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Abstract
This paper focuses on the connection between the Brauer group aeciiues of

an algebraic variety. We give an alternative construction of the second I-adic Abe
Jacobi map for such cycles, linked to the algebraic geometry of Severi-Brauer val
eties on X. This allows us then to relate this Abel-Jacobi map to the standard pairir

betweerD-cycles and Brauer groups (seBl], [ L]), completing results fromNi] in

this direction. Second, for surfaces, it allows us to present this map according to tl
more geometrical approach devised by M. Green in the framework of (arithmeti

mixed Hodge structures (se€]).

Needless to say, this paper owes much to the work of U. Jannsen and, especic

to his recently published older lettei4] to B. Gross.
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1. Introduction
Let X be a smooth, projective, geometrically irreducible variety of dimensioner

a field k. The conjectural formula of A. A. Beilinson for the conjectural filtration

F* CH(X)q of the Chow groups oK reads (see]3 page 259])

Gr' CHI (X)g = Ext , , (L. W21 (X)())). (1.1)
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In the particular case of 0-cycles, Poineauality allows us to write this in the more
simple form

Gr' CHo(X)g = Ext , ,. (W' (X). 1). (1.2)
Conjectures aside, there exist natural maps, in fact, with integral coefficients:
O - .
CHo(X) = FO CHo(X) = Extd, (HO(X, Gm), k*), (1.3)
1 An 1 < ik
Ao(X) = F~CHo(X) — Extg, (H X, Gm), k ) (1.4)

The first one of these maps is just the degree map, and the second one, which
lifting of the Albanese map, is recalled in Section 2. The groups on the right-har
side in (1.3) and (1.4) refer to extensions of disci®temodules k is an algebraic
closure ofk, X = X ®x k, and G is the absolute Galois group &j, a fact that
makes these groups bigger than we would like. Namely, if one takes instead, resp
tively, ExtO(Gm,k, Gmk) and Exil(P_icx/k, Gmk), extensions as commutative group
schemes ovek, then a similar construction should lead to isomorphisms

G’ CHo(X)g — Ext®(Gmk,» Gm K)o (1.5)
Gr' CHy(X)g — Ext'(Picy . Gmk)o- (1.6)

reminiscent of (1.2).

In this work we contribute the following.

(a) Based on the papei{], we construct in Sections 3 and 4 a natural map, with
T(X) € Ao(X) denoting the Albanese kernel,

T(X) = F2CHy(X) i2> Ext, (H2(X, Gm), R*)@. (1.7)

Remark 1.8

Note that, in contrast with (1.3) and (1.4), we use rational coefficients here. We ¢
not dwell on the question of whether this is strictly necessary or not, but we tal
advantage of it (see Remark 7.17 for a remark in this respect, due to J.-L. Collic
Thélene). Also, we do not make statements here that are comparable to (1.5) ¢
(1.6). On the positive side, however, the construction piis very explicit.

(b) By means of Pontryagin duality, map (1.7) is shown in Section 5 to be equivale

to the set of all-adic higher Abel-Jacobi mappings (s€8 [pages 251-252 and 262—
263]; see alsoR, pages 37-40])

2 —_
T(X) S, HZ (G, H"2(X, Qi (n))), (1.9)
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| prime,l # chartk), provided homological and numerical equivalence coincide fot
algebraic 1-cycles oX (see K, page 379]) and thus unconditionally for surfaces and
for varieties in characteristic zero, among others ($eeppge 380]); see Theorem
5.1 and Remark 5.5.

(c) As one application, we discuss in Section 6 an alternative description of (1.
for surfaces, along the lines of M. Green (B]] thus relating both points of view (see
Corollary 6.15).

(d) Finally, in Section 7 we relate the map (1.7) to the standard pairing l{éee [
page 406])

CHp(X) ®z Br(X) — Br(k)

(see Theorem 7.8).

2. The mapA}

Let X be as in the introduction. We recall the definitionf. A reference for this

is [CTS. Let z be a 0-cycle of degree zero &f, and letZ ¢ X be a 0-dimensional
closed subset containing the supgaftof z. Let Z ¢ X be the 0-dimensional closed
subset obtained as the inverse imag&ah X = X ® k. We also denote by c X

the reduced O-dimensional subscheme supported by this set. Except for this, a
rule in this paper, we denote by a bar the effect of taking base changeftortihe
algebraic closur& of k or, else, to objects defined directly overWe have an exact
sequence of discretex-modules

0 —> H%Z, Gm)/H%X, Gm) —> Pic(X, Z) —> Pic(X) —> 0. (2.1)

The group Pi¢X, Z) consists of the isomorphism classes of coupl&s 9) with
Z an invertible sheaf orX andd : ¢5 — £ ® €5 an isomorphism. The
map Pi¢X,Z) — Pic(X) is a forgetful one, sendin§(.Z, 6)] to [.Z]. Given
i € H%Z, Gp), the image offd] in Pic(X, Z) is [(Og, 6)] with § standing now
for multiplication byt. (The notation for PieX, Z) can be traced back, at least, to a
paper by H. Gillet and R. ThomasoB&T, page 243].)

The exact sequence (2.1) can be deduced alternatively from the cohomology
quence of the (self-defining) exact sequence of sheavés on

0—Gpxz— Gnx — Gnz—0, (2.2)

or, which is the same thing, from the long exact sequence obtained from the fi
hypercohomology spectral sequence of the two-term conplex — G, 5.

We note that, unlesk is a perfect field, this is different from the sequence ob-
tained from the analogous exact sequenc&on

0 — Gmx,z— Gmx — Gmz — 0,
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by taking higher direct images by the structure n¥ap> Speck). (HereZ is under-
stood as the reduced 0-dimensional subscheméafpported by this set.) However,
by proper base change (seéil, page 224]), the result is the same, when restricting
ourselves to thé-primary torsion parts, for primds# chark).
The norm map foZ — Speck) induces a morphism dbk-modules which we
also denote az,
HO(Z, Gm)/HO(X, Gm) —= K, (2.3)

and by pushing out (2.1) by (2.3), we obtain a 1-extension represenfitg)):

0 — k¥ — E; — Pic(X) — 0. (2.4)

Remark 2.5

Note that the result is indeed independent of the particular choige ©his follows
from the functoriality properties id of (2.1), (2.2), and (2.3). Actually, the extension
E can be described physically as follows. Writing= > i _, ni%i, >.i_; nj = 0, the
fiber of E, above the isomorphism clag¥’] € Pic(X) of an invertible sheaf” on X

is given, up to canonical isomorphism, &) _; 2 (%)®"\{0}.

In order to compare now the magt : Ag(X) — Exték(Pic(f(), k*) with the (inte-
gral) I-adic Abel-Jacobi map : Ag(X) — H&(Gk, H"1(X, Z(n))), we con-
sider the restriction map

Extg, (Pic(X), k*) — Extg, (Pic(X)(), k") (2.6)

and the isomorphisms

Extg, (Pic(X)(), K*) = Extg, (Pic()(1), k*()) 2.7)
= Exty, (HY(X. Q/Zi(D). Q/Zi(D)  (2.8)
= Extg, (21, H"7H(X, 2 (n))) (2.9)
= Hion(Gk. H2Y(X, Zi (n))). (2.10)

The isomorphism (2.7) is induced functorially by the change in the second argume
(In Yoneda-Ext language, to go from the left-hand to the right-hand side, one tak
[-primary torsion submodules). The isomorphism (2.8) is given by the Kummer exa
sequence fo6, . At this point there is obviously no difference between extensions
as discretesk-modules and extensions as discrétprimary) torsionGg-modules.
The isomorphism (2.9) is given then by applying Pontryagin duality twisted by (1
(i.e., by taking Honi—, k*)) and using Poincérduality. The extensions are now taken
in the category of continuoug [Gk]-modules. The last isomorphism is tautological

(see P1)).
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PROPOSITION2.11
The map @ equalsA} followed by the restriction map (2.6) and the isomorphisms
(2.7)—(2.10).

Proof

This follows, by Poinca duality, from the description m‘,} given in [J]] (see also

[J2 page 139] orJ4, page 261]). We give the details. Formale N, the exact diagram
0—— H2Y(X, Z/I"Z(n)) — H"Y(X\Z, Z/I"Z(n)) ——

00— H""Y(X, Z/1" Z(n)) ()

- - H§”(>‘<, Z/1"Z(n)) ——— H2(X, Z/1"Z(n)) —— 0

I |

Z/\"Z 0
(2.12)
gives, by taking Hor—, fir) and using Poincérduality,
0————H'X, ) ————H%Z, ) —
| j
0 i
— H(X\Z,2/1"Z(1)) — HY(X, Z/I"Z(1)) —=0
() HY(X,Z/I"Z(1)) —=0
(2.13)

The top row in diagram (2.13) is given by the cohomology sequence of the exa
sequence df -torsion subsheaves in (2.2),

O0— wyr gz —mrx—rz—0 (2.14)

(thuspyr 5 7 = J'ir %z, Where the lettef denotes the inclusion map\Z < X),
whence it is the sequence lbftorsion submodules of the corresponding part of the
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cohomology sequence of (2.2). By the construction of (2.4), it follows that the bottol
row in (2.13) equals the sequencd'otorsion submodules in (2.4),

0— ur — rEz — v Pic(X) — 0. (2.15)

From this it follows that the image af} ([z]) in Extg, (H1(X, Qi/Zi (1)), Qi /Z (1))

is represented by the inductive limit of these sequencesyases. Taking now the
Pontryagin dual of this and twisting the result by (1) is tantamount to taking the prc
jective limit of the bottom sequences in (2.12),ragaries. By [1], [J2 page 139],
and 4, page 261], this igl}([z]). O

3. Construction of A2
We keepX as before. Lez be a 0-cycle oiX of degree zero such that([z]) = O.
In the notation of Section 2, there exists a morphisrnsgefmodules

Pic(X, Z) —%> K* (3.1)

restricting to the mag of (2.3) onH%(Z, Gy)/H%(X, Gi). The mag¥ is determined
up to a morphism o6x-modules Pi¢X) — k*.

