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Abstract. In this paper we present a Bayesian image re-
construction algorithm with entropy prior (FMAPE) that
uses a space-variant hyperparameter. The spatial varia-
tion of the hyperparameter allows different degrees of res-
olution in areas of different statistical characteristics, thus
avoiding the large residuals resulting from algorithms that
use a constant hyperparameter. In the first implementa-
tion of the algorithm, we begin by segmenting a Maximum
Likelihood Estimator (MLE) reconstruction. The segmen-
tation method is based on using a wavelet decomposition
and a self-organizing neural network. The result is a prede-
termined number of extended regions plus a small region
for each star or bright object. To assign a different value
of the hyperparameter to each extended region and star,
we use either feasibility tests or cross-validation methods.
Once the set of hyperparameters is obtained, we carried
out the final Bayesian reconstruction, leading to a recon-
struction with decreased bias and excellent visual charac-
teristics. The method has been applied to data from the
non-refurbished Hubble Space Telescope. The method can
be also applied to ground-based images.

Key words: techniques: image processing — methods: data
analysis

1. Introduction

Bayesian and maximum entropy solutions are increasingly
being used for the reconstruction of images from noisy and
incomplete data. The Bayesian strategy seeks the image
of highest probability given the data. The Bayesian tar-
get function and the likelihood are related through Bayes’
rule, which includes the probability distribution of the im-
age, also known as image prior.

Send offprint requests to: J. Núñez

During the past several years a substantial amount of
work has been carried out in image reconstruction in the
areas of medical tomography and in optical astronomy.
In the latter case, the discovery of spherical aberration
in the Hubble Space Telescope in 1990 (White & Allen
1990; Hanisch & White 1993) generated a strong effort in
the image reconstruction community. Since 1988 our group
has been working on the development of statistically based
algorithms for Image Reconstruction (Núñez 1993; Núñez
& Llacer 1991, 1993a,b, 1994, 1995a,b; Llacer & Núñez
1990; Llacer et al. 1993). In particular, we have developed
Bayesian algorithms with entropy prior (FMAPE), and
methods based on feasibility and cross-validation in order
to compute the balancing parameter between the entropy
prior and the likelihood term.

In this paper we will describe the results of our ef-
fort in the reconstruction of optical astronomy data by
a Bayesian method with a space variant hyperparameter
which allows different degrees of resolution in different re-
gions of the image. Regions representing bright objects,
like stars, are allowed to have hyperparameters that lead
to reconstructions near Maximum Likelihood, while ex-
tended objects are segmented into regions with hyperpa-
rameters adjusted in such way that lead to featureless un-
correlated normalized residuals with mean values near 1.0
in each region. A first implementation of the algorithm
will be described with the reconstruction of data from the
non-refurbished Hubble Telescope.

2. Notation and imaging model

The notation used in this paper is the following:

D Number of detectors in the array
B Number of elements (pixels) in the

reconstruction
pj , j = 1, · · ·D projection (measured) data
ai, i = 1, · · ·B emission density in the image
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(parameters to be estimated)
fji Point Spread Function (PSF) or

probability that an emission in
pixel i in the source be detected at
detector j

bj , j = 1, · · ·D background in the data
nj , j = 1, · · ·D readout noise in the data
Cj , j = 1, · · ·D detector gain corrections (flatfield)

f
′

ji =
fji
Cj

corrected PSF

qi =
∑D
j=1 f

′

ji total detection probability for an

emission from pixel i

hj =
∑B
i=1 f

′

jiai + bj forward projection or blurring
operation

Qi prior distribution density or default
image (if any)

let p,a, f ,b,n,C, f ′,q,h,Q be the corresponding arrays.
We shall work with the following imaging model: an

object emits light with an intensity given by a spatial dis-
tribution a. The light is focused by the optical system over
a detector array consisting of individual, discrete, inde-
pendent detectors. Each detector has a different quantum
efficiency characterized by a gain correction distribution
C. A certain background radiation b, coming mainly from
the sky but also from sources inside the detector system, is
detected along with the spatial distribution a. We assume
that the detection process is Poisson distributed. Finally,
the detector is read by an electronic process which adds a
Gaussian readout noise n with zero mean and known stan-
dard deviation σ. The imaging equation corresponding to
this model is:

f
′

a + b + n = p . (1)

Equation (1) in discrete form becomes:

B∑
i=1

fji

Cj
ai + bj + nj = pj j = 1, · · · , D .

Most imaging systems are described by Eq. (1), particu-
larly those based on Charge Coupled Device (CCD) cam-
eras, and Image Pulse Counting Systems (IPCS).

The background in Eq. (1) is an input in our algo-
rithm. Some authors (Bontekoe et al. 1994; Narayan &
Nityananda 1986) have raised questions about the intro-
duction of the background in Eq. (1). Bontekoe et al.
demonstrated that the solution depends on the back-
ground in standard Maximum Entropy Method (MEM)
algorithm. However, in our approach, the background
term includes not only light from the sky but also light
from sources inside the camera. In the case of a CCD
camera, the background term b can be considered as:
b = bext + bint + bdark + bbias (Snyder et al. 1993). The
term bext is the external background radiation. The term
bint is the internal background radiation from luminiscent

radiation on the CCD chip itself. The term bdark is the
number of thermoelectrons that are generated by heat in
the CCD and bbias is the number of electrons that are
due to bias or “fat zeros”. Those terms are all Poisson
distributed random variables and their sum can be rep-
resented by a single background term. We have not ob-
served in our algorithm the background dependence effect
reported by Bontekoe et al. (1994). In our opinion, if the
background is large and acurately known, it is better to
include it in the equation and in the reconstruction algo-
rithm. Otherwise, it is always possible to set it to zero in
the algorithm and reconstruct the background as part of
the image.

