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Decay of an unstable state in the presence of multiplicative noise

F. de Pasquale
Dipartimento di Fisica, Universita degli Studi di Roma ‘“‘La Sapienza,” piazzale Aldo Moro 2, I-00185 Roma, Italy

J. M. Sancho and M. San Miguel

Departamento de Fisica Tebrica, Universidad de Barcelona, Diagonal 647, 08028 Barcelona, Spain

P. Tartaglia
Dipartimento di Fisica, Universita degli Studi di Roma “La Sapienza,” piazzale Aldo Moro 2, I-00185 Roma, Italy
(Received 1 August 1985)

The phenomenon of anomalous fluctuations associated with the decay of an unstable state is
analyzed in the presence of multiplicative noise. A theory is presented and compared with a numer-
ical simulation. Our results allow us to distinguish the roles of additive and multiplicative noise in
the nonlinear relaxation process. We suggest the use of experiments on transient dynamics to under-
stand the effect of these two sources of noise in problems in which parametric noise is thought to be

important, such as dye lasers.

I. INTRODUCTION

The decay of unstable states is one of the fundamental
problems in the study of the dynamics of nonequilibrium
phenomena and nonlinear relaxation processes.! A new
interesting aspect of this problem appears when fluctua-
tions of control parameters are considered. In this paper
we suggest that the study of the decay process can be use-
ful to separate the effect of these fluctuations from that of
the usual internal noise. A characteristic feature associat-
ed with the decay process is the existence of transient
anomalous fluctuations. This phenomenon is by now well
established and there is broad experimental evidence for
it, mostly in studies of transient dynamics of lasers.” The
basic theoretical idea used to describe the decay process is
that initial fluctuations needed to start the process are am-
plified in the deterministic evolution. Such amplification
causes the anomalous fluctuation phenomenon. This is
followed by a saturation regime due to nonlinearities in
which fluctuations become again important. These ideas
have been developed in several ways. One of them is the
quasideterministic theory® (QDT) in which the real pro-
cess is approximated by the deterministic nonlinear map-
ping acting on the initial fluctuations.

The usual analysis of the decay processes briefly re-
viewed above is based on stochastic models of the
Langevin type in which fluctuations are modeled by a
random force that is independent of the state of the sys-
tems (additive noise). It is also of interest to consider
fluctuations which depend on the instantaneous state of
the system (multiplicative noise).*~® The natural question
then arises of the role played by multiplicative noise in the
decay of an unstable state. Multiplicative noise arises in
microscopic derivations of stochastic models,” but most
recent studies of multiplicative stochastic processes are
motivated by the consideration of parametric or external
noise, that is, fluctuations in the control parameter of
nonequilibrium systems. Such parametric fluctuations are
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known to modify instability thresholds, stationary distri-
butions, and dynamical properties,”® but the question of
the different roles of additive and multiplicative noise in
the decay of unstable states has not yet been addressed.
Multiplicative noise of external origin is in general
much stronger than additive noise of internal origin. On
these grounds, additive noise is often neglected in studies
of multiplicative stochastic processes. However, additive
weak noise has important consequences in many cir-
cumstances. One of them is the situation in which the
external noise vanishes at the unstable state. The decay of
such a state is only possible due to additive noise. If the
unstable state separates into two symmetric stable states,
multiplicative noise of this sort breaks the symmetry of
the problem confining the system to a subspace of phase
space. The symmetry is only restored by additive noise.
This symmetry restoring occurs for long times through es-
cape processes from one stable state to the other. The in-
fluence of multiplicative noise in the escape process has
been discussed in Ref. 10. The purpose of this paper is to
analyze the early-time dynamics associated with the decay
of the unstable state and to describe the effect of multipli-
cative noise in this regime, in particular in the
phenomenon of anomalous fluctuations. A well-defined
physical situation which motivates our analysis is the
transient dynamics of a dye laser. Indeed, the anomalous
statistical properties of dye lasers have been attributed to
fluctuations of the pump parameter. This leads to a
model with multiplicative noise analyzed by several au-
thors.!! However, it has also been suggested'? that in a
proper description of this problem additive noise associat-
ed with spontaneous emission fluctuations cannot be
neglected. This has only been discussed for steady-state
properties. An experiment on the transient dynamics of
this system and the discussion of the experimental results
along the lines of the theoretical analysis presented here
should be useful to distinguish the effects of spontaneous
emission fluctuations and pumping multiplicative noise in
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the radiation emitted by a dye laser.

