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THE si-HYPERGEOMETRIC SYSTEM ASSOCIATED
WITH A MONOMIAL CURVE

EDUARDO CATTANI, CARLOS D’ANDREA, anp ALICIA DICKENSTEIN

Introduction. In this paper we make a detailed analysis of#htypergeometric
system (or GKZ system) associated with a monomial curve and integral, hence res-
onant, exponents. We describe all rational solutions and show in Theorem 1.10 that
they are, in fact, Laurent polynomials. We also show that for any exponent there are at
most two linearly independent Laurent solutions and that the upper bound is reached
if and only if the curve is not arithmetically Cohen-Macaulay. We then construct, for
all integral parameters, a basis of local solutions in terms of the roots of the generic
univariate polynomial (0.5) associated with We also determine in Theorem 3.7 the
holonomic rank:(«) for all @ € Z? and show thad < r(«) < d+1, whered is the de-
gree of the curve. Moreover, the valde-1 is attained only for those exponentsor
which there are two linearly independent rational solutions, and, therefore= d
for all « if and only if the curve is arithmetically Cohen-Macaulay.

In order to place these results in their appropriate context, we recall the definition
of the s4-hypergeometric systems. These were introduced in a series of papers in the
mid-1980s by the G&hnd school, particularly Géand, Kapranov, and Zelevinsky
(see [7] and [9] and the references therein). et {vy, ..., v} C Z"*1 be a finite
subset that spans the latti#&™1. Suppose, moreover, that there exists a vexter
(A0, ..., An) € Q"1 such that(x, vj)=1forall j =1,...,r, thatis, the setd{ lies
in a rational hyperplane. Lef also denote thé: + 1) x r matrix whose columns are
the vectorsy;. Let £ C Z" be the sublattice of elementse 7" such thatd -v = 0.
Givena € C"*1, the si-hypergeometric system with exponent (or parameies)

Dy =0, ve, (0.2)
.

9
Zaijx.i%:aifﬂ, i=1...,n+1, (0.2)
j=1 J

wheresi = (a;j) and%, is the differential operator ifL":
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IO

v;>0 v <0

The #-hypergeometric system is holonomic (with regular singularities) and, con-
sequently, the number of linearly independent solutions at a generic point is finite
(see [7]). Letr(«) denote the holonomic rank of the system, that is, the dimension of
the space of local solutions at a generic pointin If we drop the assumption that
lies in a hyperplane, then the regular singularities property is lost, but, as Adolphson
[2] has shown, the system remains holonomic. The singular locus is described by
the zeroes of the principal-determinant (see [11]). We s@&t:= C[£1,...,&.1/%,
whereJdy is the toric ideal

G =(E"—6"uve N d-u=s-v) (0.3)

Whenn = 1, we can assume without loss of generality that
11 ... 1 1
&d:(o P d>’ (0.4)
where O< k1 < --- < k;, < d. Note that the condition that the columnsséigenerate
the latticeZ? is equivalent to gctk1, ..., k., d) = 1. The homogeneous idea),
defines a monomial curv&, c P"*1 of degreed whose homogeneous coordinate
ring is R. Xy is normal if and only if d = m + 1. Recall thatXy is said to be

arithmetically Cohen-Macaulay if and only if the rirgyis Cohen-Macaulay.
The system associated with (0.4) admits very interesting solutions. Let

f(x;t):= xo—i-xkltkl—f—---—i-katk’” +xg1? (0.5)

denote the generic polynomial with exponent&0...,k,,,d. It is not hard to see

that the powers®(x), s € Z, of the roots of f(x;7), viewed as functions of the
coefficients, are algebraic solutions of tlehypergeometric system with exponent

(0, —s). This fact was observed by Mayr [17], who constructed series expansions for
these functions. These have more recently been refined by Sturmfels [22]. The total
sum

ps(x) == pi(xX)+---+p5(x) (0.6)

is then a rational solution with the same exponent. Similarly, one can show that the
local residues

v dt
fexst) t
give algebraic solutions with exponenita, —b) and, again, the total sum of residues
is a rational solution.

Reg, ) ( ) , abelia=1 (0.7)
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In 81 we describe explicitly all rational solutions of thiehypergeometric system
associated with a monomial curve. Sincedbas in (0.4) the principal-determinant
factors into powers afg, x4, and the discriminani ( /), we know a priori what the
possible denominators of a rational solution may be. However, we show in Theo-
rem 1.10 that there are no rational solutions with a denominator that invalygs
and, therefore, every rational solution must be a Laurent polynomial. This is a some-
what surprising result that is peculiar to the case- 1 (see Example 1.11). One
may give explicit formulas for these Laurent polynomials in terms of hypergeometric
polynomials in fewer variables. When applied to the sum of powers of roots, one
recovers the classical Girard formulas. One also obtains similar expressions for total
residues in terms of hypergeometric polynomials.

We show that for any € 72 the dimension of the space of ration#thypergeo-
metric functions with parameteris at most 2. Moreover, the value 2 may be reached
for only finitely many values of, and this happens if and only if the rirgis not
Cohen-Macaulay.

In 82 we exhibit a family of algebraici-hypergeometric functions defined in
terms of the roots of the polynomidl(x;t). These are the building blocks for the
construction, in 83, of local bases of solutions and the determination of the holo-
nomic rank for all integral exponents. It becomes necessary to consider four possi-
bilities for the exponen&. These cases admit combinatorial descriptions (see (1.9))
and correspond to the existence of a polynomial solution, a 1-dimensional space of
rational—nonpolynomial—solutions, a 2-dimensional space of rational solutions, or
no rational solution for the given exponent. koe N”+2, the derivativeD, maps
A-hypergeometric functions ta-hypergeometric functions while changing the ex-
ponent fromx to @ — 4 - u. A careful analysis of the kernel and image of this operator
together with Corollary 5.20 of [2] leads to the determination of the holonomic rank
for all values ofa. We show, in particular, that

d<r(a)<d+1 (0.8)

and thatr (o) = d + 1 exactly for those parametesse Z2 for which the dimension
of the space of rational solutions is 2. Hencey) = d for all « € Z? if and only if
the curveX is arithmetically Cohen-Macaulay.

These results allow us to clarify the relationship between the holonomic rank and
vol(P), the normalized volume of the convex huf c R"*1 of « and the ori-
gin (which equals the degreg in the case of curves). It was originally claimed
in [9, Theorem 2] that(«) = vol(P) in all cases, but later it was pointed out by
Adolphson that, for resonant exponents, the proof required the assumption that the
ring R be Cohen-Macaulay (see [10]). In [2, Cor. 5.20], Adolphson showed that
r(a) = vol(P), for « a semi-nonresonant exponent, without any additional assump-
tions onR. The first explicit example where the equality fails is given in [23] and
described in Example 1.8.i). In [19], Saito, Sturmfels, and Takayama prove (0.8)
using Grébner deformation methods and show that the inequality > vol(P)
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holds without restrictions on.

Very little seems to be known about the problem of finding rational solutions of
differential equations beyond the case of linear differential operators in one variable.
In this case, Singer [20] has shown that one can determine in a finite number of
steps whether a given equation has a rational solution and find a basis for the space
of such solutions. Abramov and Kvasenko [1] have further studied the problem of
effectively finding rational solutions for such operators. In our case one could, in
principle, use noncommutative elimination to obtain linear operators in one variable
with coefficients that depend rationally on the other variables and apply Singer’s
decision procedure to characterize the rational solutions. This can be done in small
examples using noncommutative Grébner-bases packages skigh ésee [24]), but
we have not been able to obtain any general results in this manner.

