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Abstract. — A new statistical parallax method using the Maximum Likelihood principle is presented, allowing the
simultaneous determination of a luminosity calibration, kinematic characteristics and spatial distribution of a given
sample. This method has been developed for the exploitation of the Hipparcos data and presents several improvements
with respect to the previous ones: the effects of the selection of the sample, the observational errors, the galactic rotation
and the interstellar absorption are taken into account as an intrinsic part of the formulation (as opposed to external
corrections). Furthermore, the method is able to identify and characterize physically distinct groups in inhomogeneous
samples, thus avoiding biases due to unidentified components. Moreover, the implementation used by the authors is
based on the extensive use of numerical methods, so avoiding the need for simplification of the equations and thus
the bias they could introduce. Several examples of application using simulated samples are presented, to be followed
by applications to real samples in forthcoming articles .
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1. Introduction

Several implementations of the Maximum Likelihood
(hereafter ML) principle to obtain luminosity calibrations
from kinematical data have been developed — see Rigal
(1958), Jung (1970), Clube & Jones (1971) and Heck
(1975) —, each one more complete than the previous ones.
However, several difficulties remain:

1. Given the complexity of the equations involved, no an-

alytical solution can be found for the ML estimator in
the general case. Some crude approximations have to
be introduced to solve the problem analytically. This
can be found even in Heck’s implementation, where nu-
merical methods are more widely used. For instance,
the dispersion in absolute magnitudes o is never di-
rectly determined.
Although the effects of the simplifications are tested
by the authors — using samples with known trigono-
metric parallaxes or simulated samples — they reduce
the precision of the method and may introduce unde-
tected bias when applied to a real problem.

2. None of the implementations take directly into account
the effect of the sample’s selection process or obser-
vational constraints. To apply the ML principle to a
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given sample correctly, its own density law has to be
used, which is determined not only by the density law
of the group of stars from which the sample was ex-
tracted but also by the selection process by which the
stars were chosen. A classical example of this is the
case of a magnitude-limited sample. Its mean absolute
magnitude is brighter than that of the original group
of stars, and the difference is known as the Malmquist
bias — see Malmquist (1936) and Luri et al. (1993).
As the selection effects are not taken into account di-
rectly, the results still have to be corrected for some
biases (such as the Malmquist bias cited above). These
a posteriori corrections reduce the precision of the re-
sults and, in some cases, are not enough to correct all
the biases completely (Luri et al. 1993).

. The effects of the observational errors are taken into

account only in Heck’s implementation but, again, not
directly. They are estimated using simulated samples
and then subtracted from the results, thus reducing
the precision of the method.

. The interstellar absorption is never completely taken

into account. The apparent magnitudes are usually
corrected beforehand or iteratively but, as we will see
in the next section, this is not enough to take into



406

account all the effects in play.

5. The characteristics of the spatial distribution of the
stars around the Sun are not taken into account, usu-
ally assuming it as being homogeneous. This is only
valid if the sample is very close to the Sun and for
samples extending to greater distances the presence of
the Galactic Disk should be taken into account.

6. All the implementations implicitly assume that the

sample being treated is homogeneous. In a real case,
however, the samples will usually be inhomogeneous,
containing more than one type of star.
Only in Heck’s implementation is this problem taken
into account by iteratively eliminating stars with a ve-
locity too far from the mean. However, the procedure
can be dangerous in some cases. The distance to a
star, needed to calculate its velocity, is estimated using
the mean absolute magnitude obtained for the sample.
For samples with large absolute magnitude dispersions
there will be stars much fainter than the mean, for
which the distance estimation will be too large and
lead to a very high velocity. Faint stars will then be
systematically eliminated, biasing the sample towards
bright magnitudes.

In the next sections our implementation of the ML prin-
ciple is presented, showing how these problems have been
overcome by taking advantage of the power of modern
computers to minimize the approximations. For a more
detailed description see Luri (1995).