3. The FMAPE algorithm with variable
hyperparameter

3.1. The Bayesian approach

We use the Bayesian strategy to obtain an iterative algo-
rithm for image reconstruction. The application of Bayes’
theorem to the image reconstruction problem gives:

P(a|p) =
P(p|a)P(a)

P(p)
. (2)

The most probable image a, given data p, is obtained by
maximizing P(a|p) in (2) or the product P(p|a)P(a) since
P(p) is constant.

3.2. The likelihood

The conditional probability P(p|a) describes the noise in
the data and its possible object dependence. It is fully
specified in the problem by the likelihood function. As
indicated above, we have two independent processes: im-
age formation on the detector array and detector readout.
Taking the two processes into account, the compound like-
lihood is (Núñez & Llacer 1993a):

L = P(p|a) =
D∏
j=1

∞∑
k=0

1
√

2πσ
e−

(k−pj)2

2σ2 e−hj
(hj)

k

k!

and its logarithm is:

log L =
D∑
j=1

[
− log(

√
2πσ)− hj+

+ log
∞∑
k=0

(
e−

(k−pj)2

2σ2
(hj)

k

k!

)]
. (3)

This compound likelihood was first introduced for recon-
structions of Poisson data in the presence of readout noise
by Llacer & Núñez (1990). Snyder et al. (1993a) use the
same likelihood form for CCD cameras. If the process were
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pure Poisson (no readout noise), the logarithm of the like-
lihood would be the classical expression:

log L =
D∑
j=1

[−hj + pj loghj − log(pj !)] . (4)

3.3. The prior

We use entropy to define the prior probability P(a) in
a generalization of the concepts originally described by
Frieden (1972).

Let N be the total energy (usually the number of
counts or photons) in the object. Assume that there is an
intensity increment ∆a describing an intensity jump to
which we can assign some appropriate physical meaning.
Frieden (1972) describes ∆a as the finest known intensity
jumps that are possible in the object, but we prefer to
relax that definition and consider it an adjustable hyper-
parameter of the Bayesian function.

Assume, in addition, that we have prior information
regarding the statistical makeup of the object obtained,
for example, from previous observations or from obser-
vations at other wavelengths from which one could in-
fere realistic information about the makeup of the object
at the wavelength at which the observation is made. If
Qi i = 1, · · · , B is the prior energy distribution, the prior
probability of a photon going to pixel i is given by:

gi =
Qi∑B
l=1 Ql

.

In that case, the a priori source probability of N
∆a quanta

distributing randomly over the B pixels is then charac-
terized by the multinomial law (Lloyd 1980; Handbook of
Applicable Mathematics, Vol II, p. 92) as:

P (a) =
(N/∆a)!∏B
i=1(ai/∆a)!

B∏
i=1

(gi)
ai/∆a . (5)

The a priori probability P (a) of (5) reflects the statistical
distribution process of source units ai

∆a given the a priori
probabilistic information map gi.

If the prior information is not reliable, it is best to

ignore it and give a uniform value to Qi =

∑
B

l=1
Ql

B

that means gi = 1/B. In that case, the multinomial dis-
tribution of (5) reduces to a normalized version of the
Boltzmann distribution used by Frieden (1972).

Assume, also, that the intensity increment ∆a is space
variant in the object space. The introduction of the vari-
ability of ∆a is the core of this paper. The parameter
∆a controls the amount of prior information that is in-
troduced into the solution. If the values of Qi represent
a uniform field, the parameter ∆a will control the degree
of smoothness of the solution. Its spatial variability will
allow the local control of smoothness avoiding noise am-
plification in the different areas of the image.

Let ∆ai i = 1, · · · , B be the variable increment. Now,
in place of N

∆a units we distribute
∑B
i=1

ai
∆ai

units. The a

priori source probability of
∑B
i=1

ai
∆ai

quanta distributing
randomly over the B pixels is then:

P (a) =
(
∑B
i=1

ai
∆ai

)!∏B
i=1( ai

∆ai
)!

B∏
i=1

(gi)
ai/∆ai . (6)

A natural choice for the prior energy distribution is:

gi =

Qi
∆ai∑B
i=1

Qi
∆ai

. (7)

Taking logarithms in (6)

log P(a) = log

( B∑
i=1

ai

∆ai

)
!−

B∑
i=1

log

(
ai

∆ai

)
! +

+
B∑
i=1

ai

∆ai
log gi .

To compute the factorials, we use Stirling’s approximation

x! = (2πx)
1
2 xxe−x; log(x!) ≈ x log x− x (8)

in which we discarded the term 1
2 log 2πx. This approxima-

tion is adequate for x > 10. Also, the use of the complete
approximation would give a term in 1

x in the algorithms
that would produce a numerical instability at the back-
ground pixels. In some cases (p.e. in regions of very low
flux or background in photon counting devices) the ap-
proximation used may produce some error but we prefer
to use this approximation to avoid the menctioned numer-
ical instability. Using (8)

log P(a) =

( B∑
i=1

ai

∆ai

)
log

( B∑
i=1

ai

∆ai

)
−

B∑
i=1

ai

∆ai
−

−
B∑
i=1

[
(
ai

∆ai
) log(

ai

∆ai
)−

ai

∆ai

]
+

+
B∑
i=1

ai

∆ai
log gi

and taking into account (7) the logarithm of the probabil-
ity P(a) is:

log P(a) =

( B∑
i=1

ai

∆ai

)
log

( B∑
i=1

ai

∆ai

)
−

−
B∑
i=1

ai

∆ai
log

aiQ
′

Qi
, (9)

where

Q
′

=
B∑
i=1

Qi

∆ai
.

If we do not consider the space variation of the intensity
increment i.e. ∆a = const., and taking into account that
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both
∑
ai and

∑
Qi are constant, the log of the prior

probability is:

log P(a) = −
B∑
i=1

ai

∆a
log

ai

Qi
+ const. terms. (10)

This form of the entropy that includes the parameter ∆a
and the spatial prior information Q is often called cross-
entropy.