Gelfand, Zelevinsky, and Kapranov have constructed series solutions for (0.1)—
(0.2), associated with regular triangulations of the polytépeNhen the exponent
« is nonresonant for the triangulation, it is possible to obtain in this mannépPyol
many independent solutions. There are, however, very interesting cases in which the
exponents are integral and, therefore, automatically resonant. For example, it has been
observed by Batyrev in [4] that the period integrals of Calabi-Yau hypersurfaces in
toric varieties satisfy asi-hypergeometric system with exponeats- (—1,0,...,0).

In this case, series solutions have been obtained by Hosono, Lian, and Yau ([14], [15];
see also [3], [5], and [13]). Very recently, Stienstra [21] has generalizeH-8eries
construction of Geéfand, Zelevinsky, and Kapranov to obtain series solutions in the
case of resonant exponents under a maximal-degeneracy assumption. In particular,
if « =0 andP admits a unimodular triangulation—which implies thais Cohen-
Macaulay—all solutions of (0.1)—(0.2) may be obtained in this manner. This method
also yields all solutions of interest in the context of toric mirror symmetry.

A key result, in the curve case, is Theorem 1.9, which asserts that fod there
are no rational solutions with integral exponents in the Euler-Jacobi cone. This cor-
responds to the classical vanishing theorem for the total sum of residues, a statement
that has a generalization as the Euler-Jacobi theorem (see [16] for the most general
form of this result). It is interesting to note then that Euler-Jacobi vanishing is a
consequence of the fact that residues satisfystHeypergeometric system. We also
point out that while the characterization of Laurent solutions follows from formal
arguments, the proof of the Euler-Jacobi vanishing involves transcendental methods.

AcknowledgmentsWe are grateful to B. Sturmfels for many helpful comments
and, particularly, for the statement and proof of Proposition 1.6. We also thank A.
Zelevinsky for useful suggestions and the two referees for their careful reading of the
manuscript and very thoughtful suggestions for improvement.

1. Rational solutions. The polynomial solutions of a generdthypergeometric
system admit a very simple description. Giver Z", we define thdypergeometric
polynomial
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xH xixh2
A . . 142 A
O (a; x) := E — = E — (1.2)
u! Cuglug!--uy!
ueN’ ueN’
Au=a Au=a

As usual, we se®* («; x) := 0 if « & s4-N". The following result, the verification
of which is left to the reader, is Proposition 2.1 in [18].

ProposiTION 1.1 ®*(a; x) is the unique, up-to-scaling, polynomial solution of
the «d-hypergeometric system with exponentMoreover, for anyt € N,

Dy (9" (a3 x)) = (0 — o -u; x), (1.2)

where D, stands for the partial derivative!“!/ax*.

The purpose of this section is to describe the rational solutions afithgpergeo-
metric system associated with a mat#ixas in (0.4). Note that fan = 0, the system
restricts to the homogeneity equations (0.2). Therefore, we may assume throughout
thatm > 1. To simplify our notation, we index alln + 2)-tuples by Ok, ..., k. d.

Leteg, ek, ..., eq denote the standard basisBt 2. Fori = 1,...,m we have

wy; = (d _ki)eo_dek,- +kieq e &£. (1.3)

The following observation will be useful in the sequel.

ProposITION 1.2 Suppose is a local holomorphic solution of (0.1)—(0.2), which
is polynomial with respect to any of the variables xy,, ..., x4. Theng is a Laurent
polynomial.

Proof. Sincey satisfies the equations (0.1), it follows from (1.3) that foradl N,
Do =Dy D, (1.4)

and, consequently, if is polynomial in any of the variables, it must be so in all of
the variablesy,, i = 1,...,m, and we may write

(p(x)zzgou(xo,xd)xvu’ x\/:(xkla"-aka)ﬁ
u

whereu varies in a finite subset di™, and eachy, (xg, x;) is homogeneous in
each variable with respective degreges 8, satisfyingdB; € Z, Bo+ Ba € Z. Thus,
0u(x0, xq3) = cuxgoxgd, ¢, € C. But, because of (1.4), for s e N sufficiently large,
DyD; ¢ = 0. Consequently, one, and therefore bothgefg; must be an integer.

Hencep is a Laurent polynomial. O

Note that in the 1-dimensional case,sdrhypergeometric Laurent polynomial may
not contain a nonzero term of the fomu* with uy, < 0. This follows from the fact
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that the singular locuX of the hypergeometric system is given by the zeroes of the
principal 4-determinant, that is,

T ={xo=0}U{xs =0} U{A(f) =0},

where A(f) is the discriminant of the generic polynomial (0.5). Alternatively, if
a solution contains a nonzero termx with u, < 0, being in the kernel of the
differential operatoD" D0 ’D ki it must also contain nontrivial terms of the form
cyx?, With v, = uy, —jd for all posmve integers, and this is clearly impossible.
A S|m|Iar argument shows that a Laurent solution may not contain terms of the form
cux*, with bothug < 0 andu, < 0.

Thus, any Laurent solution must be of the form

Lo(x)+Lg(x),

where Lo(x) has as denominators only powersxgf and L;(x) has as denomina-
tors only powers oft,. We note that the study dfg(x) and L;(x) is completely
symmetric. Indeed, let; =d —kj,—j1, j=1,...,m,

~ (101 - 11
&q=<o P d), (1.5)

and supposeR(x) is a Laurent solution of thed-hypergeometric system and ex-
ponenta = (o1, a2). (Although @ should be viewed as a column vector, we al-
ways write exponents as row vectors for simplicity of notation.) Then the function
I@(yo, Yeqs .-+ Ve, » Ya) Obtained fromR by the substitution

X0 Yds  Xkj P> Ve, Xd B> Yo, (1.6)

is a solution of th@i—hypergeometric system and exponaits (a1, dai — o).

LEMMA 1.3 Fora € s6-N"12, the only Laurent solutions of thé-hypergeometric
system are the constant multiples of the hypergeometric polynomial (1.1).

Proof. Suppose there is a Laurent solutibfix) of exponentx containing a term
of the form x*/x/, with u N"+2 u,; = 0, andr > 0 (we always assume that
monomials are written in reduced form). Theh (u —reg) = «. Letv € N2 pe
such thatd - v = «; thenst-u = - (v+rey), and the operatob, — D}, D,, being in
the hypergeometric system, must vanishiormhis means that must also contain a
termx* whose derivatived, D, (x"') is a nonzero multiple of Ac/;. Sincev, > 0, this
is clearly impossible. Arguing by symmetry, we see that there cannot be a solution
containing a term of the form" /xg, with ug = 0 andr > 0. O

We denote byB the matrix

1 1 ... 1
%:(0 ky - km>



THE si-HYPERGEOMETRIC SYSTEM OF A MONOMIAL CURVE 185
and byx’ the vector consisting of the first+ 1 variables(xo, xi,., . .., Xk, ). Similarly,
let € be the matrix

e (1 11
“\k1 o ky d

andx the vector(xy,, ..., xx,,, X4)-
Givena € 72 we define

% (ot’(r); x/)

Wil oix) = (=" (r =D — , (1.7)
r>1 d
wherea'(r) = a+r(1,d), and
€ (~ -1
W (e x) = Z(—l)’(r—nzw, (1.8)
r>1 0

wherea(r) =a+r(1,0).

Note that both sums are finite. This follows from the fact tl&t(a’(r); x") = 0
unlesse/(r) € B - N"*1: but thenas +dr < k,, (1 +7r), and, therefore(d — k,,)r <
kma1 —a2. This means that the possible values afi (1.7) are bounded bgk,,, a1 —
a2)/(d—ky). The statement for (1.8) follows by symmetry. In fact, we should observe

that the change of variabl€s.6) transforms¥?/ (o; x) into W' (&; x).

The following subsets of? play an important role in the description @thyper-
geometric functions:

1(sA) := o4 - N"T2.
Fo(sh) :==6-N""1—N(1,0);  Eo(sd) := Fo(od)\ I (s0);
Fa(sh) :=B-N"TP N1 d);  Eg(sh) := Fa(s)\ 1 (sd); (1.9)
E(sd) := Eo(s) N Eg(sd); J(s) 1= Z2\ (I (s4) U Fo(s) U Fy(sd)).

