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Summary. — We have used a well established semiclassical method to study systematically the properties of hot dense
matter in the conditions prevailing during the gravitational collapse of massive stars. Different semiclassical kinetic energy
and entropy densities are discussed. Detailed results for different nuclear forces having different nucleon effective mass m*
and nuclear incompressibility K are presented. Plasma effects (translational and vibrational energies and Coulomb excess)
are considered for a typical adiabat. The results here presented cover a wide range in entropy per baryon S/A and electron
concentration per baryon Y for baryon densities pg ranging from 1073 fm~3 to 0.30 fm = 3.
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1. Introduction.

In recent years, a considerable effort has been devoted to
the study of hot dense matter (see Lamb et al., 1984 for an
exhaustive review of the literature). Besides its funda-
mental importance for the collapse of massive stars, the
study of matter under such extreme conditions is interesting
by itself. Indeed, it has been found that due to the effect
of the Coulomb lattice energy, cold matter near the nuclear
matter (NM) saturation density may adopt exotic confi-
gurations (Ravenhall et al., 1983 ; Hashimoto et al., 1984 ;
Oyamatsu et al, 1984; Williams and Koonin, 1985).
The search of a liquid-gas phase transition in heavy ion
reactions is another related topic of growing interest
nowadays (Siemens, 1984 and references therein).

Within the equation of state (EOS) context, several
groups have undertaken its study using methods of dif-
ferent accuracy and complexity. Since the pioneering work
of Lamb et al. (1978) using a finite temperature (T) Com-
pressible Liquid Drop (CLD) model (Lamb et al., 1984),
complementary results from other groups have become
available. Mazurek et al. (1979) and El Eid and Hillebrandt
(1980) described hot dense matter as a statistical equilibrium
between different nuclei. This approximation breaks down
at densities pg = 0.01 fm~3 when the external neutron
gas starts being sizeable. Barranco and Buchler (1981)
and Marcos et al. (1982) used a T # 0 Energy Density
(Thomas-Fermi (TF)) method with trial functions as
nuclear densities. Later on, fully variational TF calculations
were performed by Ogasawara and Sato (1983), Suraud
and Vautherin (1984) and Ogasawara (1985).
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At present, the more reliable EOS results come from
spherical Thermal Hartree-Fock (THF) calculations
(Bonche and Vautherin, 1981; 1982; Hillebrandt et al.,
1984). Also non spherical THF calculations have been
performed (Wolff, 1983), but no detailed results are yet
available. The main shortcoming of THF calculations
is that they are extremely time consuming. Moreover, in
the range of densities and temperatures we are interested in,
shell effects are completely washed out and thus HF
calculations do not seem necessary at all. Nevertheless,
they are very useful as a test for faster and cheaper semi-
classical methods.

It is the aim of this work to present a rather detailed EOS
calculated with a semiclassical TF method free from most
of the drawbacks TF methods are often criticized for in the
literature. We have also checked the influence of different
available approximations to the kinetic energy density
(KED) on quantities relevant for the EOS (entropy, T,
pressure, etc.). For isolated nuclei, the choice of the KED
is crucial but we anticipate that the EOS turns out to be
rather insensitive to that choice. Since in the regime where
nuclear clusters exist, the gross features of the EOS are
essentially determined by the leptons, provided the model
used to obtain the EOS is able to find these clusters at the
right T and pg, no dramatic changes are expected in the
results obtained from different methods. This is the ultimate
reason why CLD, TF and HF calculations yield similar
results.

At the beginning of this work, it was also our aim to
present the results at T = 0 and at finite temperature
corresponding to finite nuclei and semi-infinite NM as
well, showing the capabilities of a method that might be
useful for a wide variety of problems. However, two
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complete recent papers by Brack and coworkers (Brack,
1983 ; Brack et al., 1984) make unnecessary that part of our
work. We refer the interested reader to these two references
for an exhaustive and especially clear description of the
so-called Extended-TF (ETF) method and its achievements.

The plan of this paper is as follows. We present the
Thermal ETF (TETF) method in section 2. Some details
about our minimization procedure are given in section 3.
The results are presented in section 4. Plasma effects are
discussed in section 5 and a short discussion about alpha
particles is given in section 6. Finally, section 7 contains
our conclusions. Part of this work has been presented
elsewhere (Vifias et al., 1984 ; Barranco et al., 1984).