We now construct, for all 0-dimensional closed subseéts X (including the
improper caseZ = 0), explicit 2-extensions of discret8x-modules in the style of
(2.1),

0 — Pic(X,Z) —> (-+-) —> (---) —> Br(X) —> 0, (3.2)

defining a canonical elemeat < Exték(Br()_(), Pic(X, Z)) (see (3.14) and (3.15)).
For Z1 C Z», we have natural maps of exact sequences

0——= Pic(X, Z2) () (-++) Br(X) —=0
0—— Pic(X, Z1) (-+) (-++) Br(X) —=0

(3.3)
implying that, under the restriction morphism
Extg, (Br(X), Pic(X, Z)) — Extg, (Br(X), Pic(X, Z1)),

az, maps tooz,. Moreover, we show that, fof = ¢, oy is a torsion element in
Extg, (Br(X), Pic(X)) (see Proposition (3.16)). We then give the following.

Definition 3.4

Let z be a 0-cycle of degree zero 0%, such thatA%([Z]) = 0. LetZ c X be
any O-dimensional closed subset containing the supgpf z. Then A2([z]) €
Exték(Br()_(), k*)g is the image otz under the morphism (3.132([2]) = Z(az).
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Remark 3.5

(@) Itis shown later in Section 3 that the result indeed depends only on the ratior
equivalence claskg] of z (see Proposition 3.17). So far, we consider this as
attached to the cycleitself, and we write, correspondingls?(2).

(b) Forzfixed andZ containing z|, the classaﬁ(z) does not depend on the chosen
Z because the variation is measured by a homomorphic imagg @fhich is
a torsion element and whence is zero when tensored@ith

(c) For fixedz, the result does not depend @reither, because of the functoriality
in Z (see diagram (3.3)).

(d) If z=Z + Z’ with Z andZz”’ O-cycles of degree zero such that([Z]) = 0
andAl([Z']) = 0, thenA2(2) = AZ(Z) + A2(Z"). To see this, it suffices to
take Z so as to contaifz’| U |Z’| and to choos& =7 +7".

Definition 3.4 therefore yields a morphism
2
T(X) =5 Ex&, (Br(X), K") g (3.6)

This follows from the inclusiorT (X)g C Ker(A%)@. We have indeed, more gener-
ally, in the notation of Section 2, a commutative diagram

Alb(X)

Extg, (Pic’(X), k¥)

1 |

Ag(X) —= Exts, (Pic(X), k*)

(3.7)

the upper horizontal map coming from the duality between the Albanese variety a
the Picard variety. And, second, the right-hand-side vertical map yields an isomc
phism when tensored witQ. This follows from the exact sequence

0 —> Pic®(X) —> Pic(X) —> NS(X) —> 0 (3.8)

and from the fact that the abelian group (XS is finitely generated, whence that
Extg, (NS(X), k*)g = 0 fori > 0. We single out this fact since we want to use it
again later on.

Remark 3.9

Let M andN be discreteS,-modules, withM finitely generated as an abelian group.
Then EXEK(M, N)g = Ofori > 0. This follows from Mi2, Chapter I, Example 0.8]
together with B, Section 1.2, Corollaire 3].
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If X is a surface, then BK) = H2(X, Gm) (see Mil, page 149]), and (3.6) is the
map announced in (1.7). In the general case we still have an embeddiXy Bs
H2(X, Gm) (see Mil, page 142]) which is not known so far to be an isomorphism.
In Section 4, we give a cohomological definition for the map (1.7), and it is show
there that it induces the map (3.6) by restriction. This (perhaps temporary) ambigu
in our use of the symbafxﬁ causes no harm, however, since its precise meaning i
always clear from the context.

We now give a construction of (3.2). Because it is very explicit, it may not be
pleasant to read. The cohomological description given in Section 4 can be read in
pendently.

Construction of (3.2): Case Z
We treat this case first for the sake of clarity. In the first place, we derive a canonic
exact sequence @y-modules

0 — Pic(X) — [ ] Pic(C) — Br(X) — Br(X) — 0 (3.10)
CcX

which is a prototype for other sequences in this section. Here, in the second ter
C c X runs over all closed irreducible curves ¥f This exact sequence it a
sequence of discretgk-modules but of continuouSk-modules, when endowed (the
two middle terms) with a natural topology stemming from the interpretation of (3.10
as a projective limit of exact sequences of discf&temodules. We come back to this
below.

We view the Brauer group BY) of a varietyY as the set of equivalence classes
of Severi-Brauer varieties ovat (see [5rl], [Gr2), [Gr3], [Mil, Chapter Ill, Section
4, and Chapter IV]). A Severi-Brauer varieB — Y (or P for short) of relative
dimensionn — 1,n > 1, overY is a proper flat morphism witf"~! as geometric
fibres. Actually, it is a projective morphism. Given such a Severi-Brauer variety, th
open subse@&/Y of the relative Hilbert scheme Hily which parametrizes effec-
tive divisors of degree 1 on the fibres Bf — Y is a Severi-Bauer variety of relative
dimensionn — 1 overY and is called the dudP” of P. Given Severi-Brauer vari-
etiesP, of relative dimensions; — 1,i = 1, 2, the open subset D, p, y of the
Hilbert scheme Hilb, , . p, v Which parametrizes effective divisors of bidegtéel)
on the fibres oP; xy P> — Y is a Severi-Brauer variety ovérof relative dimension
ninz — 1. We denote its dual blp; x P, (see [5rl, page 64]), and we call this ttgegre
productof P; and P,. There is a canonical embeddify xy P> < P1 x P, over
Y, which restricts to the Segre embedding on the geometric fibres. Given a Seve
Brauer varietyP overY, one has a canonical isomorphism of Severi-Brauer varietie
P« P> P(«) with &7 a well-defined locally free sheaf of finite rank ¥nactually
a 0y-algebra. The Segre product is functoriaHpand P, for isomorphisms, and we
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denote byfy % fo: Ppx P = P; * P, the isomorphism induced by isomorphisms
fi : B = P/,i =1, 2, of Severi-Brauer varieties.

If &1 and &> are locally free sheaves of finite rank oh) one has a canonical
isomorphism of Severi-Brauer varieti®s&1) * P(62) = P(&1 ® &), natural in
&1 and &. A Severi-Brauer varietyP L Yis isomorphic to a projective bundle
P(&) if and only if there exists an invertible she@fon P, restricting todpn-1(1) on
the geometric fibres. Given suchz the canonical epimorphism*(R%z, &) — &
induces a canonical isomorphish — P(R°r,E) and a canonical relative iso-
morphism& — Oprop, (D). If B,i = 1,2, are Severi-Brauer varieties that
each admit an invertible sheaf;,i = 1,2, satisfying the above property, then
we obtain a similar objecE1 * E2 on P; % P, from the canonical isomorphism
PPy —> P(RO71, E1)*P(RO72, E2) —> P(RO71, 21® RO72, E2) by pulling back
Op(ROx,, 510R07,, 5,) (1) If P is a Severi-Brauer variety that admits an invertible sheaf
E as above, then one has canonically a similar olfgon P and a canonical relative
isomorphismEs " — p(.z)(1). Namely, from the isomorphisid —> P(R%r, E)
we obtain an isomorphisi®” — P(R%r, E)*, whence a shea&” by pulling back
Op(rox, )+ (1). The rest then follows from the existence of a canonical isomorphisn
o — (R%7,E) ® (R%,E)*. The passage frortP, E) to (P*, £") is (contravari-
antly) functorial for isomorphisms.

Two Severi-Brauer varietie® and P’ over Y are said to be equivalenB ~
P’, if and only if there exist locally free sheavésand &’ of finite rank onY and
an isomorphism oveY: P x P(&) —> P’ % P(&"). For a Severi-Brauer varietiy,
we denote by P] its class in the Brauer group Bf). The addition law is given
by [P1] + [P2] = [P1 * P»2]. The zero element is represented Yy= P(&y), and
—[P] = [P7]. More generally, giver € N, the open subset_D,iyY of the relative
Hilbert scheme_Hilk ,, which parametrizes effective divisors of degréen the
fibres of P — Y is a Severi-Brauer variety ovef, representing-d[P]. Moreover,
one finds thafP] = 0 if and only if P is isomorphic to a projective bund®(&’)
(see [5rl, page 64]). It follows that, gived € N, one hagd[P] = 0 if and only if
there exists an invertible sheaf ¢hrestricting todpn-1(d) on the geometric fibres
of P — Y. For example, the existence of the relative canonical shea§ implies
n[P] = 0. The following fact plays a fundamental role in what follows.

PROPOSITION3.11
Let C be a curve over an algebraically closed figdddThenBr(C) = 0. Let G be a
proper curve over a separably closed field KhenBr(Cs) = 0.

Proof (See (5r3, page 89, Corollaire 1.2, page 132, and Corollaire 5.8])
We now construct the exact sequence (3.10) from right to left. We have dwelt alrea
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on the group BX), and we describe next the groBp(X) and the map onto BK).
Given a Severi-Brauer variey over X, it follows from Proposition (3.11) that, for all
closed irreducible curveS C X, there exists an invertible sheigf on the restriction
Ps of P — X to C C X such thatg restricts todpn-1(1) on the geometric fibres
of Pz — C. We defineBr(X) to be the set of equivalence classes of couples)
with P a Severi-Brauer variety ovet andé standing for a choice of & as above
for all C, modulo the equivalence relatia®, £) ~ (P’, £') if and only if there exist
locally free sheave& and &’ of finite rank onX, an isomorphisnP % P(&) —
P’ « P(&’) over X, and a relative isomorphisgns Opé) (D) s Ex Opy (). By
this we mean, for alC, a relative isomorphisrég Opé<) (D — EL * ﬁp(gé)(l)

over the induced isomorphisi®s  P(&z) —> I5é * IP’(é‘)é). It is straightforward to
check that this is indeed an equivalence relation. We WiRe )] for the equivalence
class of(P, &). Moreover, we defingPy, £1) (P2, £) = (Pp % P, &1 * &) with
(&1 % sz)c =& ¢ *&,¢ forall C c X. This induces an addition law in the quotient
setBr(X) The zero element is represented(®y ¢) with ﬁc = ﬁc for all C. Also,
—[(P,&)] = [(P~ )] with &, ¢ = (sc) for all C. The surjectlorBr(X) — Br(X)is
the forgetful map sending P, £)] to [P].