Note that via the change of variables (1.6), and denotingxfet (a1, a2) € 72,
& = (a1, da1 —ap), we have ford as in (1.5):

I(s0) =1(s);  Fo(sd) = Fa(sl):  Fu(sk) = Fo(s).

It is clear from the definitions (1.7) and (1.8) thﬂ'gq(oc;x) # 0 if and only if
a € Fo(sA) and, similarly,llfjﬁ(a;x) # 0 ifand only ifa € F;(s4). In particular,

\Il;}ﬁ(oz; x)=0, ifda1 <oy, (1.10)
and
Wil(a;x) =0, ifap <O. (1.11)

On the other hand, the importance of the 984§6«) and E;(s4) stems from the fact
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that according to Lemma 1.3, it is only for € Eg(«d) (respectivelyo € E;(+A))
that the Laurent polynomiaﬂ!?(a;x) (respectively,tlf;‘;‘l(a;x)) may be—and as
the following result shows is-s¢-hypergeometric. Note also that there are gto
hypergeometric Laurent polynomials with exponent J(«), and it is a conse-
guence of Theorem 1.10 that there are no ratiofidlypergeometric functions with
exponentx € J ().

TueoreM 1.4 Leto be as in (0.4) andk € 72\ I (s1). Then:
0] \Iqu(a;x) and \llgd(oe;x) are solutions (possibly trivial) of thel-hypergeo-
metric system with parameter,
(i) foranyu e N"+2,

Du(\lqu(a;x)) = \Iqu(a—&iw;x); D, (\P(S)‘l(a;x)) = \118&(01 —d-u;x);
(1.12)

(iii) the functionslqu(a; x) and \Ilg"'(oe; x) span the space of Laurent solutions of
the si-hypergeometric system with parameder

Proof. Clearly, (i) is an immediate consequence of (ii) and, because of symmetry,
it suffices to show (1.12) fow’/ (; x). Suppose: € N"*2 is such that,; = 0; then

B~ .
WV @x) =Y (=1 (r =D Du(@ e @): x))

-
r>1 Xa

D% (o (r) —B-u; x')

=) (-1’ -D! .

r>1 Yd
= \Il;}ﬁ(a—&d-u;x).
Thus, it remains to prove (1.12) for the partial derivativg. We have
% (o (r); x’
Dy (o x) = X:(—l)rﬂr!—(errl )
r>1 d

OB ((a—oA-ey) (r+1);x
=3 (—pe (o xfi)l (r+1);x)
d

r>1

= Ui (a—dd-eq: x).
The last equality follows, since ¢ s¢-N"*2 implies that
?((a—st-eq) (D;x') = @*(a;x") = 0.

Suppose now thak (x) is a Laurent solution with exponemnt, and write L(x) =
Ly(x)+ Lo(x). If we decompose further,

Ay (x!
Ld(x>=2¥,

-
r>1 d
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then the polynomials, (x") must be solutions of th&-hypergeometric system and
exponent!’(r). Thus,A, (x") = ¢, ®% (o' (r); x"). Assume now that far, s > 1,r # s,
we haved’(r), o’ (s) € I(B), and letv, w € N"+1 pe such thats - v = o/(r) and
B-w=da'(s). Then, sinced - (v+sey) = A - (w+rey), the operator

glvi+s  glwl+r

0xVxy B ax¥x),
is in the hypergeometric system and must vanistLomhis means that

(D s =DIMI(A() (=D s = DMI(A ()
=Dl A =Dt

’

which implies that
(=1)° o = (=1’ c
r=1!""" (s=1)!

s

and, consequently,
¢ =c(=1"(r—-21!.

A symmetric argument shows that if the componggéx) is nontrivial, then it must
be a constant multiple of3' (a; x), which proves part (iii). O

We state for emphasis the following result.

CoroLLARY 1.5 Lets be asin (0.4), and le¥(«) denote the vector space gf
hypergeometric Laurent polynomials of exponenfThendim%(«) < 2. Moreover,
dim%(«) > 1if and only ifa € I(4)U Eg(4) U Eg(sd), anddim£(«) = 2 if and
only ifa € E(A).

The following result was brought to our attention by Bernd Sturmfels.

ProposiTION 1.6, Givend as in (0.4), the ringR = C[&, ..., &4]/%y is Cohen-
Macaulay if and only ifE () = @.

Proof. The ring R is a particularly simple example of an affine semigroup ring
whose properties have been extensively studied (see, for example, [6, Chap. 6], [12],
and [25]). In fact, Proposition 1.6 is a special case of Theorem 2.6 in [12], which
gives necessary and sufficient conditions for an affine semigroup ring thatg like
does, admits a system of monomial parameters. Their condition (ii) is easily seen to
be equivalent, in our notation, ®©(s) = @. O

1.7. Remarks. (i) When the curveXy is normal, that isd = m + 1, the sets
defined in (1.9) have a very simple description: The imagé) coincides with the
“cone” (properly speaking, semigroup)

Q= {a = (a1, a2) € 7?:0<ay Sdal}»
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while Eq(sd) = {o € 72 : a2 > 0,day < ap} andEg () = {a € 72 : ap < 0,dag >
a»}. The complement (s4) of these three sets, that is, the sewxof Z2 for which
there are nod-hypergeometric Laurent polynomials of exponeftis the Euler-
Jacobi cone

€9 .= {(oel,otz) eZ?:day <ay < O}. (2.13)

(i) For arbitrary# as in (0.4), we havé () C 6, E(4) C 6, and€$ C J(A).

(iii) The conditions (1.10) and (1.11) are far from being sharp. It is easy to see, for
example, that forr € €, W§' (a; x) # 0 and ¥ (a; x) # 0 imply thatkior < a2 <
kmaa. In particular, ifm = 1, k1 = k,, and there is na € 6 for which both\Ifgq(a; x)
and \Lr;f(oz;x) are nontrivial. Hence, there is for eaghat most one, up to constant
multiple, Laurent solution of exponent Note also that the toric rin® is always
Cohen-Macaulay but it is normal if and onlydf= 2.

(iv) It is not hard to prove (see, for example, [2, Lemma 3.12]) that there exists
v € sl - N"*+2 such thatv +% c I(sd). Thus, fora € v+ %, there is a uniqued-
hypergeometric Laurent polynomial, and it is given by (1.1). Moreover, when this
observation is combined with the inequalities in (iii), it follows that the Bétl) is
finite.

1.8. Examples.We exhibit two examples wherB(s) # ¢ and, consequently, the
associated toric rin@ is not Cohen-Macaulay.
(i) This is the “running example” in [23]. Let

1 111
A= (o 13 4) '
The exponentr = (1, 2) is the unique element if¢ such thate ¢ I(4) andai <
a2 < 3o, Both Wi (1, 2); x) = (—1/2)(x2/x0) andW§! (1, 2); x) = (—1/2) (x5 /xa)
are nontrivial.

The elemeng = (2, 3) € Fo(d)NF4(A). Therefore bothllg“(ﬁ; x)= (—1/6)xf/x0
and \Df(ﬂ; x) = (—1/2)x1x§/x4 are nontrivial. However, sincg = o - (eg+e3) €
1(sd), it follows from Lemma 1.3 that neithebg'(8; x) nor Wi (B; x) is si-hyper-
geometric, and the only-hypergeometric Laurent polynomials of expongnéare

the multiples of the polynomiab® (8; x) = xgx3.
(ii) Consider the system associated with the matrix

111 1 1
‘9“=<o 6 7 13 1A>
anda = (2,18) ¢ 1(#A). We have

1x3 1xex2,  1xzxd
\1184((2, 18); x) = —éi; \pﬁ((z’ 18);x) __ = 13, = 13

x14 6 x2,
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It follows from (1.10) and (1.11) that there are sishypergeometric Laurent poly-
nomials whose exponeatis in the Euler-Jacobi cone (1.13). In fact, as the following
result shows, there are mational solutions with exponent in that region.

