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We calculate the effective diffusion coefficient in convective flows which are well described by
one spatial mode. We use an expansion in the distance from onset and homogenization methods to
obtain an explicit expression for the transport coefficient. We find that spatially periodic fluid flow
enhances the molecular diffusion D by a term proportional to D~!. This enhancement should be
easy to observe in experiments, since D is a small number.

I. INTRODUCTION

Dispersion in fluids at rest is due to the Brownian
motion of the molecules or particles. On the macroscopic
level it is well described by the Fick-diffusion equation
with a transport coefficient D, the molecular-diffusion
coefficient. Diffusion, or dispersion, is obviously an im-
portant phenomenon in chemical reactions, mixing of
fluids, and spreading of pollutants. It is therefore of fun-
damental and practical importance to understand how
fluid flow affects dispersion. The fact that even laminar
flow can considerably increase dispersion is far less well
known than the enhancement due to turbulence. In 1953
Taylor! showed that the longitudinal dispersion in
Poiseuille flow in a cylindrical tube is described by an ef-
fective diffusion coefficient D*,

i 2R?
48D

Here 7 is the average flow velocity and R the radius of
the tube. Since D*—D is proportional to the inverse of
the molecular-diffusion coefficient, typically D ~10~3
cm?/s in liquids, the contribution from the fluid flow is
by far the dominant effect.

Here we will investigate the effect of fluid flows with
zero mean velocity, Z=0, on dispersion. This is the case
if the fluid velocity is spatially periodic. Such situations
arise frequently as a consequence of hydrodynamic insta-
bilities, as for instance in the Rayleigh-Bénard system?
and the circular Couette system.> Our study will thus ad-
dress the effect of hydrodynamic instabilities on mass
transport in fluids. We will specifically consider the case
of the convective instability in the Rayleigh-Bénard sys-
tem.

Convection plays a role in various natural phenomena.
Cloud streets visualize convection cells in the atmosphere.
Transport of salt and heat in the ocean are often influ-
enced by convection cells arising from a double-diffusive
instability. Further applications can be found in astro-
physics, convection cells in stars, and in chemical en-
gineering. For instance, fast reactions will be very sensi-
tive to any increase in the effective diffusion coefficient.

In this paper we calculate explicitly the effective dif-
fusion coefficient for convective fluid motion, in which

D*=D +

34

essentially only one mode is excited. This means that we
consider situations close to the hydrodynamic instability.
The problem of calculating effective transport coefficients
in fluid flows is a difficult one. At present, there are
some technical difficulties in treating flows farther from
the onset of convection, where additional modes are excit-
ed. Even close to the onset of convective motion in the
Rayleigh-Bénard system the calculation of the effective
diffusion coefficient is not easy. Thus, we have found it
convenient to look at this problem from different angles.
To offset some of the drawbacks of any perturbation cal-
culation, we have used two perturbative methods which
have different limitations. The results from both calcula-
tions agree exactly with each other. This shows that their
range of validity is actually larger than the limitations of
each particular method suggest. Our main result is that
flows with zero mean velocity also enhance dispersion and
that aglain the contribution from the flow is proportional
to D™

The effect of periodic fluid flows with zero mean velo-
city was previously considered in a different context by
Nadim, Cox, and Brenner’ and by Moffat.® Nadim and
co-workers study a two-dimensional, spatially periodic,
vortexlike flow engendered by a square array of almost-
touching parallel, infinitely long circular cylinders, each
rotating steadily about its symmetry axis in a Newtonian
fluid under the action of an external couple exerted upon
it from outside of the system. They use generalized
Taylor-dispersion theory”® to calculate the effective dif-
fusivity tensor of this flow. Using the first-order smooth-
ing approximation or quasilinear approximation, Moffat
derives an expression for the diffusivity tensor of a con-
vected scalar field in a turbulent flow. He applies this re-
sult to a case of “frozen” turbulence, namely a space-
periodic velocity field of the form considered in this pa-
per. Our results agree with those of Moffat, who used a
small Peclet number expansion to calculate explicitly the
effective diffusion coefficient. Our method is quite dif-
ferent, and not subject to the same limitations; it uses con-
cepts originating from Brownian motion theory and con-
cepts from the theory of homogenization.