2. The TETF method.

Since a complete description of the method has been given
by Brack et al. (Brack, 1983 ; Brack et al., 1984), we present
here only a brief outline of the procedure.

The starting point is the free energy density which for
Skyrme-like forces is written as follows :

F P Pos T Tol = Bl Py Ts 1] — T Y. Syl 7)) (D)
q

Jelp,, Pp> Tns 7,] is a zero temperature Hamiltonian density
depending on the particle and kinetic energy densities p
and 7,. Its general expression can be found in the work o
Rayet et al. (1982). Within the Thomas-Fermi approxi-
mation, the entropy density reads

5 W

_m; Tq - pq ”q (2)
q

where m* is the local nucleon effective mass and 7, is the

degeneracy parameter

e = Gt = V.. )

V, is the single particle potential and y, the chemical
potential.

As it is obvious from equation 1, the two key ingredients
entering the definition of ¥ are the Hamiltonian density J¢
and (for semiclassical calculations) the KED t,. Since no
attention has been paid until now to the influence of both
quantities on EOS calculations (see however Vifias et al.,
1981 ; Rayet et al, 1982 and Hartmann et al., 1984), it is
worth discussing first the properties one should ask J€
to bear in order to be reliable for EOS computations.

2.1 THE HAMILTONIAN DENSITY. — We will limit our
analysis to Skyrme-like forces (Beiner et al., 1975 ; Tondeur
et al., 1984) because all the EOS calculations are (and have
been) performed with that kind of interactions.

It is quite obvious that the Hamiltonian density should
reproduce correctly the average binding energy of ter-
restrial nuclei. This is the case for all effective Hamiltonians
so far used in EOS calculations. (Actually, the SkM force
used by Bonche and Vautherin (1981; 1982) slightly
overbinds ; see Bartel et al., 1982.) Moreover, it should be
reliable for the description of neutron-rich nuclei and
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should reproduce fairly well the neutron matter properties
(energy per nucleon and chemical potential) computed
with realistic nuclear forces (Friedman and Pandharipande,
1981). In this respect, only the forces used by Barranco and
Buchler (1981); Lamb et al. (1978) and the RATP force
of Rayet et al. (1982) were built so as to take into account
the properties of the neutron gas. The forces SkM and
SkM* were constructed without paying any attention
to the neutron gas and their symmetry properties need to
be ameliorated (Brack et al., 1984).

The influence of the symmetry properties of the force
on the final results is masked by other bigger contributions
to the EOS. There are two characteristics of the force
relevant enough to yield significantly different EOS.
These are the nuclear incompressibility K and the nucleon
effective mass m*. Let us show in a simple way their
influence on the final results.

For the sake of explicitness, we consider homogeneous,
symmetric NM. For Skyrme-like forces, the Hamiltonian
density reads

hZ
2 m*

Ko, 7) =

T + P(p) ()

“where P(p) is a sum of powers of p. When the nuclear

clusters merge into homogeneous high density NM, it is
the highest p-power in P(p) that determines the adiabatic

index y.
B (6 log P
7= \Flogp ),

It turns out that the nuclear incompressibility is also
determined by that p-power (Bohigas et al., 1979). For old
Skyrme forces with K ~ 350 MeV like the one used by
Lamb et al. (1978, 1984), one has P(p) ~ p> and thus
y ~ 3 whereas for forces having reasonable values of
K(~ 220 MeV), one has P(p) ~ p>*® with 6 = 1/3 or
1/6 and consequently y ~ 2. The unrealistic high value of
K does not seem to be of crucial importance up to the
point where nuclear clusters disappear because the pressure
is essentially determined by the leptons and y ~ 4/3.
However, this is quite not so beyond that point. It is worth
noting that at temperatures as low as 4 MeV and Y, ~0.30,
the system becomes homogeneous at a rather low density
(p ~ 0.10 fm~3). Consequently, forces with high K will
procedure an unacceptable artificial stiffening of the EOS
and should be avoided in EOS calculations.

The nucleon effective mass m* plays an important role in
determining the nucleon single particle (s.p.) spectrum,
more precisely, the s.p. level density near the Fermi surface
(Brown et al., 1962 ; Jeukenne et al., 1976). This level density
is crucial for the nuclear thermal properties.