The map[[¢x Pic(C) — Br(X) sends([Zs e x o [(X, )] with As = L&
for all C c X. This element belongs to the kernel®f(X) — Br(X). Conversely,
given[(P, £)] € Br(X) such thafP] = 0 in Br(X), there exist locally free sheaves
&, &' of finite rank onX and an isomorphism of Severi-Brauer varietesP(&) —
X x P(&") = P(&"). By the seesaw principle, this implies the existence of a relative
isomorphismé x ﬁp(éa)(l) = ax ﬁp(éa/)(l) for a suitabler as above, and hence
(P, &) ~ (X, 1); that is,[(P, £)] lies in the image of the above map.

The map PitX) — [ x Pic(C) sends.Z] to (£ ® Ogl)gcx. The image
of this map is the kernel of the preceding one. Namely, g(\[éfb])CCx as above,
one has(X,1) ~ (X, 0) if and only if there exist locally free sheavesand &’
of finite rank onX, an isomorphisnP(&) — P(&’), and a relative isomorphism
X ﬁp(@a)(l) = ﬁp(@@,)(l). If this is given, then we deduce, again by seesaw, ¢
relative isomorphisn ® ﬁP(@a)(l) = ﬁp(@a,)(l) for a suitable invertible shea?

on X, whenceis — £ ® 0 for all C < X. Conversely, if this occurs, then the
preceding condition is satisfied fét = 0y andé’ = Z.

It remains to be shown that the map P{¢ — []ex Pic(C) is injective. By
repeated application o8[GA2, Expo£ XllI, Corollaire 3.6], we reduce this to the case
whereX is a surface. Then le¥ be an invertible sheaf X such thats = ¥ ® 0
for all closed irreducible curve§ c X. Consider a Lefschetz pencil 0%, and let
g: X — IP% be the morphism obtained by blowing up the basis locus. It suffices t

show that the pullback?’ of . to X’ is trivial. We haveg*(R°g,.¢") = ¢’ and
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RYG..Z’ = O since this is now (relatively) isomorphic to the restrictionsf to
k
any of the exceptional divisors. Hence the result follows. O

We also need a more refined version of this, to the effect that we may choose a
nite set of closed irreducible curv€s, ..., C; on X such that the restriction map
Pic(X) — []i_; Pic(C) is injective. To this end, we choose first a finite set of such
curves such that their classes generate the group;Niyrof algebraic 1-cycles on
X modulo numerical equivalence. Writé = | Tors NS X)|. If an invertible sheaf
£ on X restricts to the trivial sheaf on each of these curves, [i#6%N ] belongs to
Pic®(X) c Pic(X). Consider then a smooth irreducible cu®@ean iterated hyper-
plane section oK. By weak Lefschetz, the restriction morphism®) — Pic’(C)
has a finite kernel (op-torsion if chatk) = p > 0 and trivial otherwise). Adding
this curve to the previous list yields, therefore, a restriction map with a finite kerne
Adding then for each nontrivial element in this kernel a curve where this element h;
a nontrivial restriction, the claimed list is complete.

Let Sbe a finite set of closed irreducible curvesotuch that
1) Sis closed under conjugation &, and
(2)  Pic(X) = [[e.gPic(C) via the restriction map.
Then the construction of (3.10) may be repeated verbatim, replacing the set of
closed irreducible curve€ c X by this setS and obtaining an exact sequence of
discreteGk-modules

0 — Pic(X) — [ [ Pic(C) — Brg(X) — Br(X) — 0. (3.12)
CeS
Moreover, if S ¢ S, then the sequence (3.12) 6 maps onto the sequence for
Si, with fixed ends. Thus all these sequences represent one and the same eler
ay € Exték(Br(f(), Pic(X)). As S varies, the sequences (3.12) form a projective
system, and the projective limit is (3.10).

Construction of (3.2): The general case

We build on (3.10). Endowing everything with a trivialization above the points of
Z and taking this trivialization into account in the definition of the corresponding
equivalence relations, we construct first a sequence of (nondisGetelodules

0 — Pic(X, Z) — [] PieC, ZNC) — Br(X, Z) — Br(X) — 0. (3.13)
CcX
(The last term actually should read (B, Z), but this coincides with BtX).) In the
second term, the product is taken over all closed irreducible c@vesX.

To defineBr(X, Z), we consider 4-tuple&P, &, f, @) described as follows. The
first two items are as befors®® — X is a Severi-Brauer variety, say, of relative
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dlmenS|onn — 1, andé symbolizes a choice of an invertible sh@f@fon Pe for all

C C X, restricting tog'(1) on the geometric fibres oPs — C. Moreover, f :
Pyt = P, is an isomorphism, and stands for a selection, for af ¢ X, of a

reIatlve isomorphisnpe : Pn L D> E&® Op, . over the restriction off above

ZNC. One defines an equwalence relation for these 4-tuples by seRirig f, ¢) ~

(P, &, ', ) ifand only if there eX|st locally free sheav&sandé” of finite rank on
X and an isomorphism : PxP(&) = P'xP(&) over X and a relative isomorphism
Vo E % Op) (D = E Opz,(1) such that the composite relative isomorphisms

_ e
& ® Op, ) * Opg, (D) —> G ® Op, ) * Opgy (1)

T@c*l i@lc*l)l
4 Pl & D * Opg, D ﬁpg&il Sk ﬁp(%ﬂc)(l)

are independent fron€ at every point ofZ N C. The verification of this fact
(and similar ones below) is a straightforward exercise. The set of equivalen
classes thus obtained Br(X, Z), and we write[(P, &, f, @)] for the class of
(P, &, f, ). An addition law is defined nBr(X Z) by setting[(Py, &1, f1, ¢1)] +

[(Pz, .’;-'2, f2, 02)] = [(Pl * P2 %‘1 * Ez, fl * f2, @1 % ¢2)]. (ThIS bears implicitly the
choice of an (arbitrary) isomorphisi}' - by PR SN P’%lnz_l and a relative

isomorphismﬁprll_l(l) * ﬁpr?_l(l) = ﬁprllnz—l(l).) The zero element is repre-
z z z

sented by(X, &, 1, 1), where the two last symbols stand for the canonical identifi-

catlons]P’0 — Zand Opo (D) = 03¢ for all C. Furthermore, one checks that
znC

—[(P,E, f,@)] = [(P, & (f) L, (")~ 1)]. The epimorphisnBr(X, Z) — Br(X)
is the forgetful map, sendingP, &, f, @)] to [P].

The map HCC)_( PiC(C, ZnN C_:) — gl‘()_(, 2) sends ([jc,éc])ccx to
[(X,%,1,0)], wherers = Zs for all C ¢ X and @ stands for the collection
(Ge)ecx- This element obviously belongs to the kerneBotX, Z) — Br(X). Con-
versely, giver{(P, &, f, )] € Br(X, Z) such thafP] = 0 in Br(X), we have seen
already that there exist locally free sheavesand &’ of finite rank onX, an iso-
morphismg : P x P(&) — P(&’), and, for a suitablé. as before, a relative iso-
morphismy : £ x Opg) (D) = oax Opz,(1). We exhibit av as above such that
(P, &, f,p) ~ (X, 1, 1,9), thereby showing that the chosen element belongs to th
image of our map. To this end, we consider the composite isomorphism

_ fxl - _ G -
PI L P(dy) —> Py x B(y) 5 P(E))

and choose an arbitrary relative isomorphiﬁsmﬁﬂmyl(l)*ﬁp(gz)(1) = ﬁp(%)(l).
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Then the composition of relative isomorphisms

- i . Ve 7. . ,
(e ® ﬁPZQC) * ﬁP(zﬁ“‘zmc)(l) — (e ® Ozne) * ﬁﬂ)("@émc)(l)

T(/_)C*l

Opr1 (D) % Opg, (D

Te(dy0 D

is an isomorphism oﬁp(@@ »)—modules, and therefore it determines an isomorphisi
ZnC

fc : Ozn¢ — he ® Osc. By its very constructionp = (fg)e.x yields the
claimed equivalence.

The map Pi¢X, Z) — e x Pic(C, ZNC) sendd(.Z, )1 to (LR, H|ZN
C)Decx- The image of the latter elementBr(X, Z) is represented byX, i, 1, #)
with 1¢ = .2 ® O forall C C X, and# standing for the collectio®|Z N C)ex-
Now one finds(X, &, 1, #) ~ (X, &, 1, 1) by takingé = 0, &' = Z,§ = 14, and
v =id: % — Op /D). Thus the image of the above map is contained in the kerne
of the preceding one. We show the opposite inclusion. In the notation of the precedi
paragraph, lef[.Zs, 0c]e % be such thatX, i, 1, #) ~ (X, &, 1, 1). Then, as we
have already seen, there exists an invertible siéafn X and isomorphismge :
£ ® 0 — % forall C c X. These are such that the isomorphisgig|Z N
C)tobg : O5,c — £ ® O3, are independent fror€ at the points oZ N C,
whence they define an isomorphiém &5 — Z®65, and hence[(Zs, 6:)D¢ex
is the image of (.Z, 6)] € Pic(X, Z).

Finally, we show the injectivity of PicX, Z) — ]_[ch Pic(C, Z N C). Given

[(Z,6)] mapping to zero, we know already thaf = Ox, and we may as-
sume that, actually? = Ox. Thené € HOZ, 6’;) and we have to show that
6 € HO(X, 0%) = k*. LetC c X be a closed irreducible curve containidg Then,
by hypothesisd € HO(C, 0%) = k*, and the result follows.