THEOREM 1.9, Thesd-hypergeometric system associated with the matrix (0.4) has
no rational solutions whose exponenties in the Euler-Jacobi cone.

Givena € 72, we denote by (x) the vector space of rational-hypergeo- met-
ric functions of exponeni. Before proving Theorem 1.9, we note the following
consequence.

THeEOREM 1.1Q The only rational solutions of thel-hypergeometric system as-
sociated with the matrix (0.4) are the Laurent polynomial solutions described by
Proposition 1.1 and Theorem 1.4.

Proof. Supposep € %(«). For ¢ € N sufficiently large, = o — €(1, k1) lies in
the Euler-Jacobi cone. Theﬁ,flw € R(B), and therefore it is identically zero by
Theorem 1.9. Hencey is polynomial inxg,, and by Proposition 1.2 it must be a
Laurent polynomial. O

1.11. Example. Theorem 1.10 is not true far > 1. It fails already in the simplest
2-dimensional situation: Consider the hypergeometric system associated with the

matrix
1

1 1 1
A=10 1 0 1].

0 011
The lattice& has rank 1; in factt = Z- (1, —1, —1,1)7, and the system (0.1)—(0.2)

is equivalent to Gauss's classical hypergeometric equation. The functisnxd —
x2x3) IS a solution with parameters-2, —1, —1).

Proof of Theorem 1.9.The proof is by induction om. We begin by considering
the casen = 1 and write, for simplicityks = k. Note that in this case the lattice
¥ has rank 1 and is generated by:= (d — k)eg — dex + key. In particular, for
appropriate values af, we can write thed-hypergeometric functions in terms of
classical hypergeometric functions (see [9, 83.1]).

The discriminant of the generic polynomied + xxzX + x4¢ is, up to factors that
are powers ofg andxg,

Ax) = a3 kb ()R @ - )Rl = exf (1-22),
wherec = (~ 1)~k (d —k)?*, z = x© = xdFx9xk, and

B (_1)ddd
kR (d = k)

Suppose now thak(x) = P(x)/Q(x) € R(x) with @ € €¢, that is,da < az < 0.
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Note that both? and Q are bihomogeneous relative to tAé-degree defined byi.
We can then writeP (x) = x¥ P1(z), where Py is a polynomial andPy(0) # 0. Thus,
up to a constant,

u ( ) ©
R(x) =" 7 Pi(z K3 ejd =x Y ejxd?, (1.14)

( ]>O ]>O

with cg #0 andsd - u = «.
SinceR is in the kernel of the differential operator

%, = D3 * D% — Df, (1.15)

the coefficients in (1.14) satisfy the relation

d—1 d—k-1 k-1
ci[Twr—jd—€)=cjsa [ (wo+G+D@d—k)—£) [T (a+G+Dk—2"),
(=0 =0 =0

(1.16)

forall j € Z. Settingj = —1 we get

O0=co (uo — E/) 1—[ (Md — 8”),

=0 =0

which implies that either & up <d—k—1 or 0< uy < k—1. On the other hand,
kup+dug = ar < 0anddug+ (d —k)ur = day —a < 0, which means that in either
caseuy < 0. Therefore, the left-hand side of (1.16) is never zero and, consequently,
neither is the right-hand side. This implies that> 0 andu,; > 0 and for allj > 0,

(—uk —I-jd)
(uo+j(d—k) (ug+ jk)!

cj= c(—l)jd

for some constant.

But a function with such an expansion may not be rational. Indeed, Stirling’s
formula implies that, asymptotically,; ~ nj~*A//./j, for some constant. On
the other hand, for a rational functigh whose denominator is a power @f— 1z),
we would havec; = p(jHA/, with p a polynomial. This completes the proof of
Theorem 1.9 in the case = 1.

Assume now that Theorem 1.9 and its consequence Theorem 1.10 are valid for
m—1,m > 2, and consider thel-hypergeometric system associated with the matrix
s in (0.4).

Let R(x) be a rational solution with parameterin the Euler-Jacobi cone; that is,

a = (a1, a2), Withday < az < 0. Suppose we can writ(x) = P(x)/(x;Q(x));r >
0, and assume thay does not divideP (x) or Q(x). Again, letx” = (xo, Xk, ..., Xk, ),
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and writeQ (x) = ZZ:OQk(x/)x§1 with go(x’) # 0, and sety (x') = —gix (x") /go(x").
Then,

R(x) = % (1+ > <ch(x/)x§) ) = > A(¥)xf. @17

*a m=1 \k=1 e>—r

By inductive assumption, sincé,(x’) is a rational%-hypergeometric function, it
must be a Laurent polynomial as described by Theorem 1.4. (Note that even though
we may have = gcd(ky, ..., k) > 1, we may easily reduce to the system associated
with a matrix wherek; has been replaced by /¢.) Setx; = 0 and consider the
nontrivial rational functiom_, (x") = P(x’,0)/Q(x’, 0) that hash-exponent’(r) =
(a1+r,a2+dr). Itis clear that! (r) ¢ E(%), and hence there may be, up to constant,
at most one Laurent solution with exponeritr). We distinguish the two possible
cases.

(i) SupposeA_,(x’) is a nonzero multiple oﬁ/,;g*m (o/(r), x"). Then it contains a
nonzero term of the form

,Em’ s > 0,
where x* is a monomial with positive exponents involving only the variablgs
Xky»---» Xk, 4. Thus, a Laurent series expansionRifr), as a function ok,, has a
nonzero term of the form .
xu
—> r>0,5>0.
Yen™ta
Successive applications of the fact tiiais in the kernel of the operator (1.15), with
kn in the place ok, yields thatR must also contain a nonzero term whose derivative

D}~ pitn is a multiple of

LU

X
——\ r>0,5s>0
s+dj _r
Y Xd

for all j > 0, which is impossible as soon @&, > r.
(i) SupposeA_,(x’) is a nonzero multiple Oﬂlga(a’(r),x/). Then it contains a
nonzero term of the form
XU
—, §>0,
X0
where x* is a monomial with positive exponents involving only the variables
Xk, - Xk,,» Which implies that a Laurent series expansionRgk), as a function
of x4, has a nonzero term of the form

)‘éu
> 1 >0,5>0.
Xo*aq

But, since the operator (1.15), wikh, in the place ok, must vanish orR, there must
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also be a nonzero term of the form
i“x,fm

W’
which contradicts the index bound in (1.17).

By symmetry, we can then assume ttRtx) = P(x)/Q(x) and neitherx; nor
xo divide Q. Thus, R(x) is written as in (1.17) with- = 0. For each? > 0, Ay (x')
is a solution of the3-hypergeometric system with expongaty — £, a2 — d¢). By
inductive hypothesis, these must be Laurent polynomials, and it is easy to check that
the only possible denominators are powerscgf. Thus, only powers ok, may
appear in the denominator of the above expansiorkfowhich implies thatgo(x’)
must be of the formck , and, thereforeQ(x) has bidegre€d, k,,d). On the other
hand, a symmetric argument would imply th@€x) must contain a term of the form
xkl, and, henceQ(x) should have bidegreg, k1¢). Sincem > 1, this implies that
Q(x) has degree zero, but the(x) is a polynomial solution, which is impossible
since, being in the Euler-Jacobi cone¢ s - N"+2, O

As we noted before, givene Z, the sum (0.6)p;(x) = pj (x)+---+pj(x), of the
powers of the roots of the generic polynomial (0.5) is a ratiofidlypergeometric
function with exponent0, —s). By Theorem 1.10 it must be a Laurent polynomial
and, therefore, expressible in termstbf and \lfdﬂ. In fact, we have the following
result.

