))

) ∼
−→ Ext2Gk

(
Zl , H2n−2(X̄,Zl (n))

)
Q.

Here, the extensions are taken as continuousZl [Gk]-modules. Then, by Pontryagin
duality (twisted by (1)) and Poincaré duality, we have an isomorphism

Ext2Gk

(
Zl , H2n−2(X̄,Zl (n))

)
Q

∼
−→ Ext2Gk

(
H2(X̄,Ql /Zl (1)),Ql /Zl (1)

)
Q.

Here, extensions are taken as discrete (l -primary) torsionGk-modules. Next, the ob-
vious map yields an isomorphism

Ext2Gk

(
H2(X̄,Ql /Zl (1)),Ql /Zl (1)

)
Q

∼
−→ Ext2Gk

(
H2(X̄,Ql /Zl (1)), k̄

∗
)
Q.

This map factors through Ext2
Gk

(
H2(X̄,Ql /Zl (1)), k̄∗(l )

)
Q, where the exten-

sions are taken here as discreteGk-modules. We show that both of the factor maps
are isomorphisms. The isomorphism

Ext2Gk

(
H2(X̄,Ql /Zl (1)),Ql /Zl (1)

)
Q

∼
−→ Ext2Gk

(
H2(X̄,Ql /Zl (1)), k̄

∗(l )
)
Q

is a consequence of the following more general statement. LetM̄ , N̄ be torsion dis-
creteGk-modules. Then, for alli ≥ 0, ExtiGk

(M̄, N̄)′
∼

−→ ExtiGk
(M̄, N̄), where

the first group classifies extensions of torsion discreteGk-modules and the second
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one classifies extensions of discreteGk-modules. In fact, we may construct an in-
jective resolutionĪ · of N̄ made out of torsion modules; whence Exti

Gk
(M̄, N̄)′ =

HomGk(M̄, Ī ·) = ExtiGk
(M̄, N̄). To obtain such a resolution, one can choose an em-

beddingN̄ ↪→ N̄′ into a divisible torsion abelian group; takeĪ 0
= Mapscont(Gk, N̄′),

and then proceed inductively (see [S, page I-12], or [Mi1, Chapter III, Remark
1.4(a)]). As for the isomorphism

Ext2Gk

(
H2(X̄,Ql /Zl (1)), k̄

∗(l )
)
Q

∼
−→ Ext2Gk

(
H2(X̄,Ql /Zl (1)), k̄

∗
)
Q,

this follows from the vanishing of the groups Exti
Gk

(
H2(X̄,Ql /Zl (1)), k̄∗/k̄∗(l )

)
.

(One can use, for instance, [Mi2, Chapter I, Corollary 0.23].)

THEOREM 5.1
Let X be, as above, a smooth, projective, geometrically irreducible variety of dimen-
sion n over a field k. Let l be a prime integer different fromchar(k). Then the following
diagram is commutative:

T(X)

=

��

12
n // Ext2Gk

(
H2(X̄,Gm), k̄∗

)
Q

��
Ext2Gk

(
H2(X̄,Gm)(l ), k̄∗

)
Q

υ

��
Ext2Gk

(
H2(X̄,Ql /Zl (1)), k̄∗

)
Q

Ext2Gk

(
H2(X̄,Ql /Zl (1)),Ql /Zl (1)

)
Q

'

OO

Ext2Gk

(
Zl , H2n−2(X̄,Zl (n))

)
Q

'

OO

T(X)
d2

n // H2
cont

(
Gk, H2n−2(X̄,Ql (n))

)'

OO

Moreover, if the conjectured equality of homological and numerical equivalence holds
for algebraic1-cycles onX̄ (e.g., if n= 2), then the mapυ is injective.

Proof
The last part has been already discussed. As for the first part, letz be a 0-cycle of
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degree zero onX, such that11
n([z]) = 0. ChooseZ ⊂ X a 0-dimensional closed

subset containing the support|z| of z. Furthermore, let̄Z ⊂ X̄ be as in Section 2. We
choose a morphism̃z as in (3.1) and also call̃z its restriction to thel -primary torsion
parts (see Section 2)

H1
c

(
X̄\Z̄,Ql /Zl (1)

)
= Pic(X̄, Z̄)(l )

z̃
−→ k̄∗(l ) = Ql /Zl (1). (5.2)

On the other hand, letI · be an injective resolution ofGm,X,Z . As this sheaf isl -
divisible, it follows that, for allr ∈ N, l r I

· is an injective resolution ofµl r ,X,Z =

l r Gm,X,Z as a(Z/ l r Z)-module. This is the sheafj !µl r ,X\Z , where the letterj denotes
the inclusionX\Z ↪→ X. Put I ·(l ) =