2. Mathematical formalism

The principle of ML can be briefly described as follows:
let  be a random variable following the density law given
by D(x | 6y), where 8y = (61,0,...,6,,) is the set of
unknown parameters on which it depends. Given a sample
of realizations (x1, €2, . . ., &, ) of the random variable, its
Likelihood Function is defined as

Ng
L) =[[P(:16). (1)
i=1
The value of 8 which maximizes this function is the
ML estimator, @y, of the parameters 6y characterizing
the density law of the sample. It can be shown that Gy,
is asymptotically non-biased, asymptotically gaussian and
that for large samples it is the most efficient estimator —
see Kendall & Stuart (1979).

To apply the ML principle correctly the density law
describing the sample is needed. In this section we will
study, step by step, how the different effects — selection
of the sample, observational errors, galactic rotation, in-
terstellar absorption, and inhomogeneities of the sample
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— can be introduced in the density law, so it can describe
the sample being studied as realistically as possible.

Even though a much more compact deduction of this
density law is possible — see Luri et al. (1992) — this step-
by-step presentation has been chosen for the sake of clar-
ity and also to study how the different effects are treated
individually.

2.1. Density law of the Base Group

We use the term Base Group to refer to the group of stars
from which the sample is extracted, that is to say, the
base population in statistical terms. For the moment we
will assume that this Base Group is homogeneous, i.e. that
it is composed of a single type of stars. In this case its
physical characteristics can be described by a single set of
distribution functions, which in this work we will assume
as:

Absolute magnitude distribution

5(45)

om(M) =e 2\ 7m

Velocity distribution

oo U, VW) = o 2 (57) -1 (50) - (M)
3)
Spatial distribution

_|rsin(®)]|

we(r,l,b) =€ %o

r2cos(b) (4)

Notice, however, that the mathematical formalism pre-
sented below does not depend on this choice and, as we
are going to use numerical methods extensively, the ML
estimation can also be performed with a different set of
hypotheses. For instance, a different absolute magnitude
distribution can be used, assuming a different shape — see
Jaschek & Goémez (1985) — or even parametrizing the mean
absolute magnitude as a function of a color index — as is
performed in forthcoming articles.

A realistic choice of the distribution functions, cor-
rectly describing the physical characteristics of the base
group, is very important, as they are the basis for the de-
velopment.

The physical quantities on which these functions de-
pend can be joined in a single random variable, x =
(M,r,1,b,U, V,W) and the distribution functions them-
selves define the density law of « for the Base Group:

D(IE | 0) = LPM(M) LPU(U7 ‘/7 W) <Pe(7", l7 b)

(not normalized) .

()

It is more convenient, however, to work with observ-
able quantities and so we use a different random variable
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y = (m,r,1,b, p, p, v). The density law for y can be ob-
tained from that for @ using the law of transformation of
probability distributions:

D'(y|0)=JD(x|8), (6)

where the parameter vector of the density law is 8 =
(Mo, OM, Uo, VE), W(), oy,0v,0w, Z()) and j is the jaco—
bian of the @ — y transformation:
J = k*r? cos(b),
with k = 4.745mr,
s pc

(7)

2.2. Observational selection

The density law D’'(y | 8) gives the distribution of the
random variable y for the base group but, as stated above,
its distribution for the sample of stars being used may be
different due to the selection process applied to the choice
of its stars.

The selection of a star for inclusion in a sample is based
on its observational characteristics. The selection can be
due to observational limitations — such as the magnitude
limit of a telescope — or to criteria fixed by the observer
— e.g. only to take stars with high proper motions. In any
case the selection process, being based on the values of y,
can be modelled by a function of this variable. We will call
this function the Selection Function of the Sample, defined
as follows: given a star with values of its observational
quantities between y and y + dy, its probability of being
selected for the sample is

dP = S(y) dy. (8)

Using this function, the Density Law of y for the Sam-
ple can be built simply taking into account that its stars
verify two conditions:

1. they belong to the base group
2. they have been selected for the sample

The joint density law for these two independent events
can be written as:

M(y|8) =Cy D'(y]0) S(y). 9)

Notice that a normalization constant Cy; has been ex-
plicitely introduced, whereas it is missing in the definition
of D(x | 6). This is not normalizable because no limits
were introduced in the spatial distribution, which is math-
ematically correct but has not physical meaning. On the
other hand, M(y|0) is normalizable if a realistic selection
function is chosen — as for example a limit in apparent
magnitude — even if D(x | 0) is not. The normalization
constant plays an important role in the application of the
ML principle. It depends on the same parameters @ as the
functional part of the density law, so it has to be taken
into account when maximizing the likelihood with respect
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to them.