CoROLLARY 1.12 Fors > 0,

K B ) v/
po(0) =5 WO~ 1) =53 (D tr -1 ((”i,l 2 g

r=1

while fors < 0,

s 6 S P
ps<x>=s-wsﬁ(<0,—s>;x)=S~Z<—1>’<r—1>!%6”’x). (1.19)

r=1

Proof. It suffices to consider the normal cage= m + 1, and then set the appro-
priate variables equal to zero. For 0, it follows from (1.11) thatp,(x) must be a
multiple oqu;ﬁ((o, —s); x). Itis easy to see that the value of the multiple musi bg
specialization to the case whefix; 1) = ¥ +19~1. The statement far < 0 follows
by symmetry after observing that with the change of variables (1. 6) the polynomial
f(y; 7) associated with the matrix in (1.5) is given byf(y;7) = ¢ f(x; T~ 1)
and, consequently, its roots are the inverse of thosg. of O

1.13. Remarks. (i) Note that each term in the right-hand side of (1.18) is of total
degree zero and, therefore, we may expregs) as a polynomial iny_;/xs =
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(=1)/oj(p1,...,pa), j = 1,...,d, whereo; is the jth elementary symmetric poly-
nomial. This yields the classical Girard formulas.

(i) As we noted in the introduction, the total sum of the local residues (0.7) gives
a rationald-hypergeometric function with expone@ta, —b) and hence, as in Corol-
lary 1.12, it must be a multiple oF5' ((—a, —b); x), if b > 0, and o' ((—a, —b); x),
if » < 0. In particular, fora =1, b > 0, we have

ZRe (zb dt) 0, if0 <b<d;
PO Fan 1 — W ((—1,—b)x), ifb>d.

We end this section with a result that should be seen as a complement to (1.10) and
(1.11) and which is of use in 8§2.

PROPOSITION 1.14 Leta = (a1, a2) € 72\ I (s4), and sets = s(«) := dog — az.
@) Ifs>0, thenllljﬁ(ot; x) =0if and only if ps(x) = 0.
(i) If a2 > 0, thenW! (a; x) = 0if and only if p_g, (x) = 0.

Proof. It suffices to prove the first statement and then deduce (ii) by symmetry.
Supposes € 72 with f1 = a1 —r, r > 0, ands(8) = s(«). Then, if\Ilji(a;x) =0
we have by (1.12)u3}(8;x) = D, W5 (o; x) = 0. But, if U5 (a; x) # O, then the
same argument implies thalljﬁ(ﬁ;x) # 0 since the dependence @ff(a;x) on
x4 is not polynomial. Hence, givea, 8 € 72\ s - N"*2 such thats(«) = s(8),
W (o; x) = 0 if and only if W5 (B; x) = 0. The result now follows from the fact that
W0, —s5); x) = sp, (x). O

2. Algebraic solutions. In this section we introduce a family;,, of local alge-
braic solutions of thed-hypergeometric system associated with a monomial curve.
These solutions, which are given in terms of the rgats) of the generic polynomial
(0.5), play a central role in 83 when we compute the holonomic rank and construct a
basis of local solutions for all exponents= Z?.

Let s be as in (0.4). Given an open setc C"*2, let %(«)(U) denote the space
of solutions, holomorphic ofil, of the s{-hypergeometric system with exponent
and let¥#ag(ar) (W) denote the subspace of algebraic solutions. We drop the reference
to the open sefl whenever we are only interested in the space of local solutions
around a generic point. Let(x) be a root of the polynomiaf (x; ¢) defined by (0.5),
holomorphic forx in some simply connected open subdet C"*2\ ¥.

Givena = (a1, a2) € 72, a1 > 0, we define

doy 1 az(x)
Volasx) = ) &% ((an,i);x )—l

i=0

iFap

+ o (a;x)log(p(x)).  (2.1)
P,

Note that the condition # a2 is automatically satisfied whaw < 0 or az > doy,



194 CATTANI, D’ANDREA, AND DICKENSTEIN

and that forey =0, a2 # 0, ¥, (@) is justp~*2/(—a2). (If there is no ambiguity, we
drop any reference to the variable

Fora ¢ I(sd), the hypergeometric polynomiah® («; x) vanishes, ands, () is
an algebraic function. This is the case that is of interest in this section; however, in
§3 we need (2.1) for arbitrary € Z2, and it is, therefore, economical to work in this
slightly more general setting. We extend the definition/gf«) to the caser; <0
in (2.6).

ProposITION 2.1 Leta, o’ € Z? and assume thaty, o) > 0. Letu,u’ € N"+2 be
suchthatu —d-u =o'’ —-u’. Then

Dyyp(@) = Dyrp (Ol/). (2.2)

Proof. In order to prove (2.2), we show, as a first step, that # (a1, «2) and
a1 > 0, then

o (@) = v o=t @3)

Since, by (1.2)p (@ («))/dx = PH(a — i - ep), we have

daq

0
a—xe(wp(oo qu@ (al—lz—@) +q>&4( — sl-e¢)10g(p)

’*“dzal (2.4)
AN i—go—1 0P _10p
o i—ap—1 9F & 157
+Z<I> ((e1,7))p oy T @R
iFap

Note that the last two terms in the expression above cancel, giti¢e; p(x)) =0

implies that
doy

Z CI>&i(oq, i)pi = — ¢ (o) p*2.
i;#otz

On the other hand, setting=i — ¢, the right-hand side of (2.4) becomes

dlD pi—(@2=0)
Z @d((al— 1, ]))— +d>&q(oc —&d-eg) log(p) = wp(oz —&d~eg),
j=0 J— (az _Z)

Jug—t

where we have used that the hypergeometric polynomial(a1 — 1, j)) vanishes
for j <0orj > d(a1—1). This proves (2.3).

Applying (2.3) successively we may assume that= o) = 0. Supposex =
(0, —s), s # 0, so thatd* () = 0 andyr,(a) = p*/s. Givenu € N"+2 we want to
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computeD, (¥, («)). Locally onx we can write
27i t fl(x;0)
Du —p' )= _Du
<Sp) /rs (f(x;t))dt

:/ i<ﬁDu(logf(x;t))>dt—/ts_lDu(logf(x;t))dt (2.5)
rdt r

N

_ o tﬁz
=(-1h 1(,31—1)3/;‘ 1ﬁdt,

whered -u = (B1, B2) andT is a sufficiently small loop in the complex plane. Thus
D, (Y, («)) depends only on the paiy, B2 +5) = —(¢ — st -u). If @ = (0,0),
¥, ((0,0)) = log(p) and we can show thd?, (log(p)) depends only on{ - u, arguing
as above with lo¢) taking the place of* /s. This completes the proof. O

Proposition 2.1 now allows us to extend the definition/gfw) to the caser; < 0.
Indeed, let: € N"*2 be such thatd-u = (81, B2), with 1 > —a1, and set

V() := Dy (Yol +5d-u)). (2.6)

Clearly, this definition does not depend on the choice:ofnd for anya € 72,
ue Nm-ﬁ-Z,

Du(p(@) = Yp(a—sh-u). (2.7)

If « & I(s4) we can choose so thatw + s -u ¢ I(+A) either, and, hencey, () is an
algebraic function.

THEOREM 2.2 For o € 72\ I () the algebraic functiong, («) are si-hypergeo-
metric.