Let Sbe a finite set of closed irreducible curves¢tuch that
(1)  Sis closed under conjugation ¥y,

(2) Pic(X) — HCESPlc(C) via the restriction maps, and

(3) any two points ofZ can be connected by a chain of subséts C, C € S.
(We saySis adequateor Z.)

Then the construction of (3.13) can be repeated as it stands, replacing the set of

closed curve€ C X by S, and one obtains an exact sequence of dis@gtenodules

0 — Pic(X, Z) — [ ] PicC. Z N C) — Brg(X. Z) — Br(X) — 0.
CeS
(3.14)
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(Assumptions (2) and (3) are made to ensure exactness at the teixn Pic) More-
over, if S, ¢ S, then we have a natural map of sequences from (3.14ftw (3.14)
for S;. Thus all these extensions represent the same element

oz € Extg, (Br(X), Pic(X, 2)). (3.15)

As Svaries, the sequences (3.12) form a projective system, and the projective limit
(3.13).

If Z3 C Zy, then one has a natural restriction map from the sequence (3.13) f
Z» to the sequence (3.13) f@h. By choosingS adequate for both a1 and Z,, we
obtain a similar map from the sequence (3.14)Zerto the sequence (3.14) fa.
This fulfills the announcement made about (3.3), and shows that the morphism

Extg, (Br(X), Pic(X, Z2)) — Extg, (Br(X), Pic(X, Z1))

induced by the restriction map R, Z,) — Pic(X, Z1) sendsxz, to az,.
We show next that the clasg; is a torsion element.

PROPOSITION3.16

Let X be a smooth, projective, geometrically irreducible variety over a field k
In the notation introduced at the beginning of Section 3, one &gas= 0 in
Exték(Br()_(), Pic(X)) -

Proof

We choose a finite s& of closed irreducible curve§ ¢ X, which is closed under
conjugation and such that the restriction map yields a monomorphis¢X Pie>
[Tees Pic(C). Thenay is the class of the extension (3.12):

0 — Pic(X) — [ [ Pic(C) — Brg(X) — Br(X) — 0.
CeS
Without loss of generality, we may assume that the curves of th8 geherate the
group Num(X) and thatS contains at least one smooth iterated hyperplane sectio

of X. We show that the map Ri¥) — [[s.sPic(C) has a left inverse in th@-
localized category of the category of discr@g-modules, and this settles the proof.
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We have a commutative, exact, self-defining diagram of dis&@gtenodules

0 0 0
0 — Tors NS X) NS(X) [lecsZ D" 0
0 Pic(X) [TeesPic(C) D 0
0 PI(X) — [Ta.5Pic°(C) D’ 0
0 0 Tors NS X)
0

Since the group Tors NX) has in particular a finite exponent, this diagram yields
a 9-lemma diagram in th@-localized category, in which, by Remark 3.9, the two
middle columns (in particular) and the top row are split. It suffices then to sho
that the same thing holds for the bottom row to conclude the desired result. L
C e Sbe a smooth iterated hyperplane sectioiXone has an isogeny BicX) —
Pi(C) — J(€) — Alb(X), and by composition with the inverse isogeny, we de-
duce an abstract group-theoreti€&left inverse for Pi&(X) — PIC(©). Summing
then over the finite set of conjugates of this map, one easily constructs the claim
inverse. O

We end this section by proving the following (see Remark 3.5(a); see also Remg
5.5).

PROPOSITION3.17
In the notation at the beginning of Section 3,zf = 0, thenAﬁ(z) =0.

Proof

SinceA? is additive (see Remark 3.5(d)), we may assumezhadivc ( f) with C ¢

X a reduced irreducible curve arfd € k(C)*. To shortcut discussions, we reduce
the question to the particular case wheérés a geometrically integral curve. To this
end, observe that, it;, ..., C; are the reduced curves supported by the irreducible
components of the subscherBec X, then there exist; € k(C)*,i = 1,...,r,
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such thatz = Z{zldivci(f_i). Letk c ki c k be a finite extension such that all
of the C; and thef; are defined ovek;. Writing for a momentX; = X ® k; and
writing F2Zo(X) for the inverse image of (X) c CHo(X) in Zo(X), we have a
commutative diagram

2 —_ _
FZZO(X) i> EXték (BF(X), k*)@

I

AZ = =
F2Zo(Xy) — Extékl (Br(X), k*)q

where we have included the statement that the right-hand-side vertical map is inje
tive. (This accounts for the claimed reduction to the case of a geometrically integr
curve C.) Indeed, ifG is a profinite groupH is a closed subgroup of finite index
d, andM and N are discreté5-modules, then, for ail > 0, the kernel of the map
Ext‘G(M N) — Ext‘ (M, N) is killed byd. Namely, in the notation ofy, pages I-12
and I-13], if[E'] € Ext'G(M N), then one has natural morphisms of exact sequence
of discreteG-modulese” — MG (E) andMG (E’) — E’ such that the composition
E' — E' is the multiplication byd. If [E']=0in Exf (M, N), then[MG (EH]1=0

in Ext‘G(M N) and whence&[E'] = 0in Exl‘G(M N)

Thus suppose now that the cur@eis geometrically integral. Lell — C be the
normalization ofC. This is a geometrically irreducible smooth projective curve over
k. We havez = v, (zN) with zy = divn (T). Write Zy = |z | for the support oty
and writeZy for the inverse image of this set M. One has a commutative diagram

HO(Z, Gm)/HO(X, Gm) Pic(X, Z)

| |

HO(Z, Gm)/H%(C, Gm) Pic(C, Z)

HO(ZN, Gm)/HO(N, Gm) — Pic(N, Zy)

the upper vertical maps being the restriction maps. We recall ffohg] page 424]
the way to construct in this case a natuBtmorphismzy : Pic(N, Zn) — k* (see
(3.1)) extending the morphismy : H%(Zn, Gm)/HO(N, Gm) — k* (see (2.3)).
Given[(L, 6)] € Pic(N, Zn), let Zy ¢ U c N be an open subset such thais
trivial over U. Choose an isomorphisf : 65 — L® 65, and letz € HO(N, L ®
Jy) be the rational section of that it defines. The trivializatiod : 7 —>
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L® 0, allows us to views as a true function at the points @fy. One puts then

- - = f (div(e
ZN[(L, 0)] = M
o (div(f))
(of course, diyf) = 2zn). The result is independent of the choice ®f due

to Weil reciprocity (see TS page 424]), andZy restricts indeed tozy on
HY%ZN, Gm)/H(N, Gm).

We putZc = Zy o v* and take noviZ in (3.1) as the composition of the restriction
map Pi¢X, Z) — Pic(C, Z) with Zc. Let Sbe a finite set of closed irreducible curves
of X adequate foZ and containing the curv@. The commutative diagram

Pic(X, Z) — [[esPic(C’, ZNC)

e

R*

with ps the projection maff [z .5 Pic(C’, Z N C') — Pic(C, Z) now implies (see
(3.14) and (3.15)) thak(az) = 0. -

4. A cohomological description otz
We keep the assumptions and notation from Section 3. The exact seque@ge of
modules (3.10) hints at the exact sequence of sheavis on

0— Gpx — 1_[ Gme — 4 — 0, (4.1)
CcX
where the product in the second term is taken over all closed irreducible lirveX
and where stands for the quotient sheaf. If cohomology were to commute witt
infinite products (which it does not), then, by Proposition (3.11), the sequence (3.1
would follow from the cohomology sequence of (4.1), modulo compariscE?r@i)
with H1(X, ¢). We get this, nevertheless, by working with finite s8tef (closed,
ireducible) curves oiX. However, in this case the médg, x — [Tccs G, ¢ is not
injective, and we must interpret things accordingly.
Let Z ¢ X be a O-dimensional closed subset. ISbe a finite set of closed

irreducible curves oK adequate foZ (see Section 3). The restriction map

Gmx.z — | | Gme.znc (4.2)
CeS
yields a two-term complex, and we consider the long exact sequence deduced fr
the first hypercohomology spectral sequence of this complex. This is the same as
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long exact sequence of hypercohomology of the exact sequence of complexes

0— ([T Gmeczne)-U — 42 — Gz z(0l— 0  (43)
CeS

PROPOSITIONA.4
LetS be chosen as above. Then the exact sequence (3.14) is obtained by restrictio
Br(X), from the long exact sequence of hypercohomology of (4.3).

Proof

From the exact sequences of type (2.2) which define these sheaves, we
duce the equalities (see also (2.1) and (3.1HM(X, G,z ;) = Pic(X, 2),
Hz()_(,ij(,z) = Hz()_(,Gm), Hl()_(, nCeéGm,C,Zﬂé) = HCeSPiC(C’ ZN C),
andH?(X, [TecsGm.c.zne) = 0. We extract, therefore, from the hypercohomology
sequence of (4.3) an exact sequence

Pic(X, Z) — [ ] PicC, ZNC) — H?(4.2) — H*(X,Gm) — 0. (4.5)
CeS
The first map in (4.5) is the restriction map, whence, by the very hypothesis c
S, it is injective. The rest of the statement follows then by exhibiting a mor-
phism oka—moduIesI':Trg()_(, Z) — H?(4.2), compatible with the identity map of
[TecsPic(C, Z N C) and the embedding map 8¢) — H2(X, Gn). We give an
explicit recipe, leaving the details to the reader. The exact diagram

0—[leesGme.zne — [1ecsGme — [leesGm zne —0

T T !

Gmx.z Gm,x Gm,z

0

0

yields a quasi-isomorphism between the complex (4.2) and the total complex assc
ated with the double complex deduced from the right-hand-side square:
@) 1,-1
0— Gm,)_( — (l_[ Gm,é) @Gmi — l_[ Gm,ZﬂC — 0.
CeS CeS
Here we have indicated schematically the way in which the arrows are construct
from the corresponding ones in the previous diagram.

