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THE �-HYPERGEOMETRIC SYSTEM ASSOCIATED
WITH A MONOMIAL CURVE

EDUARDO CATTANI, CARLOS D’ANDREA,and ALICIA DICKENSTEIN

Introduction. In this paper we make a detailed analysis of the�-hypergeometric
system (or GKZ system) associated with a monomial curve and integral, hence res-
onant, exponents. We describe all rational solutions and show in Theorem 1.10 that
they are, in fact, Laurent polynomials. We also show that for any exponent there are at
most two linearly independent Laurent solutions and that the upper bound is reached
if and only if the curve is not arithmetically Cohen-Macaulay. We then construct, for
all integral parameters, a basis of local solutions in terms of the roots of the generic
univariate polynomial (0.5) associated with�. We also determine in Theorem 3.7 the
holonomic rankr(α) for all α ∈ Z2 and show thatd ≤ r(α)≤ d+1, whered is the de-
gree of the curve. Moreover, the valued+1 is attained only for those exponentsα for
which there are two linearly independent rational solutions, and, therefore,r(α)= d

for all α if and only if the curve is arithmetically Cohen-Macaulay.
In order to place these results in their appropriate context, we recall the definition

of the�-hypergeometric systems. These were introduced in a series of papers in the
mid-1980s by the Gel′fand school, particularly Gel′fand, Kapranov, and Zelevinsky
(see [7] and [9] and the references therein). Let� = {ν1, . . . ,νr} ⊂ Zn+1 be a finite
subset that spans the latticeZn+1. Suppose, moreover, that there exists a vectorλ =
(λ0, . . . ,λn) ∈Qn+1 such that〈λ,νj 〉 = 1 for all j = 1, . . . , r, that is, the set� lies
in a rational hyperplane. Let� also denote the(n+1)×r matrix whose columns are
the vectorsνj . Let � ⊂ Zr be the sublattice of elementsv ∈ Zr such that� ·v = 0.
Givenα ∈ Cn+1, the�-hypergeometric system with exponent (or parameter)α is

�vϕ = 0, v ∈ �; (0.1)
r∑

j=1
aij xj

∂ϕ

∂xj
= αiϕ, i = 1, . . . ,n+1, (0.2)

where�= (aij ) and�v is the differential operator inCr :
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�v :=
∏
vj>0

(
∂

∂xj

)vj

−
∏
vk<0

(
∂

∂xk

)−vk
.

The�-hypergeometric system is holonomic (with regular singularities) and, con-
sequently, the number of linearly independent solutions at a generic point is finite
(see [7]). Letr(α) denote the holonomic rank of the system, that is, the dimension of
the space of local solutions at a generic point inCr . If we drop the assumption that�
lies in a hyperplane, then the regular singularities property is lost, but, as Adolphson
[2] has shown, the system remains holonomic. The singular locus is described by
the zeroes of the principal�-determinant (see [11]). We setR := C[ξ1, . . . , ξr ]/��,
where�� is the toric ideal

�� :=
〈
ξu−ξv : u,v ∈Nr ;� ·u=� ·v〉. (0.3)

Whenn= 1, we can assume without loss of generality that

�=
(
1 1 · · · 1 1
0 k1 · · · km d

)
, (0.4)

where 0< k1< · · ·< km < d. Note that the condition that the columns of� generate
the latticeZ2 is equivalent to gcd(k1, . . . ,km,d) = 1. The homogeneous ideal��

defines a monomial curveX� ⊂ Pm+1 of degreed whose homogeneous coordinate
ring is R. X� is normal if and only if d = m+ 1. Recall thatX� is said to be
arithmetically Cohen-Macaulay if and only if the ringR is Cohen-Macaulay.
The system associated with (0.4) admits very interesting solutions. Let

f (x; t) := x0+xk1t
k1+·· ·+xkmt

km+xd t
d (0.5)

denote the generic polynomial with exponents 0,k1, . . . ,km,d. It is not hard to see
that the powersρs(x), s ∈ Z, of the roots off (x; t), viewed as functions of the
coefficients, are algebraic solutions of the�-hypergeometric system with exponent
(0,−s). This fact was observed by Mayr [17], who constructed series expansions for
these functions. These have more recently been refined by Sturmfels [22]. The total
sum

ps(x) := ρs
1(x)+·· ·+ρs

d(x) (0.6)

is then a rational solution with the same exponent. Similarly, one can show that the
local residues

Resρ(x)

(
tb

f a(x; t)
dt

t

)
, a,b ∈ Z;a ≥ 1 (0.7)

give algebraic solutions with exponent(−a,−b) and, again, the total sum of residues
is a rational solution.
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In §1 we describe explicitly all rational solutions of the�-hypergeometric system
associated with a monomial curve. Since for� as in (0.4) the principal�-determinant
factors into powers ofx0, xd , and the discriminant!(f ), we know a priori what the
possible denominators of a rational solution may be. However, we show in Theo-
rem 1.10 that there are no rational solutions with a denominator that involves!(f ),
and, therefore, every rational solution must be a Laurent polynomial. This is a some-
what surprising result that is peculiar to the casen = 1 (see Example 1.11). One
may give explicit formulas for these Laurent polynomials in terms of hypergeometric
polynomials in fewer variables. When applied to the sum of powers of roots, one
recovers the classical Girard formulas. One also obtains similar expressions for total
residues in terms of hypergeometric polynomials.
We show that for anyα ∈ Z2 the dimension of the space of rational�-hypergeo-

metric functions with parameterα is at most 2. Moreover, the value 2 may be reached
for only finitely many values ofα, and this happens if and only if the ringR is not
Cohen-Macaulay.
In §2 we exhibit a family of algebraic�-hypergeometric functions defined in

terms of the roots of the polynomialf (x; t). These are the building blocks for the
construction, in §3, of local bases of solutions and the determination of the holo-
nomic rank for all integral exponents. It becomes necessary to consider four possi-
bilities for the exponentα. These cases admit combinatorial descriptions (see (1.9))
and correspond to the existence of a polynomial solution, a 1-dimensional space of
rational—nonpolynomial—solutions, a 2-dimensional space of rational solutions, or
no rational solution for the given exponent. Foru ∈ Nm+2, the derivativeDu maps
�-hypergeometric functions to�-hypergeometric functions while changing the ex-
ponent fromα to α−� ·u. A careful analysis of the kernel and image of this operator
together with Corollary 5.20 of [2] leads to the determination of the holonomic rank
for all values ofα. We show, in particular, that

d ≤ r(α)≤ d+1 (0.8)

and thatr(α) = d+1 exactly for those parametersα ∈ Z2 for which the dimension
of the space of rational solutions is 2. Hence,r(α) = d for all α ∈ Z2 if and only if
the curveX� is arithmetically Cohen-Macaulay.
These results allow us to clarify the relationship between the holonomic rank and

vol(P ), the normalized volume of the convex hullP ⊂ Rn+1 of � and the ori-
gin (which equals the degreed in the case of curves). It was originally claimed
in [9, Theorem 2] thatr(α) = vol(P ) in all cases, but later it was pointed out by
Adolphson that, for resonant exponents, the proof required the assumption that the
ring R be Cohen-Macaulay (see [10]). In [2, Cor. 5.20], Adolphson showed that
r(α) = vol(P ), for α a semi-nonresonant exponent, without any additional assump-
tions onR. The first explicit example where the equality fails is given in [23] and
described in Example 1.8.i). In [19], Saito, Sturmfels, and Takayama prove (0.8)
using Gröbner deformation methods and show that the inequalityr(α) ≥ vol(P )
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holds without restrictions onn.
Very little seems to be known about the problem of finding rational solutions of

differential equations beyond the case of linear differential operators in one variable.
In this case, Singer [20] has shown that one can determine in a finite number of
steps whether a given equation has a rational solution and find a basis for the space
of such solutions. Abramov and Kvasenko [1] have further studied the problem of
effectively finding rational solutions for such operators. In our case one could, in
principle, use noncommutative elimination to obtain linear operators in one variable
with coefficients that depend rationally on the other variables and apply Singer’s
decision procedure to characterize the rational solutions. This can be done in small
examples using noncommutative Gröbner-bases packages such asKan (see [24]), but
we have not been able to obtain any general results in this manner.
Gel′fand, Zelevinsky, and Kapranov have constructed series solutions for (0.1)–

(0.2), associated with regular triangulations of the polytopeP . When the exponent
α is nonresonant for the triangulation, it is possible to obtain in this manner vol(P )-
many independent solutions. There are, however, very interesting cases in which the
exponents are integral and, therefore, automatically resonant. For example, it has been
observed by Batyrev in [4] that the period integrals of Calabi-Yau hypersurfaces in
toric varieties satisfy an�-hypergeometric systemwith exponentsα = (−1,0, . . . ,0).
In this case, series solutions have been obtained by Hosono, Lian, and Yau ([14], [15];
see also [3], [5], and [13]). Very recently, Stienstra [21] has generalized the$-series
construction of Gel′fand, Zelevinsky, and Kapranov to obtain series solutions in the
case of resonant exponents under a maximal-degeneracy assumption. In particular,
if α = 0 andP admits a unimodular triangulation—which implies thatR is Cohen-
Macaulay—all solutions of (0.1)–(0.2) may be obtained in this manner. This method
also yields all solutions of interest in the context of toric mirror symmetry.
A key result, in the curve case, is Theorem 1.9, which asserts that form≥ 1 there

are no rational solutions with integral exponents in the Euler-Jacobi cone. This cor-
responds to the classical vanishing theorem for the total sum of residues, a statement
that has a generalization as the Euler-Jacobi theorem (see [16] for the most general
form of this result). It is interesting to note then that Euler-Jacobi vanishing is a
consequence of the fact that residues satisfy the�-hypergeometric system. We also
point out that while the characterization of Laurent solutions follows from formal
arguments, the proof of the Euler-Jacobi vanishing involves transcendental methods.