The organization of this paper is as follows: In Sec. II
we describe the motion of a particle in the fluid flow by a
set of Langevin equations. We calculate the dispersion in
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the direction perpendicular to the convection roll axis via
an expansion in the Rayleigh number. This method ex-
ploits the fact that the flow is close to the instability. In
Sec. III we consider a periodic velocity field given by one
Fourier mode and assume that the initial concentration of
the particles in the flow varies on a scale much larger than
the period. This allows us to use homogenization
methods® to calculate the effective diffusion coefficient.
In Sec. IV we summarize our results, compare them to the
case of Taylor diffusion, and discuss the general structure
of the enhanced diffusion.

II. EFFECTIVE DIFFUSION COEFFICIENT
NEAR A HYDRODYNAMIC INSTABILITY

We consider a Rayleigh-Bénard system of infinite la-
teral extent and thickness d. Let z be the direction per-
pendicular to the plates, x the direction perpendicular to
the roll axis. We nondimensionalize length and time in
the standard way by measuring lengths in units of d and
time in units of thermal diffusion time d?/k. Here « is
the thermal diffusivity. Writing the Rayleigh number for
R >R, as

R =R_.+R,€+0(é), (1
we have for the velocity in the case of rolls!®

— Aa ' sin(ax)cos(7z)
U=e¢ 0
A cos(ax)sin(7z)

+0(€%)

u
=€ |0 |+0(), (2)
v

with 42=37?R, and a =m/V2.!! Here we have chosen
free-free boundary conditions for mathematical conveni-
ence. The motion of a (neutrally buoyant) particle is then
given by the following set of Langevin equations:

x(t)=eu(x(1),z())+E&,(2),
y()=§,(1), (3)
z(t)=ev(x (1),z(1))+&,(¢) ,

with instantaneous reflection at z=0 and 1. Further,
(&i(0g;(t')) =2D8;8(r —1t') . 4)

The effective diffusion coefficient Dy, in the x direction
is given by

¥ — qim | {XO=(x@)])
x> t— o0 2t

(5)

(For the remainder of this section, we will drop the sub-
script xx.) In order to evaluate this second moment, we
need to solve the Fokker-Planck equation associated with
(3)

9,p (x,y,z,t)= —e€[ 0, u (x,2)+3,v(x,2)]p (x,y,2,t)
+D[3x +9y, +3z1p (x,y,2,0) (6)
with
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p(x,9,2,0)=8(x)8(y)d(z —z¢) , )
azp(x’y,z’t) Iz=0,l=0 ’ (8)

for the reflecting boundary at z=0 and 1,
P(X,y,ZJ)—>0 as x—*t oo ory—>ioo N (9)

for the natural boundaries at x =% and y=xc.
Clearly, we only need to find p (x,z,t) which obeys

0,p (x,z,t) = —€[ 0, u (x,2)+3,v(x,2)]p (x,2,t)
+D[0, +0,1p(x,2,t) . (10)

Since u(x,z) is an odd function of x and since p(x,z,0) is
an even function of x, we have that p(x,z,) is even in x.
This implies that

(x(1))=0. (11)
Thus (5) is equivalent to
2

D*= lim ( ";’t) ) ] (12)

or
(x(t)?)=2D*t for large ¢ .
This implies that
D*=1([x({)]*) for ¢ large . (13)

From the Fokker-Planck equation (10), we obtain

© 1
([x()))= f_ dx fo dz x*[ —e(d,u +3,v)p
+D@By+050p] . (14)