The theory of nonlinear relaxation of a system in the
presence of additive and multiplicative noise appears to be
quite difficult. The main difficulty is, in our opinion, that
even in the case in which only multiplicative noise is
present, the exact theory for the decay of a state close to
an unstable one cannot be simplified in a meaningful way
by the methods which have ordinarily been employed in
the case of additive noise to deal directly with average
quantities. The introduction, for instance, of a linear pro-
cess in the presence of a self-consistent time-dependent re-
storing force gives in such a case spurious results for
high-order moments. To avoid this, we try to approxi-
mate the process itself by exploiting the circumstance
when additive noise is expected to be important only close
to the unstable state, where multiplicative noise is ineffec-
tive. We will see that the QDT developed to study the de-
cay of an unstable state in the case when only additive
noise is present can be easily generalized to the present
case. QDT gives an approximation for the process itself
which is here compared with a direct simulation. We find
quite good quantitative agreement as long as the strength
of the multiplicative noise is relatively small. The general
picture that arises is valid for any value of such strength.
The main application that we give is to show how the
well-known phenomenon of anomalous fluctuations is
modified in the presence of multiplicative noise. We show
that the fluctuation enhancement is qualitatively unaffect-
ed by multiplicative noise. This fact directly suggests the
use of transient statistics experiments to separate the roles
of additive and multiplicative noise.

The outline of the paper is as follows. In Sec. II we
present the results of a numerical simulation for a proto-
type model. These results make clear the different role of
two sources of noise. In Sec. III we extend the QDT to
the case in which multiplicative noise is present. The re-
sults of the extended QDT are compared with the simula-
tion. Section IV contains some final remarks on the va-
lidity of QDT.

II. MODEL AND RESULTS OF SIMULATION

The stochastic process that we consider is defined by
the following stochastic differential equation:!®

3,x =rx —x>+V2Dxn(t)+V2eE(1) , M

where 7(¢) and &£(t) are two types of uncorrelated Gauss-
ian white noise of zero mean and correlations

(")) =(EE")) =8(t —t') . )

The parameters D and € measure the strength of the mul-
tiplicative noise and additive noise, respectively. For e=0
we have a purely multiplicative process, studied by many
authors.*~% It can be identified with a zero-dimensional
time-dependent Ginzburg-Landau model in which the
coefficient of the linear terms fluctuates around a mean
value r. A generalization to a n-component stochastic
process as required for a laser system (n =2) [Ref. 3(b)]
or a chemical autocatalytic reaction'* is straightforward.
The process x (¢) has a natural boundary at x =0 so that
it is confined to a subspace of phase space in which either
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x >0or x <0. The introduction of the additive noise &(¢)
makes possible the connection between these two sub-
spaces and restores the symmetry of the problem. We
wish here to study the decay of an unstable state
x (t =0)=0. Such decay is only possible for €s£0. Our
analysis considers situations in which €/r?«<D/r <1.
This corresponds to a typical situation in which &(t)
stands for some internal or thermal noise and 7(t) is
thought to be a weak noise originating from external fluc-
tuations of the control parameter. In the case of pumping
fluctuations in a dye laser it is generally accepted [Refs.
11(d)—11(f)] that the external multiplicative noise cannot
be approximated by a white noise. It rather has a finite
correlation time. The same thing happens in other exter-
nal noise problems (Ref. 5). In a first attempt to under-
stand the role of multiplicative noise in the decay of an
unstable state we take here a simple model and consider
7(¢) a white noise for simplicity. An extension of our re-
sults is necessary for a detailed analysis of situations in
which 7(¢) is nonwhite. However, we do not foresee any
drastic qualitative change in our general picture for n =1.
In order to verify the main aspects of the decay process
we have performed a numerical simulation of Eq. (1) in
which we study the behavior of typical stochastic trajec-
tories and also of statistical averages. We remark that in
a system subject to external fluctuations what is observed
in some circumstances is just the response of the system to
a single realization of the external noise. This is for in-
stance the case when the fluctuations of the control pa-
rameter are due to natural fluctuations of the environment
of the system. Several experiments on the same system
take the place of a single realization of the external noise.
Stochastic trajectories are then directly observed. Results
of the simulation are shown in Figs. 1-3 for r =1 and
€=10""2 The simulation has been carried out with the
algorithm explained in Ref. 8. The integration step was
A=0.01 and the averages are taken over 10* stochastic
trajectories.