3.4. The general algorithm

As discussed in Sect. 3.1, the maximum a posteri-
ori (MAP) probability will be obtained by maximizing
P(a|p) = P(a)P(p|a), or equivalently, the logarithm of
that probability, log P(a|p) = log P(a) + log L with the
constraint of energy conservation:

B∑
i=1

qiai =
D∑
j=1

pj −
D∑
j=1

bj . (11)

Taking into account (3), (9) and (11), the Bayesian func-
tion to be maximized is:

BY = (
B∑
i=1

ai

∆ai
) log(

B∑
i=1

ai

∆ai
)−

B∑
i=1

ai

∆ai
log

aiQ
′

Qi
+

+
D∑
j=1

[
− log(

√
2πσ) − hj + log

∞∑
k=0

(
e−

(k−pj )2

2σ2
(hj)

k

k!

)]
−

−µ

 B∑
i=1

qiai −
D∑
j=1

pj +
D∑
j=1

bj

 , (12)

where hj is given by:

hj =
B∑
i=1

f
′

jiai + bj

and µ is a Lagrange multiplier for the conserconservation
of counts. Note that the relative weight of the two terms
in the Bayesian function (12) is controlled by the set of
hyperparameters ∆ai.

The nonlinear nature of the reconstruction problem
described by (12) suggests an iterative algorithm. We
have found that gradient methods, like steepest ascent or
conjugate gradient algorithms, although well established,
produce negative results for most of the pixels in the
low light level part of the image. Also, the well-behaved
Expectation Maximization (EM) algorithm -developed by
Dempster et al. (1977) and extensively used for maxi-
mum likelihood reconstruction, after the work of Shepp
& Vardi (1982)- is difficult to use in the Bayesian case
with entropy because it requires the solution of transcen-
dental equations in the M-step. Instead, we have found
that the method of Successive Substitutions described by
Hildebrand (1974) and Meinel (1986), and used by the au-
thors in several previous papers, affords us greater flexibil-
ity than other methods and results in rapidly converging
algorithms.

The Successive Substitutions method can be described
as follows: given a series of equations on the unknowns
ai, · · · , aB in the form

ai = KF ({am}), i = 1, · · · , B (13)

where F is some function, ({am}) is the complete set of
variables ai, · · · , aB, and K is a normalization constant,
(13) can be transformed into a recursive relation by

a
(k+1)
i = KF ({a(k)

m }), i = 1, · · · , B . (14)

Each of the new values of a
(k+1)
i is calculated from all

the known B values of {a(k)
m }, and the complete set is

updated at once. The constant K is obtained by invoking
the energy conservation law:

B∑
i=1

qia
(k+1)
i =

B∑
i=1

KqiF ({a(k)
i }) =

D∑
j=1

pj −
D∑
j=1

bj . (15)

To obtain the maximum of (12), we set ∂BY/∂ai = 0,
taking into account that

∂l

∂ai
=

∂l

∂hj

∂hj

∂ai
=

∂l

∂hj
f
′

ji ,

∂BY

∂ai
= −

1

∆ai
log

(
ai

Qi

Q
′∑B

l=1
al

∆al

)
+

+
D∑
j=1

−f ′ji +
1∑∞

k=0

(
e−

(k−pj)2

2σ2
(hj)k

k!

)×
×
∞∑
k=0

(
e−

(k−pj)2

2σ2
k(hj)

k−1

k!
f
′

ji

)]
− µqi = 0 .

Multiplying and dividing by hj in the last summation:

∂BY

∂ai
= −

1

∆ai
log

(
ai

Qi

Q
′∑B

l=1
al

∆al

)
−

−qi +
D∑
j=1

f
′

jip
′

j

hj
− µqi = 0 i = 1, · · · , B (16)

where

p
′

j =

∑∞
k=0

(
k e−

(k−pj)2

2σ2
(hj)

k

k!

)
∑∞
k=0

(
e−

(k−pj)2

2σ2
(hj)k

k!

) . (17)

We could now solve for ai in the first term of (16) and
obtain a relation of the type of (13), but an exponential
function would then appear. That exponential function
causes instability in the solution (see, e.g., Núñez & Llacer
1990). Instead we divide Eq. (16) by qi to obtain

−
1

qi∆ai
log

(
ai

Qi

Q
′∑B

l=1
al

∆al

)
+
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+
1

qi

D∑
j=1

f
′

jip
′

j∑B
l=1 f

′

jlal + bj
= µ+ 1 i = 1, · · · , B . (18)

Multiplying and dividing by Cj in the first summation,
then adding a constant C to both sides of the equation,
raising both sides to the power n, and finally multiplying
both sides by ai results in

ai [µ+ 1 + C]
n

= ai

 1

qi

D∑
j=1

fjip
′

j∑B
l=1 fjlal + Cjbj

−

−
1

qi∆ai
log

(
ai

Qi

Q
′∑B

l=1
al

∆al

)
+ C

]n
i = 1, · · · , B. (19)

The expression (19) is of the type indicated by (13). We
can solve for the unknowns by the recursive relation (14),
yielding the Bayesian maximum a posteriori algorithm
with entropy prior (FMAPE) which is given by the it-
erative formula:

a
(k+1)
i = Ka

(k)
i

 1

qi

D∑
j=1

fjip
′

j∑B
l=1 fjla

(k)
l + Cjbj

−

−
1

qi∆ai
log

 a
(k)
i Q

′

Qi
∑B
l=1

a
(k)
l

∆al

+ C

n
i = 1, · · · , B. (20)

In the case of ∆a = const., to compute log P(a) in the
Bayesian expresion (12) we should use (10) in place of (9).
In that case, following the same steps as before, the algo-
rithm (20) becomes:

a
(k+1)
i = Ka

(k)
i

 1

qi

D∑
j=1

fjip
′

j∑B
l=1 fjla

(k)
l + Cjbj

−

−
1

qi∆a

(
log

a
(k)
i

Qi
+ 1

)
+ C

]n
i = 1, · · ·B. (21)

In (20) and (21) k is the index of the iteration and
K is a constant to conserve the energy by the relation∑B
i=1 qiai =

∑D
j=1 pj , computed at the end of each itera-

tion. Since

K =
1

[µ+ 1 + C]
n ,

computing the constant K is equivalent to computing the
Lagrange multiplier µ.