An example of a selection function is that for the case
of a sample complete up to a certain limiting apparent
magnitude my;, . In this case all the stars of the base group
with m < mym have a probability one of being selected for
the sample, while those with m > my, have a zero prob-
ability. This kind of selection function can be described
with a Heaviside’s function, so that

S(y) = O(m — miim ). (10)

Only one more remark is required to our discussion
about the selection function. In many cases the selection
process leading to a sample will not be known or will be
very difficult to model in a function. In these cases a Para-
metric Selection Function can be used: some parameters
are left in the selection function to be estimated by ML,
together with those in 8. In this way the selection func-
tion adjusts itself to the sample in the process of the ML
estimation.

2.3. Observational errors and elimination of the distance

The distribution of the variable y given by the density law
M(y | 8) corresponds to the ideal case without observa-
tional errors. However, in a real sample these are present
and have to be taken into account to describe the distri-
bution of the observational quantities correctly.

Furthermore, in the development presented in this ar-
ticle, the use of trigonometric parallaxes is avoided since
it decreases the size of the available samples, severely re-
stricting the application of the method —see Gémez & Luri
(1992). For this reason, the distance r has been kept as an
integration parameter (see below) among the components
of the variable y instead of introducing the trigonometric
parallax, which is directly observable. However, the devel-
opment can easily be modified to include it, if available,
and even adapted to a mixed case, where some stars have
measurements of this quantity and others have not. These
further developments are included in our plans for future
work.

To meet both goals we have to redefine our variables:

—y = (mo,r,lo, bo, Lo, b0, Vro) containing the “real”
values

— z = (m,1,b, w, p, v,) containing the measured values

The measured values in z are distributed around the
“real” values in y according to a certain FError Distribu-
tion £(z | y). The joint distribution of “real” values and
measurements will then be determined by the joint density
law:

Me(y,2|0)=Cre D'(y|0)S(2) E(z|y).  (11)
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Notice that the selection function obviously depends
on z because the selection criteria are applied to the mea-
sured values and not to the “real” ones.

These “real” values (including the distance r) are never
known, only the measured ones are available. We do not
want the joint density law but the one for only z. This law
can be obtained from Mg by integration (convolution)
with respect to y:

O(z0) = Co' | Me(y,z|0)dy =
Yy

=C5'S(z) | D(y|6)E(z|y)dy, (12)

vy
which constitutes the Density Law for the Measurements
of the Sample. Notice, as stated above, that the distance r
only plays the role of an integration parameter, as it does
not appear in z.

At the present state of our implementation of the
method the error distribution has been chosen as follows:
— negligible errors for (m,1,b)
— gaussian errors for (ug, e, vy)
(EMH €uby E'U'r')
Neglecting the errors in m will be discussed more thor-
oughly in Sect. 2.5. The ones in (I, b) are negligible because
their effects (given the precision of position measurements)
are well below the statistical errors of the estimation — as
can be seen using simulated samples.

with dispersions

As the dispersions (€u1, €up, €v,.) of the measured values
around the “real” ones — which are sometimes called the
measurement errors — vary from star to star, the error
distribution does also and so the measurements follow a
different density law for each star:

0V (z]0) =Co} S(2) s D'(y|6) €W (z|y)dy. (13)

Using these individual density laws to define the like-
lihood function, the different magnitude of the observa-
tional errors for each star is naturally taken into account.

2.4. Galactic rotation

The velocity distribution assumed for the base group does
not take into account the presence of the galactic differ-
ential rotation. While this is accurate enough for samples
of stars in the solar neighbourhood, for samples at greater
distances its effects have to be included.

The velocities of the stars can be decomposed as the
sum of a peculiar velocity, the reflection of the solar mo-
tion and the differential rotation. The first is well mod-
elised by an ellipsoidal distribution with zero mean. The
second is the same for all the stars, (Uy, Vo, Wy). The
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third one depends on the position of the star. The result-
ing velocity distribution is then an ellipsoid with means
(U}, Vi, W§) depending on the position.