An effective mass m*/m ~ 0.80 for homogeneous sym-
metric NM seems to stem from the systematics of giant
monopole and quadrupole isoscalar resonances (Bohigas
et al., 1979 ; Krivine et al., 1980). However, a value m*/m~ 1
is needed to reproduce the level density near the Fermi
surface and might be an approximate way to incorporate
collective effects in HF which are in part responsible of the
enhancement of m*/m. We may expect these effects still to
remain at moderate T making m*/m ~ 1 more likely,
whereas at high T the collective effects will be washed out
and 0.80 would be probably more adequate.

®
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Just to give a crude estimate on the effect of m* on the
EOS, let us consider again symmetric homogeneous NM
at low T. The relationship between the entropy per particle
S/A and T is (Barranco and Treiner, 1981)

©)

where %ikgis the Fermi momentum. Thus, for a given value
of S/A, the corresponding value of T may vary by as
much as 20 9. The variation is less dramatic when electrons
and surface effects are taken into account, but it may still
be a sizeable 10 %, (Hartmann et al, 1984). Any further
discussion of this point is beyond our scope. However,
full EOS calculations are desirable in order to have a
precise idea of the influence of m* on the results.

Having in mind this discussion, we have chosen for our
calculations the T6 interaction of Tondeur et al. (1984).
This force has several interesting features. First, it has
already been used in the astrophysical context (Rayet
et al., 1982). It has m*/m = 1 and reproduces the nuclear
binding energies accurately (Tondeur et al, 1984). Its
symmetry properties are also excellent, reproducing cor-
rectly the results of Friedman and Pandharipande (1981)
and the so-called « neutron skin» in 2°%Pb. It is thus
reliable for the study of neutron-rich nuclei. Its correct
incompressibility (~ 240 MeV) also ensures a good
behaviour of the EOS at high density.

A common feature of all EOS Thomas-Fermi calcula-
tions performed up to now is the neglecting of the spin-
orbit (SO) energy density entering the definition of J€.
Although its contribution to the total nuclear energy may
not be very relevant, the SO energy accounts for 5-10 %
of the surface energy (Negele and Vautherin, 1975; Co6té
and Pearson, 1978; Grammaticos and Voros, 1980).
Because the nuclear size is determined by a critical balance
between surface and Coulomb energies, one may expect the
same variation in the nuclear size if the SO force is not
included and the surface energy is not readjusted. Actually,
the nuclear size uncertainty due to thermal fluctuations is

. bigger than 109, (Barranco and Buchler, 1981 ; Bonche

and Vautherin, 1982 ; Hartmann et al., 1984). We want to
point out that it is straightforward to include the semi-
classical SO force in the calculations, avoiding any sort of
ad hoc renormalization of the surface free energy. (This
renormalization is around 20 % in the CLD model but is
not only due to the neglecting of the SO force.) Conse-
quently, we have used the full expression of the T6 Hamil-
tonian density except the terms proportional to the square
of the spin-orbit density J because this is also usually done
in HF calculations.

2.2 THE KINETIC ENERGY DENSITY. — Another key
ingredient entering the (semiclassical) definition of F
is the kinetic energy density t,. For isolated nuclei at zero
temperature, it is well known that one has to go beyond
the standard p]/? term in order to get variational densities
p, valid all over the space (Lombard, 1973 ; Bohigas et al.,
1&76). The inclusion of the so-called Weiszacker term
(qu)2/36 p, allows to obtain nuclear densities with an
exponentiaf fall-off, but too steep at the surface. This can
be cured by an ad hoc reduction of the Weiszicker term
coefficient but in this case the price one pays for having
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a good nuclear surface is the losing of ~ 0.5 MeV/nucleon
binding energy. In other words, it is beyond any hope
to have a good surface and the correct binding energy at the
same time.

It seems that the only way to obtain the correct binding
energy and surface diffuseness simultaneously is to go to
higher orders in the semiclassical expansion of 7, in terms
of p, and its gradients. This expansion has been obtained
by Grammaticos and Voros (1980) and successfully applied
by M. Brack et al. (see Brack ef al., 1984 and references
therein) to the study of static and dynamic nuclear
properties. We refer the interested reader to that
reference where one may find exhaustive comparisons
between HF and semiclassical results-at zero and finite T
These calculations are not fully variational in the sense that
instead of solving the Euler-Lagrange equations as Bohigas
et al. (1976) did, the nuclear densities were parametrized
Fermi-like functions. The total energy is minimized with
respect to the density parameters and the agreement with
HF calculations turns out to be excellent.