The iterative process defined by (20), (17) is the main
result of this paper. We call this algorithm FMAPE. The
algorithm has a number of desirable characteristics: It
solves the cases of both pure Poisson data and Poisson
data with Gaussian readout noise. The algorithm allows
us to adjust the hyperparameters ∆ai in order to deter-
mine the degree of smoothing in different regions or, in
connection with known default images, to adjust the prox-
imity between the reconstruction and the default image Q.

The algorithm maintains the positivity of the solution; it
includes flatfield corrections; it removes background and
can be accelerated to be faster than the Richardson-Lucy
algorithm (Lucy 1974). The main loop (projection and
backprojection) of the algorithm is similar in nature to
the Expectation Maximization algorithm. The algorithm
can be applied to a large number of imaging situations,
including CCD and Pulse-counting cameras both in the
presence and in the absence of background.

3.5. Positivity and Speed of convergence

The algorithm contains two arbitrary constants n and C.
Both have been introduced in a way that the effect of
changing the values of the constants n and C only affects
the calculated values of K at the end of each iteration.
The point of convergence of the algorithm (20), (17) is
then solely dependent on the hyperparameters ∆ai. This
can be seen as follows: Eq. (19) represents a set ofB simul-
taneous equations in the unknowns ai. Once the problem
is solved by some appropriate method, Eq. (19) will hold,
independently of the values of C and n. Equation (20)
provides a method of solving the set of Eq. (19). If it con-
verges to a solution of (19), that solution will therefore be
independent of the values of C and n.

The constant C is introduced to insure the positivity
of the solution. The presence of the negative entropy term

−
1

qi∆ai
log

 a
(k)
i Q

′

Qi
∑B
l=1

a
(k)

l

∆al


on the right hand of (20) means that the positivity of the
solution is not automatically guaranteed unless an appro-
priate constant is introduced. As indicated above, different
choices of C will not affect the convergence point. Such a
problem is often present in maximum entropy approaches,
either by gradient or EM algorithms.

Since the first term in (20) is always positive, a value
of C somewhat larger than

max

− 1

qi∆ai
log

 a
(k)
i Q

′

Qi
∑B
l=1

a
(k)

l

∆al

 i = 1, · · · , B

will suffice. In practice, we find that changing C can af-
fect the speed of convergence. Increasing C by a factor of
2 over the approximate smallest value necessary to main-
tain non-negativity results in slowing down convergence
by approximately the same factor. The use of C = 1 has
usually resulted in adequate convergence speed and non-
negativity of the pixels.

The constant n affects the rate of convergence. Since n
affects the correction factor in (20), one can expect a range
of values of n over which the iterative process is stable. We
have observed that for n = 1, the convergence rate im-
proves by a factor of approximately n with respect to the
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rate for n = 1. At the beginning of the process, when the
correcting factors are rather high, a large n could result
in an instability of the algorithm. After several iterations,
when the correcting factors are close to unity, large values
of n can be used. We have obtained stability using up to
n ≈ 3 at the beginning of the iterative process and larger
values later.

3.6. The modified data p
′

j

The complete form of the algorithm includes the computa-
tion of p

′

j j = 1, · · · , D using (17) at each iteration. These
variables were introduced in Llacer & Núñez (1990) for re-
constructions in the presence of readout noise and further
studied by Snyder et al. (1993a,b) and Núñez & Llacer
(1993a). After every iteration, we must compute the mod-
ified data p

′

j j = 1, · · · , D needed for the following iter-
ation. This represents a pixel by pixel filtering operation
in which the original data are substituted by a modified
version.

In the absence of readout noise or when it is negligi-
ble, σ → 0 in (17). Then the exponentials are dominant
at k = pj and p

′

j → pj . We note that by its definition,

p
′

j j = 1, · · · , D is always positive, while the original data
pj j = 1, · · · , D can be negative. For example, if the
background is small, as in the case of the Hubble Space
Telescope, the mean background is just above zero, but
due to the readout noise, we may find a large number
of pixels with negative values. Negative values are not al-
lowed in any algorithm with projection-backprojection op-
erations, like in the classical Richardson-Lucy algorithm.
A preprocessing of the data or other approximations are
common. We do not need any approximation or prepro-
cessing. In fact, p

′

j j = 1, · · · , D is a representation of the
data that is positive and close to the data, with a degree of
closeness that depends on the projections hj j = 1, · · · , D

and σ. In this sense p
′

j j = 1, · · · , D can be considered as
a Bayesian filtered version of the data.

The practical computation of p
′

j j = 1, · · · , D by
Eq. (17) is not a trivial problem of numerical analysis.
The p

′

js are numbers in the same range of the data, but
to compute them, we need to compute summations from
0 to ∞. In addition, exponentials and factorials can eas-
ily give either machine overflow or underflow, even using
quadruple precision. To solve the problem Snyder et al.
(1993b) use Poisson and saddlepoint approximations. We
preferred to use a recursive technique without any approx-
imation with very good results. Also, it is easy to see that
the summations from k = 0 to ∞ can be reduced to sum-
mations from k = max(0, pj − nσ) to k = pj + nσ with
n ≈ 3 without loss of precision. By using this method, we
can compute the p

′

j values with high accuracy, without
increasing the CPU time apreciably.

