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Potential Theory of Signed Riesz Kernels: Capacity

and Hausdorff Measure

Laura Prat

1 Introduction

There has recently been substantial progress in the problem of understanding the nature

of analytic capacity (see [4, 11, 21]). Recall that the analytic capacity of a compact subset

E of the plane is defined by

γ(E) = sup
∣∣f ′(∞)

∣∣, (1.1)

where the supremum is taken over those analytic functions on C \ E such that |f(z)| ≤ 1,

for z /∈ E. It is easily shown that sets of zero analytic capacity are the removable sets for

bounded analytic functions.

In [4], one proves Vitushkin’s conjecture, namely, the statement that among com-

pact sets of finite length (one-dimensional Hausdorff measure), the sets of zero analytic

capacity are precisely those that project into sets of zero length in almost all directions.

Equivalently, by Besicovitch theory, these are the purely unrectifiable sets, that is, the

sets that intersect each rectifiable curve in zero length. In [11], the Cantor sets of vanish-

ing analytic capacity are characterized, and in [21], the semiadditivity of analytic capac-

ity is proven.

When dealing with analytic capacity, one very often finds oneself working with

the Cauchy kernel 1/z and not using analyticity at all. Indeed, analytic capacity itself can
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easily be expressed without making any reference to analyticity in the form

γ(E) = sup
∣∣〈T, 1〉∣∣, (1.2)

where the supremum is taken over all complex distributions T supported on E such that

the Cauchy potential of T , f = 1/z ∗ T , is a function in L∞ (C) satisfying ‖f‖∞ ≤ 1. Then,

it seems interesting to try to isolate properties of analytic capacity that depend only on

the basic characteristics of the Cauchy kernel such as oddness or homogeneity. With this

purpose in mind, we start in this paper the study of certain real variable versions of an-

alytic capacity related to the Riesz kernels in Rn. Their definition is as follows. Given

0 < α < n and a compact subset E of Rn, set

γα(E) = sup
∣∣〈T, 1〉∣∣, (1.3)

where the supremum is taken over all real distributions T supported on E such that,

for 1 ≤ i ≤ n, the ith α-Riesz potential T ∗ xi/|x|
1+α of T is a function in L∞ (Rn) and

sup1≤i≤n ‖T ∗ xi/|x|
1+α‖∞ ≤ 1. When n = 2 and α = 1, writing 1/z = x/|z|2 − i(y/|z|2) with

z = x + iy, we obtain γ1(E) ≤ γ(E), for all compact sets E. According to Tolsa’s Theorem

[21], one has

γ(E) ≤ Cγ+(E) (1.4)

for all compact sets E, where γ+(E) is defined by the supremum in (1.2) where one now re-

quires T to be a positive measure supported on E (with Cauchy potential bounded almost

everywhere by 1 on C). Thus, on compact subsets of the plane, γ and γ1 are comparable

in the sense that, for some positive constant C, one has

C−1γ1(E) ≤ γ(E) ≤ Cγ1(E). (1.5)

Therefore, our set function γα can be viewed as a real variable version of analytic ca-

pacity associated to the vector-valued kernel x/|x|1+α. Of course, one can think of other

possibilities; for example, one can associate in a similar fashion a capacity γΩ to a scalar

kernel of the form K(x) = Ω(x)/|x|α, whereΩ is a real-valued smooth function on Rn, ho-

mogeneous of degree zero. We will not pursue this issue here.

In Section 3, we compare the capacity γα to Hausdorff content. We obtain quan-

titative statements that, in particular, imply that if E has zero α-dimensional Hausdorff

measure, then it has also zero γα capacity. In the other direction, one gets that if E has

Hausdorff dimension larger than α, then γα is positive. Then, the critical situation oc-

curs in dimension α, in accordance with the classical case.
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The main contribution of this paper is the discovery of an interesting special be-

haviour of γα for noninteger indexes α. When α is an integer and E is a compact sub-

set of an α-dimensional smooth surface, then one can see that γα(E) > 0 provided that

Hα(E) > 0, with Hα being α-dimensional Hausdorff measure (see [14], where it is shown

that if E lies on a Lipschitz graph, then γn−1(E) is comparable to the (n − 1)-Hausdorff

measure Hn−1(E)). In particular, there are sets of finite α-dimensional Hausdorff mea-

sure Hα(E) and positive γα(E). It turns out that this cannot happen when 0 < α < 1.

Theorem 1.1. Let 0 < α < 1 and let E ⊂ Rn be a compact set with Hα(E) < ∞. Then,

γα(E) = 0. �

Notice that the analogue of the above result in the limiting case α = 1 is the dif-

ficult part of Vitushkin’s conjecture: if E is a purely unrectifiable planar compact set of

finite length, then γ(E) = 0. We do not know how to prove Theorem 1.1 for a noninteger

α > 1. Even for an integer α > 1, we do not know if the natural analogue of Vitushkin’s

conjecture is true. However, we do have a result in the Ahlfors-David regular case. Recall

that a closed subset E of Rn is said to be Ahlfors-David regular of dimension d if it has

locally finite and positive d-dimensional Hausdorff measure in a uniform way:

C−1rd ≤ Hd
(
E ∩ B(x, r)

) ≤ Crd, for x ∈ E, r ≤ d(E), (1.6)

where B(x, r) is the open ball centered at x of radius r and d(E) is the diameter of E. Notice

that if E is a compact Ahlfors-David regular set of dimension d, then Hd(E) < ∞.

Theorem 1.2. Let E ⊂ Rn be a compact Ahlfors-David regular set of noninteger dimen-

sion α, 0 < α < n. Then, γα(E) = 0. �

In proving Theorem 1.1,we use a deep recent result of Nazarov,Treil, and Volberg

[18] on the L2-boundedness of singular integrals with respect to very general measures

(see Section 2 for a statement). As a technical tool, we also need a variant of the well-

known symmetrization method relating Menger curvature (see Section 2 for a definition)

and the Cauchy kernel (see [13, 15, 16]). Symmetrization of the kernel x/|x|1+α leads to

a nonnegative quantity, only for 0 < α ≤ 1. For α = 1, this is Menger curvature and,

for 0 < α < 1, a description can be found in Lemma 4.2. However, nonnegativity and

homogeneity seem to be more relevant facts than having exact expressions for the sym-

metrized quantity. The lack of nonnegativity, for α > 1, is the reason that explains the

restriction on α in Theorem 1.1.

The proof of Theorem 1.2 follows the line of reasoning of a well-known result of

Christ [3] stating that if an Ahlfors-David regular set E of dimension one in the plane
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has positive analytic capacity, then the Cauchy integral operator is bounded in L2(F,H1),

where F is another Ahlfors-David regular set such that H1(E ∩ F) > 0. The main difficulty

for us lies in the fact that if α is noninteger, then, according to a result of Vihtilä [24],

there are no Ahlfors-David regular sets E on which the α-dimensional Riesz operator is

bounded in the space L2(E,Hα). This prevents us from directly adapting Christ’s argu-

ments.

Throughout the paper, the letter C will stand for an absolute constant that may

change at different occurrences.

If A(X) and B(X) are two quantities depending on the same variable (or vari-

ables) X, we will say that A(X) ≈ B(X) if there exists C ≥ 1 independent of X such that

C−1A(X) ≤ B(X) ≤ CB(X), for every X.

In Section 2, one can find statements of some auxiliary results and the basic no-

tation and terminology that will be used throughout the paper. As we have already men-

tioned above, in Section 3, we compare γα to Hausdorff content. Theorem 1.1 is proven in

Section 4 and Theorem 1.2 in Section 5.

2 L2-boundedness of singular integral operators

A function K(x, y) defined on Rn×Rn \{(x, y) : x = y} is called a Calderón-Zygmund kernel

if the following holds:

(1) |K(x, y)| ≤ C|x − y|−α, for some 0 < α < n (with α not necessarily integer) and

some positive constant C < ∞,

(2) there exists 0 < ε ≤ 1 such that, for some constant 0 < C < ∞, if |x − x0| ≤
|x − y|/2,

∣∣K(x, y) − K
(
x0, y

)∣∣ + ∣∣K(y, x) − K
(
y, x0

)∣∣ ≤ C ∣∣x − x0

∣∣ε
|x − y|α+ε

. (2.1)

Let µ be a Radon measure on Rn. Then, the Calderón-Zygmund operator T asso-

ciated to the kernel K and the measure µ is formally defined as

Tf(x) = T(fµ)(x) =

∫
K(x, y)f(y)dµ(y). (2.2)

This integral may not converge for many functions f because for x = y the kernel

Kmay have a singularity. For this reason, we introduce the truncated operators Tε, ε > 0:

Tεf(x) = Tε(fµ)(x) =

∫
|x−y|>ε

K(x, y)f(y)dµ(y). (2.3)
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We say that the singular integral operator T is bounded in L2(µ) if the operators

Tε are bounded in L2(µ) uniformly in ε.

The maximal operator T∗ is defined as

T∗f(x) = sup
ε>0

∣∣Tεf(x)
∣∣. (2.4)

Let 0 < α < n and consider the Calderón-Zygmund operator Rα associated to the

antisymmetric vector-valued Riesz kernel x/|x|1+α.

For the proof of Theorem 1.1, a deep result of Nazarov, Treil, and Volberg will be

needed. First, we introduce some more notation. We say that B(x, r) is a non-Ahlfors disk

with respect to some constantM > 0 if µ(B(x, r)) > Mr. Let b be a bounded function. We

say that a disk B(x, r) is nonaccretive with respect to b if, for some fixed positive constant

ε, we have |
∫

B(x,r) bdµ| < εµ(B(x, r)).

Let φ be some nonnegative Lipschitz function with Lipschitz constant 1 and con-

sider the antisymmetric Calderón-Zygmund operator Kφ associated to the suppressed

kernel kφ:

kφ(x, y) =
x − y

|x − y|2 + φ(x)φ(y)
. (2.5)

The kernel kφ has the very important property of being well suppressed (we are

borrowing the terminology from [18]) at the points where φ > 0, that is,

∣∣kφ(x, y)
∣∣ ≤ 1

max
{
φ(x), φ(y)

} . (2.6)

We will state now a T(b) theorem of [18] for the Cauchy kernel.

Theorem 2.1. Let µ be a positive Radon measure on C with lim supr→0 µ(B(x, r))/r < ∞,

for µ-almost all x, and b an L∞ (µ) function with |
∫

C
bdµ| = γ. Let M > 0, B > 0, an open

set H ⊂ C with µ(Hc) > 0, and φ : C → [0,∞) a Lipschitz function with constant 1 such

that

(1) every non-Ahlfors disk and every nonaccretive disk are contained inH,

(2) φ(x) ≥ dist(x,Hc),

(3) K∗
θb(x) ≤ B, for µ-almost all x and for every Lipschitz function θwith constant

1 such that θ ≥ φ.

Then, Kφ is bounded in L2(µ). In particular, if F = {x : φ(x) = 0}, the Cauchy

transform is bounded in L2(µ|F). �
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One can use this result to give an alternative proof of Vitushkin’s conjecture (see

[18]).

To use their result for the α-Riesz transform Rα, 0 < α < n, we need an appro-

priate version of the suppressed kernels associated to the Riesz α-operator Rα. We have

found that the following kernel does the job:

kφ,α(x, y) =
x − y

|x − y|1+α

(
|x − y|2

|x − y|2 + φ(x)φ(y)

)N

, (2.7)

whereN = min{m ∈ N : α ≤ m}. That is,N = α if α ∈ N andN = [α] + 1 if α /∈ N, where [α]

denotes the integer part of α. Notice that kφ,1 = kφ.

For the sake of completeness, we state the properties of the kernel kφ,α in a sep-

arate lemma.