In Fig. 1 three typical stochastic trajectories are shown.
A comparison of results for different values of D shows
the different roles of the two sources of noise. One can
distinguish three time regimes. The first one is up to the
time in which the system leaves the unstable state. In the
second regime the system decays to the stable state and in
the third regime the system fluctuates around that stable
state. The first regime is dominated by the additive noise.
The extension of this regime depends slightly on D (for
moderate values of D) since the time at which the system
leaves the unstable states decreases slightly with D. In the
second regime the shape of the trajectory is largely in-
dependent of € while the effect of D becomes noticeable
when the trajectory approaches the steady state. This ef-
fect is larger for larger D. In the final regime multiplica-
tive fluctuations dominate. The overall behavior is easy
to understand since for small x the term with multiplica-
tive fluctuations in (1) is damped out.

In Fig. 2 the transient mean value (x%(¢)) is shown.
The main features discussed for the stochastic trajectories
are also seen here, namely the existence of three time re-
gimes in which additive noise and multiplicative noise
play different roles. A slight decrease with increasing D
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FIG. 1. Typical stochastic trajectories of the process x (¢) for FIG. 2. Transient mean value x*(t) for e=10""% D=0,
€=10""?and D =0 and 0.01 (above) and for D =0.05 (below). 0.01, and 0.05.
0.25
ot
of the time at which the system leaves the unstable state
and a slight growth of the time at which it reaches the fi-
nal state are also seen. Figure 3 shows the phenomenon of 020 +
anomalous fluctuations as modified by multiplicative
noise. Again we observe here a separation of time scales,
a preponderance of multiplicative noise at late times, and
a slight decrease with increasing D of the time at which
fluctuations start to grow. A large increase with D of the 015 |
height of the peak of 8(¢)=(x*(t)) — (x%(¢))? appears as
a new characteristic feature. The position of the peak
remains essentially unchanged. The origin of the
anomalous fluctuations for D =0 is known to be the 0-0.05
spread of stochastic trajectories at intermediate times due
to the random times at which they leave the unstable 010

state. In the presence of multiplicative fluctuations there
is an additional spread caused by multiplicative noise.
This additional spread of trajectories due to multiplicative
noise is also present in the final state and leads to a final
value of 8 larger than for D =0. The anomalous fluctua- 0.05 |
tions A associated with the decay are given by the differ-
ence in the value of § at its maximum and the asymptotic
value for t— 0, A=8(ty.)—8(0). Such anomalous 001
fluctuations are essentially independent of the value of D.

0.0
Multiplicative noise has an increasingly strong effect on ! I
the trajectories once the system is not close to the unstable 0 10 20 30 ¢ 40
state. The situation in which only multiplicative noise is FIG. 3. Effect of multiplicative noise on the anomalous fluc-

present produces a monotonic growth of fluctuations until tuations.
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the maximum level is reached at the steady state. An
enhancement of fluctuations above such a level is present
if the spread of trajectories due to additive noise at inter-
mediate times is larger than the typical spread of trajec-
tories at the steady state. The first spread is of the order
of (#/2)? and the latter is of the order of D2. Therefore,
the typical phenomenon of transient fluctuation enhance-
ment is only expected to be present if D <r/2.