⋃
r ∈N(l r I

·) ⊂ I ·. Keeping the notation
from Section 4, the morphismh∗I

·(l ) → h∗I
· induces a mapχ1(h∗I

·(l )) →

χ1(h∗I
·) → χ1(h∗I

·)R, which we represent as

0 // H1
c
(
X̄\Z̄,Ql /Zl (1)

)
��

// (· · · )

��

// (· · · )

��

// H2(
X̄,Ql /Zl (1)

)
��

// 0

0 // Pic(X̄, Z̄)R // (· · · ) // (· · · ) // H2(X̄,Gm)R
// 0

(5.3)(
Here we use the equalityH2

c (X̄\Z̄,Ql /Zl (1)) = H2(X̄,Ql /Zl (1)).
)

By Propo-
sition (4.10), the bottom row in (5.3) represents−(αZ)R ∈ Ext2Gk

(H2(X̄,Gm)R,

Pic(X̄, Z̄)R). Taking pushouts in (5.3) bỹz : H1
c (X̄\Z̄,Ql /Zl (1)) → Ql /Zl (1) (top

row) and̃zR : Pic(X̄, Z̄)R → k̄∗

R = k̄∗ (bottom row), respectively, we obtain an exact
commutative diagram

0 // Ql /Zl (1)

��

// (· · · )

��

// (· · · )

��

// H2
(
X̄,Ql /Zl (1)

)
��

// 0

0 // k̄∗ // (· · · ) // (· · · ) // H2(X̄,Gm)R
// 0

(5.4)

implying that the image of[z] in Ext2Gk

(
H2(X̄,Ql /Zl (1)), k̄∗

)
Q by12

n is the opposite

of the image of the element of Ext2
Gk

(
H2(X̄,Ql /Zl (1)),Ql /Zl (1)

)
Q represented by

the top row in (5.4). Thus it is sufficient to show that the latter element equals the
opposite of the image of[z] by d2

n. Now, the (twisted) Pontryagin dual of the top
row in (5.4) is obtained from the dual of the top row in (5.3) by taking pullback via
the dual map of (5.2),̃z : Zl → H2n−1(X̄\Z̄,Zl (n)). By Poincaŕe duality, we have,
writing for a momenth′

: X\Z → Spec(k) for the restriction ofh : X → Spec(k),(
Rh′

∗ Zl (n)X\Z
)
[2n] ∼= HomZ

(
Rh∗( j !Ql /Zl (1)X\Z),Ql /Zl (1)

)
.
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Hence Hom
(
χ1(h∗I

·(l )),Ql /Zl (1)
)

= χ−2
(

HomZ(h∗I
·(l ),Ql /Zl (1))

)
repre-

sents the classχ2n−2(Rh′
∗ Zl (n)X\Z). The desired conclusion then follows from [J4,

Theorem 1, p. 263].

Remark 5.5
(a) Suppose that char(k) = p > 0. Then, sincēk∗ is uniquelyp-divisible, it follows
from [Mi2, Chapter I, Corollary 0.23] that Exti

Gk
(H2(X̄,Gm)(p), k̄∗) = 0 for all

i ≥ 0. Thus Ext2Gk
(H2(X̄,Gm), k̄∗) = Ext2Gk

(H2(X̄,Gm)(no p), k̄∗) in this case.
Theorem (5.1) implies therefore that, modulo the assumption on the algebraic 1-
cycles of X̄, the datum of12

n is equivalentto the set of data of alld2
n for l 6= p.

In particular, and with this caveat, Proposition 3.17 is also a consequence of (the
proof of) Theorem 5.1.

(b) Thus working with the algebraic closurek̄ of k in the definition of (1.7) has the
effect of stripping off a possible contribution of thep-part of the groupH2(X̄,Gm).
Now, the whole theory can be developed equally withk̄ and X̄ replaced byks and
Xs = X ⊗k ks, respectively, leading to a map

T(X) = F2 CH0(X)
12

n
−→ Ext2Gk

(
H2(Xs,Gm), k

∗
s

)
Q. (5.6)

(We use this in Section 7.) One has, canonically,

Ext2Gk

(
H2(Xs,Gm), k

∗
s

)
∼= Ext2Gk

(
H2(X̄,Gm), k̄

∗
)

⊕ Ext2Gk

(
H2(Xs,Gm)(p), k

∗
s

)
,

and the map (5.6) induces, in particular, our former map (1.7) by projection.
There remains then an as yet unexplored component along thep-part of the group
H2(Xs,Gm). However, this does not seem to be the right approach since, fork a
perfect field, we do not obtain anything new from it. Instead, developing the missing
p-part of this theory when char(k) = p > 0 possibly involves dealing with exten-
sions of geometrical objects rather than extensions of Galois modules. This would
provide a further step towards a hypothetical group object of (hyper)geometrical na-
ture, allowing us to parallel for (1.7) the passage from (1.3) and (1.4) to (1.5) and
(1.6), respectively.