Using the expressions (2) for u and v and integrating by
parts, we find that

. © 1
([x(£)]*)=2D +2¢ f_ dx fo dz xu(x,z)p (x,z,t) ,
(15)
and thus
D“=D+ef°° dx f]dzxu(x z)p (x,z,t) | (16)
— 0 b &y t—o0 °*

To calculate the contribution from the fluid flow to the
dispersion, we seek a perturbative solution of the Fokker-
Planck equation (10) near the instability,

p(x,2,t)=p%x,z,t)+epV(x,2,t) + O(€?) . (17)

Substituting this ansatz in (10), we find that to order &,
93,0 V(x,2,t)=D (3, +3,)p'(x,2,0) ,
p9x,2,0)=8(x)8(z —z,) ,

9.0 Y(x,2,t) | ;—0,=0, 18
px,2,t) >0 as x>+ o .

Clearly at this order the joint probability factorizes
Pp%x,z,t)=p Qx,t)p Vz,t) , (19)

with
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3,p' 0x,t)=D3 . p'”(x,1) (200  Taking into account that z=0 and 1 are reflecting
and boundaries, we find that the solution of (21) is given by
3,pVz,t)=D3p"%(z,1) . @21 o
Th '[; tion of (20)".1; POzn=1+42S e =" *Pieog(nmzy)cos(nz) . (23)
e solution o i n=1
0 1 —x2/4D
pVx, 0= VDt - xR 22) " To order € the Fokker-Planck equation (10) reads

3,0 V(x,2,t) =D (3yx + 3 )p V(x,2,8) — (3, u +3,0)p' % (x,2,1)
=D(3xy + 3 )pV(x,2,t)+ Aa "' sin(ax)cos(mz)d,p ) (x,2,t) — A cos(ax)sin(72)3,p V(x,2,1) . (24)
We substitute the expression for p‘?), calculated above, and finally obtain

3:pV(x,2,8)=D(d5x +85)p'(x,2,t) + Aa ~ 'm sin(ax)cos(mz)

0 1 2
X (142 e~ Dicos(nrzo)cos(nmz) | |8, | ——m—e —*>/4Pt
+ n§1 2o * | 2vDmt
+2A4 cos(ax) 2—\/-ID_7e =x2/4Dt | Gin(1rz) S, (nme —nm2Dtoo(n gz, )sin(nrz) (25)
n=1
with
p‘“(x,z,O):O ,
azp(”(x»z»t) Iz=0,1=0 ’
pV(x,2,6)—>0 as x—>+ oo .
Since we have reflection at z=0 and 1, we write
pV(xz,0=py (x,)+V2 3 pyx,t)cos(mmz) . (26)

m=1
Recall that we need to evaluate
€ f_: dx fol dz xu (x,z)p (x,2,t) | ,_, ., = —€ f_: dx fol dz xAa ~'msin(ax)cos(mz)p (x,2,t) | ;_, o -

Thus it is sufficient for our purpose to determine p{"(x,t) explicitly in the long-term limit. Multiplying (25) by
V2cos(7z) from the left and integrating over z, we obtain

301" (x,0)=Dad,p\" (x,0) — DV (x,1)

1 2
e x*“/4Dt

+ Aa ~'rrsin(ax)d, V[ L 4 Le—4m"Dicos(2724)]

2V Dmt
+ A cos(ax) *2—1‘/3——;— —x/4Dt V2 cos(2mzy)e ~47Dt (27)
T

Since we are interested in the long-term limit and since [ x (¢),z(¢)] is clearly metrically transitive, the choice of the initial
condition will have no bearing on the final result. Thus for the sake of convenience we choose the initial value zo= 1
and find

-1
a_'m . 1 _x2

3.0\ (x,0)=D3,p\V (x,0) =D\ (x,t) + 4 75 sin(ax)3d, YV vk /4Dt (28)
with

PV (x,00=0 and p{"(x,1) >0 as x>+ o .
We solve this equation via Laplace transform, restricting x to the positive half line,

-1
sp (V(x,5) =D, p {"(x,5)—Dr?p\V(x,5)+ A a‘/{r sin(ax) | — E!b-e“ s/Dx | (29)
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where
Am sty m
(x,8)= f e (x,t)dt .