III. THE QUASIDETERMINISTIC THEORY

The numerical simulation of the process involving both
additive and multiplicative noise discussed in Sec. II
shows a clear separation of time scales, at least when the
strength of the two types of noise is not very large. In
other words, additive noise is the main cause for the decay
of the unstable initial state, while multiplicative noise
dominates the late-stage dynamics. Making a comparison
with the case in which D =0, we see that the crucial role
of additive noise for early times is the same. In that case,
the QDT basically consists of replacing the true stochastic
process by the deterministic solution of the problem
(e=0) with random initial conditions which account for
the early-time fluctuations responsible for the decay of the
unstable state. A QDT in the presence of multiplicative
noise will be constructed in the pure multiplicative pro-
cess. As a consequence of the picture obtained from the
simulation we expect that such a QDT will describe
reasonably well the temporal development of the system.
For early times the essential additive fluctuations are tak-
en into account. In the late regime multiplicative fluctua-
tions dominate and the QDT leads by construction to the
purely multiplicative process.

The first step of the QDT is to linearize the equation of
motion close to the instability:

d,x =rx +V2e(1) . (3)

The linearized equation describes the early-time regime in
which multiplicative fluctuations are neglected. The solu-
tion of (3) can be written as

x()=h(t)e", )
h=V3e [ dr'e=&(r) (5)

and shows that the process h(t) plays the role of a sto-
chastic initial condition for the linearized motion. The
process h(t) has the important property of becoming a
random variable / , independent of time for long times,
as it can be easily seen from the stochastic differential
equation

3.h =V2ee (1) . (6)

It is therefore clear that for times of the order of 1/r the
stochastic trajectories of the process (4) will coincide with
the deterministic trajectories with initial condition 4 .
From this time on, the system will evolve in a way which
is essentially not influenced by additive noise. In the
present case this means that the evolution equation is
given by the purely multiplicative process

d,x =rx —ux*+v2Dxn(1), M
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which has the solution
rt+w(t)
x(t): x(o)’e , ’ - (8)
{1+2ux2(0) fo dt'e2lrt' +w(t)]
with
w(1)=V2D fotdt"r)(t’) ©)

the Wiener process and x (0) the initial condition of the
motion. In order to avoid the introduction of a connect-
ing time between the initial linearized regime and the later
one with =0, the QDT makes the ansatz that the process
will be well approximated by

h (t)ert+w(t)

L4+2uh™2) [ dr'ed +ol)

xqpr(t)= [ 77 » (10)

i.e., by process (8) in which the initial condition has been
substituted for all times by the process A (z).

The process (10) gives the solution to the problem in the
quasideterministic approximation. This solution reduces
the original problem (1) to the purely multiplicative sto-
chastic process (7) but with a random initial condition
h(t) distributed according to a time-dependent Gaussian
with zero mean and variance (h(t))=(e/r)(1—e~2").
An exact evaluation for the statistical averages of the
multiplicative process (7) is known.” In particular, tran-
sient moments of that process are given in terms of the in-
itial values x (0). Our approximation to the original pro-
cess is obtained by replacing x(0) by h(z). Moments of
the process (10) can then be calculated exactly by a Gauss-
ian averaging over the stochastic trajectories of the pro-
cess h(t). After times of order 1/r this averaging is
equivalent to an average with respect to an effective initial
Gaussian distribution with variance €.

The validity of the QDT can be checked at two dif-
ferent levels. The first one is to consider directly the pro-
cess (10) and its trajectories and compare them with the
trajectories of the original process (1). Some examples of
QDT trajectories are shown in Fig. 4 and can be directly
compared with the corresponding ones of Fig. 1 since they
refer to the same stochastic sequence in time. The overall
agreement of the real and the stochastic trajectories is
very good. The small deviation after the time in which
the system has left the instability is due to the fact that we
have ignored the effect of multiplicative noise on the ini-
tial stage of the motion and this has an effect for times
around the mean first-passage time. This drawback is due
to the fact that in order to have the simplest QDT process
we do not describe correctly the linear regime. For later
times it is quite evident that the dominant effect is due to
the multiplicative noise which has the same effect on both
the real and QDT trajectories. We should note at this
point that QDT is unable to reproduce correctly the fluc-
tuations in the final state due to the additive noise when
D =0, since in that approximation the motion remains
deterministic for long times. The situation is quite dif-
ferent for the multiplicative noise which is exactly taken
into account when €=0. Since in our case we have a mul-
tiplicative noise much stronger than the additive one, the
possible improvements of QDT [see Refs. 3(b) and 15] as
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FIG. 4. Same trajectories as in Fig. 1 obtained with the
QDT.

far as the additive noise is concerned are here irrelevant.