(c) In a vein similar to that of (b), for alli ≥ 0, the canonical isomorphisms

ExtiGk

(
H i (X̄,Gm), k̄

∗
) ∼

−→ ExtiGk

(
H i (Xs,Gm), k̄

∗
)

yield natural maps

ExtiGk

(
H i (Xs,Gm), k

∗
s

)
−→ ExtiGk

(
H i (X̄,Gm), k̄

∗
)
.
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For i = 1, the analogous construction to that for11
n (see Section 3) with̄k and X̄

replaced, respectively, byks andXs, leads to a map

A0(X) = F1 CH0(X)
11

n
−→ Ext1Gk

(
H1(Xs,Gm), k

∗
s

)
(5.7)

which lifts (1.4) (we use this in Section 7). Once more, this is not very illuminating,
since both maps stem here from a common, well understood, more powerfulgeomet-
rical construction (see Section 1).

6. A comparison with M. Green’s method
In this section we deal with surfaces only. We use our construction to relate the Abel-
Jacobi mapd2

2 to M. Green’s construction in [G]. (Well understood, M. Green works
in the setting of complex algebraic varieties, with (arithmetic) mixed Hodge struc-
tures, while we are working here in the abstract setting withl -adic theory). For 0-
cycles on a fixed curve on a smooth, projective, geometrically irreducible surfaceX
overk, the 2-extension class provided by the higher Abel-Jacobi mapd2

2 is described
as the composition of two 1-extensions, one of them reflecting the relation of the 0-
cycle with its curve environment and the second one relating the curve to the surface.
As a matter of fact, we consider here only the simplest case, that of a smooth, geo-
metrically irreducible (projective) curveC ⊂ X overk. Let z be a 0-cycle of degree
zero onX, such that|z| ⊂ C and such that[z] ∈ T(X). We have a pair of dual mor-
phisms of abelian varieties overk, Pic0

X/k → Pic0
C/k andJ(C) → Alb(X), which we

complete to exact sequences

0 −→ P −→ J(C) −→ Alb(X) −→ R̂0
−→ 0, (6.1)

0 −→ R −→ Pic0
X/k −→ Pic0

C/k −→ P̂0
−→ 0. (6.2)

HereP andRare algebraic groups,P0 andR0 are the respective identity components,
and P̂0 and R̂0 are the duals of these abelian varieties. The 0-cyclez determines an
element ofP(k), whence an element ofP(k)Q = P0(k)Q. By duality, this yields
an element of Ext1(P̂0,Gm,k)Q (extensions of commutative group schemes overk),

whence an element of Ext1
Gk
(̂̄P0, k̄∗)Q. We represent this as

0 −→ k̄∗
−→ (· · · ) −→

̂̄P0
−→ 0. (6.3)

We fix a prime numberl , different from the characteristic ofk. By taking the pullback
of (6.3) bŷ̄P0(l ) ↪→ ̂̄P0, we derive an extension

0 −→ k̄∗
−→ (· · · ) −→

̂̄P0(l ) −→ 0. (6.4)

On the other hand, the inductive limit of the cohomology sequences of the (self-
defining) exact sequences onX̄,

0 −→ µl r ,X̄,C̄ −→ µl r ,X̄ −→ µl r ,C̄ −→ 0,
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gives

Pic(X̄)(l ) −→ Pic(C̄)(l ) −→ H2
c

(
X̄\C̄,Ql /Zl (1)

)
−→ 〈[C̄]〉

⊥
−→ 0.

Here 〈[C̄]〉
⊥

⊂ H2(X̄,Ql /Zl (1)) is the orthogonal submodule of〈[C̄]〉 ⊂

H2(X̄,Zl (1)). From (6.2) we deduce a natural map NS(X̄)(l ) →
̂̄P0(l ), and the

above sequence yields

0 −→
̂̄P0(l )/ Im

(
NS(X̄)(l )

)
−→ H2

c

(
X̄\C̄,Ql /Zl (1)

)
−→ 〈[C̄]〉

⊥
−→ 0. (6.5)

If l does not divide| Tors(NS(X̄))|, then the first term in (6.5) becomes̄̂P0(l ). In any
case, we have aQ-exact sequence

0 −→
̂̄P0(l ) −→ H2

c

(
X̄\C̄,Ql /Zl (1)

)
−→ 〈[C̄]〉

⊥
−→ 0 (6.6)

in the sense that it is exact in theQ-localized category of the category of discrete
Gk-modules. We have, moreover,