3.7. Maximum likelihood algorithms

We can obtain a maximum likelihood algorithm from the
general FMAPE by taking the limit when ∆ ai → ∞ i =
1, · · · , B. In that case the weight of the prior information
(cross-entropy term) in the Bayesian function (12) is zero
and the solution becomes a Maximum Likelihood one. The
algorithm for the maximum likelihood (MLE) case in the
presence of readout noise and background is:

a
(k+1)
i = Ka

(k)
i

 1

qi

D∑
j=1

fjip
′

j∑B
l=1 fjla

(k)
l + Cjbj

n
i = 1, · · · , B, (22)

where p
′

j is given by Eq. (17).
In the case of no background and no readout noise,

algorithm (22) becomes:

a
(k+1)
i = a

(k)
i

 1

qi

D∑
j=1

fjipj∑B
l=1 fjla

(k)
l

n i = 1, · · · , B. (23)

For n = 1 and disregarding the gain (flatfield) corrections
(qi = 1), (23) is identical to the Richardson-Lucy algo-
rithm.

4. Determination of hyperparameters

4.1. The set of hyperparameters

The hyperparameters ∆ai have a fundamental role in the
Bayesian framework. They determine the relative weight
between the prior information and the likelihood in the
Bayesian function and therefore determine the chosen
solution between the default image and the maximum
likelihood solution. Ultimately, they define the degree of
smoothness of the solution.

If we use a single value for all the hyperparameters
(∆ai = const. i = 1, · · · , B), we could obtain a reason-
able global fit of the data, but the parts of the recon-
structed image with low light levels would appear noisy
(over-reconstructed) while bright objects (stars) would
be too smooth (under-reconstructed). This effect is also
present in the Richardson-Lucy algorithm when stopped
according to some appropriate stopping rule and can eas-
ily be observed in the normalized residuals comparing the
projection of the solution and the data. To compute the
normalized residual over a set of S detectors we use the
expression:

r =
1

S

S∑
j=1

(hj − pj)2

hj
. (24)

The topic of the bias in the residuals has been addressed
in the last few years by several authors (Lucy 1993; Núñez
& Llacer 1993b; Starck et al. 1993; Starck & Pantin 1995;
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White 1993), who developed different approaches in order
to suppress noise amplification during the reconstruction
process.

The FMAPE algorithm avoids noise amplification by
the use of a set of space-variant hyperparameters. A vari-
able ∆ai allows different degrees of smoothing in different
regions, ranging from very smooth (or very similar to the
prior Q) regions (∆ai → 0) to maximum likelihood re-
gions (∆ai →∞).

In our implementation of the algorithm, we have com-
puted the ∆ai for the different regions by using segmen-
tation techniques in conjunction with: a) Regional cross-
validation and b) Regional measurements of average nor-
malized residuals. We present here a segmentation tech-
nique based on the wavelet decomposition and a method
of classification (Kohonen self-organizing maps). However
the problem of segmentation of an astronomical image
may be as difficult as the reconstruction itself. The seg-
mentation problem is, thus, open and improvements of the
technique described here will be needed in the future.

Stars are essentially point sources but their large range
of intensities does not allow us to consider all the stars as
belonging to a single region. Thus, each star (or bright
object) has been considered to be a different region. All
other elements in the image should be separated into a
reasonable number regions of similar characteristics for
assignment of ∆ai values. What is meant by similar char-
acteristics will be described in the next section.

As stated above, it is possible to use diverse techniques
to segment the image. We have experimented with several
methods, some of them from the field of medical imaging.
However, at this stage, we prefer to use a general pur-
pose method of classification. The self-organizing network
(Kohonen 1990) is one of the best understood and it ap-
pears to be useful to clasify astronomical objects.

The hyperparameters ∆ai belong to the object space
(as well as the emission densities ai). Thus, the segmenta-
tion must be done in object space and not in data space.
In most cases in astronomy the data (raw image) resemble
the object and segmentation could be performed in data
space, but this is incorrect (for example, in the problem
of tomographic imaging the aspect of the data has noth-
ing to do with the aspect of the object and segmenting
the data makes no sense). Thus, some kind of previous
deconvolution should be performed prior to the segmen-
tation process. We use the Maximum Likelihood method
(MLE or Richardson-Lucy) for this deconvolution because
it is the most widely studied method of restoration in as-
tronomy and it gives very good results. We stopped the
algorithm using the cross-validation or feasibility tests for
the whole image. Our starting point for the segmentation
process is, thus, the result of a standard reconstruction
(Richardson-Lucy method + statistically based stopping
criteria).

4.2. Wavelet decomposition

We have assumed that regions with pixels having a sim-
ilar mean value should form one region, though two re-
gions with similar mean values but differing content of
high frequencies should be different. The use of a wavelet
decomposition at the larger scales provides the segmenta-
tion process with information about average values over
extended regions and low frequencies, while the use of
the smaller scales provides information about high fre-
quency information. The joint use of all the scales helps
us achieve the segmentation objective. As stated above,
we have carried out the actual segmentation step by us-
ing a Kohonen self-organizing network. That method al-
lows the automatic use of all the information contained
in the wavelet decomposition of the image and results in
excellent convergence. Then, in order to prepare the MLE
image for the segmentation by a Kohonen self-organizing
network, we represent it first by a block of planes contain-
ing its wavelet decomposition.

Following Starck & Murtagh (1994), we decompose
the MLE image using the discrete wavelet transform algo-
rithm known as “à trous” (“with holes”). An image a is
successively transformed as follows:

f(a) = a1, f(a1) = a2, f(a2) = a3, ........