) (R ()
oo(U, V,W |7, 1,b) = e "\ 7Y A v Now )

(14)

Using the Oort-Lindblad rotation model at first order,
these mean components can be written as:

Uy, = Uy + [(3— %) A—B] R sin(¢) (15)
Vo = Vo+ [(3—%) A—B] R cos(¢) — (A — B) Re

(16)
Wy = Wo, (17)

where (R, ¢) are the galactocentric coordinates of the star,
(A, B) the Oort’s constants and R the distance of the
Sun to the galactic center.

Thus, using this velocity distribution to construct
O(z | 0), the presence of the galactic differential rotation
is integrated in the ML estimation.

Notice that in this case the spatial and velocity distri-
butions are not independent. While this does not affect the
mathematical formalism presented here, it can make its
practical implementation more difficult. Notice also that
(A, B) and Rg can either be estimated by ML with the
rest of the parameters or fixed in advance.

The velocity distribution could still be completed to
take into account the fact that the characteristics and the
shapes of ellipsoids of peculiar velocities may depend on
the position.

2.5. Interstellar absorption

The usual approach to take into account the presence of
interstellar absorption is to correct the apparent magni-
tudes of the stars using some procedure that is external
to the estimation. For instance, the absorption can be es-
timated a priori, using Stromgren photometry, or itera-
tively, using the estimated distances to apply Parenago’s
(1940) formula and then iterating the estimation — as in
Heck (1975).

However, such a correction is not enough to give a cor-
rect ML estimation. The spatial distribution of the sample
will be changed due to the presence of the absorption. For
instance, for a given absolute magnitude the distance limit
in a magnitude limited sample is higher in the direction
of the galactic pole than in the direction of the galactic
equator. This change has to be taken into account in the
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density law, otherwise the estimations may be biased.

In our formalism the interstellar absorption has al-
ready been included implicitly. In the transformation x —
y the absolute magnitude M is replaced by the “true” ap-
parent magnitude my, its relationship being given by

M =mg+5—5logy(r) —

A’U(r7 l? b)? (18)

so that the interstellar absorption A, (r, [, b) is naturally
taken into account in the formulae. Notice again that an
external correction for the apparent magnitudes is not nec-
essary, because the fact that they are affected by the in-
terstellar absorption is already contained in the equations.

Even if the formalism is the same, its implementation
becomes more complicated when taking into account the
interstellar absorption. A model, giving its value as a func-
tion of the position (7,1, b), has to be introduced. In our
case the Arenou el al. (1992) model has been chosen. It
divides the sky in 199 regions giving for each one the ab-
sorption as a function of the distance only, so making the
implementation easier.

However, even such a detailed model is only a rep-
resentation of the mean absorption in each region. The
real values of the absorption for the stars in a sample will
present “fluctuations” around this mean value. The model
of Arenou et al. (1992) itself gives the expected magnitude
for each region. These fluctuations are superposed to the
observational errors in apparent magnitude and give the
measured value of this quantity, m, as opposed to my.

These effects can be taken into account in the den-
sity law by including both the distribution of the fluctu-
ations and the distribution of the observational errors (in
a similar way that the error distributions of other quan-
tities have already been introduced in the previous sec-
tion). However, when doing so, the implementation be-
comes complicated and unpractical. Luckily, the simula-
tions show that the combined effect of both phenomena
does not introduce remarkable biases in the ML estima-
tion when not taken into account, so they can be neglected
(see Sect. 6). In spite of this, we strongly recommend test-
ing their influence for each particular case using simulated
samples to confirm the absence of biases.

In Appendix A the detailed expression of O(z | 8) for
the case of a magnitude-limited sample is presented as an
example.

3. Group separation

Until now we have kept the hypothesis of homogeneity
of the sample, i.e. we have assumed that the sample has
been extracted from a single base group with homogeneous
characteristics. Now we are going to relax this assumption.

We will assume that the sample is a mixture of stars
coming from several base groups, their physical charac-
teristics being described by the distributions introduced
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in previous sections but each one with different values of
the corresponding parameters in 8. Given this, the Den-
sity Law for the Measurements of the Part of the Sample
Belonging to the jth Group is

0j(z6;) = Co; S(=

) [ Dwle)EEIvdy. (19)
vy

Notice that a common error distribution has been as-

sumed, but individual error distributions could easily be

introduced.