Acknowledgments.We are grateful to B. Sturmfels for many helpful comments
and, particularly, for the statement and proof of Proposition 1.6. We also thank A.
Zelevinsky for useful suggestions and the two referees for their careful reading of the
manuscript and very thoughtful suggestions for improvement.

1. Rational solutions. The polynomial solutions of a general�-hypergeometric
system admit a very simple description. Givenα ∈ Zr , we define thehypergeometric
polynomial
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%�(α;x) :=
∑
u∈Nr

�·u=α

xu

u! =
∑
u∈Nr

�·u=α

x
u1
1 x

u2
2 · · ·xurr

u1!u2! · · ·ur ! . (1.1)

As usual, we set%�(α;x) := 0 if α �∈ � ·Nr . The following result, the verification
of which is left to the reader, is Proposition 2.1 in [18].

Proposition 1.1. %�(α;x) is the unique, up-to-scaling, polynomial solution of
the�-hypergeometric system with exponentα. Moreover, for anyu ∈Nr ,

Du

(
%�(α;x))=%�

(
α−� ·u;x), (1.2)

whereDu stands for the partial derivative∂ |u|/∂xu.

The purpose of this section is to describe the rational solutions of the�-hypergeo-
metric system associated with a matrix� as in (0.4). Note that form= 0, the system
restricts to the homogeneity equations (0.2). Therefore, we may assume throughout
thatm ≥ 1. To simplify our notation, we index all(m+2)-tuples by 0,k1, . . . ,km,d.
Let e0,ek1, . . . ,ed denote the standard basis ofZ

m+2. For i = 1, . . . ,m we have

ωki :=
(
d−ki

)
e0−deki +kied ∈ �. (1.3)

The following observation will be useful in the sequel.

Proposition 1.2. Supposeϕ is a local holomorphic solution of (0.1)–(0.2), which
is polynomial with respect to any of the variablesx0,xk1, . . . ,xd . Thenϕ is a Laurent
polynomial.

Proof. Sinceϕ satisfies the equations (0.1), it follows from (1.3) that for all( ∈N,

D(d
ki
ϕ =D

((d−ki )
0 D

(ki
d ϕ, (1.4)

and, consequently, ifϕ is polynomial in any of the variables, it must be so in all of
the variablesxki , i = 1, . . . ,m, and we may write

ϕ(x)=
∑
u

ϕu
(
x0,xd

)
x̌u, x̌ = (xk1, . . . ,xkm),

whereu varies in a finite subset ofNm, and eachϕu(x0,xd) is homogeneous in
each variable with respective degreesβ0, βd satisfyingdβd ∈ Z, β0+βd ∈ Z. Thus,
ϕu(x0,xd) = cux

β0
0 x

βd
d , cu ∈ C. But, because of (1.4), forr,s ∈N sufficiently large,

Dr
0D

s
dϕ = 0. Consequently, one, and therefore both, ofβ0,βd must be an integer.

Hence,ϕ is a Laurent polynomial.

Note that in the 1-dimensional case, an�-hypergeometric Laurent polynomial may
not contain a nonzero term of the formcuxu with uki < 0. This follows from the fact
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that the singular locus+ of the hypergeometric system is given by the zeroes of the
principal�-determinant, that is,

+ = {x0= 0
}∪{xd = 0

}∪{!(f )= 0
}
,

where!(f ) is the discriminant of the generic polynomial (0.5). Alternatively, if
a solution contains a nonzero termcuxu, with uki < 0, being in the kernel of the
differential operatorDd

ki
−D

d−ki
0 D

ki
d , it must also contain nontrivial terms of the form

cvx
v, with vki = uki − jd for all positive integersj , and this is clearly impossible.

A similar argument shows that a Laurent solution may not contain terms of the form
cux

u, with bothu0 < 0 andud < 0.
Thus, any Laurent solution must be of the form

L0(x)+Ld(x),

whereL0(x) has as denominators only powers ofx0, andLd(x) has as denomina-
tors only powers ofxd . We note that the study ofL0(x) andLd(x) is completely
symmetric. Indeed, let(j = d−km−j+1, j = 1, . . . ,m,

�̂=
(
1 1 · · · 1 1
0 (1 · · · (m d

)
, (1.5)

and supposeR(x) is a Laurent solution of the�-hypergeometric system and ex-
ponentα = (α1,α2). (Although α should be viewed as a column vector, we al-
ways write exponents as row vectors for simplicity of notation.) Then the function
R̂(y0,y(1, . . . ,y(m,yd) obtained fromR by the substitution

x0 �→ yd, xkj �→ y(j , xd �→ y0, (1.6)

is a solution of the�̂-hypergeometric system and exponentsα̂ = (α1,dα1−α2).

Lemma 1.3. For α ∈�·Nm+2, the only Laurent solutions of the�-hypergeometric
system are the constant multiples of the hypergeometric polynomial (1.1).

Proof. Suppose there is a Laurent solutionL(x) of exponentα containing a term
of the form xu/xrd , with u ∈ Nm+2, ud = 0, andr > 0 (we always assume that
monomials are written in reduced form). Then� · (u− red) = α. Let v ∈ Nm+2 be
such that� ·v = α; then� ·u=� ·(v+red), and the operatorDu−Dr

dDv, being in
the hypergeometric system, must vanish onL. This means thatL must also contain a
termxw whose derivativeDr

dDv(x
w) is a nonzero multiple of 1/xrd . Sincevd ≥ 0, this

is clearly impossible. Arguing by symmetry, we see that there cannot be a solution
containing a term of the formxu/xr0, with u0= 0 andr > 0.

We denote by� the matrix

�=
(
1 1 · · · 1
0 k1 · · · km

)
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and byx′ the vector consisting of the firstm+1 variables(x0,xk1, . . . ,xkm). Similarly,
let � be the matrix

�=
(
1 · · · 1 1
k1 · · · km d

)
andx̃ the vector(xk1, . . . ,xkm,xd).
Givenα ∈ Z2 we define

/�
d (α;x) :=

∑
r≥1

(−1)r (r−1)!%
�
(
α′(r);x′)
xrd

, (1.7)

whereα′(r)= α+r(1,d), and

/�
0 (α;x) :=

∑
r≥1

(−1)r (r−1)!%
�
(
α̃(r); x̃)
xr0

, (1.8)

whereα̃(r)= α+r(1,0).
Note that both sums are finite. This follows from the fact that%�(α′(r);x′) = 0

unlessα′(r) ∈� ·Nm+1; but thenα2+dr ≤ km(α1+r), and, therefore,(d−km)r ≤
kmα1−α2. This means that the possible values ofr in (1.7) are bounded by(kmα1−
α2)/(d−km). The statement for (1.8) follows by symmetry. In fact, we should observe

that the change of variables(1.6) transforms/�
d (α;x) into/�̂

0 (α̂;x).
The following subsets ofZ2 play an important role in the description of�-hyper-

geometric functions:

I (�) :=� ·Nm+2;
F0(�) := � ·Nm+1−N(1,0); E0(�) := F0(�)\I (�);
Fd(�) :=� ·Nm+1−N(1,d); Ed(�) := Fd(�)\I (�); (1.9)

E(�) := E0(�)∩Ed(�); J (�) := Z2\(I (�)∪F0(�)∪Fd(�)
)
.

Note that via the change of variables (1.6), and denoting forα = (α1,α2) ∈ Z2,
α̂ = (α1,dα1−α2), we have for�̂ as in (1.5):

I
(
�̂
)= Î (�); F0

(
�̂
)= F̂d(�); Fd

(
�̂
)= F̂0(�).