Since we are dealing with a situation close to the critical point, we have that a =a, =7/ V2 and (29) can be written as
9P V(x,5)=D s + D7)p {"(x,5)+(2D*) "4 sin(ax)e "V /P* x >0. (30)
The solution of this homogeneous differential equation, which fulfills the condition p {"(x,5)—0 as x — oo, is given by

A[(a®+7*)sin(ax)—2aV's /D cos(ax)]e ~" /P>

7 V(x,5)=Cls)exp{ —[D~\(s + D7) ] *x } — 8Da’[s + D (a*+ )7 /4a’] (3D
Here C(s) is an as yet undetermined function. Inverting the Laplace transform we find
2V (x,0)= f ch(t_T)e—D#rz(D#Ts)l/ze-x2/4Dr
8D 5 f drexp Qig:fzfi)i(t—r)
1 e ~**/4D7 (g2 4 7?)x sin(ax)—a cos(ax)Hy(x /2 D7)] . (32)

x 2ADmr)' /2

H, is the second order Hermite polynomial. This expression for p(” (x,t) is valid for x>0. To obtain p{"(x,t) for all
values of x, we exploit the fact the p(x,t) is an even function, i.e., pi" (x,t)=p {U(—x,1). Thus we find

P 0= [ ‘drClt —rle~Prr—LX L —x2a0r

2Dwr)'
22
8D 3 f drexp La‘*a?r—)——(t—r)
L e ~**/*P7[ (a2 72)x sin(ax) —a cos(ax)H,(x /2VD1)] . (33)

X —t——————
2 D7) /?

Further, p{"(x,t) has to be at least twice continuously differentiable. The continuity of 3,p{"(x,?) |, o requires that
C(s) vanishes identically. Thus we find that the solution of the Fokker-Planck equation (10) is, to first order in €,

_x2 T _
e —X2/4Di T, Dt

D1t 4

p(x,z,t)=cos(7z)

(a*+m?)?

4q?

1 —x2/4Dr

— f drexp |—D _(2D773)1/2

8D2

(t—1)

X [(a?+m*)x sin(ax)—a cos(ax)H,(x /2V'D7)] | +terms orthogonal to cos(7z) .

(34)
So, the effective diffusion coefficient is given by

D*=D +e€ fw dx fIdzx[——Aa_l'trsin(ax)cos(ﬂz)]
— 0

L —x2/aDr cos(m/4)e ~PTcos(7z)

X 2V Dt
4 ! (a’+m)? 1 —x2/4Dr
_€8Da2 fo drexp |—D a2 (t—1) D)2

X [(a?+7*)x sin(ax)—a cos(ax)H,(x /2V'D )]V 2cos(wz) | +O0(€®) .  (35)
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which needs to be evaluated in the long-time limit. Writ-
ing D*=D +€D, +€*D,+0(€*), we find that

Dy =—A(Dmt)cos(m/4)e P @ +™_0 as t— oo

(36)
and
A% ~9DmHt—7)/8p 3 _ , —2Dwtr 11
Dz:T fodfe [+— (4 —7D7*1)]
2
—»%;2 ast— oo . (37)
T
So, our final result is
242
D*=D+% ;iz +0(€). (38)

Note that €42 is proportional to {(eu)?), where ( )
denotes integration over the period cell. Thus (38) can be
written as

2

2 )
pr- DL o)1= poe). 39
On the other hand, using 4%=37?R, we obtain from (38)
e’R
D*=D+-—2+0().

Close to onset we may write this, neglecting higher-order
terms, as

=D +(R—R,)/D .