(
NS(X̄) ⊗ Zl

)⊥
⊂ 〈[C̄]〉

⊥ and (see Section 5)

a Q-isomorphism(NS(X̄) ⊗ Zl )
⊥ ∼

−→ Br(X̄)(l ). This is a true isomorphism ifl
does not divide| Tors NS(X̄)| or the discriminant of the intersection form NS(X̄)0 ⊗

NS(X̄)0 → Z (with NS(X̄)0 standing for NS(X̄)/Tors NS(X̄)). By pulling back (6.6)
by the morphism Br(X̄)(l ) → (NS(X̄)⊗ Zl )

⊥ ↪→ 〈[C̄]〉
⊥, we obtain aQ-extension

0 −→
̂̄P0(l ) −→ (· · · ) −→ Br(X̄)(l ) −→ 0. (6.7)

THEOREM 6.8
Let the assumptions be as at the beginning of Section 6. In the above notation, the
image of12

2([z]) in Ext2Gk
(Br(X̄)(l ), k̄∗)Q is represented by the composition of the

1-extensions (6.4) and (6.7).

Proof
Let S̄be a finite set of closed, irreducible curves ofX̄ adequate forZ = |z|, containing
the curveC̄, and such that, furthermore, the classes[C̄′

], C̄′
∈ S̄, generate the group

NS(X̄). The morphisms of two-term complexes of sheaves onX̄,

Gm,X̄,Z̄
//
∏

C̄′∈S̄Gm,C̄′,Z̄∩C̄′

µl r ,X̄,Z̄

=

��

� ?

OO

//
∏

C̄′∈S̄µl r ,C̄′,Z̄∩C̄′

� ?

OO

��
µl r ,X̄,Z̄ // µl r ,C̄,Z̄
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yield, after taking inductive limits, morphisms of exact sequences

0 // Pic(X̄, Z̄) // ∏
C̄′∈S̄ Pic(C̄′, Z̄ ∩ C̄′) //

0 // Pic(X̄, Z̄)(l )
� ?

OO

=

��

// ∏
C̄′∈S̄ Pic(C̄′, Z̄ ∩ C̄′)(l )

��

� ?

OO

//

Pic(X̄, Z̄)(l ) // Pic(C̄, Z̄)(l ) //

// B̃rS̄(X̄, Z̄) // Br(X̄) // 0

// H2

OO

��

// (NS(X̄)⊗ Zl )
⊥

OO

� _

��

// 0

// H2
c

(
X̄\C̄,Ql /Zl (1)

)
// 〈[C̄]〉

⊥ // 0

The upper outer right vertical map induces theQ-isomorphism(NS(X̄)⊗Zl )
⊥

→

Br(X̄)(l ) alluded to above. Therefore, if̃z : Pic(X̄, Z̄) → k̄∗ is a morphism as in (3.1),
then pushing out the middle row by the restriction ofz̃ to Pic(X̄, Z̄)(l ) and pulling
back the resulting sequence by the morphism Br(X̄)(l ) → (NS(X̄) ⊗ Zl )

⊥ yields a
representative of the image of12

2([z]) in Ext2Gk
(Br(X̄)(l ), k̄∗)Q. On the other hand,

the right-hand-side half of the bottom row contains the exact sequence (6.5) (or (6.6)
in terms ofQ-extensions). Therefore it suffices to show thatz̃ can be chosen so as to
provide a commutative diagram

Pic(X̄, Z̄)(l )

z̃

��

// Pic(C̄, Z̄)(l )

��

// ̂̄P0(l )

=

��
0 // k̄∗ // (· · · ) // ̂̄P0(l ) // 0

(6.9)

where the bottom row is (6.4).
To settle this point, we introduce Pic0(X̄, Z̄) ⊂ Pic(X̄, Z̄) and Pic0(C̄, Z̄) ⊂

Pic(C̄, Z̄) as the inverse images of Pic0(X̄) ⊂ Pic(X̄) and Pic0(C̄) ⊂ Pic(C̄), respec-
tively. We deduce from (6.2) an exact sequence

0 −→ R̄ −→ Pic0(X̄, Z̄) −→ Pic0(C̄, Z̄) −→
̂̄P0

−→ 0.
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On the other hand, we have a commutative diagram with exact rows

0 // H0(Z̄,Gm)/H0(C̄,Gm)

z

��

// Pic0(C̄, Z̄)

��

// Pic0(C̄)

=

��

// 0

0 // k̄∗

=

��

// Ē0
z,C

��

// Pic0(C̄)

��

// 0

0 // k̄∗ // (· · · ) // ̂̄P0 // 0

where the bottom row is (6.3) and the middle row is the restriction to Pic0(C̄) of the
extension representing11