It is clear from the definitions (1.7) and (1.8) that/�
0 (α;x) �= 0 if and only if

α ∈ F0(�) and, similarly,/�
d (α;x) �= 0 if and only ifα ∈ Fd(�). In particular,

/�
d (α;x)= 0, if dα1< α2, (1.10)

and

/�
0 (α;x)= 0, if α2 < 0. (1.11)

On the other hand, the importance of the setsE0(�) andEd(�) stems from the fact
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that according to Lemma 1.3, it is only forα ∈ E0(�) (respectively,α ∈ Ed(�))
that the Laurent polynomial/�

0 (α;x) (respectively,/�
d (α;x)) may be—and as

the following result shows is—�-hypergeometric. Note also that there are no�-
hypergeometric Laurent polynomials with exponentα ∈ J (�), and it is a conse-
quence of Theorem 1.10 that there are no rational�-hypergeometric functions with
exponentα ∈ J (�).

Theorem 1.4. Let� be as in (0.4) andα ∈ Z2\I (�). Then:
(i) /�

d (α;x) and/�
0 (α;x) are solutions (possibly trivial) of the�-hypergeo-

metric system with parameterα;
(ii) for anyu ∈Nm+2,

Du

(
/�

d (α;x))=/�
d (α−� ·u;x); Du

(
/�
0 (α;x)

)=/�
0 (α−� ·u;x);

(1.12)

(iii) the functions/�
d (α;x) and/�

0 (α;x) span the space of Laurent solutions of
the�-hypergeometric system with parameterα.

Proof. Clearly, (i) is an immediate consequence of (ii) and, because of symmetry,
it suffices to show (1.12) for/�

d (α;x). Supposeu ∈Nm+2 is such thatud = 0; then

Du

(
/�

d (α;x))=∑
r≥1

(−1)r (r−1)!Du

(
%�
(
α′(r);x′))
xrd

=
∑
r≥1

(−1)r (r−1)!%
�
(
α′(r)−� ·u;x′)

xrd

=/�
d (α−� ·u;x).

Thus, it remains to prove (1.12) for the partial derivativeDd . We have

Dd/
�
d (α;x)=

∑
r≥1

(−1)r+1r!%
�
(
α′(r);x′)
xr+1d

=
∑
r≥1

(−1)r+1r!%
�
((
α−� ·ed

)′
(r+1);x′)

xr+1d

=/�
d (α−� ·ed;x).

The last equality follows, sinceα �∈� ·Nm+2 implies that

%�
((
α−� ·ed

)′
(1);x′)=%�

(
α;x′)= 0.

Suppose now thatL(x) is a Laurent solution with exponentα, and writeL(x) =
Ld(x)+L0(x). If we decompose further,

Ld(x)=
∑
r≥1

Ar

(
x′
)

xrd
,
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then the polynomialsAr(x
′) must be solutions of the�-hypergeometric system and

exponentα′(r). Thus,Ar(x
′)= cr%

�(α′(r);x′). Assume now that forr,s ≥ 1, r �= s,
we haveα′(r),α′(s) ∈ I (�), and letv,w ∈ Nm+1 be such that� · v = α′(r) and
� ·w = α′(s). Then, since� ·(v+sed)=� ·(w+red), the operator

∂ |v|+s

∂xvxsd
− ∂ |w|+r

∂xwxrd

is in the hypergeometric system and must vanish onL. This means that

(−1)s(r+s−1)!
(r−1)!xr+sd

∂ |v|
(
Ar

(
x′
))

∂xv
= (−1)r (r+s−1)!

(s−1)!xr+sd

∂ |w|
(
As

(
x′
))

∂xw
,

which implies that
(−1)s
(r−1)!cr =

(−1)r
(s−1)!cs

and, consequently,
cr = c(−1)r (r−1)!.

A symmetric argument shows that if the componentL0(x) is nontrivial, then it must
be a constant multiple of/�

0 (α;x), which proves part (iii).
We state for emphasis the following result.

Corollary 1.5. Let� be as in (0.4), and let�(α) denote the vector space of�-
hypergeometric Laurent polynomials of exponentα. Thendim�(α) ≤ 2. Moreover,
dim�(α) ≥ 1 if and only if α ∈ I (�)∪E0(�)∪Ed(�), anddim�(α) = 2 if and
only if α ∈ E(�).

The following result was brought to our attention by Bernd Sturmfels.

Proposition 1.6. Given� as in (0.4), the ringR = C[ξ0, . . . , ξd ]/�� is Cohen-
Macaulay if and only ifE(�)= ∅.
Proof. The ringR is a particularly simple example of an affine semigroup ring

whose properties have been extensively studied (see, for example, [6, Chap. 6], [12],
and [25]). In fact, Proposition 1.6 is a special case of Theorem 2.6 in [12], which
gives necessary and sufficient conditions for an affine semigroup ring that, likeR

does, admits a system of monomial parameters. Their condition (ii) is easily seen to
be equivalent, in our notation, toE(�)= ∅.
1.7. Remarks. (i) When the curveX� is normal, that is,d = m+ 1, the sets

defined in (1.9) have a very simple description: The imageI (�) coincides with the
“cone” (properly speaking, semigroup)

� := {α = (α1,α2) ∈ Z2 : 0≤ α2 ≤ dα1
}
,
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while E0(�) = {α ∈ Z2 : α2 ≥ 0,dα1 < α2} andEd(�) = {α ∈ Z2 : α2 < 0,dα1 ≥
α2}. The complementJ (�) of these three sets, that is, the set ofα ∈ Z2 for which
there are no�-hypergeometric Laurent polynomials of exponentα, is theEuler-
Jacobi cone,

�� := {(α1,α2) ∈ Z2 : dα1< α2 < 0
}
. (1.13)

(ii) For arbitrary� as in (0.4), we haveI (�)⊂ �, E(�)⊂ �, and��⊂ J (�).
(iii) The conditions (1.10) and (1.11) are far from being sharp. It is easy to see, for

example, that forα ∈ �, /�
0 (α;x) �= 0 and/�

d (α;x) �= 0 imply thatk1α1 < α2 <

kmα1. In particular, ifm= 1, k1= km and there is noα ∈ � for which both/�
0 (α;x)

and/�
d (α;x) are nontrivial. Hence, there is for eachα at most one, up to constant

multiple, Laurent solution of exponentα. Note also that the toric ringR is always
Cohen-Macaulay but it is normal if and only ifd = 2.
(iv) It is not hard to prove (see, for example, [2, Lemma 3.12]) that there exists

v ∈ � ·Nm+2 such thatv+� ⊂ I (�). Thus, forα ∈ v+�, there is a unique�-
hypergeometric Laurent polynomial, and it is given by (1.1). Moreover, when this
observation is combined with the inequalities in (iii), it follows that the setE(�) is
finite.

1.8. Examples.We exhibit two examples whereE(�) �= ∅ and, consequently, the
associated toric ringR is not Cohen-Macaulay.

(i) This is the “running example” in [23]. Let

�=
(
1 1 1 1
0 1 3 4

)
.

The exponentα = (1,2) is the unique element in� such thatα �∈ I (�) andα1 <
α2 < 3α1. Both/�

0 ((1,2);x)= (−1/2)(x21/x0) and/�
4 ((1,2);x)= (−1/2)(x23/x4)

are nontrivial.
The elementβ = (2,3) ∈ F0(�)∩F4(�). Therefore both/�

0 (β;x)=(−1/6)x31/x0
and/�

4 (β;x) = (−1/2)x1x23/x4 are nontrivial. However, sinceβ = � · (e0+ e3) ∈
I (�), it follows from Lemma 1.3 that neither/�

0 (β;x) nor/�
d (β;x) is �-hyper-

geometric, and the only�-hypergeometric Laurent polynomials of exponentβ are
the multiples of the polynomial%�(β;x)= x0x3.

(ii) Consider the system associated with the matrix

�=
(
1 1 1 1 1
0 6 7 13 14

)

andα = (2,18) �∈ I (�). We have

/�
0

(
(2,18);x)=−1

6

x36

x0
; /�

14

(
(2,18);x)=−1

2

x6x
2
13

x14
+ 1

6

x7x
3
13

x214

.
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It follows from (1.10) and (1.11) that there are no�-hypergeometric Laurent poly-
nomials whose exponentα is in the Euler-Jacobi cone (1.13). In fact, as the following
result shows, there are norational solutions with exponent in that region.

Theorem 1.9. The�-hypergeometric system associated with the matrix (0.4) has
no rational solutions whose exponentα lies in the Euler-Jacobi cone.

Givenα ∈ Z2, we denote by	(α) the vector space of rational�-hypergeo- met-
ric functions of exponentα. Before proving Theorem 1.9, we note the following
consequence.

Theorem 1.10. The only rational solutions of the�-hypergeometric system as-
sociated with the matrix (0.4) are the Laurent polynomial solutions described by
Proposition 1.1 and Theorem 1.4.