We use a scaling function which has a B3 cubic spline
profile. Letting

wl = al−1 − al (l = 1, · · · , n) ,

in which a0 = a, we can write:

a =
n∑
l=1

wl + ar . (25)

In this representation, the images al (l = 0, · · · , n) are
versions of the original image at increasing scales (decreas-
ing resolution levels), wl (l = 1, · · · , n) are the multireso-
lution wavelet planes and ar a residual image. Specifically
for our work we represent the MLE image using the first
three wavelet planes plus a residual image:

a = w1 + w2 + w3 + ar .

4.3. Separation of stars

As stated above, we first separate the stars and other
prominent objects. There are several software packages
to locate stars (INVENTORY, DAOPHOT, etc.) but we
have found the separation using a wavelet plane to be
practical and quantitatively and qualitatively easy to un-
derstand.

Which wavelet plane to use can depend on the size
of the point spread function. In this paper we use the
second wavelet plane w2 which has little noise but keeps
enough signal to be a good representation of the stars and
prominent objects. Also, in our experience, the plane w2
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was always adequate for a wide range of PSF sizes coming
from images from both the Hubble Space Telescope and
the ground. The method consists simply of isolating the
regions with a number of counts over certain threshold.

The threshold is set automatically. To do this, we use
the IRAF routine “imstatistics” to compute the standard
deviation σ of the data in the background and set the
threshold to 4σ. The threshold parameter could be tuned
by interaction with the user but this interaction would
introduce a bias and a user-dependent solution.

4.4. Neural networks and segmentation

The MLE image is represented as a stack of 5 planes: the
first three wavelet planes, the residual image and one plane
containing only all the stars with an intensity value equal
to the most intense pixel of any star. This choice insures
that the Kohonen network will place all the stars in one
single region, to be broken down into one region per star
after the segmentation is carried out, and before the final
reconstruction. In other words: we exclude the stars from
this stage of the segmentation by forcing them into one
single weight vector, while the Kohonen learning process
proceeds to segment all the other extended areas. Each
image pixel is thus represented by a “codebook” vector of
dimension 5, (Kohonen 1990) of which we have as many
pixels as in the MLE image. By using the three wavelet
planes plus the residual image we prepare the data set
for a segmentation that takes into consideration both the
structural elements in the image and the average number
of counts in different regions in some weighted manner.

The codebook vectors are presented to a self-
organizing map with a square array of weight vectors
which we have defined to be of dimensions 3 × 3, 4 × 4
or 5 × 5. The network uses square learning regions, with
each plane of the image block normalized to a maximum
range of 1.0. The “best matching” weight vector is selected
by Euclidean distance. Before the training process starts,
the order of the codebook vectors is randomized taking
care that no vector is left out in any of the training cy-
cles. The learning parameter starts at 0.1 and ends at 0.05
over 75 complete passes through the codebook vectors.

The outcome of the learning process is 9, 16 or 25
weight vectors that are representative of all the codebook
vectors. Invariably, one of the vectors will represent all
the stars (this is not the case if the extra plane with all
the stars at the same high intensity is not included). A
testing step in which all the codebook vectors are classified
in terms of their proximity to the weight vectors follows
the learning process. A map of regions is then generated,
in which all MLE image pixels corresponding to a given
weight vector appear with the same region number. The
stars are made to have regions numbers above the 8, 15,
or 24 of the smoother elements.

Thus, the final result of this process is a map of few
extended regions (9, 16 or 25) plus one more region for
each star or bright object.

4.5. Computation of the regional hyperparameters and
final reconstruction

Once the segmentation process is completed, we can either
compute the regional hyperparameters by cross-validation
tests or adjust them dynamically by feasibility tests mon-
itoring the residuals. In both cases, we carry out the final
Bayesian reconstruction with the FMAPE algorithm given
by Eqs. (20), (17) using the original data.

4.5.1. Feasibility tests

The method for computing the regional hyperparameters
by feasibility tests is based on controlling the residuals of
each region.

We start using an appropriate initial guess for ∆ai,
indicated by experience. For astronomical images, an ini-
tial guess of ∆ai = 100 for all the pixels is generally a
good choice. During the reconstruction, we allow each of
the ∆ai values to change: At the end of each iteration, we
use Eq. (24) to compute the mean normalized residuals
of each region. Then, we adjust the corresponding value
of ∆ai in such a manner that the residuals in each region
approach 1.0, within a band of ±0.05. This is achieved
by the following simple algorithm: In the regions in which
the residuals are higher than 1.05 we increase the ∆ai
by a certain amount. Likewise, If the residuals are below
0.95, we decrease the ∆ai. These corrections are carried
every few iterations. The reconstruction is finished when
the image of the normalized residuals is featureless and
the average residual values for all regions are within the
prescribed band.

We have observed that the above methodology results
in reconstructions in which the boundaries of each region
become somewhat visible in the final results. In order to
avoid this effect, we keep incrementing or decrementing
a “master” map of ∆ai, but use a smoothed set of that
current master map at each iteration. The smoothing is
carried out with a Gaussian kernel of approximately one
pixel of standard deviation.

4.5.2. Cross-validation tests

The cross-validation test is much more robust than the fea-
sibility test. It is based in the concept of likelihood cross-
validation introduced by Coakley (1991). The application
of cross-validation to the reconstruction of astronomical
images is described in Núñez & Llacer (1991, 1993a).

The method for obtaining the regional hyperparame-
ters by cross-validation is the following: Consider the data
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being split into two halves, A and B. This splitting can be
obtained in two ways: a) as a result of two independent
but successive exposures, and b) as a result of a thin-
ning process if only one data set is available (see Núñez &
Llacer 1993a).