1,C([z]). From this diagram we deduce the following one:

Pic0(X̄, Z̄)

z̃0

��

// Pic0(C̄, Z̄)

��

// ̂̄P0

=

��

// 0

0 // k̄∗ // (· · · ) // ̂̄P0 // 0
(6.10)

with the morphism̃z0 extending the mapz : H0(Z̄,Gm)/H0(X̄,Gm) → k̄∗. By the
exact sequence

0 −→ Pic0(X̄, Z̄) −→ Pic(X̄, Z̄) −→ NS(X̄) −→ 0

and Remark (3.9), we may assume thatz̃0 is the restriction of a morphism̃z :

Pic(X̄, Z̄) → k̄∗ as in (3.1). From this we deduce at once a diagram like (6.9), taking
into account that Pic0(C̄, Z̄)(l ) = Pic(C̄, Z̄)(l ) and that, by the exact sequence

0 −→ Pic0(X̄, Z̄)(l ) −→ Pic(X̄, Z̄)(l ) −→ NS(X̄)(l ) −→ 0,

the objects Pic0(X̄, Z̄)(l ) and Pic(X̄, Z̄)(l ) areQ-isomorphic. This ends the proof of
Theorem (6.8).

To end this section we translate this result by means of Pontryagin duality. Notation
and assumptions are as at the beginning of Section 6. Taking (twisted) Pontryagin
duals in the sequence (6.5)—and using Poincaré duality as well as the duality between
the abelian varietiesP0 and P̂0—we obtain the middle row of the following exact
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diagram:

0

��

0

��(
NS(X̄)⊗ Zl (1)

)
/Zl (1)[C̄]

��

∼ // NS(X̄\C̄)⊗ Zl (1)

��
0 // H2

(
X̄,Zl (2)

)
/Zl (1)[C̄]

��

// H2
(
X̄\C̄,Zl (2)

)

��

// Tl P̄0

=

��

// Hom(NS(X̄)(l ), k̄∗)

=

��
0 // Tl Br(X̄)(1)

��

// Tl Br(X̄\C̄)(1)

��

// Tl P̄0 // Hom(NS(X̄)(l ), k̄∗)

0 0

By taking the tensor product withQ, the last row gives the exact sequence of
continuousQl [Gk]-modules

0 −→ Vl Br(X̄)(1) −→ Vl Br(X̄\C̄)(1) −→ Vl P̄0
−→ 0. (6.11)

This is the dual counterpart of theQ-extension (6.7). We write

H1(Gk,Vl P̄0) = H1
cont(Gk,Vl P̄0)

δ
−→ H2

cont

(
Gk,Vl Br(X̄)(1)

)
(6.12)

for the first connecting homomorphism of its cohomology sequence. On the other
hand, the Kummer sequence forP0 gives a morphismP0(k) → H1(Gk, Tl P̄0),
whence also a morphism

P(k)Q = P0(k)Q −→ H1(Gk,Vl P̄0). (6.13)

One has a commutative diagram

(JC)(k)
d1

1,C // H1(Gk, Tl JC̄)

P0(k)
� ?

OO

// H1(Gk, Tl P̄0),

OO

the right-hand-side vertical map being injective if, for example,k is finitely generated
over the prime field (by the Mordell-Weil theorem applied to the quotient abelian
variety JC/P). Finally (see Section 5), the canonical splitting of the sequence

0 −→ NS(X̄)⊗ Ql (1) −→ H2(X̄,Ql (2)
)

−→ Vl Br(X̄)(1) −→ 0
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yields a canonical direct sum decomposition

H2(Gk, H2(X̄,Ql (2))
)

= H2(Gk,NS(X̄)⊗Ql (1)
)
⊕H2(Gk,Vl Br(X̄)(1)

)
. (6.14)

With the aid of Theorem 5.1, the following is then a restatement of Theorem 6.8.

COROLLARY 6.15
Let C ⊂ X be a curve on a surface, both C and X smooth, projective, and geomet-
rically irreducible over a field k. In the preceding notation, the following diagram is
commutative:

P(k)Q

��

// H1
cont(Gk,Vl P̄0)

δ

��
H2

cont

(
Gk,Vl Br(X̄)(1)

)
� _

��
T(X)Q

d2
2 // H2

cont

(
Gk, H2(X̄,Ql (2))

)
7. Relation with the pairing betweenCH0(X) and Br(X)
Let X again be as in the introduction. As earlier in this paper,ks denotes a separable
algebraic closure ofk, andXs = X ⊗k ks. We consider the pairing