If we assume that the group to which each star be-
longs is not known (which is the usual case), the den-
sity law of y for the sample has to reflect this uncertain-
ity. If (w1, ws, ..., wn,) are the relative abundances of the
groups in the sample, the Density Law for Multiple Groups
can be written as

0(z]0) = Zw]

where @ contains all the parameters to be determined by
ML: the parameters of the groups (01,6-,...,0,, ) and
the relative abundances (w1, w2, ..., wn,).

This density law must be used when the sample being
treated is inhomogeneous. However, the number of groups
composing it, ng, is not usually known. In these cases a
likelihood test — like Wilk’s test — is used to determine
it: ML estimations are performed with n, = 1,2,3,...
and the maximum likelihoods obtained for each case are
compared using the test, to decide on the correct value of
Ng.

In many applications the possibility of separating
groups is very important, as in the fundamental problem
of recognising different galactic populations in a sample.

A further improvement of the density law for Multiple
Groups can be obtained by introducing different physical
distributions — not only different values of the parameters
— for each one.

(z16;5) (20)

3.1. Assignation

With the density law introduced in the previous section —
Eq. (20) — the different groups composing a sample can be
identified and characterized. However, if we want to apply
the different luminosity calibrations so obtained — one for
each group — to the stars of the sample, they have to be
assigned to a group.

The problem can then be stated as follows: given a
star of the sample, with values of the measurements z =
(m, 1, b, i, i, vr-), what is the probability that it belongs
to a given group? Notice that the problem has been posed
in probabilistic terms, because in general there will be no
means to classify the stars with complete certainty.

Our mathematical formalism provides all the tools
needed to answer the question. The a priori probability of
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a star of the sample belonging to the jth group is w;, and
the distribution of z in this group is given by O;(z | 6;).
Then, using Bayes formula, the a posteriori probability of
a star of the sample belonging to the jth group given its
measured values z, is:

P(x € Gy 2.) = =t mLO(2:10; i)

- C@
D oelq We MLOk (24|05 M) 21)

Using this formula the probabilities of the star belong-
ing to each group can be compared, and the star can be
assigned to the most likely one.

Notice that this procedure, like any method of statis-
tical classification, will have a certain percentage of mis-
classification. However, the reliability of each assignation
is clearly indicated by the probability given. Notice also
that in the given formula the parameters of the groups
0; v1 and the relative abundances w; mr, used are the re-
sult of the ML estimation.

4. Estimation of individual distances

The main use of a luminosity calibration is the estima-
tion of distances. However, the existing distance estima-
tors only take into account the characteristics of the sam-
ple in a very limited way, and use only a part of the in-
formation available for the star. In this section we present
a new tool to estimate individual distances of stars which
overcomes these limitations. All the effects in play (selec-
tion effects, observational errors, interestellar absorption,
galactic rotation, etc.) are naturally taken into account,
and the estimation error is provided.

Once a star has been assigned to a group, the corre-
sponding ML estimator of the parameters, 8;m1 can be
used to estimate its distance. Here we present a method to
obtain this estimation using all the information available.

When the ML estimation has been performed and the
star has been classified we can use

1. The joint density law of (y, z) for the group of the star

Me(y,z10;)

2. The ML estimation of the parameters of the group

0; ML
3. The measurements of the star z,

Taking 6; = 60 mr, in the joint density law and fix-
ing z to the measured values of the star z,, a function
depending only on y = (mo,,lo, bo, fti0, b0, Uro) is ob-
tained, Mg (y|2z«, 0; mL). By convolving this function with
respect to zg = (mo, lo, bo, 0, tso, Uro) a new function de-
pending only on the distance is obtained:

R(r) = Me(y | 24,05 mv) dzo.

VZ[)

(22)

This is the marginal density law of the distance for the
star. In other words, it is the distribution of probability of
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r for the star. It can then be used to obtain the expected
value of the distance

T = /00 r R(r)dr (23)
0

and its dispersion

oo
ef = / (r —7)2 R(r) dr. (24)
0
The first can be used as a distance estimator and the sec-
ond as its error, with the following advantages:

1. It uses all the information available for the star

2. It is not biased, as all the effects in play in the sample
are automatically taken into account

3. An individual error estimation is given for each star

The estimation of distances can also be used to im-
prove the classification process presented in the previous
section. For a given star, distance estimations can be ob-
tained for each of the groups detected in the sample. Com-
parison of these distances with external estimations or
with trigonometric parallaxes can reveal an assignation
error (too great a discrepancy between the distance esti-
mation obtained with the assigned group and the external
estimation) and suggest a better classification (the group
for which the discrepancy is smaller).