Once we have obtained the two data sets, the method
consists of the following steps: 1) Reconstruct data set A
with an initially low uniform ∆ai for all the pixels, car-
rying out the reconstruction to near convergence. 2) For
each segmented region compute the following two quanti-
ties: a) the log likelihood of data set A with respect to the
reconstructed image A (direct likelihood), and b) the log
likelihood of data set B with respect to the reconstructed
image A (cross-likelihood). The computations of regional
log likelihoods are carried out by Eq. (3) applied to the
specific regions separately. If there is no readout noise,
Eq. (4) can be used. 3) Increase the uniform ∆ai to a
higher value and repeat steps 1) and 2) until the condi-
tions described in the following paragraphs are met.

A plot of the values of the direct likelihood and cross-
likelihood as a function of ∆ai should be made for each
region. When the uniform values of ∆ai are low, the it-
erative reconstruction process carried out to convergence
reconstructs mostly features that are common to data sets
A and B (the signal), and both direct likelihood and cross-
likelihood for all regions will increase with increasing val-
ues of the ∆ai. As the values of ∆ai increase further, the
reconstruction of some regions of data set A will begin
to yield results that correspond to the specific statistical
noise of data set A, but do not correspond to the noise of
data set B. The direct likelihood of those regions will al-
ways continue to increase with higher ∆ai, but the cross-
likelihood will reach a maximum and start to decrease.
Figure 7 shows the cross-validation test curve for region
No. 3 of the first example presented in the next section.

For each region, then, the maximum of the cross-
likelihood determines the proper value of ∆ai to be used
in a final reconstruction. In some cases, mainly for some
small regions corresponding to stars, the cross-validation
curve does not show a maximum. In those cases a standard
high value for ∆ai is used. Once the set of hyperparam-
eters is obtained, we carry out the Bayesian reconstruc-
tion of data set A with the FMAPE algorithm given by
Eqs. (20), (17).

After reconstructing data set A, the process could be
repeated for data set B, obtaining the cross-likelihood
curves with respect to data set A. In practice, once a set
of ∆ai have been obtained from data set A, the same val-
ues can be used to reconstruct data set B. After obtaining
the Bayesian reconstruction of the two data sets, both re-
constructions are added to obtain the final result. During
the final addition of the two half images, residual artifacts
due to the reconstruction process that are not common to
both reconstructions can also be easily eliminated.

The cross-validation method is robust for the following
reasons: a) both data sets have the same signal; b) the

Fig. 1. True image of NGC 4321

statistical nature of the noise is identical in both cases; c)
the noise is independent in the two data sets, and d) they
have the same Point Spread Function.

5. Examples

We show here two reconstruction examples using the
above methodology. For the first example we have worked
with a 256 × 256 pixel image of the core of galaxy
NGC 4321 (M100). The data were generated in the fol-
lowing way: an image of NGC 4321 obtained by the refur-
bished Hubble Space Telescope (HST) was used as source
(true image), shown in Fig. 1. The raw data for the re-
construction were then obtained by convolving the true
image with the Point Spread Function (PSF) of the aber-
rated HST, computed by the STScI TinyTim Program
and adding Poisson noise. We generated two data sets: A
and B using two different seeds to generate two indepen-
dent Poisson noise data sets. Figure 2 show the raw image
A. This example combines a diffused object and several
bright sources. All the figures corresponding to this exam-
ple are shown in a logarithmic scale, except where noted.

For the segmentation step, we first carried out a MLE
reconstruction stopped after 20 iterations. The stopping
point was given by the cross-validation test for the whole
image. Then, we carried out the wavelet decomposition
into three planes plus the residual image. Figure 3 shows
wavelet plane w2 and Fig. 4 shows the residual image ar.

Wavelet plane w2 is used to identify the stars and
other prominent features. Figure 5 shows the extracted
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Fig. 2. Raw image of NGC 4321 to be reconstructed

Fig. 3. Second wavelet plane of the MLE reconstruction after
20 iterations

objects obtained by setting the threshold to 22.8 counts.
The threshold was computed using the automatic method
described in Sect. 4.3. Finally, we carried out the seg-
mentation using the self-organizing network described in
Sect. 4.4. Figure 6 shows the final segmentation into 8 ex-
tended regions plus an additional region for each bright
object totaling 50 regions.

The regional hyperparameters were computed by
the cross-validation technique described in Sect. 4.5.2.

Fig. 4. Residual image of the wavelet decomposition

Fig. 5. Stars and other prominent objects extracted

Figure 7 shows the cross-validation test curve for region
No. 3 (corresponding to the spiral arms of the galaxy
aproximately) from which an optimum value of ∆ai =
65 was obtained. In the 50 cross-validation tests car-
ried out for this example, the following optimum val-
ues were obtained: for the eight extended regions ∆ai =
20, 30, 70, 65, 60, 150, 70, 70 respectively; for the other 42
regions (stars and bright objects) the ∆ai was set to the
maximum of 300 in 29 cases while the other 13 objects
received ∆ai values between 50 and 200.
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Fig. 6. Final segmentation
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Fig. 7. Cross-validation test for region No. 3

Using the above set of hyperparameters, we carried
out the final Bayesian reconstruction of data sets A and
B with the FMAPE algorithm given by Eqs. (20), (17).
After adding both reconstructions we obtained the final
result, as shown in Fig. 8. A smooth background, a well
reconstructed nebula, and sharp images of the stars are
obtained. Noise amplification in the background and in
the nebula was suppressed by the algorithm, while images
of the bright objects were reconstructed to near Maximum
Likelihood. Finally, Fig. 9 shows the image of the residuals
in a linear scale, which exhibits no visible structure or
correlation with the solution.

In order to compare the FMAPE method with variable
hyperparameter with the method with a single hyperpa-
rameter given by algorithm (21) and with the Maximum
Likelihood method given by algorithm (22), we carried out
also the reconstructions using those methods. To make the
results comparable, we reconstructed both data sets A and

Fig. 8. Final reconstruction of NGC 4321 using the FMAPE
algorithm with variable hyperparameters defined by the seg-
mentation

B and added the results to obtain the final reconstructions.
The single hyperparameter for Bayesian case (21), and the
stopping point for the Maximum Likelihood method (22)
were also determined by cross-validation for the entire
image (Núñez & Llacer 1993a). We obtained a value of
∆a = 100 for the Bayesian case and a stopping point of 30
iterations for the Maximum Likelihood method. Figure 10
and Fig. 11 show the results for the Bayesian with single
hyperparameter and Maximum Likelihood cases respec-
tively.