Now let (P, £, f, ) be a 4-tuple representing an elemenBo§(X, Z). We at-
tach to this object a 2-hypercocycle for a suitable open covering (i the étale
topology), with values in the above complex. This defines then the map sought. L
% = (Uj)ie) be an open covering of trivializing the Severi-Brauer variet. Call
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n — 1 the relative dimension oP over X. For alli € |, choose an isomorphism
hi : P2t — PRy, Foralli, j €1, let
i |

6ij : Opn1(1) — Opna(1)
Uij Uij
be a relative isomorphism over the isomorphigpith; : P+ — PY*. The for-
ij_ ij
muladijk = 0k 6j)* defines then a 2-cocycle e Z2(%, G, x) representing
[P] € Br(X) (see Mil, pages 123 and 143]; see also Remark 4.11(b)). G/enS
andi € |, the inverse image & ® 0, by hj is isomorphic withpn-1 (1) times
Cnu;

an invertible sheaf coming froi® N U;. Upon refining the covering/ suitably, we
may ensure that the latter invertible sheaf is trivial forGle Sand alli € |. Then,
forallC e Sandalli € 1, let

i Oprr (D) — & ® Oerg
I

be a relative isomorphism over the restrictiornpfThe formula;li_é;lj’c = Bij’céij
defines then a 1-cochath= {£;; ¢} € CY(Z, [1¢.5Gm ), anddp is the image of
. Next comesf . For alli € I, let

b : Opa () — ﬁpn{b (1)
nu;

zZny;
be a relative isomorphism over the isomorphi$mt o h; : P%t. = P%b. We
define a 1-cochaif = {j;} € CY(%, G, 7) by the formulag; *6; = 7;6;, and

dy is the image ofx. Finally, we consideis. For all C € Sand alli € I, the
formula gz*i ¢ = & 6 aboveZ N C N U defines a 0-cochain = {5 ¢} €
CO% ., T1gesGm znc)- The coboundargz equals the image of minus the image

of . Taken togethera, 8 @ 7, ) yield then the 2-hypercocycle defining the image
of [(P, &, f,®)]in H2(4.2).

By completing the exact sequence (4.5) with zero on the left, we obtain a
extension representing an element in@(H 2(X, Gm), Pic(X, Z)) which depends
only onZ and which we denote again l¢. Then we may repeat the procedure from
Section 3, starting with Definition 3.4 applied to this setting. This yields the ma
Aﬁ from (1.7), modulo the analogue of Remark 3.5. Furthermore, the proof of (3.1¢
applies here too, showing thag = 0 in Ex%k(HZO_(, Gm), Pic(X))g- And, finally,
Proposition 3.17 carries over without change, thereby completing the construction
AZ from (1.7).

In Section 5 we compare this mayg with the higher Abel-Jacobi maglf in |-
adic theory. This happens through the computation of the m‘%lpﬁade by U. Jannsen
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in [J4). A main role in that computation is played by the 2-extensign&),
0— Z'/B' — C'/B' — Z'*1 — Z'*1/B'*1 — 0,

attached to a compleiC') in an abelian category’, and whose equivalence class in
Ext (H'+1(C"), H'(C")) depends only on the image ¢E) in the derived category
(see [4, page 263)).

We denote by : X — Specgk) the structure map. We introduce also a riRgo
beR = Z if k is a perfect field andR = Z[1/p], p = chatk), otherwise. LeZ c X
be a 0-dimensional closed subset. ISebe a finite set of closed irreducible curves
of X such that the se of the irreducible components of their inverse imageXin
is adequate foZ. We consider the two-term complex of sheavesXoanalogous to
(4.2),

Gmx.z — [ [ Gmc.znc. (4.6)
CeS

and the exact sequence of complexes of sheave§ similar to (4.3), built from it,

0— (] Gmecznc)l-11 — 46 — Gmxz[0] — 0. (47)
CeS

Upon taking base change frokito k in (4.6) and (4.7), the result maps naturally to
(4.2) and (4.3), respectively. As a consequence, we have a commutative exact diag
of discreteGg-modules

0 — Pig(X, Z) —> []ecsPicC, ZNC) H2(4.2) H2(X,Gm) —>0

| | ]

Pic(Xs, Zg) ———> th*(ncEsGm,C,ZﬁC) ——> R2?h,(4.6) —> H2(Xs, Gm) ——> 0

(4.8)

where the bottom row comes from the higher direct images sequence of (4.7) 1
h; k c ks C k is the separable closure &f Xs = X ®x ks; Zs C Xs is the O-
dimensional closed subset obtained as the inverse imageinfXs; and & is the

set of closed irreducible curves ¥§ obtained from the inverse images of the curves
C € S. The zero term at the right end of the bottom sequence is due to the vanishing
th*(ncEsGm,C,ZﬁC)1 which in turn follows from Proposition 3.11 together with
the fact that the quotient sheaf Of[c.sGm,c,znc) ®k ks — [Tc.es, Gm.co.zenc,

on Xs has finite support. From (4.8) we deduce the exact diagram (the subRcript
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standing forgz R)

0 Pic(X, Z)R—>HCESPic(C, ZNC)R —

- |

0 —— Pic(Xs, Zs)r —— th*( Hces Gm,C,ZﬁC) R

H2(4.2)r H2(X, Gm)r 0
 —— th*(4.6)R —— H2(Xs, Gm)r 0

(4.9)

The vertical isomorphism on the left-hand side follows from the isomorphisn
Pic(Xs)r —> Pic(X)g, and the right-hand-side vertical isomorphism follows from
this and by proper base change.

PROPOSITION4.10

Let, as before, ZCc X be aO-dimensional closed subset, and let S be a finite se
of closed irreducible curves of X such th@tis adequate for Z. Then one has, in
Extg, (H2(X, Gm)r, Pic(X, 2)R), (@z)R = —x1(RM Gm x 2)R-

Proof

Let
0 T ' ra JTK : 0
0— ([TcesGm.c.znc)[—1] (4.6) Gm.x.z[0] —= 0

be a morphism of exact sequences of complexes of sheavéswith the sheaves in
the upper row injective and the vertical maps being quasi-isomorphisms. To simpli
the notation, we write herel = (h,.#")r, and similarly for #* and.%Z". We have an
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exact commutative diagram

0 0 0

—— H2() ——H?(J) ——= H%K)——0

0——=7%(1)—— 7%2(J) ——— Z¥K)—0
0—1Y/BY(1)——=J3Y/Bl(J) ——=K1/BY{K)——=0

Hi(1) —— HJ) —— Hi(K) —

0 0 0

the arrow marked with a star being the map given by the snake lemma. The ex
sequence

0— HYK) 5 H2(I') — H2(J) — H%K) — 0

is the bottom row of diagram (4.9), whence, by that diagram and Proposition 4.4,
representsaz)r. Furthermore, the right-hand-side column in the above diagram rey
resentsy1 (Rh, Gm.x.z)r. If we replace, in that diagram;/B(I") and J1/B(J")
by their images inz2(1') and Z2(J"), respectively, and bothl 1(1") andH1(J") by
zero, then we obtain a new exact diagram in which the two exact sequences con:
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ered remain unchanged, and which looks as follows:

0 0 0
~> 3 VE w3 0
0 e V2 w2 0
0 u? vi wi 0
0 0 Wo —
0

Writing this equivalently as

0 0 0
0 —— (N1 N N2)/No N1/No N/N N/(N1+ N2) ——0
0 N1 N N/Ng 0
0 No N2 N2/No 0
0 0 (N1 N N2)/No
0

we find that the two longer exact sequences indeed yield opposite extension clas
since they are obtained by composing the outer short exact sequences, in the
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possible ways, in the following 9-lemma diagram:

0 0 0

0—— N1/(N1 N N2) ——= N/N2 ——= N/(N1 + N2) ——=0

00— Ni/Ng— N/Np N/N1 0

0 —— (N1 N N2)/Ng —— N2/No —— N2/(N1 N N2) ——0

Remark 4.11

(a) There might be an elementary general principle of abstract honsense at w
in Proposition 4.10. We have not looked further into this, except for the (presen
remark that the same proof applies to comppig€Rh, Gm y), whereY denotes
again a smooth, projective, geometrically irreducible variety over a kiehdamely,

if T C Y is any nonempty finite closed subset, one finds thap(Rh, Gmy) €
Exték(Pic(YS), k%) is represented by the exact sequence

0 — ki — HO(Ts, Gm) — Pic(Ys, Ts) — Pic(Ys) — 0 (4.12)

(see also Section 2). The extension (4.12) is not zero in general because taking
product withxo(Rh, G y) yields differentials of the Lyndon-Hochschild-Serre spec-
tral sequencéd’ (G, Hl(Ys, Gm)) = HTI(Y, Gp) (see P4 page 264]) and in par-
ticular, one has the exact sequence

0 —> Pic(Y) —> Pic(Y)®* <22 Br(k) —> Br(Y). (4.13)

On the other handyo(Rh, Gm y) is a torsion element killed by the greatest common
divisor of the integersl such thaty contains a closed point of degreed over the
base fieldk. Note indeed that, in the preceding notation, taking= {y}, we have a
morphism ofGy-modulesH(Ts, Gr) — ki inducing multiplication byd in k.

(b) If Y is a Severi-Brauer variety ovér then PigYs)®k = Pic(Ys) = Z, and
the image of 1e Z in (4.13) is commonly claimed in the literature (without proof)
to equal the clasgY] € Br(k). This is in contrast with®r3, p. 129, lines 4—-12],
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where it is claimed (also without proof) to be equalY6] = —[Y]. The first of these
claims is equivalent to the statement that the sequence (4.12) represents in this «
—[Y] € Br(k). By direct computation, we show that this is indeed so.

As in the proof of Theorem 7.8 (see Section 7),4gebe an invertible sheaf of
degree 1 or¥s, and choose, for ak € Gy, a relative isomorphisr : & = &s
over the isomorphism : Ys —> Ys. Then the class of the extension (4.12) iniBr
is represented by the 2-cocygié defined by the formula’(c, 1) = 6-17-1(67)
for all o, T € Gg. On the other hand, i — 1 = dimYs and f : Prk‘s_l = Ysis any
isomorphism oveks, then the class ofs in H1(G, AutkS(IP’ES‘l)) is represented by
the 1-cocycle defined by (o) = f~1o~1foq for all ¢ € Gy. (In the right-hand-side
member of this formulag represents the automorphismYefdefined byo, while og
is the automorphism that defines inIP’E;l.) Then, the class ofs in Br(k) is minus
the image ofv/] by the connecting map for the exact sequence

00— AUtPrkms_l (ﬁpgl (1)) — Auty, (Prk‘s_{ OPan_l (l)) — Auty, (]P’Es_l) — 0.