Proof. Given (2.6), it suffices to consider the casg> 0. The hypergeometric
polynomials®®((«1,1); x) aresi-bihomogeneous of bidegrées, i) while the pow-
ersp!~*2(x) have bidegre€0, ap —i). Hencey, («) satisfies the homogeneity equa-
tions (0.2) with exponenk. On the other hand, it is an immediate consequence of
Proposition 2.1 tha, («) satisfies the higher-order equations (0.1). O

Let nowa ¢ C"*2\ ¥ be a simply connected open set, andlgty), . .., pa(x) be
distinct roots of the polynomiaf (x; r), holomorphic forx € U. Leta € 72\ I (),
and set); («) := ¥, (&) € Haig(ew)(U). The function

U (@) i= (@) + -+ Yala)

is then a rational solution of thel-hypergeometric system with parametessit
follows from (2.7) that, for any € N"+2,

D, (v (@) = U (@ — o -u). (2.8)
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PROPOSITION 2.3 Leta € Z2\ I (). Then,
() W (a;x) = Wil(a; x)+ Wi (a; x), defined as in (1.7) and (1.8);
(i) v (w) = 0if and only if there exist no nontrivial rational-hypergeometric
functions with paramete#;
(i) if @ = (a1, @2) anday > 0, then

daq
\Ilgq(oc;x) = Z @‘ﬁ((al, i);x)\llgi((o, az—i);x), (2.9)
iy
and
doy
\Iin(a;x) = Z CD&Q((al, i);x)llfjg((o, az—i);x). (2.10)

li:O
i>ap
Proof. By Theorem 1.4(iii), ¥*(«) is a linear combinationk\l!jq(oc; x) +
M\pgi(a; x). Moreover, ifag = 0, the result follows from (1.18) and (1.19). Therefore,
computing derivatives with respect.tg, the result follows for (@) = dag — a2 > 0,
a1 < 0, whereW§! («; x) = 0. By symmetry, (i) also holds far, > 0, a1 < 0.
If o € Z2\ 1(s4) is such that’l (a; x) # 0, then

9wt (@) 9"V (a)
szl N 8x31

(0, —s(@))) = =2w3H((0, —s(a))).

which impliesi = 1 since, because of Proposition 1.1:((0, —s())) # 0. A
similar argument shows that'iﬁgﬁ(a; x) #0, thenu = 1.

The second assertion is an immediate consequence of Theorem 1.4, while the
identities (2.9) and (2.10) follow from (i), together with (1.18) and (1.19). O

We now determine the dimension of the subspace of algebraic hypergeometric
functions ovefu spanned by)1 (@), ..., Ya(a), a & 1(HA).

THEOREM 2.4 For a € 72\ I(s), the si-hypergeometric functiongy(a), ...,
Yq(a) span a linear space of dimension at ledst 1. Moreover, they are linearly
dependent if and only i¥* (o) = 0.

Before giving the proof of Theorem 2.4, we first recall the construction b{f&Bel,
Zelevinsky, and Kapranov [9] df-series solutions for thel-hypergeometric system
and the expressions obtained by Sturmfels [22] for the roots(ef7) in terms of
them. We begin by considering the normal case, and eventually we specialize coeffi-
cients to study the general case. We only need to consider the coarsest triangulation
of the polytopeP, the convex hull ofd and the origin, that is, the one consisting of
the single simplexP. As before, we leff stand for the integral kernel of, that is,
the sublattice of elemenise 7911 such thatd - v = 0. Givenu € Q9+1, we define
the formal power series
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d
D Dl § (AR ) 1)

ve? i=0

where, for any rational numbarand any integep, we write

1, if v=0,
uu—Dw—-2)---(u+v+1), ifv<0,
v, v) = 1o, if u is a negative integer and> —v,
1 .
otherwise.

wW+DWw+2) - w+v)’
If u has no negative integer coordinates or is of the fedm..,0,1,—1,0,...,0),
the series{x,®---x;*] is a formal solution of thesi-hypergeometric system with
parametersi-u € Q? (see [9, Lemma 1] and [22, Lemma 3.1]). Moreover, if at most
two of the exponents; are nonintegers, the series (2.11) converges in a suitable open
subset ofC?*1\ = (see [9]).
Let&q,...,&; be thedth roots of—1 and sep; (x) := Zgzl &'-04(x), where

_ 1 _ _
o1(x) := [xé/dxd (1/d)]; oq(x) = 7 |:xa_1x(()a d)/dxd a/d], a=2,...,d.

It follows from [9, Prop. 2] that there exists an open¥et C4t1\ T of the form
V= {x € CL 1 xo|? U |xgl > MIx;1%; j #0,d),

for some positive real constamt, where all these series converge, and, according to
[22, Theorem 3.2], locally oft’ they define the holomorphi€ roots of the generic
ponnomiaIZ?zoxj -t/. Given a positive integerwe consider the poweys' (x) and
write

d
pr(x) = & 0p(x),

b=1

N
)= Y. (=D[]os .
a1+--+as=b+4d j=1
We now consider thel-hypergeometric system associated with the matrix (0.4) and
recall that we are assuming that gkd . .., k,,, d) = 1. LetJ denote the complement
of {0, k1, ..., km,d} in{0,1,...,d}, andV; the(m+2)-dimensional subspace @f +1
obtained by setting; =0, j € J. Note thatl"N V; is nonempty.

where

LEmmA 2.5 Forb=1,...,d —1, the restriction of,(x) to V; is nontrivial. The
same is true of any of its derivativéy,),, u € N+ 2 with respect to variables;,

igl.
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Proof. Note that ifp* = (pj,..., )T andd = (61,...,60,)7, thend = M~1. p*
whereM is the nonsingular matriy = (£{),i,a =1,...,d. In particular,6,(x) €
(0, —s))(W).

We now claim that for any set of indices, ..., a; such thatiy+---+a; =b+4d,
for somel € N,

b+(—s)d)/d —(b+ed)/d
eb<x>=x.[xal_1--~xas-1xé OB e ] (2.12)

for some nonzero constant Indeed, forgetting for the moment the coefficients,
suppose that” = x5 is a monomial appearing in the prodﬂgzlaa/_ (x)
J

wherea) +---4a; =b+t'd. Thend-w = (0, —s)T, and, thereforey® must differ
from the monomial inside the bracket (2.12) by a monomial of the fetmwith
v € £. This means that all the monomials in the power serie8,@f) appear in
the I'-series of (2.12). But, on the other hand, since we already knowdilia} is
A-hypergeometric, if a monomial such as the one in (2.12) appears in its expansion,
then the whold -series must appear with the appropriate coefficients.

Suppose now that we set the variables j € J, equal to zero. We may as-
sume without loss of generality that in the bracket in (2.12%-1,...,a,—1 are
the only indices inJ. Since gcdka, ..., k,,d) = 1, there exist positive integers
Pl Plys P1, .., pm SUCh that

(a1 —=2)+---+(ar = 1) + pyd = prks+-- -+ pukm + pyd.
Settingpqs = p); — p;;, there existgo € Z such that
v := poeo+ pieky+- -+ Pmek, + Pa€d —ea—1— "+ —€q,—1 € L.

Consequently, multiplication of the monomial in the bracket (2.12)byields a
term in theI'-series that does not involve any variables from the index/sédn
the other hand, it is easy to check that all coefficients;, v;) are nonzero, and,
therefore, the restriction &, (x) is nontrivial.

The statement about the derivative®gfx) follows from the fact that fob < d, the
exponents ofg andx, in the bracket in (2.12) are not integers, while the exponents
with which any of the other variables, appear in thd -series cannot be bounded,
since for any¢ € N, the element

K'(deki—(d—k,-)eo—k,-ed) e O

Proof of Theorem 2.4.We consider first the case = (0, —s), with s a positive
integer. Theny (o) = ,oj./s and, sincep® = M -6 with M nonsingularpy, ..., o are
linearly independent if and only #;(x), ..., 6;(x) are so. But comparing the expo-
nents ofx; in the correspondind -series, it is clear thaty (x), ..., 6, (x) is linearly
independent unless their restriction W@ vanishes. On the other hand, Lemma 2.5
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asserts that onlg,(x) may be identically zero when restricted ¥%. Hence, the
dimension of the linear span of (x), ..., o) (x) is at least — 1 and is exactly/ — 1
if and only if 6;(x) = 0. But,

d d d
Zpis(x) = Z (Zé,b> -Op(x) = —dbi(x).
i=1

b=1 \i=1
Thus,0,(x) =0 if and only if o] (x) +---+p3(x) =0

The assertion foor = (0, s) with s a positive integer follows from symmetry. In
view of the definition (2.6), the statement fetf < 0 follows from that foraeq = 0,
using the assertion in Lemma 2.5 about the derivatives of tseriess;, (x).