One of the nicest features of the complete functional
7,lp,] is that it includes contributions coming from non-
local effects (i.e., nucleon effective mass and spin-orbit
energy). Consequently, besides including higher term in
7,lp,] that take account of the inhomogeneities, one is able
to handle nuclear forces having effective mass and to
incorporate the spin-orbit density in the semiclassical
calculation. Moreover, this procedure is completely free
of any adjustable parameter. Once the nuclear Hamiltonian
has been chosen, the associated functional 7,[p,] is unique
(Grammaticos and Voros, 1980).

At finite temperature, the procedure we have followed to
generalize the T = 0 results is the following. We write the
KED as a sum of three terms

1 2m* T 5/2
() g 4 s

T
ST+ Tyt Ty (D

The corrective terms t,, and 7, are the cold second and
fourth order ones (Grammaticos and Voros, 1980). J;,
is the Fermi integral :

x¥ dx

I = L TFepc -

@

Equation (7) together with the standard definition of p,

1 [2m* T\
- 2_<h2_> T (e

define implicitly the functional 7,[p,].

We want to stress that the termst,, and 7, do not depend
explicitly on T but will change with it due to the changes
produced in the mean field by the temperature. For the
entropy per unit volume we take equation (2) with 7} instead
of 7, (Barranco and Treiner, 1981).

During the completion of this work, we became aware
that M. Brack had worked out the exact finite temperature
second order term t3, (Brack, 1984). This correction
implies also an extra gradient term in the definition of s
that may play some role at low temperature (< 3 MeV)

oy )
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but which is not relevant at higher T, as we have checked
(see also Brack, 1984). We will come back to this point
when we discuss the results.

To work out the corrective terms t,, and 7, is a rather -

cumbersome task. Their explicit expression can be found
in Brack et al. (1984). We want to point out that we have
derived them independently as well as the computer code
for isolated nuclei at T = 0 and finite T. Consequently,
we have been able to check extensively the results given
in that reference. In no case we have found any appreciable
disagreement ().

3. Minimization procedure.

To obtain the thermodynamical properties of a system of
nucleons, electrons and neutrinos (other particles are
extremely rare in the range of temperature and density
in which we are interested) we minimize the free energy

per unit volume
—1 drf 5 ... +
Vv nucl’’

1
+ Ee(pp

F_
7 [pm Pp> Tos Tp T] =
- pe) ¢coul(F)

3/3 173 2 4/3
S e o a0+ p0)|- a0

T

The electrons are extremely relativistic and degenerate
and are assumed to form a uniform negative background
of density p,. The neutrinos are also extremely degenerate
and form also a uniform background of density p,. They
are decoupled from the other particles (except if we work
at constant number of leptons per baryon. We shall come
back to this point later) and their abundance is determined
from beta equilibrium after the free energy reaches its
minimum with respect to baryon and electron degrees of
freedom. The expressions for f, and f, are standard and
can be found in any astrophysics textbook (see for example
Cox and Giuli, 1968).

At constant T, F/V has to be minimized for a given
average baryon density

1 [ =
P = ?jdr(pn + pp) (11)
and average proton concentration Y
1
Y, = Vou dr p,(r) (12)
with the constraint of average charge neutrality
P
Y.=—==7_. 13
PB P (13)

(*) The explicit expressions of t,, and 7,, are extremely
cumbersome to write down explicitly. A printed output of nuclear
subroutines and/or a computer tape with them is available from
the authors on request.
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Under the conditions of interest here the nucleons can
congregate into nuclei embedded in a lower density fluid
or into bubbles in a higher density fluid. Both kinds of
configurations will be referred to as nuclear clusters.
Within the Wigner-Seitz (WS) approximation, we shall
assume that each cluster, assumed spherically symmetric,
occupies a cell of volume V_ and radius R, in which the
total electric charge is neutralized on the average. These
cells are thus non interacting and the integration in
equation (10) is restricted to only one of these cells.