If we compare the results of the three methods, we can
observe than the reconstruction with a single hyperpa-
rameter (Fig. 10 left) is noisier both in the nebula and in
the background than in the variable hyperparameter case.
Also, the images of the stars are under-reconstructed. The
MLE image (Fig. 10 right) is clearly under-reconstructed
in the bright objects. If we increase the number of itera-
tions to correct that effect, the noise in the lower intensity
regions increases excessively, making the result unaccept-
able. The Bayesian method with variable hyperparameter
appears to be the better method of reconstruction.

The second example is the reconstruction of a 512×512
pixel real image of the planet Saturn obtained with the
WF/PC camera of the Hubble Space Telescope, before
the servicing mission. All images for this example are
shown in a linear grey scale, except where noted. Figure 12
shows the raw data to be reconstructed. The Point Spread
Function is shown in a logarithmic scale in Fig. 13.

Since the image of Saturn has no stars we segmented
the image into 9 extended regions. For the segmentation
step, we first carried out a MLE reconstruction stopped
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Fig. 9. Map of residuals of the reconstruction using the FMAPE
algorithm with variable hyperparameters (linear scale)

Fig. 10. Reconstruction of NGC 4321 using the FMAPE algo-
rithm with simple hyperparameter

after 50 iterations. The stopping point was given by the
feasibility test for the whole image. Then, as in the first
example, we decomposed the image into three planes plus
the residual image and carried out the segmentation by the
self-organizing network described in Sect. 4.4. Figure 14
shows 9 regions resulting from the segmentation. In this
example we do not have a second data set for cross-
validation. In addition, the image was obtained from a

Fig. 11. Reconstruction of NGC 4321 using the MLE algorithm

Fig. 12. Raw image for the planet Saturn

CCD camera with readout noise, rendering the process of
splitting the image into two halves by thinning question-
able (Núñez & Llacer 1993a). Thus, in this example we
have used the feasibility test described in Sect. 4.5.1 to
determine the set of hyperparameters.

Figure 15 shows the result of the 9-region reconstruc-
tion. We have obtained a smooth background, a well re-
constructed image of the planet and sharp divisions in the
rings. By the use of the variable resolution FMAPE algo-
rithm, we have avoided noise amplification in all regions
of the image.

Again, we compare the results of our new methodol-
ogy with the constant ∆a approach and with the MLE
method. For that purpose, we used the Saturn data
for reconstructions by the FMAPE algorithm with con-
stant values of ∆a = 200 and 500, and a reconstruction
by the Maximum Likelihood method at 100 iterations.
The results show characteristics similar to the ones de-
scribed in the previous example: the solution with variable
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Fig. 13. Observed PSF used for the reconstruction

Fig. 14. Segmentation of the image in 9 regions of Bayesian
hyperparameters using the method described in the text

Fig. 15. Reconstruction of the image of Saturn using the
FMAPE algorithm with the 9 channels defined by the seg-
mentation

hyperparameter is better reconstructed and noise ampli-
fication is well controlled. In order to characterize the so-
lutions, we computed the mean normalized residuals for
each of the 9 regions of the segmentation. Figure 16 shows
the plot of the mean residual as a function of region num-
ber. An ideal reconstruction would give a straight line at
a mean value of 1.0. The reconstruction obtained by MLE
has mean residuals that are increasing from below to above
the 1.0 value. The reconstruction with a single uniform
∆a = 200 has mean residuals that are too high. With
∆a = 500 most of the values are too low but some are
still too high. However, the reconstruction with the vari-
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Fig. 16. Mean residuals for the 9 regions obtained with the
FMAPE algorithm with variable hyperparameter in compari-
son with other methods. An ideal reconstruction would give a
straight line at normalized mean residual 1.0

able ∆ai, although not perfect, is much improved, with
most of the mean residuals close to the ideal value of 1.0.

6. Conclusions

In this paper we report the development of a Bayesian al-
gorithm with entropy prior (FMAPE) that uses a space-
variant balancing hyperparameter. In order to define the
hyperparameters, we have used a segmentation technique
based on the wavelet decomposition and artificial neu-
ral networks. We have found the Kohonen self-organizing
maps quite suitable for clasification of astronomical ob-
jects, although it is important that the network imple-
mentation be carefully done with regards to plane nor-
malization and randomization of the input vectors.

The combined use of the FMAPE algorithm and the
segmentation allows us to obtain different degrees of
smoothing in different regions of the image. This implies
a variation in resolution in the reconstruction that can
prevent amplification of noise while maintaining the pho-
tometric accuracy in the whole image (background, diffuse
objects and stars).

In astronomical image reconstruction there are two ba-
sic requirements: 1 - the recovery of the object shape and
2 - the recovery of the correct brightness of the objects
without amplifying the noise. The second requirement is
largely related to the correctness of the residuals between
the data and the projection of the solution. The method
described here goes a long way towards satisfying those
two needs.

We would like to conclude by indicating that we con-
tinue working on the better understanding of what the
FMAPE requires from the segmentation and from the hy-
perparameter assignment steps with a view to provide
a reliable method for reconstruction of images with a
wide range of intensity values. Since there is no proof of
uniqueness of the solutions obtained by the FMAPE with
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space-variant hyperparameters, we also need to explore
the effects of using different starting images, different ini-
tial values for the hyperparameters and updating schemes.
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Núñez J., Llacer J., 1991, PASPC 25, 210
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