(The extension class of this sequence is the opposite of the class of the standarc
guence 0— k’; — GlLnp(ks) — PGLy(ks) — 0 which is used to defingYs]). Let
f Pn 1(1) = & be a relative isomorphism ovefr. In the above notations, a

cochalnw lifting the cocycley is defined by putting/(c) = f 151 f5 for all
o € Gg. (HereEo : oﬂpnfl(l) = Opn—l(l) is the canonical relative isomorphism

overop : Ppt — P 1) One checks thaly, = p’, whence the image df/] by
the connectlng map for the above sequence equals the class of the extension (4.1.
Br(k), and this ends the proof. O

5. Comparison with thel-adic Abel-Jacobi mapd?
Let X be as in the introduction. Létbe a prime number different from chily. We
compare the map3 : T(X) — Extg, (H2(X, Gm), k*)q (see (1.7)) with thé-adic
Abel-Jacobi mapl? : T(X) — Hcont(Gk» H2'=2(X, Qi (n))) (see (1.9)). To this end,
we first relate both target groups.

From the direct sum decompositidh?(X, Gm) = @, H2(X, Gm)(I") with I’
running over all prime integers, one obtains a product decomposition

EXtg, (H2(X. Gm). K*) = [ [ExX, (HA(X. Gm ("), k).
I/

We consider the projection onto théactor

Bxg, (H2(X, Gm), K)o — BXG, (HA(X, Gm)(), k)
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Next, the Kummer sequence fé@,,  gives the exact sequence of discr&e-
modules

0 — NS(X) ® Q1 /Z — H3(X, Qi /Zi (1)) — H*(X,Gm)(1) —> 0.

This sequence is canonicaly-split, at least under the assumption that homological
equivalence and numerical equivalence coincide for algebraic 1-cyclEs(see K,
page 379]), whence unconditionally for surfaces and varieties in characteristic ze
among others (seé<| page 380]). Namely, if1(X) denotes the image of the cy-
cle mapZi(X) - H2=2(X, Z(n — 1)), the nondegeneracy modulo torsion of the
intersection product; (X) ® NS(X) — Z implies that the composite map

H?(X, Qi/Zi (1)) — Homy, (H*"2(X, Zi(n — 1)), Q1 /Z)
— Homy, (11(X) ® Z, Qi /Z)

restricts to N§X) ® Q /7, giving aQ-isomorphism. It follows then that the induced
morphism

v Extg, (HA(X, Gm)(), k), — Ex, (H3(X, Qi/Zi (1), k),

is split injective.
On the other hand, we have the tautological isomorphism

Haont( Gk, H2"2(X, Qi(n))) — Extg, (21, H"4(X, Zi () -

Here, the extensions are taken as continuf&g]-modules. Then, by Pontryagin
duality (twisted by (1)) and Poincaduality, we have an isomorphism

Ex@, (Z1, H*"72(X, Z1 (), — Exg, (HA(X, Q/Z1(L), Qu/Zi (D)

Here, extensions are taken as discreferimary) torsionGg-modules. Next, the ob-
vious map yields an isomorphism

Extg, (HA(X, Q/Z1(D), Q/Z (D)g — Exte, (H*X, @/ZD). K)o

This map factors through Eé(;[ (H2(X, Qi/Zi (D)), IZ*(I))Q, where the exten-
sions are taken here as discr&@g-modules. We show that both of the factor maps
are isomorphisms. The isomorphism

Ex, (H3(X, Q/Zi1(1), Q/Z1 (D) — Extg, (HAX, Q/Zi(1), K* (D),

is a consequence of the following more general statementMLeXl be torsion dis-
crete Gx-modules. Then, for all > 0, Exl‘Gk(I\7I, Ny — Ext‘Gk(M, N), where
the first group classifies extensions of torsion discfetemodules and the second



BRAUER GROUP AND SECOND ABEL-JACOBI MAP FOR 0-CYCLES 473

one classifies extensions of discr&g-modules. In fact, we may construct an in-
jective resolutioni~ of N made out of torsion modules; whence ExtM, N)' =
Homg, (M, 1) = Ext‘ék(M, N). To obtain such a resolution, one can choose an em
beddingN < N’ into a divisible torsion abelian group; tak& = Maps,o«( Gk, N),

and then proceed inductively (se8, [page 1-12], or Mil, Chapter Ill, Remark
1.4(a)]). As for the isomorphism

Extg, (HA(X, Qi/Zi (1), k(1) — Ext, (H*(X, Qi/Z1(1), k),

this follows from the vanishing of the groups lg>k<t(H2()_(, Q1 /Z1 (D), k*/k*(1)).
(One can use, for instancéd2, Chapter I, Corollary 0.23].)

THEOREMb5.1

Let X be, as above, a smooth, projective, geometrically irreducible variety of dime
sion n over afield k. Let| be a prime integer different fronar’k). Then the following
diagram is commutative:

T —21 L Ex2, (H2(X, G, K)g

Ext, (H2(X, Gm)(), k")

v

Ex@, (H?(X, Qi/Zi(1). k)

= ~

Ext3, (H2(X. Q/ZI(1), Q/Zi(D)g

~

Extg, (%1, H2(X, 7 (n)))Q

~

2

a2 -
T(X) ——— H&(Gk, H=2(X, Qi (n)))

Moreover, if the conjectured equality of homological and numerical equivalence holc
for algebraicl-cycles onX (e.g., if n= 2), then the map is injective.

Proof
The last part has been already discussed. As for the first pag bleta 0-cycle of
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degree zero oiX, such thatA%([z]) = 0. ChooseZ c X a 0-dimensional closed
subset containing the suppdzt of z. Furthermore, leZ ¢ X be as in Section 2. We
choose a morphisfias in (3.1) and also callits restriction to the-primary torsion
parts (see Section 2)

HE (X\Z, Qi /Zi (D) = Pic(X, Z)() k) = QT D). (5.2)

On the other hand, le¥" be an injective resolution d&m x,z. As this sheaf ig-
divisible, it follows that, for allr € N, |r.#" is an injective resolution ofyr x z =
irGm,x,z as aZ/1" Z)-module. This is the sheafur x\z, where the lettef denotes
the inclusionX\Z — X. Put.# (1) = |J,n(r-¥") C .#". Keeping the notation
from Section 4, the morphisth,.# (1) — h,.#" induces a mag1(h,.# (1)) —
x1(hy#) — x1(h,.#")R, which we represent as

0——= HI(X\Z, Qi/Zi(1) () () H2(X, Q/Z (1)) —> 0
0 —— Pic(X, 2)r (oe) () HZ(X, Gmr —> 0
(5.3)

(Here we use the equalitd2(X\Z, Qi/Z (1)) = H?(X,Qi/Z(1)).) By Propo-
sition (4.10), the bottom row in (5.3) represent§az)r < Exték(Hz()_(,Gm)R,
Pic(X, Z)R). Taking pushouts in (5.3) B : HL(X\Z, Q/Zi (1)) — Qi/Z (1) (top
row) andzg : Pic(X, Z)r — ki = k* (bottom row), respectively, we obtain an exact
commutative diagram

0——=Qi/Zi(D) () ¢) H2(X, Qi/Z()) —=0
0 i+ ¢--) () H2(X, Gm)R 0
(5.4)

implying that the image dfz] in Exték (H2(X, Qi/Zi (D)), IZ*)@ by AZ is the opposite

of the image of the element of @g(HZ()_(, Q/7 (1), Q /7y (1))Q represented by
the top row in (5.4). Thus it is sufficient to show that the latter element equals tt
opposite of the image diz] by d2. Now, the (twisted) Pontryagin dual of the top
row in (5.4) is obtained from the dual of the top row in (5.3) by taking pullback via
the dual map of (5.2 : Z, — H?"-1(X\Z, Z(n)). By Poincaé duality, we have,
writing for a moment’ : X\Z — Speck) for the restriction oh : X — Speck),

(RH, Zi(M)x\z)[2n] = Homy, (Rh.(j!Qi/Zi (Dx\2), Q1 /Zi (D).
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Hence Hom(x1(h..# (1)), Q/Z(1)) = x—2(Homz(h,.# (1), Q/Z(1))) repre-
sents the clasgon—2(RH, Z (n)x\z). The desired conclusion then follows frod¥]
Theorem 1, p. 263]. O

Remark 5.5

(a) Suppose that chd) = p > 0. Then, sincd* is uniquely p-divisible, it follows
from [Mi2, Chapter I, Corollary 0.23] that E'@J(E(HZ()_(, Gm)(p), k*) = 0 for all

i > 0. Thus Exék(Hz()_(,Gm), k*) = Exték(Hz()_(,Gm)(no p), k*) in this case.
Theorem (5.1) implies therefore that, modulo the assumption on the algebraic
cycles of X, the datum ofA2 is equivalentto the set of data of alli? for | # p.

In particular, and with this caveat, Proposition 3.17 is also a consequence of (t
proof of) Theorem 5.1.

(b) Thus working with the algebraic closutef k in the definition of (1.7) has the
effect of stripping off a possible contribution of thepart of the groupgH2(X, G).
Now, the whole theory can be developed equally viitand X replaced byks and
Xs = X ®k ks, respectively, leading to a map

A
T(X) = F?CHo(X) — Extg, (H*(Xs, Gm), k&) - (5.6)
(We use this in Section 7.) One has, canonically,

Ext3, (H?(Xs, Gm), k&) = Ex, (HA(X, Gm), k¥)
@ ExZ, (H2(Xs, Gm)(P). k),

and the map (5.6) induces, in particular, our former map (1.7) by projectior
There remains then an as yet unexplored component along-gaet of the group
H2(Xs, Gm). However, this does not seem to be the right approach sincé, or
perfect field, we do not obtain anything new from it. Instead, developing the missir
p-part of this theory when chédt) = p > 0 possibly involves dealing with exten-
sions of geometrical objects rather than extensions of Galois modules. This wot
provide a further step towards a hypothetical group object of (hyper)geometrical n
ture, allowing us to parallel for (1.7) the passage from (1.3) and (1.4) to (1.5) ar
(1.6), respectively.