Lemma 2.2. The kernel kφ,α(x, y) is an antisymmetric Calderón-Zygmund kernel and is

also well suppressed at the points where φ > 0, that is,

∣∣kφ,α(x, y)
∣∣ ≤ 1

max
{
φ(x)α, φ(y)α

} . (2.8)
�

Proof. It is easy to prove that this suppressed kernel satisfies kφ,α(x, y) = −kφ,α(y, x)

and |kφ,α(x, y)| ≤ |x − y|−α. We show now that |kφ,α(x, y)| ≤ 1/φ(x)α, for all x, y. Observe

first that φ(y) ≥ φ(x) − |x − y|, which implies that

∣∣kφ,α(x, y)
∣∣ ≤ 1

|x − y|α

(
|x − y|2

|x − y|2 + φ(x)
(
φ(x) − |x − y|

))N

=
1

|x − y|α

(
|x − y|2

|x − y|2 + φ(x)
(
φ(x) − |x − y|

))N−α

×
(

|x − y|2

|x − y|2 + φ(x)
(
φ(x) − |x − y|

))α

≤ 1

|x − y|α

(
|x − y|2

|x − y|2 + φ(x)
(
φ(x) − |x − y|

))α

=
1

|x − y|α

(
|x − y|2

φ(x)|x − y| +
(
φ(x) − |x − y|

)2
)α

≤ 1

|x − y|α

(
|x − y|2

φ(x)|x − y|

)α

=
1

φ(x)α
.

(2.9)
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Now, we only need to show that

∣∣∇xkφ,α(x, y)
∣∣ ≤ 4N + α + 3

|x − y|1+α
. (2.10)

Set Pφ(x, y) = |x − y|2/(|x − y|2 + φ(x)φ(y)) and write ∇xkφ,α(x, y) = A + B,with

|A| =
∣∣Pφ(x, y)

∣∣N∣∣∣∣ |x − y|1+α − (1 + α)|x − y|α(x − y)
|x − y|2(1+α)

∣∣∣∣ ≤ α + 2

|x − y|1+α
(2.11)

and

|B| = N
∣∣Pφ(x, y)

∣∣N−1

×
∣∣2(x − y)

(
|x − y|2 + φ(x)φ(y)

)
− |x − y|2

(
2(x − y) + φ ′(x)φ(y)

)∣∣(
|x − y|2 + φ(x)φ(y)

)2
|x − y|α

≤ N
(

|x − y|2

|x − y|2 + φ(x)φ(y)

)N

× 2
(
|x − y|2 + φ(x)φ(y)

)
+ |x − y|

(
2|x − y| + φ ′(x)φ(y)

)
|x − y|1+α

(
|x − y|2 + φ(x)φ(y)

)
≤ N

(
|x − y|2

|x − y|2 + φ(x)φ(y)

)N
4|x − y|2 + 2φ(x)φ(y) + φ(y)|x − y|

|x − y|1+α
(
|x − y|2 + φ(x)φ(y)

)
≤ 4N

|x − y|1+α
+

φ(y)
|x − y|1+α

∣∣kφ(x, y)
∣∣

≤ 4N + 1

|x − y|1+α
,

(2.12)

where one uses (2.6) in the last inequality. �

Using this operators and adapting Theorem 2.1, one obtains the following result

for the α-Riesz transform Rα.

Theorem 2.3. Let µ be a positive measure on Rn such that lim supr→0 µ(B(x, r))/rα <

+∞, for µ-almost all x, and b an L∞ (µ) function such that |
∫
bdµ| = γα. Assume that

R∗αb(x) < +∞ for µ-almost all x. Then, there is a set F with µ(F) ≥ γα/4 such that the

α-Riesz potential Rα is bounded in L2(µ|F). �

Remark 2.4. The set F in Theorem 2.3 corresponds to C \ H. Namely, F is the set where

there are no problems (every disk is Ahlfors and accretive and the maximal operator is

uniformly bounded).
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Remark 2.5 (Volberg, personal communication). Instead of using the Calderón-Zygmund

operator related to the suppressed kernel defined in (2.7), one can also use the operator

related to the following suppressed kernel:

kφ,α(x, y) =
kα(x, y)

1 + k2
α(x, y)φα(x)φα(y)

, (2.13)

with kα(x, y) = (x − y)/|x − y|1+α.

For the proof of Theorem 1.2, we need to define some sets Qk
β that will be the

analogues of the Euclidean dyadic cubes. These “dyadic cubes” were introduced by Christ

in [3].

Let E ⊂ Rn be an Ahlfors-David regular compact set with Hα(E) < ∞. Let µ = Hα
|E

and let ρ be the Euclidean metric. Then, (E, ρ, µ) is a space of homogeneous type, that is,

(E, ρ) is a metric space and µ is a doubling measure, that is, µ(B(x, 2r)) ≤ Cµ(B(x, r)) (see

[3]).

Theorem 2.6 [3]. For a space of homogeneous type (E, ρ, µ) with µ as above, there exists

a collection of Borel sets Q(E) = {Qk
β ⊂ E : k ∈ N, β ∈ N} and positive numbers δ ∈ (0, 1),

a1, b1, and η such that

(1) µ(E \
⋃

βQ
k
β) = 0, for each k,

(2) if l ≥ k, then eitherQl
γ ⊂ Qk

β orQl
γ ∩Qk

β = ∅,

(3) for each (k, β) and each l < k, there is a unique γ such thatQk
β ⊂ Ql

γ,

(4) d(Qk
β) ≤ δk, where d(Qk

β) denotes the diameter of the cubeQk
β,

(5) eachQk
β contains some ball B(Qk

β) = E ∩ B(zkβ, a1δ
k),

(6) each cube Qk
β has a “small boundary,” that is, µ{x ∈ Qk

β : ρ(x, E \Qk
β) ≤ tδk} ≤

b1t
ηµ(Qk

β), for every k, β and for every t > 0. �

We denote by Qk(E) = {Qk
β ∈ Q(E) : β ∈ N}, k ∈ N, the cubes of generation k in Q(E).

For the variant of the T(b) theorem that we need (see [3, Theorem 20]), we require

the definitions of a dyadic para-accretive function and a dyadic BMO function.

Definition 2.7. A function b ∈ L∞ (E) is said to be dyadic para-accretive if, for everyQk
β ∈

Q(E), there existsQl
γ ∈ Q(E),Ql

γ ⊂ Qk
β, with l ≤ k +N and

∣∣∣∣∣
∫
Ql

γ

bdµ

∣∣∣∣∣ ≥ cµ(Ql
γ

)
, (2.14)

for some fixed constants c > 0 andN ∈ N.
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Definition 2.8. A locally µ integrable function f belongs to dyadic BMO(µ) if

sup
Q

inf
c∈C

1

µ(Q)

∫
Q

∣∣f(z) − c
∣∣dµ(z) < ∞, (2.15)

where the supremum is taken over all dyadic cubesQ ∈ Q(E).

At the beginning of this section, we have defined Calderón-Zygmund operators

and standard kernels in the Euclidean case. In the context of spaces of homogeneous

type, one has a slightly different definition for them (see [2, pages 93–94]).

Theorem 2.9 [3]. Let E be a space of homogeneous type with underlying doubling mea-

sure µ, b a dyadic para-accretive function, and T a Calderón-Zygmund operator associ-

ated to an antisymmetric standard kernel. Suppose that T(b) belongs to dyadic BMO(µ).

Then, T is a bounded operator in L2(µ). �

A recent new approach to a variety of T(b) theorems can be found in [1].

For the proof of Theorem 1.2, the following result of Vihtilä will also be needed.

Theorem 2.10 [24]. Let µ be a nonzero Radon measure in Rn for which there exist con-

stants 0 < c1 ≤ c2 < ∞ such that

c1r
α ≤ µ(B(x, r)

) ≤ c2r
α, (2.16)

for all x ∈ spt(µ) and 0 < r < d(sptµ). If Rα is a bounded operator in L2(µ), then α is an

integer. �

This theorem was proved by using an approach based on tangent measures.

3 Relation between γα and Hausdorff content

We need the following lemma.

Lemma 3.1. If a function f(x) has compact support and has continuous derivatives up to

order n, then it is representable, for 0 < α < n, in the form

f(x) =

n∑
i=1

(
ϕi ∗ xi

|x|1+α

)
(x), x ∈ Rn, (3.1)
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where ϕi, i = 1, . . . , n, are defined by the formulas

ϕi = cn,α�k∂if ∗ 1

|x|n−α
, for n = 2k + 1,

ϕi = cn,α�kf ∗ xi

|x|1+n−α
, for n = 2k,

(3.2)

in which cn,α is a constant depending on n and α. �

Proof. Assume first that n = 2k + 1. Taking Fourier transform of the right-hand side of

(3.1), we get, for appropriate numbers an,α and bn,α,

n∑
i=1

ϕ̂i(ξ)an,α
ξi

|ξ|1+n−α
=

n∑
i=1

cn,α|ξ|2kξif̂(ξ)
bn,α

|ξ|α
an,α

ξi

|ξ|1+n−α

= cn,αan,αbn,αf̂(ξ).

(3.3)

Then, (3.1) follows by choosing cn,α so that cn,αan,αbn,α = 1.

A similar argument proves (3.1) in the case n = 2k. �

We are now ready to describe the basic relationship between γα and Hausdorff

content (the d-dimensional Hausdorff content will be denoted byMd (see [9] for the def-

inition and basic properties)).

Lemma 3.2. If 0 < α < n, then there exist constants C and Cε such that

CεM
α+ε(E)α/(α+ε) ≤ γα(E) ≤ CMα(E), (3.4)

for any compact set E ⊂ Rn and ε > 0. �

Proof. We proof first the second inequality. Let {Qj}j be a covering of E by dyadic cubes

Qj ⊂ Rn with disjoint interiors. By a well-known lemma (see [10, Lemma 3.1]), there

exist functions gj ∈ C∞
0 (2Qj) satisfying

∑
j gj = 1 in a neighborhood of ∪jQj and |∂sgj| ≤

Csl(Qj)−|s|, |s| ≥ 0. Here, s = (s1, . . . , sn), with 0 ≤ si ∈ Z, |s| = s1 + s2 + · · · + sn, and

∂s = (∂/∂xi)s1 · · · (∂/∂xn)sn .

Let T be a distribution with compact support contained in E such that the ith α-

Riesz potentials T ∗ xi/|x|
1+α of T are functions in L∞ (Rn) with L∞ -norm not greater than

1, 1 ≤ i ≤ n. Applying Lemma 3.1 to each gj, we obtain functions ϕi
j satisfying (3.1) with
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f and ϕi replaced by gj and ϕj
i, respectively. Thus,

∣∣〈T, 1〉∣∣ =

∣∣∣∣∣
〈
T,

∑
j

gj

〉∣∣∣∣∣
≤

∑
j

∣∣〈T, gj

〉∣∣
=

∑
j

∣∣∣∣∣
〈
T,

n∑
i=1

ϕ
j
i ∗

xi

|x|1+α

〉∣∣∣∣∣
≤

∑
j

n∑
i=1

∣∣∣∣〈T ∗ xi

|x|1+α
, ϕ

j
i

〉∣∣∣∣
≤

∑
j

n∑
i=1

∫ ∣∣ϕj
i(x)

∣∣dx.

(3.5)

Take n = 2k + 1 (for n = 2k, the argument is similar) and write kα(x) = |x|−n+α.

Let Q0 be the unit cube centered at 0. Integrating by parts to bring the ∆k∂i derivatives

from gj to the kernel kα, changing variables, and using |∂sgj| ≤ Csl(Qj)−|s|, we get

∣∣〈T, 1〉∣∣ ≤ ∑
j

n∑
i=1

∫ ∣∣ϕj
i(x)

∣∣dx
=

∑
j

n∑
i=1

∫ ∣∣∣∣ ∫
2Qj

�k∂igj(y)kα(x − y)dy
∣∣∣∣dx

=
∑

j

n∑
i=1

{ ∫
3Qj

∣∣∣∣ ∫
2Qj

�k∂igj(y)kα(x − y)dy
∣∣∣∣dx

+

∫
Rn\3Qj

∣∣∣∣ ∫
2Qj

gj(y)∆k∂ikα(x − y)dy
∣∣∣∣dx}

≤ n
∑

j

l
(
Qj

)α{
Cn

∫∫
3Q0×2Q0

kα(x − y)dydx

+ C0

∫∫
(Rn\3Q0)×2Q0

1

|x − y|2n−α
dydx

}
≤ C

∑
j

l
(
Qj

)α
.

(3.6)

Thus, γα(E) ≤ CMα(E).