Proof. Supposeϕ ∈ 	(α). For ( ∈ N sufficiently large,β = α− ((1,k1) lies in
the Euler-Jacobi cone. ThenD(

k1
ϕ ∈ 	(β), and therefore it is identically zero by

Theorem 1.9. Hence,ϕ is polynomial inxk1, and by Proposition 1.2 it must be a
Laurent polynomial.

1.11. Example.Theorem 1.10 is not true forn > 1. It fails already in the simplest
2-dimensional situation: Consider the hypergeometric system associated with the
matrix

�=

1 1 1 1
0 1 0 1
0 0 1 1


 .

The lattice� has rank 1; in fact� = Z · (1,−1,−1,1)T , and the system (0.1)–(0.2)
is equivalent to Gauss’s classical hypergeometric equation. The function 1/(x1x4−
x2x3) is a solution with parameters(−2,−1,−1).
Proof of Theorem 1.9.The proof is by induction onm. We begin by considering

the casem = 1 and write, for simplicity,k1 = k. Note that in this case the lattice
� has rank 1 and is generated byω := (d − k)e0− dek + ked . In particular, for
appropriate values ofα, we can write the�-hypergeometric functions in terms of
classical hypergeometric functions (see [9, §3.1]).
The discriminant of the generic polynomialx0+xkt

k+xdt
d is, up to factors that

are powers ofx0 andxd ,

!(x)= ddxd−k0 xkd+(−1)d−1kk(d−k)d−kxdk = cxdk
(
1−λz

)
,

wherec = (−1)d−1kk(d−k)d−k, z= xω = xd−k0 x−dk xkd , and

λ= (−1)ddd
kk(d−k)d−k

.

Suppose now thatR(x) = P(x)/Q(x) ∈ 	(α) with α ∈ ��, that is,dα1 < α2 < 0.
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Note that bothP andQ are bihomogeneous relative to theZ2-degree defined by�.
We can then writeP(x)= xvP1(z), whereP1 is a polynomial andP1(0) �= 0. Thus,
up to a constant,

R(x)= xu
P1(z)(
1−λz

)r = xu
∑
j≥0

cj z
j = xu

∑
j≥0

cjx
jω, (1.14)

with c0 �= 0 and� ·u= α.
SinceR is in the kernel of the differential operator

�ω =Dd−k
0 Dk

d−Dd
k , (1.15)

the coefficients in (1.14) satisfy the relation

cj

d−1∏
(=0

(
uk−jd−(

)= cj+1
d−k−1∏
(′=0

(
u0+(j+1)(d−k)−(′

) k−1∏
(′′=0

(
ud+(j+1)k−(′′

)
,

(1.16)

for all j ∈ Z. Settingj =−1 we get

0= c0

d−k−1∏
(′=0

(
u0−(′

) k−1∏
(′′=0

(
ud−(′′

)
,

which implies that either 0≤ u0 ≤ d−k−1 or 0≤ ud ≤ k−1. On the other hand,
kuk+dud = α2 < 0 anddu0+(d−k)uk = dα1−α2 < 0, which means that in either
caseuk < 0. Therefore, the left-hand side of (1.16) is never zero and, consequently,
neither is the right-hand side. This implies thatu0 ≥ 0 andud ≥ 0 and for allj ≥ 0,

cj = c(−1)jd
(−uk+jd

)!(
u0+j (d−k)

)!(ud+jk
)! ,

for some constantc.
But a function with such an expansion may not be rational. Indeed, Stirling’s

formula implies that, asymptotically,cj ∼ µj−α1λj/
√
j , for some constantµ. On

the other hand, for a rational functionR whose denominator is a power of(1−λz),
we would havecj = p(j)λj , with p a polynomial. This completes the proof of
Theorem 1.9 in the casem= 1.
Assume now that Theorem 1.9 and its consequence Theorem 1.10 are valid for

m−1,m≥ 2, and consider the�-hypergeometric system associated with the matrix
� in (0.4).
Let R(x) be a rational solution with parameterα in the Euler-Jacobi cone; that is,

α = (α1,α2), with dα1< α2 < 0. Suppose we can writeR(x)= P(x)/(xrdQ(x));r >
0, and assume thatxd does not divideP(x) orQ(x). Again, letx′ = (x0,xk1, . . . ,xkm),
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and writeQ(x)=∑r
k=0qk(x′)xkd , with q0(x

′) �= 0, and setck(x′)=−qk(x′)/q0(x′).
Then,

R(x)= P(x)

xrd ·q0
(
x′
)
(
1+

∞∑
m=1

(
r∑

k=1
ck(x

′)xkd

)m)
=
∑
(≥−r

A(

(
x′
)
x(d . (1.17)

By inductive assumption, sinceA((x
′) is a rational�-hypergeometric function, it

must be a Laurent polynomial as described by Theorem 1.4. (Note that even though
we may have(= gcd(k1, . . . ,km) > 1, we may easily reduce to the system associated
with a matrix whereki has been replaced byki/(.) Set xd = 0 and consider the
nontrivial rational functionA−r (x′)= P(x′,0)/Q(x′,0) that has�-exponentα′(r)=
(α1+r,α2+dr). It is clear thatα′(r) �∈ E(�), and hence there may be, up to constant,
at most one Laurent solution with exponentα′(r). We distinguish the two possible
cases.

(i) SupposeA−r (x′) is a nonzero multiple of/�
km
(α′(r),x′). Then it contains a

nonzero term of the form
x̂u

xskm

, s > 0,

where x̂u is a monomial with positive exponents involving only the variablesx0,

xk1, . . . , xkm−1. Thus, a Laurent series expansion ofR(x), as a function ofxd , has a
nonzero term of the form

x̂u

xskmx
r
d

, r > 0, s > 0.

Successive applications of the fact thatR is in the kernel of the operator (1.15), with
km in the place ofk, yields thatR must also contain a nonzero term whose derivative
D

j(d−km)
0 D

jkm
d is a multiple of

x̂u

x
s+dj
km

xrd

, r > 0, s > 0

for all j ≥ 0, which is impossible as soon asjkm ≥ r.
(ii) SupposeA−r (x′) is a nonzero multiple of/�

0 (α
′(r),x′). Then it contains a

nonzero term of the form
x̌u

xs0
, s > 0,

where x̌u is a monomial with positive exponents involving only the variables
xk1, . . . ,xkm , which implies that a Laurent series expansion ofR(x), as a function
of xd , has a nonzero term of the form

x̌u

xs0x
r
d

, r > 0, s > 0.

But, since the operator (1.15), withkm in the place ofk, must vanish onR, there must



192 CATTANI, D’ANDREA, AND DICKENSTEIN

also be a nonzero term of the form

x̌uxdkm

x
s+d−km
0 x

r+km
d

,

which contradicts the index bound in (1.17).
By symmetry, we can then assume thatR(x) = P(x)/Q(x) and neitherxd nor

x0 divideQ. Thus,R(x) is written as in (1.17) withr = 0. For each( ≥ 0, A((x
′)

is a solution of the�-hypergeometric system with exponent(α1− (,α2− d(). By
inductive hypothesis, these must be Laurent polynomials, and it is easy to check that
the only possible denominators are powers ofxkm . Thus, only powers ofxkm may
appear in the denominator of the above expansion forR, which implies thatq0(x′)
must be of the formxdkm , and, therefore,Q(x) has bidegree(d,kmd). On the other
hand, a symmetric argument would imply thatQ(x) must contain a term of the form
xek1

, and, hence,Q(x) should have bidegree(e,k1e). Sincem > 1, this implies that
Q(x) has degree zero, but thenR(x) is a polynomial solution, which is impossible
since, being in the Euler-Jacobi cone,α �∈� ·Nm+2.

As we noted before, givens ∈ Z, the sum (0.6),ps(x)= ρs
1(x)+·· ·+ρs

d(x), of the
powers of the roots of the generic polynomial (0.5) is a rational�-hypergeometric
function with exponent(0,−s). By Theorem 1.10 it must be a Laurent polynomial
and, therefore, expressible in terms of/�

0 and/�
d . In fact, we have the following

result.

Corollary 1.12. For s > 0,

ps(x)= s ·/�
d

(
(0,−s);x)= s ·

s∑
r=1

(−1)r (r−1)!%
�
(
(r,rd−s);x′)

xrd
, (1.18)

while for s < 0,

ps(x)= s ·/�
0

(
(0,−s);x)= s ·

s∑
r=1

(−1)r (r−1)!%
�
(
(r,−s); x̃)
xr0

. (1.19)

Proof. It suffices to consider the normal case,d =m+1, and then set the appro-
priate variables equal to zero. Fors > 0, it follows from (1.11) thatps(x) must be a
multiple of/�

d ((0,−s);x). It is easy to see that the value of the multiple must bes by
specialization to the case whenf (x; t)= td+ td−1. The statement fors < 0 follows
by symmetry after observing that with the change of variables (1.6), the polynomial
f̂ (y;τ) associated with the matrix̂� in (1.5) is given byf̂ (y;τ) = τd ·f (x;τ−1)
and, consequently, its roots are the inverse of those off .