(c) In a vein similar to that of (b), for all > 0, the canonical isomorphisms

Extg, (H' (X, Gm), k*) — Extg, (H'(Xs, Gm), k*)
yield natural maps

Ext, (H' (Xs, Gm), k) — Extg, (H' (X, Gm), K*).
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Fori = 1, the analogous construction to that b} (see Section 3) witk and X
replaced, respectively, g and X, leads to a map

1
Ao(X) = FLCHg(X) = Extg, (H'(Xs, Gm), kZ) (5.7)

which lifts (1.4) (we use this in Section 7). Once more, this is not very illuminating
since both maps stem here from a common, well understood, more pogeoiulet-
rical construction (see Section 1).

6. A comparison with M. Green’s method

In this section we deal with surfaces only. We use our construction to relate the Abe
Jacobi mapd22 to M. Green’s construction ird]. (Well understood, M. Green works
in the setting of complex algebraic varieties, with (arithmetic) mixed Hodge struc
tures, while we are working here in the abstract setting Wisldic theory). For 0-
cycles on a fixed curve on a smooth, projective, geometrically irreducible suxface
overk, the 2-extension class provided by the higher Abel—Jacobidﬁé:;;) described

as the composition of two 1-extensions, one of them reflecting the relation of the
cycle with its curve environment and the second one relating the curve to the surfa
As a matter of fact, we consider here only the simplest case, that of a smooth, g
metrically irreducible (projective) curv€ C X overk. Let z be a 0-cycle of degree
zero onX, such thaiz| ¢ C and such thafz] € T (X). We have a pair of dual mor-
phisms of abelian varieties ovkerﬂ&/k N ﬁ(%/k andJ(C) — Alb(X), which we
complete to exact sequences

0— P — J(C) — Alb(X) — R° — 0, (6.1)

0— R— Pi¢} , — Pi , — P° — 0. (6.2)
HereP andR are algebraic group£° andRC are the respective identity components,
and P° and R are the duals of these abelian varieties. The O-cydetermines an

element ofP(k), whence an element ®(k)g = Po(k)Q. By duality, this yields
an element of E)%l(ﬁo, Gm.k) g (extensions of commutative group schemes dyer

whence an element of Ext(P°, k*)q. We represent this as
00— K* —> (-+-) —> P® — 0. (6.3)

We fix a prime numbel, different from the characteristic &f By taking the pullback
of (6.3) by P9(1) — PO, we derive an extension

0— K* —> (---) —> PO() —> O, (6.4)

On the other hand, the inductive limit of the cohomology sequences of the (se
defining) exact sequences

0— wyrxe— trx — tre —0
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gives
Pic(X)(l) — Pic(C)(1) — HZ(X\C, Qi/Zi(1)) — (IC])* — 0.

Here ([C1)* < H2(X,Qi/Z (1) is the orthogonal submodule &fC]) C
H2(X, Z)(1)). From (6.2) we deduce a natural map (X3() — P9(), and the
above sequence yields

0 —s PO(l)/ Im (NS(X)(1)) — HZ(X\C, Qi/Z (1)) — ([C])" — 0. (6.5)

If | does not divide Tors(NS(X))|, then the first term in (6.5) becomgé’(l). In any
case, we have @-exact sequence

0— PO1) — HZ(X\C, QI/Z (D) —> (€] — 0 (6.6)

in the sense that it is exact in tlfg-localized category of the category of discrete
Gk-modules. We have, moreoveiNS(X) ® Z|)L c ([C])* and (see Section 5)
a Q-isomorphism(NS(X) ® Z)+ —> Br(X)(l). This is a true isomorphism if
does not divide Tors NS X)| or the discriminant of the intersection form ¥§)o ®
NS(X)o — Z (with NS(X) standing for N$X)/ Tors NS X)). By pulling back (6.6)
by the morphism BeX)(1) — (NS(X) ® Z)* — ([C])*, we obtain aQ-extension

0— P%) —> (---) —> Br(X)(l) —> O. 6.7)

THEOREMG6.8

Let the assumptions be as at the beginning of Section 6. In the above notation,
image ofA3([z]) in Exték(Br(X)(I), k*)q is represented by the composition of the
1-extensions (6.4) and (6.7).

Proof

Let Sbe a finite set of closed, irreducible curvesbadequate foZ = |z|, containing
the curveC, and such that, furthermore, the clasggy, C’ € S, generate the group
NS(X). The morphisms of two-term complexes of sheaveXon

Gmxz —[leecsGme zne

ﬂ

i X,z — [lecsir 6.2ne

- |

Hir X2 —— M1 ¢,z
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yield, after taking inductive limits, morphisms of exact sequences

0——Pic(X, 2) [leegPic(C’, ZNC) ——

0——— Pic(X, 2)(1) —— [leesPic€, ZNCH(1) ——

- |

Pic(X, Z)() PicC, 2)() ———
———Brg(X, 2) Br(X) ————0
T T
H2 (NS(X) ® Zi)* 0
|
— HZ(X\C, Q/Z (1)) ——— ([C)* 0

The upper outer right vertical map induces @somorphism(NS(X)®7)+ —
Br(X)(l) alluded to above. Therefore Af: Pic(X, Z) — k* is a morphism asin (3.1),
then pushing out the middle row by the restrictiorZab Pig(X, Z)(1) and pulling
back the resulting sequence by the morphisrdBtl) — (NS(X) ® 7))~ yields a
representative of the image m‘g([z]) in Exték(BrO_()(I), R*)@. On the other hand,
the right-hand-side half of the bottom row contains the exact sequence (6.5) (or (6
in terms ofQ-extensions). Therefore it suffices to show thaan be chosen so as to
provide a commutative diagram

Pic(X, Z)(I) — Pic(C, Z)(I) — /F_;O(U

R,

(6.9)

where the bottom row is (6.4).

To settle this point, we introduce BiX, Z) c Pic(X, Z) and Pié(C, Z) ¢
Pic(C, Z) as the inverse images of Bi&) c Pic(X) and Pi®(C) c Pic(C), respec-
tively. We deduce from (6.2) an exact sequence

0— R— PiCO()_(, Z) — PiCO(C, Z) — EO — 0.
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On the other hand, we have a commutative diagram with exact rows

0—— H%Z,Gm)/HC, Gm) — PIid(C, Z2) —= PiP(€) ——=0

) . f

0 k* = Pic®(C) —=0
0 i (o02)) ’|§o 0

where the bottom row is (6.3) and the middle row is the restriction t8(Eicof the
extension representin@ic([z]). From this diagram we deduce the following one:

PiP(X, Z) — Pi®(C, Z) — p0 —=0

T

0 k* Gos) ’50

(6.10)

with the morphisn#° extending the mag : H%(Z, Gm)/H?(X, Gm) — k*. By the
exact sequence

0 — PI(X, Z) — Pic(X, Z) — NS(X) —> 0

and Remark (3.9), we may assume tB8tis the restriction of a morphisr# :
Pic(X, Z) — k* as in (3.1). From this we deduce at once a diagram like (6.9), takin
into account that PREC, Z)(1) = Pic(C, Z)(l) and that, by the exact sequence

0 — PId(X, 2)(I) — Pic(X, Z)(1) — NS(X)(1) —> 0,

the objects P& X, Z)() and Pi¢X, Z)(l) areQ-isomorphic. This ends the proof of
Theorem (6.8). O

To end this section we translate this result by means of Pontryagin duality. Notatit
and assumptions are as at the beginning of Section 6. Taking (twisted) Pontrya
duals in the sequence (6.5)—and using Poiaciamlity as well as the duality between
the abelian varietie®? and P°—we obtain the middle row of the following exact
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diagram:

(NS(X) ® 71 (1)) /21 (DIE] —— NS(X\C) ® Z (1)

0 —— H%(X,2(2)/Z (DIC] ——— H2(X\C, Z(2)) — T; PO —— Hom(NS(X)(l), k*)

T

00— T Br(X)(l) —————— > T Br(X\C)(D) T PO Hom(NS(X)(l), k*)

0 0

By taking the tensor product witf), the last row gives the exact sequence of
continuousQ, [Gk]-modules

0 — ViBr(X)(1) — Vi Br(X\C)(1) — ViP® — 0. (6.11)
This is the dual counterpart of tlig-extension (6.7). We write
— — 8 -
H(Gk, ViP®) = Hgoni(Gk, Vi P®) — HEn( G, Vi Br(X)(D) (6.12)

for the first connecting homomorphism of its cohomology sequence. On the oth
hand, the Kummer sequence fBF gives a morphismP9(k) — HL (G, Tj PY),
whence also a morphism

P(k)g = P%(k)g — HY(Gk, ViPP). (6.13)
One has a commutative diagram

dic _
(JC)(k) —= HY(Gk, T IC)

|

PO(k) —— HX(Gk, TiPY),

the right-hand-side vertical map being injective if, for examklis, finitely generated
over the prime field (by the Mordell-Weil theorem applied to the quotient abelial
variety JC/P). Finally (see Section 5), the canonical splitting of the sequence

0 — NS(X) ® Qi (1) — H3(X,Qi(2)) — VI Br(X)(1) — 0
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yields a canonical direct sum decomposition
H2(Gk, H*(X, Qi (2))) = H?(Gk, NS(X)®Q| (1)) ®H?(Gk, Vi Br(X)(1)). (6.14)

With the aid of Theorem 5.1, the following is then a restatement of Theorem 6.8.