For the reverse inequality, we use a standard argument that we reproduce for

the reader’s convenience. Suppose that Mα+ε(E) > 0, for some ε > 0. By Frostman’s

Lemma (see [12, Theorem 8.8]), there exists a measure µ supported on E such that µ(E) ≥
CMα+ε(E) > 0 and µ(B(x, r)) ≤ rα+ε, x ∈ Rn and r > 0. Then, by a change of variables, we
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obtain

∣∣∣∣(µ ∗ xi

|x|1+α

)
(y)
∣∣∣∣ ≤ ∫

dµ(x)
|x − y|α

=

∫∞
0

µ
({
x : |x − y|−α ≥ t})dt

=

∫∞
0

µ
(
B
(
y, t−1/α

))
dt

= α

∫∞
0

µ
(
B(x, r)

)
r1+α

dr

≤ α
( ∫µ(E)1/(α+ε)

0

rε−1dr +

∫∞
µ(E)1/(α+ε)

µ(E)
r1+α

)
=

(
α

ε
+ 1

)
µ(E)ε/(α+ε).

(3.7)

Using this estimate, we get the desired inequality, namely,

γα(E) ≥ µ(E)∥∥∥∥µ ∗ xi

|x|1+α

∥∥∥∥∞
≥ ε

α + ε
µ(E)1−ε/(α+ε)

= Cεµ(E)α/(α+ε)

≥ CεM
α+ε(E)α/(α+ε).

(3.8)

�

Let dim(E) be the Hausdorff dimension of the set E. A qualitative version of

Lemma 3.2 is the following corollary.

Corollary 3.3. Let E ⊂ Rn be compact.

(1) If dim(E) > α, then γα(E) > 0.

(2) If dim(E) < α, then γα(E) = 0. �

4 Proof of Theorem 1.1

4.1 Distributions that are measures

We start by a lemma that shows that certain distributions are actually measures.

Lemma 4.1. Let 0 < α < n, let E ⊂ Rn be compact with Hα(E) < ∞, and let T be a

distribution with compact support contained in E such that T ∗ xi/|x|
1+α is bounded in

Rn, 1 ≤ i ≤ n. Then, T is a measure which is absolutely continuous with respect to the
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restriction of Hα to E and has a bounded density, that is,

T = hHα, for some h ∈ L∞(Hα
)

supported on E. (4.1)
�

Proof. We first show that T is a measure. For this, it is enough to prove that

∣∣〈T, f〉∣∣ ≤ CHα(E)‖f‖∞ , f ∈ C∞
0 . (4.2)

Given ε > 0, we can cover the compact set E with open balls Bj of radius rj, j =

1, . . . , k, such that Bj ∩ E �= ∅, rj < ε, and

k∑
j=1

rαj ≤ 2Hα(E) + ε. (4.3)

Let ψ be a function in C∞
0 with sptψ ⊂ B(0, 1) and

∫
ψ(x)dx = 1. Define

ψε(x) =
1

εn
ψ

(
x

ε

)
. (4.4)

To prove (4.2), we can assume without loss of generality that spt(f) ⊂ ∪jBj. This

is so because if β ∈ C∞
0 , spt(β) ⊂ ∪jBj, 0 ≤ β ≤ 1, and β(x) = 1 in a neighborhood of E,

then 〈T, f〉 = 〈T, fβ〉 and ‖βf‖∞ ≤ ‖f‖∞ .

Assume that n = 2k + 1 (the argument for even dimensions is similar). Apply-

ing Lemma 3.1 to ψε, using the boundedness of T ∗ xi/|x|
1+α, for 1 ≤ i ≤ n, and setting

kα(x) = |x|−n+α, we have

∣∣〈T, f ∗ψε

〉∣∣ ≤ C n∑
i=1

∣∣∣∣〈T ∗ xi

|x|1+α
, f ∗ �k∂iψε ∗ kα

〉∣∣∣∣
≤ C

n∑
i=1

∫ ∣∣(f ∗ �k∂iψε ∗ kα

)
(x)
∣∣dx

= C

n∑
i=1

∫ ∣∣∣∣ ∫ f(y)(�k∂iψε ∗ kα

)
(x − y)dy

∣∣∣∣dx
≤ C‖f‖∞ ∑

j

rnj

n∑
i=1

∫ ∣∣�k∂iψε ∗ kα(z)
∣∣dz.

(4.5)

We will show that∫ ∣∣�k∂iψε ∗ kα(z)
∣∣dz ≤ Cε−n+α, (4.6)
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where C is a constant depending on the L1-norm of ψ and �k∂iψ but not on ε.

Then, using (4.3), we will have

∣∣〈T, f ∗ψε

〉∣∣ ≤ C‖f‖∞ε−n+α
∑

j

rnj

≤ C‖f‖∞ε−n+α
∑

j

εn−αrαj

= C‖f‖∞ ∑
j

rαj

≤ C(Hα(E) + ε
)‖f‖∞ ,

(4.7)

which proves (4.2) by letting ε → 0.

To prove (4.6), we use Fubini’s Theorem and a change of variables:

∫ ∣∣(�k∂iψε ∗ kα

)
(z)
∣∣dz

=

∫ ∣∣∣∣ ∫ ε−2n�k∂iψ

(
z − x

ε

)
kα(x)dx

∣∣∣∣dz
= ε−n+α

∫ ∣∣(�k∂iψ ∗ kα

)
(z)
∣∣dz

≤ ε−n+α

∫
|z|≥2

∫
|x|≤1

∣∣ψ(x)
∣∣

|z − x|2n−α
dxdz + εn−α

∫
|z|≤2

∫
|x|≤1

∣∣�k∂iψ(x)
∣∣

|z − x|n−α
dxdz

= ε−n+α

∫
|x|≤1

∣∣ψ(x)
∣∣ ∫

|z|≥2

dz

|z − x|2n−α
dx

+ εn−α

∫
|x|≤1

∣∣∆k∂iψ(x)
∣∣ ∫

|z|≤2

dz

|z − x|n−α
dx

≤ Cε−n+α
(
‖ψ‖1 +

∥∥�k∂iψ
∥∥

1

)
= Cε−n+α.

(4.8)

Let B0 be an open ball and let B0 denote its closure. Let Hα
E stand for the restric-

tion of Hα to E. If we show that

∣∣µ(B0

)∣∣ ≤ CHα
E

(
B0

)
, (4.9)

then, taking a sequence of open balls Bi
0 ↓ B0 and applying (4.9) to these balls, we will

have

∣∣µ(B0

)∣∣ ≤ lim
i→∞

∣∣µ(Bi
0

)∣∣ ≤ lim
i→∞ CHα

E

(
Bi

0

)
= CHα

E

(
B0

)
. (4.10)
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It is shown in [12, page 271] that, for α = 1, (4.10) implies

∣∣µ(A)
∣∣ ≤ CHα(A), for sets A ⊂ Ewith Hα(A) < ∞. (4.11)

The argument extends verbatim to any α and thus we can take (4.11) for granted, which

gives (4.1) by Radon-Nikodym’s Theorem.

It remains to prove (4.9). We know that, for every δ > 0, there exists a compact

set K ⊂ E \ B0 such that

Hα(K) > Hα
(
E \ B0

)
− δ. (4.12)

Let

J1 =
{
j : Bj ∩ B0 �= ∅

}
,

J2 =
{
j : Bj ∩ K �= ∅

}
.

(4.13)

Recall that the radii of the balls Bj satisfy rj < ε. For an appropriate ε > 0, the

following holds:∑
j∈J2

rαj ≥ 2Hα(K) − δ, (4.14)

max
j
rj < ε <

dist
(
K,B0

)
2

. (4.15)

This last condition implies that, for j1 ∈ J1 and j2 ∈ J2, we have Bj1
∩ Bj2

= ∅. So,

using inequalities (4.3), (4.14), and (4.12),∑
j∈J1

rαj ≤
∑

j

rαj −
∑
j∈J2

rαj

≤ 2Hα(E) + ε − 2Hα(K) + δ

< 2Hα(E) + ε − 2Hα
(
E \ B0

)
+ δ

= 2Hα
E

(
B0

)
+ ε + δ.

(4.16)

If χB0
denotes the characteristic function of the ball B0, then

µ
(
B0

)
=
〈
µ, χB0

〉
=
〈
µ, χB0∩E

〉
= lim

ε→0

〈
µ, χB0∩E ∗ψε

〉
. (4.17)

Arguing as in (4.5), (4.6), and (4.7), we get

∣∣〈µ, χB0∩E ∗ψε

〉∣∣ ≤ C∥∥χB0∩E

∥∥∞
∑
j∈J1

rαj ≤ C(Hα
E

(
B0

)
+ ε + δ

)
, (4.18)

and letting ε and δ tend to zero, we get (4.9). �
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4.2 Symmetrization of the Riesz kernel

The symmetrization process of the Cauchy kernel introduced in [15] has been success-

fully applied in the last years to many problems of analytic capacity and L2-boundedness

of the Cauchy integral operator (see, e.g., [13, 16, 23]; the survey papers [5, 22] contain

many other references). Given three distinct points z1, z2, and z3 in the plane, one finds

out, by an elementary computation, that

c
(
z1, z2, z3

)2
=

∑
σ

1(
zσ(1) − zσ(3)

)(
zσ(2) − zσ(3)

) , (4.19)

where the sum is taken over the six permutations of the set {1, 2, 3} and c(z1, z2, z3) is

Menger curvature, that is, the inverse of the radius of the circle through z1, z2, and z3.

In particular, (4.19) shows that the sum on the right-hand side is a nonnegative quantity.

On the other hand, it has been proved in [7] that nothing similar occurs for the

Riesz kernel kα = x/|x|1+α with α integer and 1 < α ≤ n. In this section, we show that, for

0 < α < 1, we recover an explicit expression for the symmetrization of the Riesz kernel kα

and that the quantity one gets is also nonnegative. For α > 1, the phenomenon of change

of signs appears again.

For 0 < α < n, the quantity

∑
σ

xσ(2) − xσ(1)∣∣xσ(2) − xσ(1)
∣∣1+α

xσ(3) − xσ(1)∣∣xσ(3) − xσ(1)
∣∣1+α

, (4.20)

where the sum is taken over the six permutations of the set {1, 2, 3}, is the obvious

analogue of the right-hand side of (4.19) for the Riesz kernel kα. Observe, however, that

if σ is a transposition of two numbers in {1, 2, 3}, then the term one obtains is one of the

three terms associated to the permutations (1, 2, 3), (2, 3, 1), and (3, 1, 2). Thus, (4.20) is

exactly

2pα

(
x1, x2, x3

)
, (4.21)

where pα(x1, x2, x3) is defined as the sum in (4.20) taken only on the three permutations

(1, 2, 3), (2, 3, 1), and (3, 1, 2).

Lemma 4.2. Let 0 < α < 1, and let x1, x2, and x3 be three distinct points in Rn. Then,

2 − 2α

L
(
x1, x2, x3

)2α
≤ pα

(
x1, x2, x3

) ≤ 21+α

L
(
x1, x2, x3

)2α
, (4.22)

where L(x1, x2, x3) is the largest side of the triangle determined by x1, x2, and x3. In par-

ticular, pα(x1, x2, x3) is a nonnegative quantity. �
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Proof. If n = 1 and x1 < x2 < x3, then

pα

(
x1, x2, x3

)
=
aα + bα − (a + b)α

aαbα(a + b)α
, (4.23)

where a = x2 − x1 and b = x3 − x2. An elementary estimate shows that (4.22) holds in this

case, even with 21+α replaced by 2α in the numerator of the last term.

Note that if x1, x2, x3 ∈ Rn, one can write

pα

(
x1, x2, x3

)
=

cos
(
θ23

)∣∣x2 − x3

∣∣α + cos
(
θ13

)∣∣x1 − x3

∣∣α + cos
(
θ12

)∣∣x1 − x2

∣∣α∣∣x1 − x2

∣∣α∣∣x1 − x3

∣∣α∣∣x2 − x3

∣∣α ,

(4.24)

where θij is the angle opposite to the side xixj in the triangle determined by x1, x2, and

x3. Without loss of generality, we can assume that θ23, θ13 ∈ [0, π/2]. Denote lij = |xi − xj|,

for i �= j, i, j ∈ {1, 2, 3}. We consider two different cases.