To minimize equation (10) we have chosen a trial
function approach with generalized Fermi functions for
the densities

Pg = pg 7
4 ) r— R\
+ exp aq

The constant p takes into account the non-vanishing
nucleon density at the edge of the WS cell. §, is fixed to
1.5 for both kinds of nucleons. Due to equa’uons (11) and
(12), only three of the remaining density parameters are
free. To reduce the number of variational parameters to two
per density, the following relationship between the nuclear
matter radius ry(Y,, T), the particle number A and the
parameter R, and a, was used (6 = 1.5)

+pg- (14

a
R, = r0A1/3|:1 — ) EAT
0

41 A~ 2/3(’1(0) 2 ’,,i'l))

UO

= A"( SO + 20 ) n‘f))]. (s)

r3

ow

The constants 7 are defined by Krivine and Treiner
(1981). An extra minimization with respect the WS radius
R, has to be performed to get the minimum of F/V. The
pressure and chemical potentials of protons and neutrons
were calculated by taking suitable numerical derivatives.
Further technical details can be found in Barranco and
Buchler (1981) and Marcos et al. (1982).

The trial function procedure has been criticized by some
authors for its supposed lack of flexibility. It is worth
emphasizing that it is not quite so. M. Brack ez al. (1984)
have shown that nuclear densities can be accurately

. described by functions only a bit more complicated than
" equation (14), provided a good prescription for the KED

is used. One can see in Brack et al. (1984) how nicely the
semiclassical densities agree with the HF ones at the surface,
whereas inside the nucleus the former ones reproduce
the average trend of the oscillating HF densities. At high
temperature shell effects will disappear, improving even
more that agreement.

What is obviously left out in our guess, equation (14),
is the dip in the nuclear density near the center due to
Coulomb repulsion among protons. But as shown by
Brack et al. (1984), this is completely irrelevant as long as
we are only interested in the total free energy. Moreover,
the neutralizing electrons will decrease the effect of Cou-
lomb repulsion.
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We want to point out that the constraint (15) does not
affect the final results in any appreciable amount while it
reduces the computing time by at least a factor of two.
Only the size of the high density bubbles changes noticeably
and very likely the neutron chemical potential. The changes
in size are however compatible with the big fluctuations in
R, present at high T and py.

So far, we have described the minimization procedure at
constant T and Y. A few years ago, it was realized (Bethe
et al., 1979) that the collapse proceeds at almost constant
entropy (S) and lepton concentration Y,

Y, =Y, +2

PB

(16)

~ To keep S/A constant one has to iterate on T. Another

readjustement of Y, is needed in order to keep the total S
(nucleon plus lepton) and Y, simultaneously constant.
The procedure is straightforward but more time consuming.
We shall present our results for fixed values of the nuclear
plus electron entropy per baryon S/4 and Y, as it is
currently done in the literature. It turns out that the
corresponding values of the total S/4 and Y, are also
almost constant.

4. Results.

Tables I to IX collect the EOS corresponding to the T6
interaction and constitute the main result of the present
study. Let us discuss some of their features (for the expla-
nation of the two lines marked with an asterisk in table II,
see Sect. 5).

As we have stated before, a constant Y, and S (nuclear
plus electron) implies also an almost constant Y, and S,
in this range of densities. The adiabatic index is close to 4/3
when clusters are present.

The tables show that two different phase transitions
(PT) take place. The first one from nuclei to bubbles and the
second one from bubbles to homogeneous matter (HM).
Observe that the number of nucleons clustered into bubbles
is negative, meaning the nucleon default inside the cell.
For HM, some entries in the tables have no meaning (as R,
for example) and were left out. Within our formalism, both
PT are of first order. The PT from nuclei to bubbles was
computed as suggested by Bonche and Vautherin (1982).
The change in density was found to be very small (around
5% in most cases). It is worth noting that at both sides of
that point, the regions where bubbles (nuclei) exist are
rather wide : these regions are of metastability. As a matter

of fact, it would be possible to consider the nucleus phase -

alone up to the point where the system becomes homo-
geneous (Hillebrandt et al., 1984). In contradistinction, the
transition from bubbles (nuclei) to HM is rather abrupt
and we have not found any sizeable metastability region.

Atlow S and py, shell effects may play some role because
the temperature is not very high (see tables I and II for
example). However, the low density part of all the adiabats
we present might be well described by nuclear statistical
equilibrium (NSE) and shell effects will be automatically
included in the calculation.
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The plasma parameter I” defined as
- (-ch e)Z
I'==%r an

is an important quantity if one wants to estimate the
contribution of plasma effects to the EOS. We shall come
back to this point in section 5 but we anticipate that for
I' > 170 we deal with a Coulomb solid. We have found
that the most general situation is the following (see table II
for example). At low density we have a nucleus-like Cou-
lomb liquid that becomes a Coulomb solid at higher
densities. When the nucleus-to-bubble PT takes place,
a bubble-like Coulomb solid is the most favoured confi-
guration and finally near the bubble-to-HM PT, we have
a Coulomb liquid made of bubbles.