CH0(X)⊗Z Br(X) −→ Br(k) (7.1)

quoted in Section 1. Recall (see [L], [M]) that, given[z] ∈ CH0(X), z =
∑r

i =1 ni xi ,
and[P] ∈ Br(X), the image of[z] ⊗Z [P] in Br(k) is given by

〈[z], [P]〉 =

r∑
i =1

ni Nk(xi )/k([Pxi ]) (7.2)

with Nk(xi )/k : Br(k(xi )) → Br(k) the norm map.
We write, as before,F0 CH0(X) = CH0(X), F1 CH0(X) = A0(X) ⊂ CH0(X),

the set of rational equivalence classes of 0-cycles of degree zero, andF2 CH0(X) =

T(X) ⊂ A0(X), the kernel of the Albanese mapA0(X) → Alb(X). On the other
hand, the Lyndon-Hochschild-Serre spectral sequenceH i (Gk, H j (Xs,Gm)) ⇒

H i + j (X,Gm) yields, in particular, a length 2 filtrationF · Br(X) of Br(X). We have,
canonically, injective maps

Br(X)/F1 Br(X) ↪→ H0(Gk,Br(Xs)
)
, (7.3)

F1 Br(X)/F2 Br(X) ↪→ H1(Gk,Pic(Xs)
)
, (7.4)
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andF2 Br(X) ⊂ Br(X) is the image of Br(k) by the structure mapX → Spec(k). We
consider the pairings induced by (7.1):

F i CH0(X)⊗Z F2−i Br(X) −→ Br(k). (7.5)

For i = 0 this is, roughly expressed, multiplication by the degree of the first factor.
For i = 1 this should be, at worst up to a sign, the tensor product of the maps (5.7)
and (7.4) followed by the cup product map. We have not been able to find a suitably
complete reference for this (see [L], [M], the appendix in [B], and, most recently,
[CT1, p. 117, and the references therein]). The point with the sign lies in the map
(7.4). For example, the candidate for this map which sends[P] ∈ F1 Br(X) to the
extension class of the sequence 0→ Pic(Xs) → Pic(Ps) → Z → 0 requires, indeed,
no sign in the formula.

Now let i = 2 in (7.5). We show that a similar description holds, with11
n re-

placed by12
n and bearing in mind that we are committed here to work with rational

coefficients. The pairing (7.5) fori = 2 leads, by adjunction, to a morphism

T(X) = F2 CH0(X) −→ HomZ
(

Br(X),Br(k)
)
Q. (7.6)

On the other hand, the edge homomorphism Br(X) → H0(Gk,Br(Xs)) and the
cup-product map yield a morphism Ext2

Gk
(Br(Xs), k∗

s)Q → HomZ(Br(X),Br(k))Q,

whence, by composing with the inclusion Br(Xs) ↪→ H2(Xs,Gm), a morphism

Ext2Gk

(
H2(Xs,Gm), k

∗
s

)
Q −→ HomZ

(
Br(X),Br(k)

)
Q. (7.7)

We then have the following.

THEOREM 7.8
Let X be a smooth, projective, geometrically irreducible variety of dimension n over
a field k. In the above notation, the map (7.6) is the composition of the map12

n from
(5.6) with the map (7.7).

Proof
Taking advantage once more of the use of rational coefficients, we show first that we
may replacek by any finite extensionk ⊂ k1, without loss of generality. Indeed, in
the notation of (7.2) one has, denoting by a subindex( )1 the effect of base change
from k to k1,

〈[z1], [P1]〉 = 〈[z], [P]〉1. (7.9)
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It follows that we a have a commutative diagram

T(X)

��

α(i ) // HomZ
(

Br(X),Br(k)
)
Q

// HomZ
(

Br(X),Br(k1)
)
Q

=

��
T(X1)

α
(i )
1 // HomZ

(
Br(X1),Br(k1)

)
Q

// HomZ
(

Br(X),Br(k1)
)
Q

whereα(i ), i = 1,2, stand for the two maps to be compared andα
(i )
1 , i = 1,2, are the

corresponding maps overk1. The remaining arrows bear the straightforward meaning.
Then, writingm = [k1 : k], we deduce by means of the norm mapNk1/k : Br(k1) →

Br(k) that if [z] ∈ T(X) is such thatα(1)1 ([z1]) = α
(2)
1 ([z1]), thenmα(1)([z]) =

mα(2)([z]) and hence alsoα(1)([z]) = α(2)([z]).
So, given[z] ∈ T(X), we may assume, without loss of generality, thatz =∑r

i =1 ni xi , with k(xi ) = k for all i . Enlarging further the base field, we may assume
also that the supportZ = |z| of z is contained in a geometrically integral curveC ⊂ X
and that we have a finite setSof geometrically integral curves onX havingC as one
of its members, such that the remaining curves do not meetZ and such that the set
Ss of inverse images of these curves inXs is adequate forZ. As earlier in this paper,
we write Zs for the 0-dimensional closed subset ofXs, the inverse image ofZ. Upon
replacing[z] by a positive integral multiple, we may assume that the morphism of
Gk-modules