Case 1 (0 ≤ θ12 ≤ π/2). Without loss of generality, suppose that l12 ≥ l13 ≥ l23. Then, we

have

pα

(
x1, x2, x3

)
=

1

lα12l
α
13

(
cos

(
θ23

)
+ cos

(
θ13

) lα13

lα23

+ cos
(
θ12

) lα12

lα23

)
≥ 1

lα12l
α
13

(
cos

(
θ23

)
+ cos

(
θ13

)
+ cos

(
θ12

))
≥ 1

lα12l
α
13

≥ 2 − 2α

L
(
x1, x2, x3

)2α
.

(4.25)

For the second inequality, one argues as follows:

pα

(
x1, x2, x3

)
=

1

l1+α
12 l1+α

13

(
cos

(
θ23

)
l12l13 + cos

(
θ13

)
l12l23

l1+α
13

l1+α
23

+ cos
(
θ12

)
l13l23

l1+α
12

l1+α
23

)

≤ 1

l1+α
12 l1+α

13

(
cos

(
θ23

)
l12l13 + cos

(
θ13

)
l12l23

l213

l223

+ cos
(
θ12

)
l13l23

l212

l223

)
= l1−α

12 l1−α
13 p1

(
x1, x2, x3

)
= l1−α

12 l1−α
13

1

2R2
,

(4.26)
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by (4.19), where R is the radius of the circle through x1, x2, and x3. Since clearly lij ≤ 2R,

we conclude that

pα

(
x1, x2, x3

) ≤ 2

lα12l
α
13

≤ 21+α

L
(
x1, x2, x3

)2α
. (4.27)

Case 2 (π/2 ≤ θ12 ≤ π). We start by proving the first inequality in (4.22). Note that in this

case, the largest side of the triangle is l12. Assume without loss of generality that l13 ≥
l23 and denote t = l13/l23 ≥ 1. Write θ13 = θ23 + a, with 0 ≤ a ≤ π/2. Then, by the

triangle inequality, we have

pα

(
x1, x2, x3

)
=

1

lα12l
α
13

(
cos

(
θ23

)
+ cos

(
θ23 + a

) lα13

lα23

+ cos
(
θ12

) lα12

lα23

)
≥ 1

lα12l
α
13

(
cos

(
θ23

)
+ cos

(
θ23 + a

)
tα − cos

(
2θ23 + a

)
(1 + t)α

)
≥ 1

lα12l
α
13

f
(
a, θ23, t

)
,

(4.28)

where

f(a, y, t) = cos(y) + cos(y + a)tα − cos(2y + a)(1 + t)α, (4.29)

for 0 ≤ 2y + a ≤ π/2, a ≥ 0, and y ≥ 0.

We claim that

f(a, y, t) ≥ f(0, y, t) ≥ f(0, 0, t), (4.30)

for 0 ≤ 2y + a ≤ π/2, a ≥ 0, and y ≥ 0. Notice that the inequality f(a, y, t) ≥ f(0, 0, t) in

(4.30) means that the smallest value of pα is attained when the three points x1, x2, and x3

lie on a line.

If we assume that the claim is proved, then, going back to (4.28) and using that

t ≥ 1, we get
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pα

(
x1, x2, x3

) ≥ 1

lα12l
α
13

f
(
a, θ23, t

)
≥ 1

lα12l
α
13

f(0, 0, t)

=
1

lα12l
α
13

(
1 + tα − (1 + t)α

)
≥ 2 − 2α

lα12l
α
13

≥ 2 − 2α

L
(
x1, x2, x3

)2α
.

(4.31)

To prove the first inequality in (4.30), we use that, for 0 ≤ 2y + a ≤ π/2, a ≥ 0, and

y ≥ 0, we have cos(y) − cos(y + a) ≤ cos(2y) − cos(2y + a). Thus, cos(y) − cos(y + a) ≤
(1 + 1/t)α(cos(2y) − cos(2y + a)), which is f(a, y, t) ≥ f(0, y, t).

Finally, for each t, the function

f(0, y, t) = cos(y) + cos(y)tα − cos(2y)(1 + t)α (4.32)

has a minimum at y = 0, and this proves the claim and thus the first inequality in (4.22).

We are now only left with the second inequality in (4.22) for θ12 ∈ [π/2, π]. Recall

that we can assume without loss of generality that l23 ≤ l13 ≤ l12. We have

pα

(
x1, x2, x3

)
=

1

lα12l
α
13

(
cos

(
θ23

)
+ cos

(
θ13

) lα13

lα23

− cos
(
θ23 + θ13

) lα12

lα23

)
≤ 1

lα12l
α
13

(
cos

(
θ23

)
+
(

cos
(
θ13

)
− cos

(
θ23 + θ13

)) lα13

lα23

)
.

(4.33)

The function g(x) = cos x − cos(x + y) is increasing for x, y, and x + y in [0, π/2]. Thus,

g(x) ≤ g(π/2) = siny, for x, y, and x + y in [0, π/2]. Moreover, using that sin(θ23)/l23 =

sin(θ13)/l13, we get

pα

(
x1, x2, x3

) ≤ 1

lα12l
α
13

(
cos

(
θ23

)
+ sin

(
θ13

) l1−α
23

l1−α
13

)

≤ 2

lα12l
α
13

≤ 21+α

L
(
x1, x2, x3

)2α
,

(4.34)

which completes the proof of the lemma. �
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4.3 The main step

Let 0 < α < n and suppose that µ is a measure such that µ(B(x, r)) ≤ C0r
α, for some

constant C0 and for all balls B(x, r) ⊂ Rn. We will now analyze what happens in a ball

B(x, r) satisfying the lower-density condition µ(B(x, r)) ≥ εrα for a given number ε > 0.

Lemma 4.3. There exist constants a ≥ 1 and b ≥ 1 depending only on C0 and ε such that

given any ball B0 = B(x, r) satisfying µ(B0) ≥ εrα, there exist two balls B1 = B(x1, r/a)

and B2 = B(x2, r/a), with x1, x2 ∈ sptµ ∩ B0, such that

(1) |x1 − x2| ≥ 6r/a,
(2) µ(B0 ∩ Bi) ≥ rα/b, for i = 1, 2. �

Proof. Without loss of generality, we may assume that B0 = B(0, 1). Let a ≥ 1 and b ≥ 1 be

two constants to be chosen at the end of the construction and suppose that the lemma is

not true. This means that given any pair of closed balls B1 and B2 of radius a−1 centered

at sptµ ∩ B0, then either

∣∣x1 − x2

∣∣ < 6

a
(4.35)

or one of the two balls, say Bi, satisfies

µ
(
Bi ∩ B0

) ≤ 1

b
. (4.36)

Consider the covering of sptµ ∩ B0 by balls of radius a−1 centered at sptµ ∩ B0.

Apply Besicovitch’s covering lemma to this covering to obtain N = N(n) families Bi of

disjoint balls such that

sptµ ∩ B0 ⊂
N⋃

i=1

⋃
B∈Bi

B. (4.37)

Notice that a simple estimate of the volume of the union of the balls in a given

family reveals that each family contains no more than (2a)n balls. We have

ε ≤ µ(B0

) ≤ µ( N⋃
i=1

⋃
B∈Bi

B

)
≤

N∑
i=1

∑
B∈Bi

µ(B ∩ B0), (4.38)

which means that there exists at least one family Bi such that

∑
B∈Bi

µ
(
B ∩ B0

) ≥ ε

N
. (4.39)
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Consider the set

M =

{
B ∈ Bi : µ

(
B ∩ B0

)
>
1

b

}
. (4.40)

Condition (4.35) implies that all balls in M are contained in a ball of radius 8/a,

and hence,

∑
B∈M

µ
(
B ∩ B0

) ≤ C0

(
8

a

)α

, (4.41)

using that µ(B(x, r)) ≤ C0r
α holds for any ball B(x, r) in Rn.

The fact that each family Bi contains no more than (2a)n balls implies that

∑
B∈Bi
B/∈M

µ
(
B ∩ B0

) ≤ (2a)n

b
, (4.42)

and so we get

ε ≤ N
∑

B∈Bi

µ
(
B ∩ B0

) ≤ N( (2a)n

b
+ C0

(
8

a

)α)
. (4.43)

If a and b are appropriately chosen, this inequality gives a contradiction. �

Let 0 ≤ α < ∞ and let µ be a positive Borel measure on Rn. The upper and lower

α-densities of µ at x ∈ Rn are defined by

Θ∗α(µ, x) = lim sup
r→0

µ
(
B(x, r)

)
(2r)α

,

Θα
∗ (µ, x) = lim inf

r→0

µ
(
B(x, r)

)
(2r)α

,

(4.44)

respectively.

Theorem 4.4. Let 0 < α < 1 and let µ be a positive Borel measure with 0 < Θ∗α(µ, x) < ∞,

for µ-almost all x ∈ Rn. Then,

∫∫∫
pα

(
x1, x2, x3

)
dµ
(
x1

)
dµ
(
x2

)
dµ
(
x3

)
= +∞. (4.45)

�
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Proof. Since Θ∗α(µ, x) < ∞, for µ-almost all x ∈ Rn, there exists a compact set K1 ⊂ R

with µ(K1) > 0 and a constant c1 > 0 such that µ(K1 ∩ B(x, r)) ≤ c1r
α, for every ball

B(x, r) ⊂ Rn. It is well known that Θ∗α(µ|K1, x) = Θ∗α(µ, x), for µ-almost all x ∈ K1 (see

[12, Theorems 6.2 and 6.9]), whence, replacing µ by µ|K1, we can assume that µ(B(x, r)) ≤
c1r

α, for x ∈ Rn.

From the fact that Θ∗α(µ, x) > 0, for µ-almost all x ∈ Rn, we deduce that there ex-

ists a compact set K2⊂Rn, with µ(K2)>0 and a constant c2>0, such that, for each x∈K2,

there is a sequence ri(x) > 0 with limi→∞ ri(x) = 0 and µ(B(x, ri(x))) ≥ c2ri(x)α. Notice

that truncating the sequences of radii appropriately, we can assume that supx∈K2
ri(x) →

0, i → ∞.

By the 5-covering Theorem (see [12, Theorem 2.1]), for each i ∈ N, there are dis-

joint balls Bi
j = B(aj, ri(aj)), 1 ≤ j ≤ mi, such that K2 ⊂ ⋃mi

j=1 5B
i
j. Then, we have

µ
(
K2

) ≤ mi∑
j=1

µ
(
5Bi

j

) ≤ c15
α

mi∑
j=1

ri
(
aj

)α
, (4.46)

that is,

mi∑
j=1

rαi
(
aj

) ≥ µ
(
K2

)
5αc1

. (4.47)

Fix i = 1 and consider the disjoint balls B1
j , for 1 ≤ j ≤ m1. For every B1

j , we can

use Lemma 4.3 twice to find three balls B1, B2, and B3 centered at spt(µ) ∩ B1
j enjoying

the following properties: their mutual distances and their radii are comparable to r(aj)

and the mass µ(B1
j ∩ Bl) is also comparable to r(aj)α. The comparability constants in the

above statements depend only on c1, c2, and n. Define a set of triples by

Sj,1 =
(
B1

j ∩ B1

)× (B1
j ∩ B2

)× (B1
j ∩ B3

)
, for 1 ≤ j ≤ m1. (4.48)

Applying Lemma 4.2, we obtain

∫∫∫
(B1

j )3

pα

(
x1, x2, x3

)
dµ
(
x1

)
dµ
(
x2

)
dµ
(
x3

)
≥

∫∫∫
Sj,1

pα

(
x1, x2, x3

)
dµ
(
x1

)
dµ
(
x2

)
dµ
(
x3

)
≥ C

∫∫∫
Sj,1

1∣∣x1 − x3

∣∣2α
dµ
(
x1

)
dµ
(
x2

)
dµ
(
x3

)
≥ Cr1

(
aj

)α
.

(4.49)
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Set

A1 =

m1⋃
j=1

Sj,1 ⊂
m1⋃
j=1

(
B1

j × B1
j × B1

j

)
,

dj = min
{

dist
(
B1

j ∩ Bk, B1
j ∩ Bl

)
: k, l ∈ {1, 2, 3}, k �= l},

t1 = min
1≤j≤m1

dj.