It remains to consider the casg > 0. Suppose there is a nontrivial linear relation
Zf’zl Ai-¥i(a) = 0; because of (2.7), applying the derivatif& /dx;* we obtain

ZA,-.I/;,-((O, a2)) =0.

But o ¢ I(s) implies that(0, a2) & I(«), and, thereforep; = --- = A4, and the
proof is complete. O

The following result implies that the holonomic rank of thehypergeometric
system is at least+ 1 for all exponents € E ().

THEOREM 2.6, For anya € E(HA), dim(Hag(a) (W) > d +1.

Proof. For anyx € E () the si-hypergeometric Laurent polynomialsgi(x) and
\Iljd(x) are both nontrivial. In particular, @ a2 < da1. From (i) in Proposition 2.3,
we have that

V(o) +- -+ Ya(a) #0,
and Theorem 2.4 implies thdt («), ..., ¥4 (x) are linearly independent. Moreover,
we show next that so are the functiofig(«), ..., ¥ (a), \Ilgﬁ(a). Suppose there is
a nontrivial linear combinatioﬂfgﬂ(oe) = Zf’zl)q i (@), A; € C. By differentiation
we obtain a similar relation

_ @ s, 9@ s
i=1

But (1.10) implies that\p;“((o,az)) = 0, and, therefore§'((0,a2)) = 374
¥ ((0, 2)). Since according to (ii) in Proposition 1.]!143%(0, a2)) # 0, we have
that all A; = 1. This implies thaWg! (@) = Y9, ¥ (@) = W (@) + i (@); that is,
\Iqu(oe) = 0, which contradicts our assumption. O
CoroLLARY 2.7. The toric ringR = C[&p, ..., &41/9y is Cohen-Macaulay if and

only if, for everya € C?, the dimension of the space @thypergeometric functions
of exponenty, at a generic point, is equal t@.
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Proof. The “only if” direction is Theorem 2 in [9] (see also [10] and [2]). To prove
the converse we note that, because of Proposition 18,isfnot Cohen-Macaulay,
then E () # ¥, and the result follows from Theorem 2.6. O

3. Bases of solutions and holonomic rank.In this section we determine the
holonomic rank of thed-hypergeometric system associated with a monomial curve
for all integral exponents and exhibit explicit bases of local solutions constructed in
terms of the roots of the generic polynomial (0.5).

Four different scenarios need to be considered.

e The exponenk € I (#): In this case («) = d and we construct, in Theorem 3.1,
d—1local solutions which, together with the hypergeometric polynodi&ia),
define a basis of solutions.

e o € E(HA): We now have («) = d+1 and we have constructéd+ 1 (algebraic)
local solutions in Theorem 2.6.

e o€ (Eg(A)UE;(A))\ E(sA): The holonomic rank equals and we have from
Theorem 2.4 a basis of algebraic solutions.

o a € J(A): ThenR(a) = {0}, r(x) = d, and we construct a basis of local solu-
tions in Theorem 3.5.

In Theorem 3.7 we determine the holonomic rak) for all « € Z2. Our starting
point is a result of Adolphson [2, Cor. 5.20], which states that even without assuming
that the ringR is Cohen-Macaulay, the equalitfer) = vol(P) holds for so-called
semi-nonresonant exponemtsin our particular case, this condition is equivalent to
« being in the Euler-Jacobi cone (1.13).

We consider first the case where I (), that is, when thei-hypergeometric poly-
nomial ®*(«; x) # 0. By Proposition 2.1, given a rogt(x), the functiony, (a; x)
satisfies the higher-order equations (0.1) but, clearly, not the homogeneity equations
(0.2). However, if we fix a choice of a ro@t, then, for any other roqt, the function

doy i—ap Al —ap
o N4 —p
() = O ag, i) ——————
=Y o)
i#ap

+ % (a)log (%) (3.1)

is sd-hypergeometric with exponent. Indeed, it differs fromy, (e) — ¥ () by a
constant multiple ofb® («).
THEOREM 3.1 Givena € I(s#d) and a choice of a roop of f(x;r) ona, the

functions®*(«) and 7,(r), Wherep runs over all roots off (x;¢) on U different
from p, are linearly independentd-hypergeometric functions.

Proof. Supposex = o -u,u € N2 and suppose there is a nontrivial linear
combination

20 @)+ Y ApTy(ar) =0.
PF#P



THE #-HYPERGEOMETRIC SYSTEM OF A MONOMIAL CURVE 201

Applying the operatoD, and using (1.2) and (2.7), we may assume that (0, 0)
and, consequentlp® (o) = 1, 7,(a) =log(p/p), and

A+Z,\plog( ) 0. (3.2)

PF#p

Implicit differentiation of the equatiorf (x; p(x)) = 0 yieldsdp/dxe = —pt/f’(p),
£ >0 and, consequently,

dlogp 1 8,0
0xX4 T d 8x

Hence, derivating (3.2), we obtain
D hp(Wp((=1, =) —¥5((—1, —d)) =0,

p#p

=9, ((=1,—d)).

which, in view of Theorem 2.4, implies, = 0 for all p # p. O

Suppose now that € J (). In particulare & I(s4), and, by (i) in Proposition 2.3,
U () = 0. Recall also that this case includes all integral exponents lying in the
Euler-Jacobi cone.

As before, we lefll denote a simply connected open setGfi*2\ X, and let
01, ..., pg denote the roots of (x; 1), for x € U. Givena € 72 such thaixq > 0, we
define

d
x(@) =Y yj@log(p)). (3.3)
j=1
PROPOSITION 3.2 Supposer € J () is such thatyy > 0. Then the functiory («)
is «-hypergeometric with exponemt

Proof. SinceW*(a) = Z‘;lej () =0, it follows thaty («) satisfies the equa-
tions (0.2) with exponent. In order to check that the higher-order equations (0.1)
are satisfied as well, we show, first of all, thatif > 0, then

9
X(Ol):X(

oxe —d-ep). (3.4)

Indeed,

) d 90
LD 5 g (et 090+ Y vy @0

j=1 j=1

doy - o
O ((aq, i 1007
a3 (@ ))( e 182)_

j=1
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We claim that the second summand is identically zero. In fact,

d i—o
L Z Pi )
J dxy  Oxy jill —a

j=1

Assumed)gq(al,i) #£ 0, that is, there exist® € N2 such thatd - w = (e, i). If
27:1 ,o’/._"‘2 does not vanish identically, there existe Z"+2 such thaty, > 0 for
alli =1,...,m, and eitheng > 0 or vy > 0, verifying s4- v = (0,2 —i). But then
s - (v+w) = «, which contradicts the fact that™ («) = 0. This proves (3.4).

Arguing as in the proof of Proposition 2.1, the proof of Proposition 3.2 now reduces
to the following.

LEMMA 3.3 Givens € Z,s # 0, andu € N2 let g = sd-u andy = (0, —s) — 8.
Then, ifw(y) = 0, the derivative

d ,05:
Dy, ZT] Iogpj
j=1

Proof. We argue as in (2.5); locally an,

d K
: Z& . Z [
2niD, (j=1 ; Iog,oj) / —logtD (f( )dt
__E / ( Iogt) Dy (log f(x;1))dt

ng‘i‘Y 1 5~ 1 tﬁz
[ /Iogt dt+Zf - fﬂl

whererl; is a sufficiently small loop in the complex plane enclosing only the pgot
andc = (—1)#171(81 —1)!. Now, according to (2.5), the last sum in (3.5) agrees, up
to constant, with

d
ZD( ) ZD (V0. —s)) =D _¥i(y)=¥"(y) =0.

j=1

depends only op.