H0(Zs,Gm)/H0(Xs,Gm)
z

−→ k∗
s (7.10)

(analogue of (2.3)) extends to a morphism ofGk-modules

Pic(Xs, Zs)
z̃

−→ k∗
s . (7.11)

Then12
n([z]) ∈ Ext2Gk

(Br(Xs), k∗
s) is represented by the pushout alongz̃ of the exact

sequence (see (3.14))

0 −→ Pic(Xs, Zs) −→

∏
C′

s∈Ss

Pic(C′
s, Zs ∩ C′

s)

−→ B̃rSs(Xs, Zs) −→ Br(Xs) −→ 0. (7.12)

We note that, due to our particular choice ofS, one actually has̃BrSs(Xs, Zs) ∼=

B̃rSs(Xs) and
∏

C′
s∈Ss

Pic(C′
s, Zs ∩ C′

s) =
( ∏

C′
s∈Ss\{Cs}

Pic(C′
s)

)
× Pic(Cs, Zs). Let

[P] ∈ Br(X), and take its image[Ps] in H0(Gk,Br(Xs)). By means of explicit (Ga-
lois) cocycle manipulation, we compute the image of[Ps] by the iterated connecting
homomorphism for (7.12) and then the image of this by (7.11). (It should come as no
surprise that only (7.10) is actually involved in this last stage of the computation.) We



484 GERALD E. WELTERS

show that the so-obtained cocycle represents〈[z], [P]〉 ∈ Br(k), and this settles the
proof of Theorem 7.8.

Fix, for all C′
s ∈ Ss, an invertible sheafξs,C′

s
on Ps,C′

s
restricting toO(1) on

the geometric fibres ofPs,C′
s

→ C′
s. Then(Ps, ξs) so constructed represents a lifting

of [Ps]. The image of[Ps] by the first connecting homomorphism is represented by
the image of the 1-cochain which sendsσ ∈ Gk to the collection formed by the
σ ξs,C′

s
⊗ ξ−1

s,C′
s

for C′
s 6= Cs, plus the couple formed byσ ξs,Cs ⊗ ξ−1

s,Cs
together with

an (arbitrary) trivialization alongZs ⊂ Cs. (Note that, for allC′
s ∈ Ss, the sheaf

σ ξs,C′
s
⊗ ξ−1

s,C′
s

is canonically isomorphic to the inverse image of its direct image in

C′
s, and therefore it can unambiguously be thought of as an invertible sheaf onC′

s.)
Now, choosing a trivialization ofσ ξs,Cs ⊗ ξ−1

s,Cs
alongZs is tantamount to choosing a

relative isomorphism

ξs,Cs ⊗ OPs,Zs

σ̃
−→ ξs,Cs ⊗ OPs,Zs

(7.13)

over the isomorphismσ : Ps,Zs

∼
−→ Ps,Zs. In this notation, the image of[Ps] by

the iterated connecting homomorphism for (7.12) is represented by the image in
Pic(Xs, Zs) of the 2-cocycleρ with values in H0(Zs,Gm) given by the formula
ρ(σ, τ ) = (σ̃ τ )−1τ̃ σ̃ for all σ, τ ∈ Gk.

We show that the image ofρ by the mapz in (7.10) represents〈[z], [P]〉 ∈

Br(k). For all i = 1, . . . , r , choose a closed point̃xi ∈ P abovexi . Call Ts,i ⊂ Ps

the 0-dimensional closed subset, inverse image of{̃xi }. For simplicity, we writePs,i

for Ps,xi,s = Pxi ,s. We also writeξs,i for the invertible sheafξs,Cs ⊗ OPs,i on Ps,i .
By Remark 4.11,〈[xi ], [P]〉 ∈ Br(k) is minus the image of[ξs,i ] by the iterated
connecting homomorphism of the exact sequence

0 −→ k∗
s −→ H0(Ts,i ,Gm) −→ Pic(Ps,i , Ts,i ) −→ Pic(Ps,i ) −→ 0. (7.14)

Fix, for all i = 1, . . . , r , a trivializationθs,i : OTs,i

∼
−→ ξs,i ⊗ OTs,i . Then(ξs,i , θs,i )

so constructed represents a lifting of[ξs,i ]. Borrowing from our previous notation, we
now write, for allσ ∈ Gk,

ξs,i ⊗ OTs,i

σ̃
−→ ξs,i ⊗ OTs,i (7.15)

for the restriction of (7.13) aboveTs,i . This is a relative isomorphism overσ : Ts,i
∼