5. Numerical methods

An important part of our implementation is the use of
numerical methods to maximize the likelihood. In this way
the density laws developed in the previous section can be
used without any approximation. A detailed account of
all the methods used would be too long so only a brief
account is presented. More details can be found in Luri
(1995).

5.1. Maximization

The classical approach to maximize the likelihood is based
on the likelihood equations:

oL
06;

This nonlinear system has to be solved to obtain the ML
estimation of the parameters of the density law @ y,.

To deduce these equations the likelihood function has
to be derived with respect to each of the parameters. This
is a long and tedious process that makes it difficult to in-
troduce even small changes in the density law. It is much
more convenient to use a different approach: if £ is an N-
dimensional function, algorithms for N-dimensional max-
imization can be used directly. In this way it is only nec-
essary to program the function itself and then use the ap-
propriate maximization routine, since modern computers
are powerful enough to give the solution in a reasonable

=0 Vi

(25)
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amount of time. Among the N-dimensional maximization
algorithms, the ones not using the gradient should be used.
Otherwise the derivatives should be calculated and the ad-
vantages are lost. In our case the Powell Method Discard-
ing the Direction of Largest Decrease has been selected.
Details about this method can be found in Press et al.
(1986).

In both cases — use of the likelihood equations and di-
rect maximization — a starting point for the numerical pro-
cess is needed. It is highly recomended to perform several
maximizations, with different starting points, in case the
function presents multiple local maxima, and as a check
against numerical problems.

5.2. Integration

The density law developed in the previous section con-
tains several integrations that in some cases can not be
solved analytically. For these cases numerical integration
has been used, with the added advantage of making it eas-
ier to introduce modifications in the density law. In our
case a modified Gauss method has been selected. See also
Press et al. (1986).

5.3. Simulated samples

Simulated samples play a key role in our implementation
of the ML principle. On the one hand they are used to test
the equations and programs developed for the estimation.
On the other they allow a good estimation of the errors of
the results and the eventual detection of biases: once an
ML estimation @y, has been obtained, several samples
are simulated using the values given and the method is
applied to them. The comparison of the results (which
could be called “the estimation of the estimation”) with
the introduced values allows the detection of biases. The
dispersion of these results o(@my) can be taken also as
the error of the estimation.

The base of the simulation of samples is the generation
of random numbers following a given distribution. More
details about this subject can be found in Press et al.
(1986) and Luri (1995).

6. Test using simulated samples

In this section some tests of the method using simulated
samples are presented. The case of a sample with the mean
characteristics of KO I1I stars and complete up to apparent
magnitude my,, = 7.2" (limit of the Hipparcos survey)
has been chosen as a realistic example. Its size has been
fixed to 800 stars, which is approximately the number of
KO IIT stars in the Hipparcos survey.
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6.1. Correction of all the effects

The values of the parameters assumed for KO III stars
have been taken from Egret et al. (1982) — My and oar —
and Mihalas & Binney (1981) — (Uy, Vo, Wo), (ou, ov, ow)
and Zy. They are listed in Table 1.

Table 1. Assumed parameters for KO III stars

Mo (™) -0.5
om (™) 1.2
Uo (kms™) -7
oy (kms™') 30
Vo (km s™! -16
ov (kms™') 21
Wo (kms™') -6
ow (kms™') 16
Zo (pc) 270

Using these values 10 sets of 20 samples have been gen-
erated. Interstellar absorption (with fluctuations around
the mean value) and galactic rotation have been included
in all cases and observational errors have been increased
from set to set. The base wvalue of the observational er-
rors has been taken as representative of the ones expected
when Hipparcos results are available, that is to say €, =
0.05™ — Tycho photometry — , €0 = €46 = 0.002” yr~!
— Hipparcos measurements — and €,, = 0.5km st -
CORAVEL radial velocities. For the following sets these
errors have been multiplied by an increasing error factor.
Two kinds of ML fit have been applied:

1. Using a likelihood function not taking into account the
presence of observational errors, interstellar absorption
and galactic rotation (partial likelihood function), so
taking only into account the limit in apparent magni-
tude.