1.13. Remarks. (i) Note that each term in the right-hand side of (1.18) is of total
degree zero and, therefore, we may expressps(x) as a polynomial inxd−j /xd =
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(−1)jσj (ρ1, . . . ,ρd), j = 1, . . . ,d, whereσj is thej th elementary symmetric poly-
nomial. This yields the classical Girard formulas.

(ii) As we noted in the introduction, the total sum of the local residues (0.7) gives
a rational�-hypergeometric function with exponent(−a,−b) and hence, as in Corol-
lary 1.12, it must be amultiple of/�

d ((−a,−b);x), if b > 0, and of/�
0 ((−a,−b);x),

if b ≤ 0. In particular, fora = 1, b > 0, we have

∑
ρ

Resρ(x)

(
tb

f (x; t)
dt

t

)
=
{
0, if 0 < b < d;
−/�

d

(
(−1,−b);x), if b ≥ d.

We end this section with a result that should be seen as a complement to (1.10) and
(1.11) and which is of use in §2.

Proposition 1.14. Letα = (α1,α2) ∈ Z2\I (�), and sets = s(α) := dα1−α2.
(i) If s > 0, then/�

d (α;x)= 0 if and only ifps(x)= 0.
(ii) If α2 > 0, then/�

0 (α;x)= 0 if and only ifp−α2(x)= 0.

Proof. It suffices to prove the first statement and then deduce (ii) by symmetry.
Supposeβ ∈ Z2 with β1 = α1− r, r > 0, ands(β) = s(α). Then, if/�

d (α;x) = 0,
we have by (1.12)/�

d (β;x) = Dr
d/

�
d (α;x) = 0. But, if /�

d (α;x) �= 0, then the
same argument implies that/�

d (β;x) �= 0 since the dependence of/�
d (α;x) on

xd is not polynomial. Hence, givenα,β ∈ Z2 \� ·Nm+2 such thats(α) = s(β),
/�

d (α;x)= 0 if and only if/�
d (β;x)= 0. The result now follows from the fact that

/�
d ((0,−s);x)= sps(x).

2. Algebraic solutions. In this section we introduce a family,ψρ , of local alge-
braic solutions of the�-hypergeometric system associated with a monomial curve.
These solutions, which are given in terms of the rootsρ(x) of the generic polynomial
(0.5), play a central role in §3 when we compute the holonomic rank and construct a
basis of local solutions for all exponentsα ∈ Z2.
Let � be as in (0.4). Given an open set
 ⊆ Cm+2, let �(α)(
) denote the space

of solutions, holomorphic on
, of the�-hypergeometric system with exponentα,
and let�alg(α)(
) denote the subspace of algebraic solutions. We drop the reference
to the open set
 whenever we are only interested in the space of local solutions
around a generic point. Letρ(x) be a root of the polynomialf (x; t) defined by (0.5),
holomorphic forx in some simply connected open subset
⊂ Cm+2\+.
Givenα = (α1,α2) ∈ Z2, α1 ≥ 0, we define

ψρ(α;x) :=
dα1∑
i=0
i �=α2

%�
((
α1, i

);x)ρi−α2(x)
i−α2

+%�(α;x) log(ρ(x)). (2.1)

Note that the conditioni �= α2 is automatically satisfied whenα2 < 0 or α2 > dα1,
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and that forα1= 0, α2 �= 0,ψρ(α) is justρ−α2/(−α2). (If there is no ambiguity, we
drop any reference to the variablex.)
For α �∈ I (�), the hypergeometric polynomial%�(α;x) vanishes, andψρ(α) is

an algebraic function. This is the case that is of interest in this section; however, in
§3 we need (2.1) for arbitraryα ∈ Z2, and it is, therefore, economical to work in this
slightly more general setting. We extend the definition ofψρ(α) to the caseα1 < 0
in (2.6).

Proposition 2.1. Letα,α′ ∈ Z2 and assume thatα1,α′1 ≥ 0. Letu,u′ ∈Nm+2 be
such thatα−� ·u= α′ −� ·u′. Then

Duψρ(α)=Du′ψρ

(
α′
)
. (2.2)

Proof. In order to prove (2.2), we show, as a first step, that ifα = (α1,α2) and
α1> 0, then

∂

∂x(

(
ψρ(α)

)= ψρ

(
α−� ·e(

)
. (2.3)

Since, by (1.2),∂(%�(α))/∂x( =%�(α−� ·e(), we have

∂

∂x(

(
ψρ(α)

)= dα1∑
i=0
i �=α2

%�
(
(α1−1, i−()

)ρi−α2
i−α2

+%�
(
α−� ·e(

)
log(ρ)

+
dα1∑
i=0
i �=α2

%�
((
α1, i

))
ρi−α2−1 ∂ρ

∂x(
+%�(α)ρ−1 ∂ρ

∂x(
.

(2.4)

Note that the last two terms in the expression above cancel, sincef α1(x;ρ(x)) = 0
implies that

dα1∑
i=0
i �=α2

%�
(
α1, i

)
ρi =−%�(α)ρα2.

On the other hand, settingj = i−(, the right-hand side of (2.4) becomes

d(α1−1)∑
j=0

j �=α2−(

%�
((
α1−1,j

)) ρj−(α2−()

j−(α2−(
)+%�

(
α−� ·e(

)
log(ρ)= ψρ

(
α−� ·e(

)
,

where we have used that the hypergeometric polynomial%�((α1−1,j)) vanishes
for j < 0 or j > d(α1−1). This proves (2.3).
Applying (2.3) successively we may assume thatα1 = α′1 = 0. Supposeα =

(0,−s), s �= 0, so that%�(α) = 0 andψρ(α) = ρs/s. Givenu ∈ Nm+2 we want to
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computeDu(ψρ(α)). Locally onx we can write

Du

(
2πi

s
ρs

)
=
∫
$

ts

s
Du

(
f ′(x; t)
f (x; t)

)
dt

=
∫
$

d

dt

(
t s

s
Du

(
logf (x; t)))dt−∫

$

ts−1Du

(
logf (x; t))dt

= (−1)β1−1(β1−1)!
∫
$

ts−1 t
β2

f β1
dt,

(2.5)

where� ·u= (β1,β2) and$ is a sufficiently small loop in the complex plane. Thus
Du(ψρ(α)) depends only on the pair(β1,β2+ s) = −(α −� · u). If α = (0,0),
ψρ((0,0))= log(ρ) and we can show thatDu(log(ρ)) depends only on� ·u, arguing
as above with log(t) taking the place oft s/s. This completes the proof.

Proposition 2.1 now allows us to extend the definition ofψρ(α) to the caseα1< 0.
Indeed, letu ∈Nm+2 be such that� ·u= (β1,β2), with β1 ≥−α1, and set

ψρ(α) :=Du

(
ψρ(α+� ·u)). (2.6)

Clearly, this definition does not depend on the choice ofu, and for anyα ∈ Z2,
u ∈Nm+2,

Du

(
ψρ(α)

)= ψρ(α−� ·u). (2.7)

If α �∈ I (�) we can chooseu so thatα+� ·u �∈ I (�) either, and, hence,ψρ(α) is an
algebraic function.

Theorem 2.2. For α ∈ Z2\I (�) the algebraic functionsψρ(α) are�-hypergeo-
metric.

Proof. Given (2.6), it suffices to consider the caseα1 ≥ 0. The hypergeometric
polynomials%�((α1, i);x) are�-bihomogeneous of bidegree(α1, i) while the pow-
ersρi−α2(x) have bidegree(0,α2−i). Hence,ψρ(α) satisfies the homogeneity equa-
tions (0.2) with exponentα. On the other hand, it is an immediate consequence of
Proposition 2.1 thatψρ(α) satisfies the higher-order equations (0.1).