The bubble-to-HM PT takes place at a rather low
density even at low entropy. The stiffening of the EOS due
to the nuclear incompressibility is quite apparent from the
tables as we have already mentioned.

Figure 1 shows a typical EOS for Y, = 0.30, S/4 = 1.5
(all the figures were computed with T6). From low to high
density, the three full line pieces correspond respectively
to nuclei, bubbles and homogeneous NM. These pieces
are disconnected because of the unability to study the
coexistence of a system made of nuclei and bubbles simul-
taneously or bubbles and NM. One may see a part of
metastable region (dashed line) corresponding to the
nucleus-to-bubble PT. The dashed-dotted line is the EOS
obtained within the so-called bulk-equilibrium approxi-
mation (Barranco and Buchler, 1980).

Another way to look at these PT is shown in figure 2.
There we have plotted the enthalpy per particle W/A4 vs.
pressure (Bonche and Vautherin, 1982). This figure shows
again the three disconnected EOS pieces corresponding
to nuclei (low p), bubbles (intermediate p) and NM (high p).
The nucleus-to-bubble PT takes place very smoothly.
Indeed, one can see that the metastable nucleus and bubble
phases, represented by dashed lines, are very nearly equal
to the stable phase on both sides of the transition point.

The NM part of the EOS was calculated as indicated by
Barranco and Buchler (1980; 1981). This part of the EOS
is extremely easy and fast to compute with complete, well
behaved Skyrme-like forces. Consequently, up to the density
where one can trust the approach based on the existence of
a mean field potential and mesonic degrees of freedom do
not play any appreciable role, we see no advantage in
introducing ad hoc parametrizations of the EOS as a
function of K, the adiabatic index and any other nuclear
property as saturation density, binding energy or symmetry
energy (Baron et al., 1984). We have stopped our calculations
at pg = 0.30 fm ™3 but we are aware of the limitations of the
approach at such high densities.

Another point to be stressed is the important thermal
fluctuations that make the nucleon content of the cell rather
uncertain. They are shown for the cases S/4 = 1; Y, =0.35
and 0.30 for SkM force and S/4 = 1.5, Y, = 0.35 for T6
(tables X, XI and VII respectively). These fluctuations are
typically 64/4 ~ 15-30 9, and increase at higher density
and/or entropy. \

Tables X and XI were computed with the force SkM

and table XII with the force S1’ of Lamb et al. (1978).
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Table X allows for a direct comparison of the present
method with the THF results of Bonche and Vautherin
(1982) and the variational TTF calculations of Suraud
(1984) (note that they used Y, = 0.285). One can see that
the agreement is reasonable apart from a not unexpected
difference in u, and A/Z.

The forces T6 and SkM yield very similar adiabatic
indexes whereas S1’ gives much bigger values of y. Observe
that the pressures are very similar for the three forces up
to the point where bubbles merge. Note also the different
values of T due to the different m*.

Figure 3 shows the isentrops log T vs. log pg for Y, =

0.35. This figure corresponds to figure 3 of Hillebrandt

et al. (1984) where a marked discontinuity is shown for
S/A = 1. It has been argued by Lattimer et al. (1985) that
such pathology could be due to the fact that they did not
considered the possible existence of bubbles in their
calculation. They used Kohler’s Ska force (Kohler, 1976)
which has K = 263 MeV, m*/m = 0.61 and a symmetry
energy of 32.9 MeV, the rest of its properties being rather
standard.

We may assert that it is not due to the lack of bubble
configurations. Indeed, we have computed the adiabats
S/A =1,Y, = 0.30 and 0.35 with T6 and found that at
ps = 0.10 fm ™3 the difference in T between nucleus and
bubble configurations was around two per cent. The same
difference was found for the total pressure. The comparison
of tables II and X shows that it cannot be an effective mass
effect either (although m*/m = 0.6 is too small).