2. Using a likelihood function taking into account all
the effects, except the observational errors in apparent
magnitude and the variations of interstellar absorption
around the mean law of Arenou et al. (1992) (complete
likelihood function).

The mean results for each set are compared in Figs. 1
to 4, where the values used to generate the samples 6
(Table 1) are indicated with horizontal lines. The error
bars shown in the figures correspond to the dispersion of
the individual results (not to be mistaken with the error
of the mean) for the complete likelihood function case.

It is obvious from these figures that the results in the
partial likelihood function case are strongly biased. Even
in the best case of error (factor one, the Hipparcos case),
a bias is present — mainly due to the effects of interstellar
absorption and galactic rotation — and the biases become
worse as the errors increase. Altough the extreme case (er-
ror factor of ten) is not realistic, the medium cases (error
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factor around four) correspond approximately to the qual-
ity of the present catalogues, showing how important it is
to take into account the effects in play correctly.

On the other hand, in the complete likelihood function
case, the estimations are non biased even with an error
factor of ten. The only exception are the estimations of Z,
which have a slight bias of about 10 pc. This bias is due
to the fact that neither the errors in apparent magnitude
nor the fluctuations in interstellar absorption have been
taken into account. If samples are generated without them,
the bias disappears. As this bias is small enough to be
neglected (always smaller than the error bars) the use of
a likelihood function not including the errors in apparent
magnitude and the interstellar absorption fluctuations can
be considered acceptable.

6.2. Group separation

In the previous section the samples have been generated
as composed by a single group. Now we are going to study
the case of two-group samples. As suggested by the results
of Ratnatunga (1989) the KO0 III stars could be a mixture
of two different groups with characteristics similar to the
ones listed in Table 2.

Table 2. Assumed parameters for KO III stars in the case of
a mixture of two groups

group 1  group 2

Mo (™) -0.8 1
om (™) 0.4 1
Uo (kms™t) -7 -10
oy (kms™) 22 52
Vo (kms™t)  -12 -25
ov (kms™') 15 36
Wo (kms™') -6 -7
ow (kms™') 12 28
Zo (pc) 200 600
% 84 16

To test our method in this case, 20 samples of 800 stars
were generated using the above mentioned parameters and
the base values of the observational errors given in the pre-
vious section. A first fit to these samples was performed
including only one group in the likelihood function. The
results are listed in Table 3. A second fit was then per-
formed including two groups in the likelihood function,
and the results are listed in Table 4.

The results for the one-group fit present a striking re-
semblance to the parameters used in the previous section,
thus suggesting that the KO III stars could be a mixture
of at least two different groups. On the other hand, the
results for the two-group fit show that the parameters in-
troduced are correctly estimated.
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Table 3. Results for the one-group fitting

mean o
My 04 0.25
o 1.2 0.11
Uo -8.0 1.3
ouU 28.5 1.8
Vo -14.8 1.3
oy 20.1 0.9
Wy -6.9 0.6
ow 15.8 0.6

Zy 260. 26

Table 4. Results for the two-group fitting

group 1 group 2
mean o mean o
My -0.85 0.11 0.89 0.28
om 0.31 0.17 0.95 0.12
Upg -7.0 0.98 -11.3 5.0
oy 22.2 0.92 52.5 4.5
Vo -12.2 0.90 -27.3 4.8
oy 149 0.60 37.3 2.9
Wo -6.3 0.58 -6.8 2.4
ow 12.3 0.42 27.7 1.3
Zo 207. 21. 689. 701.
% 84.3 2.2 15.7 2.2

The classification algorithm described in Sect. 3.1 has
been tested with two of the previous samples (1600 stars).
The results of the classification are presented in Table 5.

Table 5. Results of the assignation algorithm

assigned group

real 1 2
group

1 82.7% 1.3%
2 4.4% 11.6%

The overall classification error is around 5%, which
can be considered satisfactory. However, the percentage
of missclasifications for the second group is around 30%,
due to its low abundance in the samples.