COROLLARY 6.15
Let C ¢ X be a curve on a surface, both C and X smooth, projective, and geome
rically irreducible over a field k. In the preceding notation, the following diagram is
commutative:

P(K)g ——— HL(Gk. ViPY)

I

chont(Gk’ M Br()_()(l))

2

d _
T(X)g —2—= HZ Gk, HA(X, Q1 (2)))

7. Relation with the pairing betweenCHg(X) and Br(X)
Let X again be as in the introduction. As earlier in this paggdenotes a separable
algebraic closure df, andXs = X ®x ks. We consider the pairing

CHo(X) ®z Br(X) —> Br(k) (7.1)

guoted in Section 1. Recall (see][[M]) that, given[z] € CHy(X), z = Zir:l n; X;,
and[P] € Br(X), the image ofz] ®7 [P] in Br(k) is given by

r
([2], [P1) = Y ni Niox)/k ([P 1) (7.2)
i=1
with Nkx)/k : Br(k(xj)) — Br(k) the norm map.

We write, as beforeF® CHo(X) = CHoy(X), F1 CHo(X) = Ag(X) C CHo(X),
the set of rational equivalence classes of 0-cycles of degree zer®,%a@Hy(X) =
T(X) c Ag(X), the kernel of the Albanese malp(X) — Alb(X). On the other
hand, the Lyndon-Hochschild-Serre spectral sequelﬁbeGk, HI(Xs, Gm) =
Hi+i(X, Gm) yields, in particular, a length 2 filtratioR* Br(X) of Br(X). We have,
canonically, injective maps

Br(X)/FBr(X) = H%(Gy, Br(Xs)), (7.3)
FLBr(X)/F2Br(X) = H(Gy, Pic(Xs)), (7.4)
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andF2Br(X) c Br(X) is the image of Btk) by the structure map — Speck). We
consider the pairings induced by (7.1):

F' CHo(X) ®7 F2~' Br(X) —> Br(k). (7.5)

Fori = O this is, roughly expressed, multiplication by the degree of the first factol
Fori = 1 this should be, at worst up to a sign, the tensor product of the maps (5.
and (7.4) followed by the cup product map. We have not been able to find a suitat
complete reference for this (seke][ [M], the appendix in B], and, most recently,
[CTL, p. 117, and the references therein]). The point with the sign lies in the me
(7.4). For example, the candidate for this map which séfise F1Br(X) to the
extension class of the sequences0Pic(Xs) — Pic(Ps) — Z — 0 requires, indeed,
no sign in the formula.

Now leti = 2 in (7.5). We show that a similar description holds, witf re-
placed byA2 and bearing in mind that we are committed here to work with rationa
coefficients. The pairing (7.5) for= 2 leads, by adjunction, to a morphism

T(X) = F2CHo(X) — Homy, (Br(X), Br(k))Q. (7.6)

On the other hand, the edge homomorphisniX8r — HO%(Gy, Br(Xs)) and the
cup-product map yield a morphism %)é(Br(XS), kg — Homyz(Br(X), Br(k))q,
whence, by composing with the inclusion(B&) < H2(Xs, Gm), a morphism

EXt(23k (HZ(XS’ Gm), k;k)(@ — HornZ (Br(x)’ Br(k))Q (77)

We then have the following.

THEOREM7.8

Let X be a smooth, projective, geometrically irreducible variety of dimension n ove
a field k. In the above notation, the map (7.6) is the composition of theAﬁeipo
(5.6) with the map (7.7).

Proof

Taking advantage once more of the use of rational coefficients, we show first that \
may replacek by any finite extensiolk C ki, without loss of generality. Indeed, in
the notation of (7.2) one has, denoting by a subindgxthe effect of base change
fromk toky,

([z1], [P1]) = ([2], [P])1. (7.9)
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It follows that we a have a commutative diagram

T(X) o0 Homy, ( Br(X), Br(k))Q —— Homy, (Br(X), Br(kl))@

X

T(X1) 2~ Homg (Br(Xy), Br(ky)) oy —— Homy, (Br(X). Br(kp),,

wherea i = 1, 2, stand for the two maps to be compared aﬁd i =1,2,arethe
corresponding maps ovkr. The remaining arrows bear the straightforward meaning
Then, writingm = [K; : k], we deduce by means of the norm nidg « : Br(ky) —
Br(k) that if [z] € T(X) is such that" ([z1]) = P ([z1]), thenma D ([z]) =
ma@ ([z]) and hence alse® ([z]) = «@ ([Z]).

So, given[z] € T(X), we may assume, without loss of generality, that
Z{:l n; Xi, with k(x;) = k for all i. Enlarging further the base field, we may assume
also that the suppo#t = |z| of zis contained in a geometrically integral cu@ec X
and that we have a finite s8tof geometrically integral curves aX havingC as one
of its members, such that the remaining curves do not rAemtd such that the set
S of inverse images of these curvesXg is adequate foZ. As earlier in this paper,
we write Zs for the 0-dimensional closed subsetXf, the inverse image of. Upon
replacing[z] by a positive integral multiple, we may assume that the morphism o
Gk-modules

HO(Zs, Gm)/H(Xs, Gm) —> K (7.10)

(analogue of (2.3)) extends to a morphismGFmodules
Pio(Xs, Zs) — K. (7.11)

ThenAﬁ([z]) € Exték(Br(Xs), k%) is represented by the pushout alGhof the exact
sequence (see (3.14))

0 — Pic(Xs. Zs) — [ PicCL ZsnCY
CleS
—> Brs,(Xs, Zs) — Br(Xs) — 0. (7.12)

We note that, due to our particular choice &fone actually ha§~r35(xs, Zs) =
Brs,(Xs) and[ ¢, Pic(CS, Zs N CY = ([1cies(cy) PIA(CY) x Pic(Cs, Zo). Let

[P] € Br(X), and take its imaggPs] in HO(Gy, Br(Xs)). By means of explicit (Ga-
lois) cocycle manipulation, we compute the imagég ] by the iterated connecting
homomorphism for (7.12) and then the image of this by (7.11). (It should come as |
surprise that only (7.10) is actually involved in this last stage of the computation.) W
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show that the so-obtained cocycle represéfl [P]) € Br(k), and this settles the
proof of Theorem 7.8.

Fix, for all C{ € S, an invertible sheafs c; on Psc; restricting tod'(1) on
the geometric fibres OPs.c, — Cs. Then(Ps, &) so constructed represents a lifting
of [Ps]. The image of Ps] by the first connecting homomaorphism is represented by
the image of the 1-cochain which senglse Gi to the collection formed by the
78sc ® ssféé for C, # Cs, plus the couple formed b¥ésc, ® f;‘;és together with
an (arbitrary) trivialization alongZs C Cs. (Note that, for allC, € S, the sheaf
TEscL ® fgég is canonically isomorphic to the inverse image of its direct image in
Cs, and therefore it can unambiguously be thought of as an invertible she2g.pn
Now, choosing a trivialization dfés c, ® gfsfés alongZs is tantamount to choosing a
relative isomorphism

£.Cs ® Op, 5, —> 505 ® Op, 5 (7.13)

over the isomorphisna : Ps z, = Ps.z.. In this notation, the image dfPs] by
the iterated connecting homomorphism for (7.12) is represented by the image
Pic(Xs, Zs) of the 2-cocyclep with values in HO(Zs, Gm) given by the formula
p(o, 1) = (67)"175 forall o, T € Gy.

We show that the image qi by the mapz in (7.10) representg[z], [P]) €
Br(k). For alli = 1,...,r, choose a closed poifit € P abovex;. Call Ts;j C Ps
the O-dimensional closed subset, inverse imaggigf For simplicity, we writePs
for Psx o = Px.s. We also writes for the invertible sheafsc, ® Op;; on Ps;.

By Remark 4.11([xi], [P]) € Br(k) is minus the image ofés;] by the iterated
connecting homomorphism of the exact sequence

0 — k& — H%(Tsj, Gm) —> Pic(Ps;, Ts;i) —> Pic(Psj) — 0. (7.14)

Fix, foralli = 1,...,r, atrivializationfs; : O, — &si ® O7,;. Then(ésii, 0si)
so constructed represents a lifting[&f; ]. Borrowing from our previous notation, we
now write, for allo € Gy,

Esi ® O1,; — £si ® O, (7.15)

for the restriction of (7.13) abovk ;. This is a relative isomorphism over: T =
Ts,i. Let us denote also by

o1, = o1, (7.16)

the canonical relative isomorphism ower. T;; = Tsii. In this notation, the image
of [&s,i] by the first connecting homomorphism for (7.14) is represented by the imac
of the 1-cochainm; with values inH%(Ts;, G given by the formulam; (o) =
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egilc?—les,ic?o for all o € Gg. Thus the image ofési] by the iterated connecting
homomorphism for (7.14) is represented by the 2-cocglese. Writing this out, we
find thatp—1 = (dwy, ..., dwy), and the result follows. O

To end, we include here a remark by J.-L. Colliot€ldne on the fact that the use of
rational coefficients in the statement of Theorem (7.8) is unavoidable in general. Tt
partially answers the question mentioned in Remark 1.8.

Remark 7.17{see CT2))
In general, there exists no map X) — Exték(Br(Xs), k%) such that, when com-
posed in the above sense with the natural mapXBr— Br(Xs)®¥, it yields the
compositionT (X) C Ag(X) - Hom(Br(X), Br(k)).

One has, in fact, numerous examples of geometrically rational surfgdewith
k a p-adic field, or even the field of real numbers, such that the MgX) —
Hom(Br(X), Br(k)) is nonzero. (The simplest example is a cubic surf4¢® such
that X (R) has two connected components.) For such a surface, the Albanese vari
is trivial, whenceAq(X) = T (X), and the geometrical Brauer group(B is zero.

One can give similar examples with nonrational surfaces, in this case surfac
fibered in conics over a curve of genus at least 1. One has then-Al, but always
Br(Xs) = 0.

Acknowledgment$Ve are indebted to the referee for pointing out that our results
stated originally for surfaces, apply without change to varieties of arbitrary dimensic
and to the editor for requiring us to take this up in a revised version. We are gratef
to J.-L. Colliot-Trelene for his permission to include here his Remark 7.17.
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