(4.50)

For (x1, x2, x3) ∈ A1, we then have |xi − xj| > t1, for i, j ∈ {1, 2, 3}, j �= i. Moreover, using

(4.47) and (4.49),∫∫∫
A1

pα

(
x1, x2, x3

)
dµ
(
x1

)
dµ
(
x2

)
dµ
(
x3

)
=

m1∑
j=1

∫∫∫
Sj,1

pα

(
x1, x2, x3

)
dµ
(
x1

)
dµ
(
x2

)
dµ
(
x3

) ≥ C m1∑
j=1

r1
(
aj

)α ≥ C.
(4.51)

Let q be such that

sup
x∈K2

rq(x) ≤ t1

2
(4.52)

and consider the balls of the qth generation, namely, Bq
j , for 1 ≤ j ≤ mq. Repeat the

process described above, replacing B1
j by Bq

j . We then find balls B1, B2, and B3 centered

at points in sptµ ∩ Bq
j , whose mutual distances and radii are comparable to rq(aj) and

such that µ(Bq
j ∩ Bl) is also comparable to rq(aj)α, l = 1, 2, 3.

Set

Sj,2 =
(
B

q
j ∩ B1

)× (Bq
j ∩ B2

)× (Bq
j ∩ B3

)
,

A2 =

mq⋃
j=1

Sj,2 ⊂
mq⋃
j=1

(
B

q
j × Bq

j × Bq
j

)
.

(4.53)

Hence, again by (4.52),∫∫∫
A2

pα

(
x1, x2, x3

)
dµ
(
x1

)
dµ
(
x2

)
dµ
(
x3

) ≥ C. (4.54)

Notice that the sets of triples A1 and A2 are disjoint because of the definition of

q. Define t2 as we did before for t1 so that, for (x1, x2, x3) ∈ A2, one has |xi − xj| > t2, for

i, j ∈ {1, 2, 3}, i �= j. It becomes now clear that we can inductively construct disjoint sets of

triples Ak, k = 1, 2, . . . , such that∫∫∫
Ak

pα

(
x1, x2, x3

)
dµ
(
x1

)
dµ
(
x2

)
dµ
(
x3

) ≥ C, k = 1, 2, . . . , (4.55)



960 Laura Prat

and therefore,∫∫∫
pα

(
x1, x2, x3

)
dµ
(
x1

)
dµ
(
x2

)
dµ
(
x3

)
≥

∞∑
k=1

∫∫∫
Ak

pα

(
x1, x2, x3

)
dµ
(
x1

)
dµ
(
x2

)
dµ
(
x3

)
≥

∞∑
k=1

C = +∞.
(4.56)

�

4.4 End of proof of Theorem 1.1

Suppose that γα(E) > 0, for 0 < α < 1. Applying Lemma 4.1, we find a measure of the

form ν = bHα, with b ∈ L∞ (Hα, E) such that the α-Riesz potential Rα(ν) = ν ∗ x/|x|1+α

is in L∞ (Rn) and
∫

E
bdHα = γα(E). We can apply now Theorem 2.3 to get a set F ⊂ E

of positive Hα-measure such that the operator Rα is bounded in L2(Hα, F). On the other

hand, since Hα(F) < ∞, we have 2−α ≤ Θ∗α(Hα
|F, x) ≤ 1, for Hα-almost all x ∈ Rn (see [12,

Theorem 6.2]). This means that we can apply Theorem 4.4 to obtain∫∫∫
pα

(
x1, x2, x3

)
dHα

|F

(
x1

)
dHα

|F

(
x2

)
dHα

|F

(
x3

)
= +∞. (4.57)

This last fact contradicts the L2-boundedness of Rα on L2(Hα, F) by a well-known

argument that we now outline briefly (see [15, 16]).

Set µ = Hα
|F. Then,∫ ∣∣Rα,ε(µ)(x)
∣∣2dµ(x) =

∫∫∫
Tε

Rα(x − y)Rα(x − z)dµ(x)dµ(y)dµ(z), (4.58)

where

Tε =
{
(x, y, z) : |x − y| > ε, |x − z| > ε

}
. (4.59)

Interchanging the roles of x and y, and then of x and z, and estimating the error

terms in a standard way, we obtain∫ ∣∣Rα,ε(µ)(x)
∣∣2dµ(x) =

1

3

∫∫∫
Sε

pα(x, y, z)dµ(x)dµ(y)dµ(z) +O
(
µ(F)

)
, (4.60)

where

Sε =
{
(x, y, z) : |x − y| > ε, |x − z| > ε, |y − z| > ε

}
. (4.61)

Letting ε → 0, we get the promised contradiction.
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Remark 4.5. Notice that if we knew that, for some 0 < α < n, the α-Riesz kernel never de-

fines a bounded operator on a set of finite α-Hausdorff measure, then Theorem 1.1 would

extend to this value ofα. For any 0 < α < 1, this follows from the symmetrization method,

as it is shown above. For 1 < α < n, to get such a result, we have to restrict ourselves to

α-dimensional Ahlfors-David regular sets and noninteger α (see Theorem 2.10).

5 Proof of Theorem 1.2

As a tool to prove Theorem 1.2, consider the tangent measures that were introduced by

Preiss in [20].

Let Ta,r be the map that blows up B(a, r) to B(0, 1), that is,

Ta,r(x) =
x − a

r
. (5.1)

The image of µ under Ta,r is given by

Ta,r�µ(A) = µ(rA + a), A ⊂ Rn. (5.2)

Definition 5.1. Let µ be a Radon measure on Rn. The measure σ is said to be a tangent

measure of µ at a point a ∈ Rn if σ is a nonzero Radon measure on Rn and if there exist

sequences {ri} and {ci} of positive numbers such that ri → 0 and ciTa,ri�µ → σweakly, as

i → ∞.

The set of all tangent measures to µ at a is denoted by Tan(µ, a).

Remark 5.2. If 0 < Θα
∗ (µ, a) ≤ Θ∗α(µ, a) < ∞, then we may find a sequence {ri} such that

σ = d lim
i→∞ r−α

i Ta,ri�µ, (5.3)

for some positive number d (see [12, pages 187–188]).

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. Let 0 < α < n and let E ⊂ Rn be a compact Ahlfors-David regular

set of dimension α. Suppose that γα(E) > 0. Then, there exists a distribution Swith com-

pact support contained in E, whose α-Riesz potential S ∗ x/|x|1+α is in L∞ (Rn) and such

that 〈S, 1〉 �= 0.
By Lemma 4.1, S = hHα with h ∈ L∞ (E,Hα). Thus, 〈S, 1〉 =

∫
E
h(x)dHα(x) �= 0.
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We will now construct an α-dimensional Ahlfors-David regular measure σ, that

is, a measure such that, for some constant C,

C−1rα ≤ σ(B(x, r)
) ≤ Crα, x ∈ spt(σ), 0 < r < d

(
spt(σ)

)
, (5.4)

whose α-Riesz operator Rα is bounded in L2(σ). Then, applying Theorem 2.10, we will

conclude that αmust be an integer.

We first sketch briefly the main ideas involved in the construction of the measure

σ. The first step will be to construct a set E ′ with Hα(E ∩ E ′) > 0 and a doubling measure

µ on E ′. The pair (E ′, µ) is then endowed with a system of dyadic cubes Q(E ′) satisfying

the properties of Theorem 2.6. We also define a bounded function b on E ′, which will be

dyadic para-accretive with respect to the system of dyadic cubes Q(E ′) and such that the

function Rα(bµ) belongs to dyadic BMO(µ). Therefore, the α-Riesz transform Rα associ-

ated toµwill be bounded on L2(E ′, µ) by the T(b) theorem on a space of homogeneous type

(Theorem 2.9). The required Ahlfors-David regular measure σ will be a tangent measure

of µ at some point of density of E inside E ′. The fact that the α-Riesz transform Rα, asso-

ciated to σ defines a bounded operator on L2(σ) will follow from the L2(µ)-boundedness

of Rα associated to µ by taking weak limits.

Now, we turn to the construction of the set E ′ and the measures µ and σ. Let Q(E)

be a system of dyadic cubes on E satisfying the properties (1) through (6) in Theorem 2.6.

The first dyadic cube of E to examine is E itself. By hypothesis, there exists a function

h ∈ L∞ (E) such that
∫

E
hdHα �= 0. Let ε0 > 0 be a sufficiently small constant to be fixed

later such that |
∫

E
hdHα| > ε0Hα(E). Then, for every positive integer k, there exists at

least one cubeQk
γ satisfying |

∫
Qk

γ
hdHα| > ε0Hα(Qk

γ), since otherwise, for some k,

∣∣∣∣ ∫
E

hdHα

∣∣∣∣ =

∣∣∣∣ ∫∪γQk
γ

hdHα

∣∣∣∣ ≤ ε0

∑
γ

Hα
(
Qk

γ

)
= ε0Hα(E), (5.5)

which is a contradiction.

We now run a stopping-time procedure. Let ε > 0 be another constant, much

smaller than ε0, to be chosen later. Take a dyadic cube Q ∈ Q1(E) and check whether or

not the condition∣∣∣∣ ∫
Q

hdHα

∣∣∣∣ ≤ εHα(Q) (5.6)

is satisfied. If (5.6) holds for that cube Q, and Q has more than one child, we call it a

stopping-time cube. If (5.6) holds but Q has only one child, then we look for the first

descendent of Q with more than one child and we call it a stopping-time cube. Notice

that (5.6) remains true for this descendent.
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If (5.6) does not hold forQ, then we examine each child ofQ and repeat the above

procedure. After possibly infinitely many steps and possibly passing through all gener-

ations, we obtain a collection of pairwise disjoint stopping-time cubes {Pγ} in E. Each Pγ

has at least two children and satisfies the nonaccretivity condition (5.6) withQ replaced

by Pγ.

Set ‖h‖∞ = M. Then,

Hα

(
E \
⋃
γ

Pγ

)
=

∫
E\
⋃

γ Pγ

dHα

≥ 1

M

∫
E\
⋃

γ Pγ

|h|dHα

≥ 1

M

∣∣∣∣ ∫
E\
⋃

γ Pγ

hdHα

∣∣∣∣
≥ 1

M

∣∣∣∣ ∫
E

hdHα

∣∣∣∣ − 1

M

∑
γ

∣∣∣∣ ∫
Pγ

hdHα

∣∣∣∣
>
1

M

(
ε0Hα(E) − ε

∑
γ

Hα
(
Pγ

))
.

(5.7)

Therefore,

∑
γ

Hα
(
Pγ

) ≤ (1 − η)Hα(E), (5.8)

for η = (ε0 − ε)/(M − ε).

We want to construct the set E ′ by excising from E the union of the stopping-time

cubes Pγ and replacing each child Rβ of Pγ by a certain ball Bβ.

Property (5) of Theorem 2.6 gives us a constant 0 < a1 < 1, such that, for each

Q ∈ Qk(E), there exists zQ with B(Q) = B(zQ, a1δ
k)∩E ⊂ Q, dist(B(Q), E−Q) ≈ d(Q), and

Hα(B(Q)) ≈ Hα(Q). Recall that d(Q) ≤ δk.

For each stopping-time cube Pγ = ∪βRβ, set Fγ = ∪βBβ, where, for each β, Bβ =

B(zRβ
, cδk), with k being the generation of Rβ and c some small constant such that Bβ ⊂

B(zRβ
, a1δ

k/2).

In what follows, set δk = rβ, where k is the generation of Rβ. That is, for each γ,

the sets Fγ replace the stopping-time cubes Pγ in the new set E ′. In other words,

E ′ =

(
E \
⋃
γ

Pγ

)
∪
⋃
γ

Fγ. (5.9)
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We will define now a measure µ on this set E ′ as follows:

µ =


Hα on E \

⋃
γ

Pγ,

Hα
(
Rβ

)
Ln
(
Bβ

)Ln
|Bβ

on
⋃
γ

Fγ =
⋃
β

Bβ,

(5.10)

where Ln is the n-dimensional Lebesgue measure.