Let now
⊂ Cm+2\+ be a simply connected open set, and letρ1(x), . . . ,ρd(x) be
distinct roots of the polynomialf (x; t), holomorphic forx ∈ 
. Let α ∈ Z2\ I (�),
and setψj(α) := ψρj (α) ∈�alg(α)(
). The function

/�(α) := ψ1(α)+·· ·+ψd(α)

is then a rational solution of the�-hypergeometric system with parametersα. It
follows from (2.7) that, for anyu ∈Nm+2,

Du

(
/�(α)

)=/�(α−� ·u). (2.8)
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Proposition 2.3. Letα ∈ Z2\I (�). Then,
(i) /�(α;x)=/�

d (α;x)+/�
0 (α;x), defined as in (1.7) and (1.8);

(ii) /�(α)= 0 if and only if there exist no nontrivial rational�-hypergeometric
functions with parameterα;

(iii) if α = (α1,α2) andα1> 0, then

/�
0 (α;x)=

dα1∑
i=0
i<α2

%�
((
α1, i

);x)/�
0

((
0,α2− i

);x), (2.9)

and

/�
d (α;x)=

dα1∑
i=0
i>α2

%�
((
α1, i

);x)/�
d

(
(0,α2− i);x). (2.10)

Proof. By Theorem 1.4(iii), /�(α) is a linear combinationλ/�
d (α;x) +

µ/�
0 (α;x). Moreover, ifα1= 0, the result follows from (1.18) and (1.19). Therefore,

computing derivatives with respect toxd , the result follows fors(α)= dα1−α2 > 0,
α1< 0, where/�

0 (α;x)= 0. By symmetry, (i) also holds forα2 > 0, α1< 0.
If α ∈ Z2\I (�) is such that/�

d (α;x) �= 0, then

/�
((
0,−s(α)))= ∂α1/�(α)

∂x
α1
d

= λ
∂α1/�

d (α)

∂x
α1
d

= λ/�
d

((
0,−s(α))),

which impliesλ = 1 since, because of Proposition 1.14,/�
d ((0,−s(α))) �= 0. A

similar argument shows that if/�
0 (α;x) �= 0, thenµ= 1.

The second assertion is an immediate consequence of Theorem 1.4, while the
identities (2.9) and (2.10) follow from (i), together with (1.18) and (1.19).

We now determine the dimension of the subspace of algebraic hypergeometric
functions over
 spanned byψ1(α), . . . ,ψd(α), α �∈ I (�).

Theorem 2.4. For α ∈ Z2 \ I (�), the �-hypergeometric functionsψ1(α), . . . ,

ψd(α) span a linear space of dimension at leastd−1. Moreover, they are linearly
dependent if and only if/�(α)= 0.

Before giving the proof of Theorem 2.4, we first recall the construction by Gel′fand,
Zelevinsky, and Kapranov [9] of$-series solutions for the�-hypergeometric system
and the expressions obtained by Sturmfels [22] for the roots off (x; t) in terms of
them. We begin by considering the normal case, and eventually we specialize coeffi-
cients to study the general case. We only need to consider the coarsest triangulation
of the polytopeP , the convex hull of� and the origin, that is, the one consisting of
the single simplexP . As before, we let� stand for the integral kernel of�, that is,
the sublattice of elementsv ∈ Zd+1 such that� ·v = 0. Givenu ∈Qd+1, we define
the formal power series
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[
x
u0
0 x

u1
1 · · ·xudd

] :=∑
v∈�

d∏
i=0

(
γ (ui,vi)x

ui+vi
i

)
, (2.11)

where, for any rational numberu and any integerv, we write

γ (u,v) :=




1, if v = 0,

u(u−1)(u−2) · · ·(u+v+1), if v < 0,

0, if u is a negative integer andu≥−v,
1

(u+1)(u+2) · · ·(u+v)
, otherwise.

If u has no negative integer coordinates or is of the form(0, . . . ,0,1,−1,0, . . . ,0),
the series[xu00 · · ·xudd ] is a formal solution of the�-hypergeometric system with
parameters� ·u ∈Q2 (see [9, Lemma 1] and [22, Lemma 3.1]). Moreover, if at most
two of the exponentsui are nonintegers, the series (2.11) converges in a suitable open
subset ofCd+1\+ (see [9]).
Let ξ1, . . . , ξd be thedth roots of−1 and setρi(x) :=∑d

a=1ξai ·σa(x), where

σ1(x) :=
[
x
1/d
0 x

−(1/d)
d

]
; σa(x) := 1

d
·
[
xa−1x(a−d)/d0 x

−a/d
d

]
, a = 2, . . . ,d.

It follows from [9, Prop. 2] that there exists an open set�⊂ Cd+1\+ of the form

� := {x ∈ Cd+1 : |x0|d−j |xd |j > M|xj |d;j �= 0,d
}
,

for some positive real constantM, where all these series converge, and, according to
[22, Theorem 3.2], locally on� they define the holomorphicd roots of the generic
polynomial

∑d
j=0xj · tj . Given a positive integers we consider the powersρs

i (x) and
write

ρs
i (x)=

d∑
b=1

ξbi ·θb(x),

where

θb(x)=
∑

a1+···+as=b+(d
(−1)(

s∏
j=1

σaj (x).

Wenow consider the�-hypergeometric system associated with thematrix (0.4) and
recall that we are assuming that gcd(k1, . . . ,km,d)= 1. LetJ denote the complement
of {0,k1, . . . ,km,d} in {0,1, . . . ,d}, andVJ the(m+2)-dimensional subspace ofCd+1
obtained by settingxj = 0, j ∈ J . Note that�∩VJ is nonempty.

Lemma 2.5. For b = 1, . . . ,d−1, the restriction ofθb(x) to VJ is nontrivial. The
same is true of any of its derivativesDuθb, u ∈ Nm+2, with respect to variablesxi ,
i �∈ J .
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Proof. Note that ifρs = (ρs
1, . . . ,ρ

s
d)

T andθ = (θ1, . . . ,θd)
T , thenθ =M−1 ·ρs

whereM is the nonsingular matrixM = (ξai ), i,a = 1, . . . ,d. In particular,θb(x) ∈
�((0,−s))(
).
We now claim that for any set of indicesa1, . . . ,as such thata1+·· ·+as = b+(d,

for some( ∈N,

θb(x)= λ ·
[
xa1−1 · · ·xas−1x(b+((−s)d)/d0 x

−(b+(d)/d
d

]
, (2.12)

for some nonzero constantλ. Indeed, forgetting for the moment the coefficients,
suppose thatxw = xw

(1) · · ·xw(s)
is a monomial appearing in the product

∏s
j=1σa′j (x)

wherea′1+·· ·+a′s = b+(′d. Then� ·w = (0,−s)T , and, therefore,xw must differ
from the monomial inside the bracket (2.12) by a monomial of the formxv, with
v ∈ �. This means that all the monomials in the power series ofθb(x) appear in
the$-series of (2.12). But, on the other hand, since we already know thatθb(x) is
�-hypergeometric, if a monomial such as the one in (2.12) appears in its expansion,
then the whole$-series must appear with the appropriate coefficients.
Suppose now that we set the variablesxj , j ∈ J , equal to zero. We may as-

sume without loss of generality that in the bracket in (2.12),a1−1, . . . ,ar−1 are
the only indices inJ . Since gcd(k1, . . . ,km,d) = 1, there exist positive integers
p′d,p′′d ,p1, . . . ,pm such that(

a1−1
)+·· ·+(ar−1)+p′dd = p1k1+·· ·+pmkm+p′′dd.

Settingpd = p′′d−p′d , there existsp0 ∈ Z such that

v := p0e0+p1ek1+·· ·+pmekm+pded−ea1−1−·· ·−ear−1 ∈ �.

Consequently, multiplication of the monomial in the bracket (2.12) byxv yields a
term in the$-series that does not involve any variables from the index setJ . On
the other hand, it is easy to check that all coefficientsγ (ui,vi) are nonzero, and,
therefore, the restriction ofθb(x) is nontrivial.
The statement about the derivatives ofθb(x) follows from the fact that forb < d, the

exponents ofx0 andxn in the bracket in (2.12) are not integers, while the exponents
with which any of the other variablesxki appear in the$-series cannot be bounded,
since for any( ∈N, the element

( ·(deki −(d−ki
)
e0−kied

) ∈ �.

Proof of Theorem 2.4.We consider first the caseα = (0,−s), with s a positive
integer. Thenψj(α)= ρs

j /s and, sinceρ
s =M ·θ withM nonsingular,ρs

1, . . . ,ρ
s
d are

linearly independent if and only ifθ1(x), . . . ,θd(x) are so. But comparing the expo-
nents ofxd in the corresponding$-series, it is clear thatθ1(x), . . . ,θd(x) is linearly
independent unless their restriction toVJ vanishes. On the other hand, Lemma 2.5
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asserts that onlyθd(x) may be identically zero when restricted toVJ . Hence, the
dimension of the linear span ofρs

1(x), . . . ,ρ
s
d(x) is at leastd−1 and is exactlyd−1

if and only if θd(x)= 0. But,

d∑
i=1

ρs
i (x)=

d∑
b=1

(
d∑

i=1
ξbi

)
·θb(x)=−dθd(x).

Thus,θd(x)= 0 if and only ifρs
1(x)+·· ·+ρs

d(x)= 0.
The assertion forα = (0, s) with s a positive integer follows from symmetry. In

view of the definition (2.6), the statement forα1 < 0 follows from that forα1 = 0,
using the assertion in Lemma 2.5 about the derivatives of the$-seriesθb(x).
It remains to consider the caseα1> 0. Suppose there is a nontrivial linear relation∑d
i=1λi ·ψi(α)= 0; because of (2.7), applying the derivative∂α1/∂xα10 we obtain

d∑
i=1

λi ·ψi

((
0,α2

))= 0.