To end up with this section we would like to comment
on the influence of the gradient corrections to the kinetic
energy and to the entropy. Table XIII shows the results
corresponding to T6, S/A =1,Y, = 0.30 for densities
ps = 0.04 and 0.08 fm~ 3. The first line is the result already
shown in table II. The second line was obtained improving
the present approach by correcting up to second order in
7i(i.e. including a gradient correction) the expression of the
entropy (Brack, 1984). The third line is the zeroth order TF
result computed following Marcos et al. (1982). One may
see that lines one and two agree reasonably well but in
general the results obtained with the crudest TF model
(third line) are very close to the most sophisticated one
(second line). Other tests performed at different densities
and entropies yielded similar results.

We want to point out that we were aware of Brack’s
correction when a big part of our calculation was done so
we decided not to include that small correction and just
checked its influence on the results. Actually, there is no
difficulty in taking into account any gradient term in

s(p, 7).

5. Plasma effects.

Among the effects left out in the formalism so far presented
one might include the so-called plasma effects. These
effects arise because, due to thermal notion, the nuclear
cluster as a whole has a translational or vibrational energy
and an extra Coulomb energy (« Coulomb excess »).

Both extra energies are well known by plasma physicists
and explicit expressions have been worked out for the one
component plasma (OCP) (Hansen, 1973; Pollock and
Hansen, 1973 ; Slattery et al., 1980). The application of these
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results to the EOS problem has to be done with some
caution. Indeed, they were obtained from an opposite
point of view to the one we have adopted for EOS calcu-
lations, i.e. one particle (cluster) in one WS cell. In OCP
calculations one tries to follow the evolution of as many
particles as possible inside a given volume. Moreover,
OCP calculations always treat the particles as point-like,
structureless entities. This is far from one finite nucleus
whose radius is sometimes around half the radius of its
WS cell. Although some prescriptions may be adopted to
correct the limitations of the OCP results (Lattimer et al.,
1985) they are far from being well established from the
plasma physics point of view.

It is however interesting to use the OCP expressions to
have an estimate of these effects, at least qualitatively.
Here we closely follow the method proposed by Barranco
and Buchler (1981).

Presently, it is well established that the OCP constitutes
a Coulomb liquid for I' < 170, whereas for I' > 170 we

have to deal with a Coulomb solid. Since at high T and py

the system is in the strong coupling limit (I" > 1), we use
for the Coulomb excess free energy the expressions obtained
by Slattery et al. (1980). It is easy to verify that the plasma
free energy (translational plus Coulomb excess) reads

FL
~E = — 0897521 + 378176 I''* — 071816 I~ +
+219951InT + 223221 + 2ln—L— (18)
. ‘ 2 Acl(ch)4

for the liquid phase (i.e. I' < 170) and

F3 1490 9
o _ _14%0 2
2 0897521 — —= + 5InT + 36477 +
+ %mL (19)

Acl(Z 01)4

for the solid phase. A few comments are now in order. First
of all, the first term ~ — 9/10 I is already included in the
proton-electron Coulomb energy, so it has to be dropped
out from these expressions. Second, F_, is the total free
energy per WS cell (in MeV) that has to be added to the
previous results if one wants to correct them for plasma
effects (remember T is in MeV). 4,(Z,,)) are the number of
clustered nucleons (protons) and no correction of volume
excluded type has been made in the translational (vibra-
tional) free energy. Indeed, if one writes the translational

free energy
Fu [ L (207 Y7]
T V.\mA, T

and wants to correct ¥V for the volume occupied by the
nucleus V, it is obvious from the tables that in the region
where the system constitutes a Coulomb liquid, V, is
negligible in front of V. Indeed, if V, = 4/3 nry/A with
ro = 1.2 fm one has :

Vi [roAYs
T/ﬂz[oR :| <1.

(20)

@n
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Moreover, for a diffuse nucleus it is quite arbitrary to
associate a certain volume to it.

What worsens the situation is the large uncertainty in the
values of 4 and Z due to thermal fluctuations. Consequen-
tly, we do not consider of any relevance to improve on these
equations, given the intrinsic uncertainties in its primordial
ingredients (V, A, Z,). It is also obvious from the tables
that at high density, the system is a Coulomb solid, so
special attention should be paid to equation (19) rather
than to equation (18).

An additional difficulty arises when bubbles take over
since it is not clear what the « mass » of a bubble is. We have
assumed that A, and Z_, the mass and charge default inside
the cell and checked that the nucleus-to-bubble (NB)
phase transition is still smooth.