−→

Ts,i . Let us denote also by

OTs,i

σ̃0
−→ OTs,i (7.16)

the canonical relative isomorphism overσ : Ts,i
∼

−→ Ts,i . In this notation, the image
of [ξs,i ] by the first connecting homomorphism for (7.14) is represented by the image
of the 1-cochain$i with values inH0(Ts,i ,Gm) given by the formula$i (σ ) =
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θ−1
s,i σ̃

−1θs,i σ̃0 for all σ ∈ Gk. Thus the image of[ξs,i ] by the iterated connecting
homomorphism for (7.14) is represented by the 2-cocycled$i . Writing this out, we
find thatρ−1

= (d$1, . . . ,d$r ), and the result follows.

To end, we include here a remark by J.-L. Colliot-Thélène on the fact that the use of
rational coefficients in the statement of Theorem (7.8) is unavoidable in general. This
partially answers the question mentioned in Remark 1.8.

Remark 7.17(see [CT2])
In general, there exists no mapT(X) → Ext2Gk

(Br(Xs), k∗
s) such that, when com-

posed in the above sense with the natural map Br(X) → Br(Xs)
Gk , it yields the

compositionT(X) ⊂ A0(X) → Hom(Br(X),Br(k)).
One has, in fact, numerous examples of geometrically rational surfacesX/k with

k a p-adic field, or even the field of real numbers, such that the mapA0(X) →

Hom(Br(X),Br(k)) is nonzero. (The simplest example is a cubic surfaceX/R such
that X(R) has two connected components.) For such a surface, the Albanese variety
is trivial, whenceA0(X) = T(X), and the geometrical Brauer group Br(X̄) is zero.

One can give similar examples with nonrational surfaces, in this case surfaces
fibered in conics over a curve of genus at least 1. One has then AlbX 6= 0, but always
Br(Xs) = 0.

Acknowledgments.We are indebted to the referee for pointing out that our results,
stated originally for surfaces, apply without change to varieties of arbitrary dimension
and to the editor for requiring us to take this up in a revised version. We are grateful
to J.-L. Colliot-Th́elène for his permission to include here his Remark 7.17.
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[CTS] J.-L. COLLIOT-THÉLÈNE,andJ.-J. SANSUC, On the Chow groups of certain rational

surfaces: A sequel to a paper of S. Bloch, Duke Math. J.48 (1981), 421 – 447.
MR 83e:14007449, 462, 463

[GT] H. A. GILLET andR. W. THOMASON, “The K -theory of strict Hensel local rings and a
theorem of Suslin” inProceedings of the Luminy Conference on Algebraic
K -Theory (Luminy, France, 1983), J. Pure Appl. Algebra34, no. 2–3,
North-Holland, Amsterdam, 1984, 241 – 254.MR 86e:18014449

http://www.ams.org/mathscinet-getitem?mr=83e:14006
http://www.ams.org/mathscinet-getitem?mr=2000d:14010
http://www.ams.org/mathscinet-getitem?mr=83e:14007
http://www.ams.org/mathscinet-getitem?mr=86e:18014


486 GERALD E. WELTERS

[G] M. L. GREEN, “Higher Abel-Jacobi maps” inProceedings of the International
Congress of Mathematicians (Berlin, 1998), Vol. II, Doc. Math.1998, Extra Vol.
II, Doc Math., Bielefeld, Germany, 1998, 267 – 276.MR 99k:14012 447, 449,
476

[SGA2] A. GROTHENDIECK, Cohomologie locale des faisceaux cohérents et Th́eor̀emes de
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[J1] U. JANNSEN, Continuouśetale cohomology, Math. Ann.280(1988), 207 – 245.
MR 89a:14022450, 451, 452

[J2] , Mixed motives and algebraic K-theory, Lecture Notes in Math.1400,
Springer, Berlin, 1990.MR 91g:14008 451, 452

[J3] , “Motivic sheaves and filtrations on Chow groups” inMotives (Seattle, 1991),
Proc. Sympos. Pure Math.55, Part I, Amer. Math. Soc., Providence, 1994,
245 – 302.MR 95c:14006 447, 448

[J4] , “Letter from U. Jannsen to B. Gross on higher Abel-Jacobi maps” inThe
Arithmetic and Geometry of Algebraic Cycles (Banff, Alberta, 1998), NATO Sci.
Ser. C Math. Phys. Sci.548, Kluwer, Dordrecht, 2000, 261 – 275.
MR 2001e:14019447, 448, 451, 452, 466, 470, 475

[K] S. L. KLEIMAN , “Algebraic cycles and the Weil conjectures” inDix expośes sur la
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