(3.5)

Hence, the lemma and Proposition 3.2 follow. O

We now extend the definition (3.3) gf(«) to the caser € 72, oy < 0, by setting



THE #-HYPERGEOMETRIC SYSTEM OF A MONOMIAL CURVE 203

Daalx((O,az)), if ap £0
_ 3.6
x () DleO—al—lx ((O, kl)), if ap = O, (3.6)
where we recall
d p.—S
x((0,$)=>_——logp;, s#0. (3.7)
=1

PROPOSITION 3.4 Leta € 72, a1 < 0. Then
() x(a)(txx)=1"2y(a)(x) —t%2logt ¥ (a; x), wherer € C*, and

fxx = (xo, tklxkl, e tdxd);

(i) if @ € J(dA), x(«) is A-hypergeometric with exponest
(i) for M sufficiently large ang =1,...,m,

M(d—k;j) . Mk;
Dy D, (x (@) = DY (x(@).

Proof. In view of (3.7), the first assertion follows from (3.6), together with the
fact thatp;(rxx) =t~1p;(x), j =1,....d.

If @ € J(sA), U (a;x) = 0, and it follows from (i) thaty («) satisfies the homo-
geneity equations (0.2). On the other hand, & J (), the same is true @f — s - u for
everyu € N"t2, Hence, it follows from Lemma 3.3 that(«) satisfies the equations
(0.2).

The last assertion follows again from Lemma 3.380s0 thate — (M d, M d k) €
€ C J(HA). O

THEOREM 3.5 Leta € J(A). LetiU, p1, ..., pq, be as above. Then the functions
Y1), ..., Ua—1(a), x (o) € ()W) are linearly independent.

Proof. Inview of Theorem 2.4, it is enough to show thgix) is not an algebraic
function. In fact, we show that its orbit under the monodromy actiom¢€”+2\ )
is infinite.

For generic valuesy,, ..., aq, the polynomialf ((0, a,, ..., aq); t) has a root of
multiplicity k; at the origin andi — k1 simple, nonzero roots. Thus, foag| small,
relative to|ag, |, ..., |aq|, the polynomialf (a;t) has simple roots, ankh of them,
say,p1, ..., Pk, are very close to theyth roots of—ag/ax, . This means that analytic
continuation of the roots along the loop

y(0) := (exp(2rikif)ao, ar,,...,aq), 6 €[0,1]

returns the roots to their original values; but, for any choice of logarithm for all roots
of f neara,

. log(p;)+2mi, if j=1,... ki
| ) =
r*(log(r;)) {Iog (p)), otherwise
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Sincea & I(sA), it follows from (2.1) and (2.6) thay*(y;(a)) = () for any
j=1,....d. Therefore, forry > 0,

d k1
y*(x@) =y*| D _vi@log(p)) | = x(@)+27i )y ;.
j=1 j=1
Since O< k1 < d, by Theorem 2.4y1 +--- + 9, # 0, and, therefore, the orbit of
x (o) under successive powers pfis infinite.
Suppose now that; < 0. Then,

—a1

d d
ad
1@ =——g Y ¥ (0,a2)logp; | =) ¥j(@]logp; + R(@).

X0 j=1 j=1

It is straightforward to check thak(«) is algebraic and invariant under the mon-
odromy action; that isR(«) is a rational function. Since we have just shown that the
function 27:1 Vj(a)logp; is not algebraic, the proof is complete. O

3.6. Remark. Note that since the functiop(«) is not algebraic, any rationai-
hypergeometric functio® with exponentr in the Euler-Jacobi cone must be a linear
combination ofyr1 («), ..., ¥4 (). On the other hand, with arguments similar to those
in the proof of Theorem 3.5, it is possible to show the existence of ajoamose
action on the roots is a cyclic permutation. It is then easy to seeRhaust be
a constant multiple 0‘2?:1 v;j(a), and, therefore, it must vanish. This gives an
alternative proof of Theorem 1.9.

TureoreEM 3.7. For everya e 72,
d=<r(a) <d+1

Moreover,r(a) =d+1if and only ifa € E ().

Proof. Note first that the lower bound follows from Theorem 2.4 @goe Eo(s4)U
E;(s4)), Theorem 3.1 (fow € 1(#A)), and Theorem 3.5 (fax € J («A)).

Suppose now that is in the Euler-Jacobi corié¢. Then, as we observed before,
« is semi-nonresonant in the sense of Adolphson, and it follows from [2, Cor. 5.20]
thatr(a) = d. For anya € 7?2, there existt € N2 such thatx —s4 - u lies in€$,
and, because of Theorem 1.9, for any sucthe kernel of the linear map

D, #H(x) > H(x—A-u)

contains® («). We determine the dimension &f(«) by computing the kernel and
the image ofD, for suitableu.
Suppose first thatr € J(sA). Foru = ley,, £ > 0, we haveo — sl -u € €9,
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and it follows from Proposition 1.2 and Corollary 1.5 that {®f) = R(«x) = {0}.
Therefore, D, is a monomorphism, which implies that diifia) < d. Since it
is at leastd, we deduce that difif(e) = d. Suppose now that ¢ J(«); then
dim@(«)) =1 or 2. We can again choose= feg,, £ > 0, so thatf :=a —sd-u €
€$. As the kernel ofD, is precisely% (), it is enough to show that, for sonte
sufficiently large, the dimension of the imagef is d — 1.

From (2.6) and Theorem 3.5, we deduce that the functibi(®) generate a sub-
space of the image of dimension at ledst 1. The proof is completed by showing
that the functiony (8) defined in (3.6) is not in the imagB,, (#(«)).

Consider first the case € Eg(«). Choosingl = sd, we factor D, = D,if =

DY DY Seta’ := a — ((d — k1)s, 0). It is enough to show that (8) ¢ D4
(¥()). Note thata’ € Eg(«) as well, and, therefore, we may assume without loss
of generality thatv; < 0 andg = o — £e; € € $ for some sufficiently big.

Let x («) be asin (3.6). Sincg € €9, it follows from Lemma 3.3 than}(X(a)) =
x(B). Therefore, if¢ € ¥ (a) is such thatD}(¢) = x (B), we must have

¢=x(@)+F,

where F depends polynomially om;. On the other hand, because of (iii) in Propo-
sition 3.4 and the fact that is hypergeometric, we have

M(d—kj)  Mk;
o Dy ()

D,fjd (F)=D
for all M large enough. This implies that is polynomial onxy,, ..., xx, as well.
But, it follows from (i) in Proposition 3.4 that

Ft*x) =1t"2F (x) +t*?logt ¥ (o) (x),

which is impossible, since the fact that the action dbes not affeckg implies that
F(txx) is polynomial int.
By symmetry, the result also holds fare E;(s). Thus, it remains to consider
the casex € I(«). For ¢ large enough, so that; = a1 — £(d — k1) < 0, we have
o' = (a},a2) € Eo(s4), and an argument similar to the one above yields the result.
O

3.8. Remark. In [19, Thm. 12.2], M. Saito, B. Sturmfels, and N. Takayama prove
Theorem 3.7 by the method of Grébner deformations. They also show that the lower
bound vol P) < r(«) holds for arbitrary« [19, Theorem 11.1].

Given o € 72, define %#(a) := J(a)/R(a) if R(a) # {0} and H(x) :=
#H(e)/C- x () if R(a) = {0}

CoroLLARY 3.9, For everyx € 72,
() dim(F(a)) = d - 1:
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(i) For everyu € N"t2 the operator
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D,: ‘}?6(01) — §€(a—&i~u)
is an isomorphism. O
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