We will now check that there exist some positive constantsM0 andM1 such that,

for every x ∈ E ′ and r > 0,

(1) the measure µ has α-growth, that is,

µ
(
E ′ ∩ B(x, r)

) ≤M0r
α, (5.11)

(2) the measure µ is doubling, that is,

µ
(
E ′ ∩ B(x, 2r)

) ≤M1µ
(
E ′ ∩ B(x, r)

)
. (5.12)

To prove that µ has α-growth, first let x ∈ E ′ \ ∪βBβ, r > 0, and let β be such that

Bβ ∩ B(x, r) �= ∅. Since Bβ ∩ B(x, r) �= ∅, we have

∣∣x − zβ
∣∣ ≤ d(Bβ

)
+ r ≤ a1rβ

2
+ r. (5.13)

On the other hand, since x ∈ E ′ \ Bβ, then x /∈ Rβ and property (5) in Theorem 2.6

gives us |x − zβ| > a1rβ. Thus, by the definition of rβ and property (4) in Theorem 2.6, we

get

d
(
Rβ

) ≤ δk = rβ <
2r

a1
, (5.14)

which implies that Rβ ⊂ B(x, 5r/a1). Since our initial set E is Ahlfors-David regular and

µ(Bβ) = Hα(Rβ), we get, for some positive constantM0,

µ
(
E ′ ∩ B(x, r)

) ≤ µ(E ∩ B(x, r)
)

+
∑

Bβ∩B(x,r)�=∅

µ
(
Bβ ∩ B(x, r)

)
≤ Hα

(
E ∩ B(x, r)

)
+

∑
Rβ⊂B(x,5r/a1)

Hα
(
Rβ

)
≤M0r

α.

(5.15)

If, for some β, x ∈ Bβ, then the above inequality follows in the same way because

the diameter of Bβ is less than the distance to its complement in E ′. Thus, the measure µ

satisfies (5.11).
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To prove that µ is a doubling measure, take any x ∈ E ′ \ ∪βBβ and r > 0. Then,

arguing as above, but with r replaced by 2r, we obtain

µ
(
E ′ ∩ B(x, 2r)

) ≤ Hα
(
E ∩ E ′ ∩ B(x, 2r)

)
+

∑
Bβ∩B(x,2r)�=∅

µ
(
Bβ ∩ B(x, 2r)

)
≤ Hα

(
E ∩ B(x, 2r)

)
+

∑
Rβ⊂B(x,10r/a1)

Hα
(
Rβ

)
≤ Hα

(
E ∩ B(x, 10r/a1

))
≤ CHα

(
E ∩ B(x, r)

)
(5.16)

because our initial measure Hα is doubling on E.

We claim that, for some positive constantM1, the following holds:

Hα
(
E ∩ B(x, r)

) ≤ Cµ(E ′ ∩ B(x, r)
)
, (5.17)

which proves (5.12).

To prove (5.17), let Q∗ ∈ Q(E) be the biggest cube such that x ∈ Q∗ ⊂ B(x, r) and

letQ = (Q∗ \
⋃

β Rβ) ∪ (
⋃

Rβ⊂Q∗ Bβ). Then,Q ⊂ E ′ ∩ B(x, r), and due to the definition of µ,

we have Hα(Q∗) = µ(Q) (see (5.34)). Hence, the doubling property for Hα on E gives that

Hα
(
E ∩ B(x, r)

) ≤ CHα
(
Q∗) = Cµ(Q) ≤ Cµ(E ′ ∩ B(x, r)

)
, (5.18)

and proves claim (5.17).

If x ∈ Bβ, for some β and r ≤ rβ/2, then the doubling property for µ holds clearly.

If r > rβ/2. Then, arguing as above, one gets the doubling property for µ on E ′. Therefore,

(5.12) holds.

For a system of dyadic cubes Q(E ′) on E ′ satisfying the properties of Theorem 2.6

with respect to the doubling measure µ, take all dyadic cubes Q ∈ Q(E) which are not

contained in any stopping-time cube Pγ, together with each Fγ = ∪βBβ and with the

dyadic cubes of Q(Bβ) in each Fγ. Namely,

Q(E ′) = Q1(E ′) ∪ Q2(E ′), (5.19)

where Q1(E ′) = {(S \
⋃

Pγ⊂S Pγ) ∪ (
⋃

Pγ⊂S Fγ) : S ∈ Q(E) \ {Pγ}} ∪ {Fγ} and Q2(E ′) consists of

the dyadic systems Q(Bβ) associated to the balls Bβ coming from all the Fγ. Hence, each

Fγ is a dyadic cube in Q(E ′).

After defining the set E ′, the doubling measure µ, and the system of dyadic cubes

Q(E ′), our next step will consist in modifying the function h on the union ∪γFγ in order to
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obtain a new function b, defined on E ′, bounded and dyadic para-accretive with respect

to the system of dyadic cubes Q(E ′). In fact, we want b to satisfy

∫
Fγ

bdµ =

∫
Pγ

hdHα, for each γ. (5.20)

Condition (5.20) does not seem to contribute to the accretivity of the new func-

tion bwith respect to the measure µ because the cubes Pγ were chosen precisely because

the mean of h on them became too small. But although our b has a small mean on Fγ, as

h does on Pγ, we will have a satisfactory lower bound on the integral of b over each child

Bβ of Fγ. In this way, b becomes “more” accretive than h.

The function b is defined on E ′ by

b(x) =


h(x) if x ∈ E \

⋃
γ

Pγ,∑
β

cβχBβ
(x) on

⋃
γ

Fγ =
⋃
β

Bβ,
(5.21)

where the coefficients cβ are defined below to get the boundedness of the function b and

(5.20).

Notice first that due to properties (5) and (6) of Theorem 2.6, Bβ ∩ Bη = ∅, for

β �= η, and Bβ ∩ (E \ ∪γPγ) = ∅ so that the function b is well defined on E ′.

To define the coefficients cβ, fix Pγ and let Nγ = �{β : Rβ is a child of Pγ}. The

number of children of the dyadic cubes is in between 2 and a fixed upper bound, that is,

2 ≤ Nγ ≤ c1, where c1 is some constant independent of γ.

Order the children {Rβ} of Pγ starting with the cube Rβ with the smallest Hα-

measure and ending with the cube Rβ with the biggest one. Write {Rβ} = {R
j
β}

Nγ

j=1, where

R
j
β stands for the jth child Rβ in this ordering. We want to divide the children of Pγ into

two nonempty collections I and II, each with the same number of elements (plus or minus

one) in the following way:

I =

{
β : Rβ = R

j
β, for 1 ≤ j ≤

[
Nγ

2

]}
,

II =

{
β : Rβ = R

j
β, for

[
Nγ

2

]
+ 1 ≤ j ≤ Nγ

}
.

(5.22)

Clearly,

∑
β∈II

Hα
(
Rβ

)
−

∑
β∈I

Hα
(
Rβ

) ≥ 0. (5.23)
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Let θ be
∫

Pγ
hdHα(|

∫
Pγ
hdHα|)−1 if

∫
Pγ
hdHα �= 0 and let θ be 1 if

∫
Pγ
hdHα = 0.

Define the coefficients cβ as

cβ =

θ if β ∈ I,
−θc̃β if β ∈ II,

(5.24)

where the c̃β satisfy ε0 ≤ c̃β ≤ 1 and, moreover, a certain constraint specified below.

Notice that the above-defined function b is bounded:

‖b‖∞ = max
{‖h‖∞ , ∣∣cβ

∣∣} ≤ max
{‖h‖∞ , 1} ≤ C. (5.25)

Moreover, integrating b on Fγ with respect to the measure µ, we get

∫
Fγ

bdµ =
∑
β

cβHα
(
Rβ

)
=

∑
β∈I

θHα
(
Rβ

)
−

∑
β∈II

θc̃βHα
(
Rβ

)
. (5.26)

We claim that we can choose ε0 > 0 sufficiently small so that there exist numbers

c̃β, ε0 ≤ c̃β ≤ 1, such that

∑
β∈I

Hα
(
Rβ

)
−

∑
β∈II

c̃βHα
(
Rβ

)
=

∣∣∣∣ ∫
Pγ

hdHα

∣∣∣∣. (5.27)

Once (5.27) is proved, we get the desired expression for the integral of b over Fγ,

namely,

∫
Fγ

bdµ = θ

(∑
β∈I

Hα
(
Rβ

)
−

∑
β∈II

c̃βHα
(
Rβ

))
= θ

∣∣∣∣ ∫
Pγ

hdHα

∣∣∣∣ =

∫
Pγ

hdHα. (5.28)

To show (5.27), letN2 = �{β : β ∈ II} and define

c̃η =
1

N2Hα
(
Rη

)(∑
β∈I

Hα
(
Rβ

)
−

∣∣∣∣ ∫
Pγ

hdHα

∣∣∣∣
)
. (5.29)

With this choice of the coefficients c̃η, equality (5.27) clearly holds. Thus, we only

have to show that there exists ε0 > 0 such that ε0 ≤ c̃η ≤ 1, for all η.

The inequality c̃η ≤ 1 is equivalent to

1

N2Hα
(
Rη

) ∑
β∈I

Hα
(
Rβ

) ≤ 1 +
1

N2Hα
(
Rη

) ∣∣∣∣ ∫
Pγ

hdHα

∣∣∣∣. (5.30)
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Notice that, by the way the indexes were ordered, for all η ∈ II,
∑
β∈I

Hα
(
Rβ

) ≤ N2Hα
(
Rη

)
, (5.31)

which implies c̃η ≤ 1.
For the lower inequality (5.32), we have to choose ε0 such that c̃η ≥ ε0. Recall

that, for Pγ, the stopping-time condition (5.6) holds with Q replaced by Pγ, and that

the children of Pγ have comparable measures. Moreover, we know that there exists some

(small) positive constant 0 < c < 1/2 such that
∑

β∈I Hα(Rβ) ≥ cHα(Pγ). Then, we have

c̃η ≥ (c − ε)Hα
(
Pγ

)
N2Hα

(
Rη

) ≥ (c − ε)Hα
(
Pγ

)
NγHα

(
Pγ

) ≥ c − ε

c1
, (5.32)

where c1 > 0 is the upper bound for the number of children of a dyadic cube.

We have to choose ε0 and ε such that c − ε ≥ ε0c1 holds. This can be achieved

by requiring ε0c1 ≤ c/2 and ε < min(ε0, c/2). The identity (5.27) is now proved, and

therefore, (5.20) holds.

In order to construct the function b, we have to carry out this procedure for each

stopping-time cube Pγ.

The Pγ are the cubes where the accretivity condition for h fails. The function h1

has the advantage that although
∫

Pγ
hdHα =

∫
Fγ
h1dH

α, we have a satisfactory lower

bound on the integral over each child Bβ of Fγ. This is due to the definition of the coeffi-

cients cβ.

(1) If β ∈ I, then |
∫

Bβ
bdµ| = |cβ|µ(Bβ) ≥ ε0µ(Bβ).

(2) If β ∈ II, then |
∫

Bβ
bdµ| ≥ |c̃β|µ(Bβ) ≥ ε0µ(Bβ) because ε0 ≤ c̃β.

Thus, the function b satisfies the para-accretivity condition on the cubes Fγ.

For future reference, note that, for every cubeQ ∈ Q(E ′), such thatQ � Fγ for all

γ, there is a nonstopping time cubeQ∗ ∈ Q(E) uniquely associated toQ by the identity

Q =

(
Q∗ \

⋃
Pγ⊂Q∗

Pγ

)
∪
( ⋃

Pγ⊂Q∗
Fγ

)
. (5.33)

Moreover, one has

µ(Q) = Hα
(
Q∗) −

∑
Pγ⊂Q∗

Hα
(
Pγ

)
+

∑
Pγ⊂Q∗

µ
(
Fγ

)
= Hα

(
Q∗), (5.34)

d(Q) ≈ (Q∗). (5.35)

We will check now that, by construction, the function b is dyadic para-accretive

with respect to Q(E ′).
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(1) If Q ∈ Q2(E ′), then Q = Bβ, for some β, or Q ∈ Q(Bβ). In both cases, the para-

accretivity of b follows as above due to the lower bound of |cβ|.

(2) If Q ∈ Q1(E ′), the case Q = Fγ has already been discussed, so we are only left

withQ ∈ Q1(E ′) \ {Fγ}.