6.3. Estimation of individual distances

To test the distance estimator defined in Sect. 4, two sam-
ples of 800 stars have been generated using the parameters
of group 1 given in the previous section and the base val-
ues of the observational errors. In Fig. 5 the real distances
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of the simulated stars (generated during the process of the
sample’s simulation) are compared with their estimations.

600

500

400

300

100

400 600

Fig. 5. Real distance (r) vs. estimated distance (re) for two
samples of one-group KO III stars

The mean value of the difference (r — r.) is —11 pc,
showing that the estimation has no significant bias. No-
tice, however, that the error distribution (or, equivalently,
the distribution around the line r = r¢) is not symmet-
rical. This asymmetry comes from the properties of the
density law function of the samples, and in this case is due
to the limitation in apparent magnitude. For more details
see Luri (1995). Finally, the mean error of the estimations
is 16.7%, which can be considered satisfactory.

7. Conclusions

As shown by the tests presented in previous section, the
ML method presented in this paper correctly takes into
account the effects of sample selection, observational er-
rors, interstellar absorption and galactic rotation, provid-
ing bias-free estimations of the parameters of the sample,
in particular its luminosity calibration. In addition, it is
able to identify and separate physically distinct groups of
stars mixed in a sample, to classify its stars and to provide
non-biased estimations of individual distances (including
an individual estimation of its error). Several preliminary
applications to real samples of stars extracted from the
Hipparcos Input Catalogue, — Turon et al. (1992) — can
be found in Luri (1995).

The resulting method can take full profit of the high
quality data of the Hipparcos mission, which will be soon
available. In particular, our team is engaged in a program

X. Luri et al.: A new maximum likelihood method for luminosity calibrations

to recalibrate the HR diagram using the preliminary re-
lease of these data.
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A. Appendix: example of detailed equations

The detailed expression of the density law O(z | 8) — as
defined in Sect. 2 — for the case of a magnitude-limited
sample is given in Eq. (A1),

O(z|0) = C5' S(=2) /OOO Fu Fr Fy dr, (A1)
where

S(z) = O(m — miim) (A2)

Far = 3055 (A3)

M =m+5—5log;o(r) — Ay(r,1,b) (A4)

Fome TEE 120 cos? () (A5)

Fr= |- B (A6)

x=D2 r (A7)

v - 22 (A8)

7= B (A9)

4 = % _ D, (A10)

B, = A;sz — B, (A11)

C, = A;gz —F (A12)

Dy = Biz — Gs (A13)

B - % _ (A14)

- % L (AL5)
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11 1/ b2 b2
HQ:——+—< 1 —3>r2 (A23)
2cib 2 2U J%,V
11 1 /¢ c3
L=-5+-(=3+ 2 A24
crxra(Eraa) o
11 1/ a? a?
P -( a +—+ ;)ﬁ (A25)
26Hl 2 \op Oy
ap = —k cos(b) sin(l) (A26)
by = —k sin(b) cos(l) (A27)
c1 = cos(l) cos(b) (A28)
as = k cos(b) cos(l) (A29)
by = —k sin(b) sin(l) (A30)
co = sin(l) cos(b) (A31)
as = 0 (A32)
bs = k cos(b) (A33)
cs = sin(b) (A34)

And the detailed expression of the normalisation constant
Co is given in Eq. (A35),
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Co=K Z [Al(i) / cferr(—xl(iir)n) Iéi)(r) rdr|, (A35)
Vr

i=1
where

1

K= 3 (2m)7"? € €ub €0, OU OV oW Oar Zo (A36)
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Al = max® — 19 (A37)
; im +5—51 — AP () = M,
A Mim 0810(r) (r) — Mo (A38)
V2ou
B \7'sin(b£:;3n)\ I sm(b‘(,n)ax)\
e Zo —e Zo
it b@ b >0
‘ B Irsin(6() )] Irsin(b8) )|
ry={2-e 70 ~—e 7 — = (A39)
it b <0, b >0
I sm(b‘(,n)ax)\ rsine) )
e Zo —e Zo
it 8 bl <0
being (br(nzn?br(nZ%X) and (lr(nzn,lr(n;x) the limits of the sky

sectors in the model of Arenou et al. (1992).
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