But α �∈ I (�) implies that(0,α2) �∈ I (�), and, therefore,λ1 = ·· · = λd , and the
proof is complete.

The following result implies that the holonomic rank of the�-hypergeometric
system is at leastd+1 for all exponentsα ∈ E(�).

Theorem 2.6. For anyα ∈ E(�),dim(�alg(α)(
))≥ d+1.
Proof. For anyα ∈ E(�) the�-hypergeometric Laurent polynomials/�

0 (x) and
/�

d (x) are both nontrivial. In particular, 0< α2 < dα1. From (i) in Proposition 2.3,
we have that

ψ1(α)+·· ·+ψd(α) �= 0,

and Theorem 2.4 implies thatψ1(α), . . . ,ψd(α) are linearly independent. Moreover,
we show next that so are the functionsψ1(α), . . . ,ψd(α),/

�
0 (α). Suppose there is

a nontrivial linear combination/�
0 (α)=

∑d
i=1λi ·ψi(α), λi ∈ C. By differentiation

we obtain a similar relation

/�
0

((
0,α2

))= ∂α1/�
0 (α)

∂x
α1
0

=
d∑

i=1
λi · ∂

α1ψi(α)

∂x
α1
0

=
d∑

i=1
λi ·ψi

((
0,α2

))
.

But (1.10) implies that/�
d ((0,α2)) = 0, and, therefore,/�

0 ((0,α2)) =
∑d

i=1
ψi((0,α2)). Since according to (ii) in Proposition 1.14/�

0 ((0,α2)) �= 0, we have

that allλi = 1. This implies that/�
0 (α) =

∑d
i=1ψi(α) = /�

0 (α)+/�
d (α); that is,

/�
d (α)= 0, which contradicts our assumption.

Corollary 2.7. The toric ringR = C[ξ0, . . . , ξd ]/�� is Cohen-Macaulay if and
only if, for everyα ∈ C2, the dimension of the space of�-hypergeometric functions
of exponentα, at a generic point, is equal tod.
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Proof. The “only if” direction is Theorem 2 in [9] (see also [10] and [2]). To prove
the converse we note that, because of Proposition 1.6, ifR is not Cohen-Macaulay,
thenE(�) �= ∅, and the result follows from Theorem 2.6.

3. Bases of solutions and holonomic rank.In this section we determine the
holonomic rank of the�-hypergeometric system associated with a monomial curve
for all integral exponents and exhibit explicit bases of local solutions constructed in
terms of the roots of the generic polynomial (0.5).
Four different scenarios need to be considered.
• The exponentα ∈ I (�): In this caser(α)= d and we construct, in Theorem 3.1,
d−1 local solutionswhich, together with the hypergeometric polynomial%�(α),
define a basis of solutions.

• α ∈ E(�): We now haver(α)= d+1 and we have constructedd+1 (algebraic)
local solutions in Theorem 2.6.

• α ∈ (E0(�)∪Ed(�))\E(�): The holonomic rank equalsd and we have from
Theorem 2.4 a basis of algebraic solutions.

• α ∈ J (�): Then	(α) = {0}, r(α) = d, and we construct a basis of local solu-
tions in Theorem 3.5.

In Theorem 3.7 we determine the holonomic rankr(α) for all α ∈ Z2. Our starting
point is a result of Adolphson [2, Cor. 5.20], which states that even without assuming
that the ringR is Cohen-Macaulay, the equalityr(α) = vol(P ) holds for so-called
semi-nonresonant exponentsα. In our particular case, this condition is equivalent to
α being in the Euler-Jacobi cone (1.13).
We consider first the case whenα ∈ I (�), that is, when the�-hypergeometric poly-

nomial%�(α;x) �= 0. By Proposition 2.1, given a rootρ(x), the functionψρ(α;x)
satisfies the higher-order equations (0.1) but, clearly, not the homogeneity equations
(0.2). However, if we fix a choice of a root̂ρ, then, for any other rootρ, the function

τρ(α) :=
dα1∑
i=0
i �=α2

%�
(
α1, i

)ρi−α2− ρ̂i−α2
i−α2

+%�(α) log

(
ρ

ρ̂

)
(3.1)

is �-hypergeometric with exponentα. Indeed, it differs fromψρ(α)−ψρ̂(α) by a
constant multiple of%�(α).

Theorem 3.1. Givenα ∈ I (�) and a choice of a root̂ρ of f (x; t) on 
, the
functions%�(α) and τρ(α), whereρ runs over all roots off (x; t) on 
 different
from ρ̂, are linearly independent,�-hypergeometric functions.

Proof. Supposeα = � · u,u ∈ Nm+2, and suppose there is a nontrivial linear
combination

λ%�(α)+
∑
ρ �=ρ̂

λρτρ(α)= 0.
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Applying the operatorDu and using (1.2) and (2.7), we may assume thatα = (0,0)
and, consequently,%�(α)= 1, τρ(α)= log(ρ/ρ̂), and

λ+
∑
ρ �=ρ̂

λρ log

(
ρ

ρ̂

)
= 0. (3.2)

Implicit differentiation of the equationf (x;ρ(x)) = 0 yields∂ρ/∂x( = −ρ(/f ′(ρ),
(≥ 0 and, consequently,

∂ logρ

∂xd
= 1

d

∂ρd

∂x0
= ψρ((−1,−d)).

Hence, derivating (3.2), we obtain∑
ρ �=ρ̂

λρ
(
ψρ((−1,−d))−ψρ̂((−1,−d))

)= 0,

which, in view of Theorem 2.4, impliesλρ = 0 for all ρ �= ρ̂.

Suppose now thatα ∈ J (�). In particular,α �∈ I (�), and, by (ii) in Proposition 2.3,
/�(α) = 0. Recall also that this case includes all integral exponents lying in the
Euler-Jacobi cone.
As before, we let
 denote a simply connected open set inCm+2 \+, and let

ρ1, . . . ,ρd denote the roots off (x; t), for x ∈
. Givenα ∈ Z2 such thatα1 ≥ 0, we
define

χ(α) :=
d∑

j=1
ψj(α) log

(
ρj
)
. (3.3)

Proposition 3.2. Supposeα ∈ J (�) is such thatα1 ≥ 0. Then the functionχ(α)
is �-hypergeometric with exponentα.

Proof. Since/�(α) =∑d
j=1ψj(α) = 0, it follows thatχ(α) satisfies the equa-

tions (0.2) with exponentα. In order to check that the higher-order equations (0.1)
are satisfied as well, we show, first of all, that ifα1> 0, then

∂χ(α)

∂x(
= χ

(
α−� ·e(

)
. (3.4)

Indeed,

∂χ(α)

∂x(
=

d∑
j=1

ψj

(
α−� ·e(

)
log
(
ρj
)+ d∑

j=1
ψj(α)ρ

−1
j

∂ρj

∂x(

= χ
(
α−� ·e(

)+ dα1∑
i=0

%�((α1, i))

i−α2


 d∑

j=1
ρ
i−α2−1
j

∂ρj

∂x(


 .
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We claim that the second summand is identically zero. In fact,

d∑
j=1

ρ
i−α2−1
j

∂ρj

∂x(
= ∂

∂x(


 d∑

j=1

ρ
i−α2
j

i−α2


 .

Assume%�(α1, i) �= 0, that is, there existsw ∈ Nm+2 such that� ·w = (α1, i). If∑d
j=1ρ

i−α2
j does not vanish identically, there existsv ∈ Zm+2 such thatvki ≥ 0 for

all i = 1, . . . ,m, and eitherv0 ≥ 0 or vd ≥ 0, verifying� ·v = (0,α2− i). But then
� ·(v+w)= α, which contradicts the fact that/�(α)= 0. This proves (3.4).
Arguing as in the proof of Proposition 2.1, the proof of Proposition 3.2 now reduces

to the following.

Lemma 3.3. Givens ∈ Z, s �= 0, andu ∈Nm+2, letβ =�·u andγ = (0,−s)−β.
Then, if/�(γ )= 0, the derivative

Du


 d∑

j=1

ρs
j

s
logρj




depends only onγ .

Proof. We argue as in (2.5); locally onx,

2πiDu


 d∑

j=1

ρs
j

s
logρj


= d∑

j=1

∫
$j

ts

s
logtDu

(
f ′(x; t)
f (x; t)

)
dt

=−
d∑

j=1

∫
$j

d

dt

(
t s

s
logt

)
Du

(
logf (x; t))dt

= c ·

 d∑
j=1

∫
$j

logt
tβ2+s−1

f β1
dt+

d∑
j=1

∫
$j

ts−1

s

tβ2

f β1
dt


 ,

(3.5)

where$j is a sufficiently small loop in the complex plane enclosing only the rootρj

andc = (−1)β1−1(β1−1)!. Now, according to (2.5), the last sum in (3.5) agrees, up
to constant, with

d∑
j=1

Du

(
ρs
j

s

)
=

d∑
j=1

Du

(
ψj((0,−s))

)= d∑
j=1

ψj(γ )=/�(γ )= 0.