The other check of the theory can be made at the level
of moments. Since we have a very good approximation
for the trajectories of the process we expect a good agree-
ment as far as averaged quantities are concerned. In fact,
the agreement for the lowest-order moment (x?) is excel-
lent, and we use the variance of {x?) in order to point out
possible discrepancies. Figure 5 shows the anomalous
fluctuations in the transient obtained with the QDT and
for the same values of the parameters as in Fig. 3, the re-
sults of which are very well reproduced.

A general comment we can make about the moments of
the original process and its QDT version is the loss of the
scaling regime that was the characteristic feature of the
problem with no multiplicative noise. In this case the mo-
ments could be written as a universal function' of a single
scaled time variable. It is, on the contrary, apparent from
the expressions given in Ref. 7 that the same property is
not valid when D=40. On the other hand, the asymptotic
properties in time of the moments calculated in Ref. 7
remain valid even after the Gaussian integration over the
initial conditions implied by the introduction of the addi-
tive noise. In fact, the time scale of the decay [starting
from x(0)£0] when only the multiplicative noise is
present is of the order of the inverse of the smallest eigen-
value 7, ~2r —4D. However, this is not the slowest relax-
ation time scale of the system. In fact, the presence of ad-
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FIG. 5. Anomalous fluctuations in the QDT.

ditive noise will produce rare but large fluctuations which
mix trajectories when they are close to the two equilibri-
um states. Such a final relaxation-time regime can be
evaluated studying the mean first-passage time between
the two potential wells in the presence of both multiplica-
tive and additive noise. This study was done in Ref. 10
and gives a result valid for both D and € small in compar-
ison with r and € <<rD,

—r/2D
er/ZD , (11)

3

Ty~
=

e
€

a time much larger than 7}, so that the decay process cal-
culated using the results of Ref. 7 will be observed for
<< T2.

Since the calculation of the moments is quite cumber-
some either when using the quasideterministic process or
the results of Ref. 7, we try here to characterize in simple
terms some of the main features of the moments them-
selves. Two such features are the facts that fluctuations
start to grow at an earlier time than for D =0 and that
the position of the maximum of 8(¢) is essentially in-
dependent of D. If we use the QDT in the linearized re-
gime it is easy to calculate the time 7, the system takes to
reach a given value of (x(z)),
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) (12)

where D /r <<1 and In{x?) << |In€|. The displacement
of the time it takes for the moments to become appreci-
ably different from zero is therefore easily calculated
from (12) and is in good agreement with the simulation.
We may also note that Ty ~(1/2r)In(1/€) corresponds to
the mean first-passage time to leave the instability when
only additive noise is present. One might therefore think
that what we calculated above is the correction to the
mean first-passage time when we also have multiplicative
noise. However, if we try to evaluate the mean first-
passage time T we get, in the linear QDT regime,

1 x2
1
T

This equation should be solved in T for a fixed x? and

averaged over the multiplicative and additive noise. An

order of magnitude of T can be obtained using for the

processes h%(t) and w*(t) the estimates (h%(T))~e€ and

(wXT))=2DT. This leads, for small values of D /r%, to
V'2DT,

TzTOi-—-—;—— . (14)

2 2 T
— D (13)
r

Equation (14) limits the possible shift in T, to a very
small value compared to the one obtained above, for in-
stance for D =0.01 and e=10"'2. Our conclusion is
therefore that the displacement in time of the moments
for small times does not reflect a variation of the mean
first-passage time due to multiplicative noise. At this
point, we observe that the curve of the variance 8 of x2
does not shift as a whole by a quantity of the order of
ToD/r. Instead, the instant of time corresponding to the
maximum fluctuations remains essentially fixed. We are
therefore lead to the conclusion that this maximum is re-
lated to the mean first-passage time. This fact is, on the
other hand, confirmed by the observation that the time
when the spread of trajectories is maximum basically de-
pends on the additive noise and it is modified by multipli-
cative noise much less than the magnitude of fluctuations.