We have estimated the plasma effects perturbatively and
also included them explicitly in the minimization. In the
few cases we have computed, there is no appreciable diffe-
rence between both methods. We have also verified that
the NB phase transition is not much affected either,
although because of the uncertainties already mentioned,
F,, should not be considered when determining the NB
transition.

The contribution of these effects to the total pressure
and total entropy (not per baryon) can be obtained from :

I OF
pl
—n 2
T 4nR3 or (22
F, 3
Sp=-=F-5 @3

As a detailed example of the influence of plasma effects
in the variational calculation, we have included in table II
two lines marked with an asterisk for py = 0.01 and
0.04 fm~3 which were computed including in the mini-
mization equations (18) and (19) respectively. Plasma
effects tend to decrease the cluster size without changing
appreciably the other quantities.

Finally, table XIV shows the contribution of these
effects to F/A, P and S/A computed perturbatively
(Egs. (18)(19) and (22)«23)) along the S/4A =1, Y, = 0.30
adiabat, always for the T6 force.

6. Alpha particles.

Trying to go a step beyond the pure WS approximation,
some authors have included in the calculation alpha
particles either within the so-called bulk approximation
(i.e., neglecting Coulomb and finite size effects) (Barranco
and Buchler, 1981 ; Pi et al., 1983) or within the WS approxi-
mation (Lamb et al., 1978 ; Lattimer et al., 1985).

Since alpha particles plus bulk matter have been studied
with some detail in the first two references above, let us
say a few words about the possibility of including alphas
in the full WS formalism. The cleanest way of including
them would be to consider a nuclear WS cell surrounded
by satellite alpha particle WS cells. In this way, one would
not need to pay any attention to Coulomb interaction
between alphas and the nuclear cluster although some
problems might arise because very likely, different electron
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densities would be needed inside the nuclear WS and the
alpha WS cells. Unfortunately, this procedure has to be
ruled out because the small charge of the alpha particle
and the high temperatures involved make the plasma
parameter I’ much smaller than one :

Z.e®

1> Fr (24)

This is the Debye-Hiickel limit (Landau and Lifshitz,
1967) and definitely the WS approximation has no sense
under these conditions.

It would be also possible to allow the alpha particles
to float around inside the nuclear WS cell (Lamb et al.,
1978 ; Lattimer et al., 1985). In this case, the procedure is
much less transparent because of all the complexities
associated with binary Coulomb mixtures (see for example
Brami et al., 1979). A brute force calculation might consist
in minimizing the quantity

F 1

7=70FN+nafa

25

where F/V is the whole expression (10), i, is the number
of alphas per unit volume and f, the free energy per alpha,
without paying any attention to plasma effects and
obviously imposing charge and baryon conservation inside
the WS cell.

We do believe that this method is extremely fraught
with danger because we cannot control the approximations
we make. If many nuclear species are expected to be in NSE
at low pg and/or T it would be better to use NSE up to
that point and then switch to the WS, one nucleus approxi-
mation, matching both pieces of EOS. Indeed, Hillebrandt
et al. (1984) have shown that it can be done smoothly.
For these reasons, we have left out alpha particles in our
calculation. Moreover, they are very rare in the region of the
pg — T plane in which we are interested (Pi et al., 1983).

7. Conclusions.

We have presented a detailed EOS computed with a
reliable nuclear force and using one of the best semi-
classical formalisms available. Comparisons have been
made with other methods and between the EOS obtained
with different forces. These forces yield similar EOS
although there are obvious differences between forces
having extreme different nucleon effective masses or
nuclear incompressibilities.

The agreement with THF calculations is in general
satisfactory, the remaining differences being due to our
very restricted trial densities. Had we used the four para-
meter density (Eq. (14)) without any restriction, the agree-
ment would have been even more satisfactory. However,
our goal of an extense tabulation has prevented us from
using more flexible densities.

The present spherical WS approach constitutes a
compromise between reliability and computing time.
As we have stated at the introduction, nonspherical
clusters come into play at densities around half the NM
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saturation density value. These exotic forms are interesting
from a pure theoretical point of view, but we are far from
having an extense EOS tabulation that will include them.

Corrections to the one nucleus WS approach have been
worked out (Lamb et al, 1984 : Burrows and Lattimer,
1984) and found to be small. Plasma effects have also been
estimated, but not included all over the calculation. It
seems to us of little justification to include some effects
in the calculation and to leave out others of similar impor-
tance.
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SUPERNOVA MATTER : A SEMICLASSICAL APPROACH
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