LetQ∗ ∈ Q(E) be the cube defined in (5.33). Recall thatQ∗ is a nonstop-

ping time cube. Then, due to (5.20) and (5.34), we can write

∣∣∣∣ ∫
Q

bdµ

∣∣∣∣ =

∣∣∣∣∣
∫
Q∗\∪Pγ⊂Q∗Pγ

hdHα +
∑

Pγ⊂Q∗

∫
Fγ

bdµ

∣∣∣∣∣
=

∣∣∣∣∣
∫
Q∗\∪Pγ⊂Q∗Pγ

hdHα +
∑

Pγ⊂Q∗

∫
Pγ

hdHα

∣∣∣∣∣
=

∣∣∣∣ ∫
Q∗
hdHα

∣∣∣∣ ≥ εHα
(
Q∗) = εµ(Q).

(5.36)

Hence, b is a dyadic para-accretive function with respect to Q(E ′).

We are still left with the fact that Rα(bµ) belongs to dyadic BMO(µ). We postpone

the proof of the BMO-boundedness and we continue with the argument.

At this point, we have constructed a set E ′ with a system of dyadic cubes Q(E ′), a

function b dyadic para-accretive with respect to this system of dyadic cubes, and a mea-

sure µwhich is doubling and has α-growth. Moreover, we are assuming that the function

Rα(bµ) belongs to dyadic BMO(µ). Therefore, by the T(b) theorem (see Theorem 2.9), the

Riesz α-operator Rα associated to the measure µ is bounded in L2(µ).

Notice that since∫
E

hdHα =

∫
E\∪γPγ

hdHα +

∫
∪γPγ

hdHα �= 0,∫
∪γPγ

hdHα < ε
∑
γ

Hα
(
Pγ

)
< εHα(E),

∣∣∣∣ ∫
E

hdHα

∣∣∣∣ ≥ ε0Hα(E),

(5.37)

we get

∣∣∣∣ ∫
E\∪γPγ

hdHα

∣∣∣∣ ≥ (ε0 − ε
)
Hα(E) > 0 (5.38)

from the choice of ε0 and ε. This shows that Hα(E \ ∪γPγ) > 0, and therefore, that

Hα(E ∩ E ′) > 0 because of the inclusion E \ ∪γPγ ⊂ E ′ ∩ E. In fact, from (5.8), we get the

better lower bound Hα(E ∩ E ′) ≥ Hα(E \
⋃

γ Pγ) ≥ ηHα(E).
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Set

Egood = E \
⋃
γ

Pγ,

Ebad = E \ Egood =
⋃
γ

Pγ.
(5.39)

By density (see, e.g., [12, Corollary 2.14]), for Hα
E-almost all x ∈ Egood, the limit

lim sup
r→0

Hα
(
Ebad ∩ B(x, r)

)
rα

= 0. (5.40)

Therefore, for such x, using the lower bound from the Ahlfors-David regularity of

the set E, we obtain

lim inf
r→0

Hα
(
Egood ∩ B(x, r)

)
rα

≥ lim inf
r→0

(
Hα
(
E ∩ B(x, r)

)
rα

−
Hα
(
Ebad ∩ B(x, r)

)
rα

)

≥ C−1 − lim sup
r→0

Hα
(
Ebad ∩ B(x, r)

)
rα

= C−1.

(5.41)

Moreover, the upper bound coming from the Ahlfors-David regularity of the set E

implies that, for every x ∈ E, we have

lim sup
r→0

Hα
(
Egood ∩ B(x, r)

)
rα

≤ lim sup
r→0

Hα
(
E ∩ B(x, r)

)
rα

≤ C. (5.42)

Let x0 ∈ Egood be a point satisfying (5.41) and (5.42) and let σ ∈ Tan(Hα
Egood

, x0).

Then, [12, Lemma 14.7] shows that there is a positive number C such that

C−1rα ≤ σ(B(x, r)
) ≤ Crα, for x ∈ sptσ, 0 < r < ∞, (5.43)

which is the same as to say that σ is an Ahlfors-David regular measure.

Now, we only have to show that the α-Riesz operator associated to σ is bounded

in L2(σ).

Notice first that due to Remark 5.2, there exists a sequence ri → 0 such that, for

some positive number d,

σ = d lim
ri→0

r−α
i Tx0,ri�H

α
Egood

= lim
ri→0

Hα
ri
, (5.44)

where the last identity is the definition of the measures Hα
ri

.
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In what follows, we let T stand for the α-Riesz operator Rα.

Fix a radial function ϕ ∈ C∞ such that 0 ≤ ϕ ≤ 1, ϕ = 0 on B(0, 1/2), and ϕ = 1 on

Rn \ B(0, 1). For ε > 0, define the regularized operators T̃ε as follows:

T̃ε(fν)(x) =

∫
ϕ

(
x − y

ε

)
x − y

|x − y|1+α
f(y)dν(y), (5.45)

for complex Radon measures ν in Rn. One can easily check that, for ε > 0,

∣∣T̃ε(fν)(x) − Tε(fν)(x)
∣∣ ≤ CM(fν)(x), (5.46)

whereM(fν) is the Hardy-Littlewood maximal function:

M(fν)(x) = sup
r>0

1

ν
(
B(x, r)

) ∫
B(x,r)

f(y)dν(y). (5.47)

It is well known that M is bounded in L2. Thus, the L2-boundedness of the trun-

cated operators Tε is equivalent to that of T̃ε. If the measure we are considering is non-

doubling, then the maximal function in (5.47) does not work, but instead of M, one can

consider a modified maximal operator introduced in [17] to get the same equivalence.

Notice that the fact that the operator T with respect to Hα
Egood

is bounded in

L2(Hα
Egood

) implies that, for each r > 0, the operator T with respect to Hα
r is bounded in

L2(Hα
r ); namely, for f and g test functions, we have

∣∣〈T̃ε

(
fHα

r

)
, g
〉∣∣ ≤ C‖f‖L2(Hα

r )‖g‖L2(Hα
r ). (5.48)

Therefore,

∣∣〈T̃ε(fσ), gσ
〉∣∣ = lim

ri→0

∣∣〈T̃ε

(
fHα

ri

)
, gHα

ri

〉∣∣
≤ C lim

ri→0
‖f‖L2(Hα

ri
)‖g‖L2(Hα

ri
)

= C‖f‖L2(σ)‖g‖L2(σ),

(5.49)

which means that T is bounded in L2(σ).

We still have to show that T(bµ) is a BMO function. We claim that since the func-

tion b ∈ L∞ (E ′), it is enough to show the following L1-inequality:

∥∥T(bχQ

)∥∥
L1(µQ) ≤ Cµ(Q), (5.50)

for everyQ ∈ Q(E ′), where µQ denotes the restriction of the measure µ toQ.
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Suppose (5.50) holds for every Q ∈ Q(E ′), and let, for some positive constant A,

2Q = {x ∈ E ′ : dist(x,Q) ≤ Ad(Q)}. As a consequence of the “small boundary condition”

for the dyadic cubes (see Theorem 2.6, property (6)), we have

∥∥T(bχ2Q\Q

)∥∥
L1(µQ) ≤ Cµ(Q) (5.51)

(see the bound for the second integral in (5.64)). The standard estimates for the

Calderón-Zygmund operators show that

∥∥T(bχ(2Q)c

)
(x) − T

(
bχ(2Q)c

)(
x0

)∥∥
L1(µQ) ≤ Cµ(Q), (5.52)

where x0 is a fixed point inQ. This implies that

∫
Q

∣∣T(b)(x) − T
(
bχ(2Q)c

)(
x0

)∣∣dµ(x)

≤
∫
Q

∣∣T(bχQ

)
(x)
∣∣dµ(x) +

∫
Q

∣∣T(bχ2Q\Q

)
(x)
∣∣dHα(x)

+

∫
Q

∣∣T(bχ(2Q)c

)
(x) − T

(
bχ(2Q)c

)(
x0

)∣∣dµ(x)

≤ Cµ(Q),

(5.53)

which proves the claim.

To prove (5.50), let Q ∈ Q(E ′) be some dyadic cube of E ′. We distinguish now

between two cases.

(1) For some β, let Q = Bβ or Q ∈ Q(Bβ). Set K(x) = x/|x|1+α. Then, Fubini and a

change of variables give us, for some constant c,

∫
Bβ

∣∣∣∣ ∫
Bβ

K(x − y)b(x)dµ(x)
∣∣∣∣dLn(y)

≤ ∣∣cβ

∣∣Hα
(
Rβ

)
Ln
(
Bβ

) ∫
Bβ

∫
Bβ

dLn(x)
|x − y|α

dLn(y)

≤ CHα
(
Rβ

)
Ln
(
Bβ

) ∫
Bβ

∫
B(x,crβ)

dLn(y)dLn(x)
|y − x|α

= C
Hα
(
Rβ

)
Ln
(
Bβ

) ∫
Bβ

∫
B(0,crβ)

dLn(z)
|z|α

dLn(x)

= CHα
(
Rβ

) ∫
B(0,crβ)

dLn(z)
|z|α

≤ CLn
(
Bβ

)
,

(5.54)
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where at the last step, we have used the fact that E is Ahlfors-David reg-

ular, and so Hα(Rβ) ≈ d(Rβ)α ≈ rαβ.

Since µ|Bβ
= (Hα(Rβ)/Ln(Bβ))Ln

|Bβ
, we get

∫
Bβ

∣∣T(bχBβ

)∣∣dµ ≤ CHα
(
Rβ

)
= Cµ

(
Bβ

)
, (5.55)

which is (5.50) in this case. If Q ∈ Q(Bβ), for some β, (5.50) is obtained

arguing in a similar way.

(2) Let Q ∈ Q1(E ′). If Q = Fγ, for some γ, then one argues as in the previous case

because, for each γ, the number of Bβ involved in
⋃

β Bβ = Fγ is bounded

above by some constant independent of γ. Thus, let Q ∈ Q1(E ′) \ {Fγ}γ

and let Q∗ be the uniquely associated nonstopping dyadic cube in Q(E)

defined before. Using (5.20), we can write

T
(
bχQ

)
=

∫
Q∗\∪βRβ

h(x)K(x − y)dHα(x) +
∑

Rβ⊂Q∗

∫
Bβ

b(x)K(x − y)dµ(x)

= T
(
hχQ∗

)
+

∑
Rβ⊂Q∗

∫
Bβ

b(x)
(
K(x − y) − K

(
zβ − y

))
dµ(x)

+
∑

Rβ⊂Q∗

∫
Rβ

h(x)
(
K
(
zβ − y

)
− K(x − y)

)
dHα(x).

(5.56)

We claim that the following estimates hold for each β:

∫
Q\Bβ

∫
Bβ

∣∣K(x − y) − K
(
zβ − y

)∣∣dµ(x)dµ(y) ≤ Cµ(Bβ

)
, (5.57)∫

Q\Bβ

∫
Rβ

∣∣K(zβ − y
)

− K(x − y)
∣∣dHα(x)dµ(y) ≤ CHα

(
Rβ

)
, (5.58)

∫
Bβ

∣∣∣∣ ∫
Rβ

h(x)K(x − y)dHα(x)
∣∣∣∣dµ(y) ≤ Cµ(Bβ

)
. (5.59)

Moreover,

∫
Q

∣∣T(hχQ∗
)∣∣dµ ≤ Cµ(Q). (5.60)
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If (5.60), (5.57), (5.58), and (5.59) hold, going back to (5.56) and using

the boundedness of the functions h and b together with the fact that

Hα(Rβ) = µ(Bβ) for each β, we can write

∫
Q

∣∣T(bχQ

)∣∣dµ
≤ Cµ(Q) + C

∑
Rβ⊂Q∗

{ ∫
Q\Bβ

∫
Bβ

∣∣K(x − y) − K
(
zβ − y

)∣∣dµ(x)dµ(y)

+

∫
Q\Bβ

∫
Rβ

∣∣K(zβ − y
)
−K(x − y)

∣∣dHα(x)dµ(y)

+

∫
Bβ

∣∣∣∣ ∫
Bβ

b(x)K(x − y)dµ(x)
∣∣∣∣dµ(y)

+

∫
Bβ

∣∣∣∣ ∫
Rβ

h(x)K(x − y)dHα(x)
∣∣∣∣dµ(y)

+

∫
Bβ

µ
(
Bβ

)∣∣zβ − y
∣∣αdµ(y) +

∫
Bβ

Hα
(
Rβ

)∣∣zβ − y
∣∣αdµ(y)

}

≤ Cµ(Q) + C
∑

Rβ⊂Q∗
µ
(
Bβ

)
+ C

∑
Rβ⊂Q∗

µ
(
Bβ

) ∫
Bβ

dµ(y)∣∣zβ − y
∣∣α .