1IV. DISCUSSION AND COMMENTS

We wish to comment here on the approximations in-
volved in the QDT. In the case in which only additive
noise is present, the linear version of QDT coincides with
the linear version of the real process. This is not the case
in the QDT approximation presented here when D=40.
From Egs. (1) and (10) the two linear processes are given,
respectively, by

x(t)= fote'('""+“’(‘_")\/2_6§(t')dt’ , (15)
xbpr(t=e? [ert =1/ Teg(r')dr' . (16)

The difference between these two processes can be
evaluated looking for the relative standard deviation
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1/2
o= ((x’——xf)DT)z) 17)
- (x!?)
For D <r and rt >>1 we have
4D 2D 12 4D 12 D
o= |— 1+T ] =\ +0 ~ | (18)

This result explains, for the values of parameters used
here, the agreement found between the simulation and
QDT on the first stage of evolution. The validity of QDT
for long times only requires having Dr>>e. QDT is
much better in this regime than in the case of D =0 since
now additive noise plays no important role. Equation (18)
restricts the validity of our theoretical description for
short times to relatively small values of D. We recall that
for intermediate times we also estimated in Sec. II that for
D >r/2 the phenomenon of anomalous fluctuations is
hidden by large multiplicative noise. In fact, for large
values of D the system is dominated by noise, and the or-
dinary concepts of unstable states and the decay to stable
states lose their usual physical meaning.

Our overall description of the decay process for
€/r* << D/r <1 indicates a well-separated role of additive
and multiplicative noise, namely, anomalous fluctuations
and the position of the peak of 5(¢) are fixed by the pa-
rameter ¢, the time at which fluctuations start to grow de-
pends on D, and the final fluctuations are given by D.
Therefore, transient experiments should be useful to deter-
mine the value of these two parameters.

We finally summarize the role of a small additive noise
on a bistable system with a fluctuating control parameter.
Its main effect is to mix trajectories which otherwise
would remain confined in two separate subspaces of phase
space close to the relative local minima x = *(7)!/2. Such
a mixing is verified by looking at the decay of an unstable
state. This is well described by QDT. A related effect of
additive noise can appear after the initial decay of the un-
stable state if multiplicative noise is large enough. In that
case the system might often be brought close to the unsta-
ble state and a small additive noise can overcome the bar-
rier separating the two locally stable states. This produces
again the mixing of phase space in times which are much
smaller than the characteristic times of barrier crossing in
the case D =0. Such an equilibration process between the
two locally stable states is not described by the QDT since
the process h(t), which contains the effect of additive
noise, is saturated for long times. The equilibration
occurs in a time scale given by the mean first-passage
time to escape from one stable state to the other. We have
seen in Sec. III that for relatively small D this final
dynamic regime is well separated from the relaxation re-
gime described by the QDT. In a nonlinear relaxation ex-
periment we expect that for observation times shorter
than the escape time, the system will be observed in a
metastablelike state. It is interesting to consider how the
system will leave such a state. According to the study of
Ref. 10, the escape time shows for small € a quite sharp
change of behavior with D, namely, it is very large for
small D and quite sharply decreases to a small value when
D>D.. A small € permits for D > D, a rapid mixing of
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phase space. This means that in a given time scale of ob-
servation, x will have a value different from zero for
D <D, and it will vanish on the average for D >D,. Al-
though there is no clear determination of the value D,
this phenomenon indicates an effective modification of
the phase diagram of dynamical origin for a finite obser-
vation time. The phenomenon is reminiscent of what
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happens when the control parameter r in (1) is not a ran-
dom quantity but a periodic function of time.®
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