Hence, the lemma and Proposition 3.2 follow.

We now extend the definition (3.3) ofχ(α) to the caseα ∈ Z2, α1< 0, by setting
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χ(α)=
{
D
−α1
0 χ

((
0,α2

))
, if α2 �= 0

Dk1D
−α1−1
0 χ

((
0,k1

))
, if α2= 0,

(3.6)

where we recall

χ((0, s))=
d∑

j=1

ρ−sj

−s logρj , s �= 0. (3.7)

Proposition 3.4. Letα ∈ Z2, α1< 0. Then
(i) χ(α)(t ∗x)= tα2χ(α)(x)− tα2 logt/�(α;x), wheret ∈ C∗, and

t ∗x = (x0, tk1xk1, . . . , tdxd);
(ii) if α ∈ J (�), χ(α) is �-hypergeometric with exponentα;
(iii) for M sufficiently large andj = 1, . . . ,m,

D
M(d−kj )
0 D

Mkj
d

(
χ(α)

)=DMd
kj

(
χ(α)

)
.

Proof. In view of (3.7), the first assertion follows from (3.6), together with the
fact thatρj (t ∗x)= t−1ρj (x), j = 1, . . . ,d.
If α ∈ J (�), /�(α;x) = 0, and it follows from (i) thatχ(α) satisfies the homo-

geneity equations (0.2). On the other hand, ifα ∈ J (�), the same is true ofα−�·u for
everyu ∈Nm+2. Hence, it follows from Lemma 3.3 thatχ(α) satisfies the equations
(0.1).
The last assertion follows again from Lemma 3.3 forM so thatα−(M d,M d kj ) ∈

��⊂ J (�).

Theorem 3.5. Let α ∈ J (�). Let
, ρ1, . . . ,ρd , be as above. Then the functions
ψ1(α), . . . ,ψd−1(α),χ(α) ∈�(α)(
) are linearly independent.

Proof. In view of Theorem 2.4, it is enough to show thatχ(α) is not an algebraic
function. In fact, we show that its orbit under the monodromy action ofπ1(Cm+2\+)

is infinite.
For generic valuesak1, . . . ,ad , the polynomialf ((0,ak1, . . . ,ad); t) has a root of

multiplicity k1 at the origin andd− k1 simple, nonzero roots. Thus, for|a0| small,
relative to|ak1|, . . . , |ad |, the polynomialf (a; t) has simple roots, andk1 of them,
say,ρ1, . . . ,ρk1, are very close to thek1th roots of−a0/ak1. This means that analytic
continuation of the roots along the loop

γ (θ) := (exp(2πik1θ)a0,ak1, . . . ,ad), θ ∈ [0,1]
returns the roots to their original values; but, for any choice of logarithm for all roots
of f neara,

γ ∗
(
log
(
ρj
))=

{
log
(
ρj
)+2πi, if j = 1, . . . ,k1;

log
(
ρj
)
, otherwise.



204 CATTANI, D’ANDREA, AND DICKENSTEIN

Sinceα �∈ I (�), it follows from (2.1) and (2.6) thatγ ∗(ψj (α)) = ψj(α) for any
j = 1, . . . ,d. Therefore, forα1 ≥ 0,

γ ∗
(
χ(α)

)= γ ∗

 d∑

j=1
ψj(α) log

(
ρj
)= χ(α)+2πi

k1∑
j=1

ψj .

Since 0< k1 < d, by Theorem 2.4,ψ1+·· ·+ψk1 �= 0, and, therefore, the orbit of
χ(α) under successive powers ofγ is infinite.
Suppose now thatα1< 0. Then,

χ(α)= ∂−α1

∂x
−α1
0


 d∑

j=1
ψj((0,α2)) logρj


= d∑

j=1
ψj(α) logρj +R(α).

It is straightforward to check thatR(α) is algebraic and invariant under the mon-
odromy action; that is,R(α) is a rational function. Since we have just shown that the
function

∑d
j=1ψj(α) logρj is not algebraic, the proof is complete.

3.6. Remark.Note that since the functionχ(α) is not algebraic, any rational�-
hypergeometric functionR with exponentα in the Euler-Jacobi cone must be a linear
combination ofψ1(α), . . . ,ψd(α). On the other hand, with arguments similar to those
in the proof of Theorem 3.5, it is possible to show the existence of a loopγ whose
action on the roots is a cyclic permutation. It is then easy to see thatR must be
a constant multiple of

∑d
j=1ψj(α), and, therefore, it must vanish. This gives an

alternative proof of Theorem 1.9.

Theorem 3.7. For everyα ∈ Z2,
d ≤ r(α)≤ d+1.

Moreover,r(α)= d+1 if and only ifα ∈ E(�).

Proof. Note first that the lower bound follows from Theorem 2.4 (forα ∈ E0(�)∪
Ed(�)), Theorem 3.1 (forα ∈ I (�)), and Theorem 3.5 (forα ∈ J (�)).
Suppose now thatα is in the Euler-Jacobi cone��. Then, as we observed before,

α is semi-nonresonant in the sense of Adolphson, and it follows from [2, Cor. 5.20]
that r(α) = d. For anyα ∈ Z2, there existu ∈ Nm+2 such thatα−� ·u lies in ��,
and, because of Theorem 1.9, for any suchu, the kernel of the linear map

Du :�(α)→�(α−� ·u)
contains	(α). We determine the dimension of�(α) by computing the kernel and
the image ofDu for suitableu.
Suppose first thatα ∈ J (�). For u = (ek1, ( % 0, we haveα −� · u ∈ ��,



THE �-HYPERGEOMETRIC SYSTEM OF A MONOMIAL CURVE 205

and it follows from Proposition 1.2 and Corollary 1.5 that ker(Du) = 	(α) = {0}.
Therefore,Du is a monomorphism, which implies that dim�(α) ≤ d. Since it
is at leastd, we deduce that dim�(α) = d. Suppose now thatα �∈ J (�); then
dim(	(α)) = 1 or 2. We can again chooseu = (ek1, (% 0, so thatβ := α−� ·u ∈
��. As the kernel ofDu is precisely	(α), it is enough to show that, for some(
sufficiently large, the dimension of the image ofDu is d−1.
From (2.6) and Theorem 3.5, we deduce that the functionsψj(β) generate a sub-

space of the image of dimension at leastd−1. The proof is completed by showing
that the functionχ(β) defined in (3.6) is not in the imageDu(�(α)).
Consider first the caseα ∈ E0(�). Choosing( = s d, we factorDu = Dsd

k1
=

D
k1s
d D

(d−k1)s
0 . Setα′ := α− ((d − k1)s,0). It is enough to show thatχ(β) �∈ D

k1s
d

(�(α′)). Note thatα′ ∈ E0(�) as well, and, therefore, we may assume without loss
of generality thatα1< 0 andβ = α−(ed ∈ �� for some sufficiently big(.
Letχ(α) be as in (3.6). Sinceβ ∈ ��, it follows from Lemma 3.3 thatD(

d(χ(α))=
χ(β). Therefore, ifφ ∈�(α) is such thatD(

d(φ)= χ(β), we must have

φ = χ(α)+F,

whereF depends polynomially onxd . On the other hand, because of (iii) in Propo-
sition 3.4 and the fact thatφ is hypergeometric, we have

DMd
kj

(F )=D
M(d−kj )
0 D

Mkj
d (F )

for all M large enough. This implies thatF is polynomial onxk1, . . . ,xkm as well.
But, it follows from (i) in Proposition 3.4 that

F(t ∗x)= tα2F(x)+ tα2 logt/(α)(x),

which is impossible, since the fact that the action oft does not affectx0 implies that
F(t ∗x) is polynomial int .
By symmetry, the result also holds forα ∈ Ed(�). Thus, it remains to consider

the caseα ∈ I (�). For ( large enough, so thatα′1 = α1− ((d − k1) < 0, we have
α′ = (α′1,α2) ∈ E0(�), and an argument similar to the one above yields the result.

3.8. Remark. In [19, Thm. 12.2], M. Saito, B. Sturmfels, and N. Takayama prove
Theorem 3.7 by the method of Gröbner deformations. They also show that the lower
bound vol(P )≤ r(α) holds for arbitrary� [19, Theorem 11.1].
Given α ∈ Z2, define �̂(α) := �(α)/	(α) if 	(α) �= {0} and �̂(α) :=

�(α)/C · χ(α) if 	(α)= {0}.
Corollary 3.9. For everyα ∈ Z2,
(i) dim(�̂(α))= d−1;
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(ii) For everyu ∈Nm+2, the operator

Du : �̂(α)→ �̂
(
α−� ·u)

is an isomorphism.
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