(5.61)

Since Hα(Rβ) ≈ d(Rβ), we get

∫
Bβ

dµ(y)∣∣zβ − y
∣∣α = C

Hα
(
Rβ

)
Ln
(
Bβ

) Ln
(
Bβ

)
d
(
Rβ

)α ∫
B(0,1)

dLn(z)
|z|α

≤ C, (5.62)

which is (5.50) provided that inequalities (5.60), (5.57), (5.58), and (5.59) hold.

We deal first with (5.57). Notice that if x ∈ Bβ and y ∈ Q\Bβ, then |x−y| ≥ a1rβ/2.

Hence, the standard estimates for the Calderón-Zygmund operators and the α-growth of

the measure µ give

∫
Q\Bβ

∫
Bβ

∣∣K(x − y) − K
(
zβ − y

)∣∣dµ(x)dµ(y)

≤ C
∫
Bβ

∞∑
j=1

∫
{2j−1a1rβ≤|y−x|≤2ja1rβ}

∣∣x − zβ
∣∣

|x − y|1+α
dµ(y)dµ(x)

≤ C
∫
Bβ

∞∑
j=1

µ
({
2j−1a1rβ ≤ |y − x| ≤ 2ja1rβ

})(
2j−1a1rβ

)1+α
rβdµ(x)

≤ C
∫
Bβ

∞∑
j=1

2−jdµ(x) ≤ Cµ(Bβ

)
.

(5.63)
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To show (5.58), notice that (Q \ Bβ) ∩ Rβ = ∅. Therefore,

∫
Q\Bβ

∫
Rβ

∣∣∣∣∣ zβ − y∣∣zβ − y
∣∣1+α

−
x − y

|x − y|1+α

∣∣∣∣∣dHα(x)dµ(y)

=

∫
(Q\Bβ)\2Rβ

∫
Rβ

∣∣∣∣∣ zβ − y∣∣zβ − y
∣∣1+α

−
x − y

|x − y|1+α

∣∣∣∣∣dHα(x)dµ(y)

+

∫
(Q\Bβ)∩2Rβ\Rβ

∫
Rβ

∣∣∣∣∣ zβ − y∣∣zβ − y
∣∣1+α

−
x − y

|x − y|1+α

∣∣∣∣∣dHα(x)dµ(y).

(5.64)

The first integral in (5.64) may be estimated in the same way as (5.63). Thus, we

get

∫
(Q\Bβ)\2Rβ

∫
Rβ

∣∣∣∣∣ zβ − y∣∣zβ − y
∣∣1+α

−
x − y

|x − y|1+α

∣∣∣∣∣dHα(x)dµ(y) ≤ CHα
(
Rβ

)
. (5.65)

To deal with the second integral in (5.64), let j ∈ Z and define the set

Aj =
{
x ∈ Rβ : 2j−1rβ < dist

(
x, 2Rβ \ Rβ

) ≤ 2jrβ
}
. (5.66)

Now, for x ∈ Aj, let Fi(x) = {y ∈ 2Rβ \ Rβ : 2i−1rβ < |x − y| ≤ 2irβ}. Then, because

of (5.11),

∫
2Rβ\Rβ

∣∣∣∣ x − y

|x − y|1+α

∣∣∣∣dµ(y) =

1∑
i=j

∫
Fi(x)

∣∣∣∣ x − y

|x − y|1+α

∣∣∣∣dµ(y)

≤
1∑

i=j

∫
Fi(x)

1

|x − y|α
dµ(y)

≤
1∑

i=j

C
(
2irβ

)α(
2i−1rβ

)α
≤ C

1∑
i=j

1 ≤ C(1 + |j|
)
.

(5.67)
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Summing over j and using the “small boundary” condition stated in property (6)

of Theorem 2.6 gives

∫
Rβ

∫
2Rβ\Rβ

∣∣∣∣ x − y

|x − y|1+α

∣∣∣∣dµ(y)dHα(x) ≤ C
0∑

j=−∞
(
1 + |j|

) ∫
Aj

dHα(x)

= C

0∑
j=−∞

(
1 + |j|

)
Hα
(
Aj

)
≤ C

0∑
j=−∞

(
1 + |j|

)
b12

ηjHα
(
Rβ

)
≤ CHα

(
Rβ

)
.

(5.68)

Moreover, using (5.12) and (5.11), we obtain

∫
Rβ

∫
2Rβ\Rβ

∣∣∣∣∣ zβ − y∣∣zβ − y
∣∣1+α

∣∣∣∣∣dµ(y)dHα(x) ≤ Hα
(
Rβ

)
µ
(
2Rβ \ Rβ

)(
crβ
)α ≤ CHα

(
Rβ

)
. (5.69)

Therefore, we have

∫
2Rβ\Rβ

∫
Rβ

∣∣∣∣∣ zβ − y∣∣zβ − y
∣∣1+α

−
x − y

|x − y|1+α

∣∣∣∣∣dHα(x)dHα(y) ≤ CHα
(
Rβ

)
, (5.70)

and so we are done with the estimate of the second integral in (5.64) and we get

∫
Q\Bβ

∫
Rβ

∣∣∣∣∣ zβ − y∣∣zβ − y
∣∣1+α

−
x − y

|x − y|1+α

∣∣∣∣∣dHα(x)dµ(y) ≤ CHα
(
Rβ

)
, (5.71)

which is (5.58).

To show (5.59), let Rc
β be the complement of Rβ. Then, using that hHα ∗ K is a

bounded function, we can write

∫
Bβ

∣∣∣∣ ∫
Rβ

h(x)K(x − y)dHα(x)
∣∣∣∣dµ(y)

≤ Cµ(Bβ

)
+

∫
Bβ

∣∣∣∣∣
∫
Rc

β

h(x)K(x − y)dHα(x)

∣∣∣∣∣dµ(y).

(5.72)

Recall that Bβ = B(zβ, crβ). Then, the boundedness of h, together with the upper

bound in the Ahlfors-David regularity condition, implies that there exists a constant m
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such that

1

Ln
(
Bβ

) ∫
Bβ

∣∣∣∣ ∫
Rβ

h(x)K(x − y)dHα(x)
∣∣∣∣dLn(y)

≤ C

rnβ

∫
Rβ

∫
B(x,cmrβ)

1

|x − y|α
dLn(y)dHα(x) ≤ C.

(5.73)

Therefore, there exists a point yβ ∈ Bβ such that

∣∣∣∣ ∫
Rβ

h(x)K
(
x − yβ

)
dHα(x)

∣∣∣∣ ≤ C. (5.74)

Consequently,

∣∣∣∣∣
∫
Rc

β

h(x)K
(
x − yβ

)
dHα(x)

∣∣∣∣ ≤ C, (5.75)

which gives

∫
Bβ

∣∣∣∣∣
∫
Rc

β

h(x)K(x − y)dHα(x)

∣∣∣∣∣dµ(y)

≤
∫
Bβ

∣∣∣∣∣
∫
Rc

β

h(x)K(x − y)dHα(x) −

∫
Rc

β

h(x)K
(
x − yβ

)
dHα(x)

∣∣∣∣∣dµ(y)

+

∫
Bβ

∣∣∣∣∣
∫
Rc

β

h(x)K
(
x − yβ

)
dHα(x)

∣∣∣∣∣dµ(y)

≤ Cµ(Bβ

)
(5.76)

by arguing similarly as in the proof of (5.63).

We are now left with the proof of (5.60). Notice that we can write

∫
Q

∣∣T(hχQ∗
)∣∣dµ

=

∫
Q∗

∣∣T(hχQ∗
)∣∣dHα +

∑
Rβ⊂Q∗

( ∫
Bβ

∣∣T(hχQ∗
)∣∣dµ −

∫
Rβ

∣∣T(hχQ∗
)∣∣dHα

)

≤
∫
Q∗

∣∣T(hχQ∗
)∣∣dHα +

∑
Rβ⊂Q∗

∫
Bβ

∣∣T(hχQ∗
)∣∣dµ.

(5.77)

To deal with the first integral in the last line of (5.77), set g = hχE\2Q∗ . Then,

one has a BMO estimate for T(g) restricted to Q∗; namely, there exists some constant c,
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depending on g andQ∗, such that

∥∥T(g) − c
∥∥

L1(Q∗) ≤ CHα
(
Q∗) = Cµ(Q) (5.78)

(something similar was done before (5.52) to show that (5.50) suffices for the BMO esti-

mate). Using the small boundary condition (see Theorem 2.6, property (6)), we also have

∥∥T(hχ2Q∗\Q∗
)∥∥

L1(Q∗) ≤ CHα
(
Q∗) (5.79)

(see the estimates for the second integral in (5.64)).

Thus, if we write

∫
Q∗
T
(
hχQ∗

)
dHα =

∫
Q∗
T(h)dHα −

∫
Q∗
T
(
hχ2Q∗\Q∗

)
dHα

−

∫
Q∗

(
T(g) − c

)
dHα − cHα

(
Q∗) (5.80)

to show (5.60), it suffices to find an upper bound for |c| independent ofQ∗ (recall that T(h)

is also bounded). For this purpose, consider the integral over Q∗ of the product of hχQ∗

with T(hχQ∗). On the one hand, it is zero by antisymmetry. On the other hand, if we write

T(hχQ∗) = T(h) − T(g) − T(hχ2Q∗\Q∗), it is equal to
∫

Q∗ hT(h)dHα −
∫

Q∗ h(T(g) − c)dHα −

c
∫

Q∗ hdH
α −

∫
Q∗ hT(hχ2Q∗\Q∗)dHα. Hence, due to (5.78), (5.79), and the boundedness of

h and T(h), we get

|c|

∣∣∣∣ ∫
Q∗
hdHα

∣∣∣∣ ≤ ∣∣∣∣ ∫
Q∗
hT(h)dHα

∣∣∣∣ + ∣∣∣∣ ∫
Q∗
h
(
T(g) − c

)
dHα

∣∣∣∣
+

∣∣∣∣ ∫
Q∗
hT
(
hχ2Q∗\Q∗

)
dHα

∣∣∣∣
≤ CHα

(
Q∗).

(5.81)

The upper bound on |c| is obtained by using the fact that Q∗ ∈ Q(E) is not a

stopping-time cube, namely, that
∫

Q∗ hdH
α > εHα(Q∗). Therefore, using that Hα(Q∗) =

µ(Q), we get

∫
Q∗

∣∣T(hχQ∗
)∣∣dHα ≤ CHα

(
Q∗) = Cµ(Q). (5.82)
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To estimate the second integral in (5.77), notice that, for each β, we can write

∫
Bβ

∣∣T(hχQ∗
)∣∣dµ ≤

∫
Bβ

∣∣T(hχRβ

)∣∣dµ +

∫
Bβ

∣∣T(hχQ∗\Rβ

)∣∣dµ. (5.83)

The first integral has been already estimated in (5.59). To deal with the second

one, writeQ∗ as a finite union of cubes Rγ of the same generation as Rβ, that is, such that

d(Rγ) ≈ rβ. Then, for each γ �= β, if x ∈ Bβ and y ∈ Rγ, one has |x − y| ≥ Crβ. Hence,

∫
Bβ

∣∣T(hχRγ

)∣∣dµ ≤ C‖h‖∞ Hα
(
Rγ

)
rαβ

µ
(
Bβ

) ≈ µ(Bβ

)
(5.84)

because of the facts that E is Ahlfors-David regular, and so Hα(Rγ) ≈ d(Rγ)α ≈ rαβ and h

is a bounded function. Plugging all these estimates in (5.77) and using that, for each β,

Hα(Rβ) = µ(Bβ), we obtain

∫
Q

∣∣T(hχQ∗
)∣∣dµ ≤ Cµ(Q) + C

∑
β

µ
(
Bβ

)
= Cµ(Q) + C

∑
β

Hα
(
Rβ

)
= Cµ(Q) + CHα

(
Q∗)

≤ Cµ(Q),

(5.85)

which finishes the proof of (5.60). Therefore, T(bµ) is a dyadic BMO function. �

Remark 5.3. For a different proof of Theorem 1.2 without using tangent measures, see

[19].
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