Using a typical value of D =103 cm?/s, we find that in
the nondimensionalized units used here, D =10~2. Thus,
convective flow, even close to onset, can appreciably
enhance dispersion (R,=657.5 for free-free boundary

conditions),
R —R
D*=10"24+10°R, .
R,
-2 4R_Rc
=107°46.575X 10 R . (40)

c

A result completely similar to (38) is obtained for the case
of rigid-rigid boundaries.?

III. EFFECTIVE DIFFUSION COEFFICIENT
IN PERIODIC FLOWS: THE HOMOGENIZATION
METHOD

In Sec. II we have obtained an explicit expression for
the enhancement of dispersion by convective flows. We
have used a perturbation expansion in the distance from
the critical point to approach this problem. In this sec-
tion we will attack the problem from a different
viewpoint. This will also furnish an indication as to the
range of validity of expression (39). Let ¢(¢,r) be the con-
centration of a passive (neutrally buoyant) contaminant.
Then its temporal evolution is governed by the
convection-diffusion equation

a,qn(t,r)+V-[u(r)¢)(t,r)]:DV2¢(t,r), rER?, 41)
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with initial condition
@(0,r)=go(r) . (42)

(In this section we do not use the nondimensionalization
of Sec. II) Here u(r) is an arbitrary periodic velocity
field which is divergence free,

V-u(r)=0 (43)
and has mean value zero,
(u(r))=0. (44)

Recall that ( ) denotes integration over the period cell.
We will consider the case that the initial condition varies
on a length scale /,, that is large compared to the length
scale I, of the velocity field,

(P(Orr)=¢0(7’r) ’ (45)

where 7 is the ratio of the two scales, n=1s/1,. It is ex-
actly for problems of this type that homogenization
methods were developed.® This particular problem was
treated by McLaughlin et al.’® We briefly summarize
their procedure here. Changing space and time scales by
letting r—r/7 and t—t /7%, we transform (41) into

3,97+ niwu(r/n )" =DV%" (46)

where ¢"(t,r)=¢(t /7% 1/7) and
@"(0,1)=@q(r) .
We make the following ansatz for ¢:

@"(t,r)=@(t,r) + ' V(1,1 /n) + 1@ ?

(t,r,x/n)+ - .
47)

In the spirit of a multiple-scale method, we treat r and

p=r/n as independent variables. We have thus
V=V,+n‘1Vp. We insert (47) into (46) and collect
powers of 7. To order 2 we obtain

wp)\V,5=V2%, 48)

which is trivially satisfied, since @ is independent of the
small scale p. The coefficients of 7! lead to the equation

2 (1)

DV —u(p)-V,o'" —

We denote the unit vectors in the x, y, and z direction by
er, k=1,2,3. Define functions X (p) by

u(p)-V,5=0. (49)

DV,,Xk(p)—u(p) VXi(p)—u(p)-e,=0. (50)
Then it is easily verified that
@ Ntr,p)= 2 Xe(p) B 51)
Xk

with r=(x;,x;,x3) and p=(x,y,2)=1/1(x,x,,x3) is a
solution of (49). To order 11° we obtain

‘2#)(2 u'Vp¢(2)

+2DV, Vo'V +DVp—3,p=0. (52)

-—ll‘vr(P“)
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We are looking for a solution of this equation which for
each ¢ and r fixed is periodic in p, since u(p) is periodic.
For periodic solutions

(V,Z,cpm)=0
and

(u-V,0?)=(V-(up'?))=0. (53)
The first equality in (53) follows from (43). Thus the

solution of (52) can be periodic only if
—(u-V, ") +2D(V,V,0'") +D(V;p) —(3,§) =0 .
(54)

Now (V,-V f‘,(p(”) =V,(V,@'") =0, where the last equal-
ity follows from the periodicity of cp“’ So, the solvability
condition (54) reads

3,p=DVp—(u-V,o'") . (55)
Inserting (51) into (55) we finally obtain
aZ
D§;; D P, 56
2= (D + a x, 3%, — @ (56)
where
Df=—(uX;) . (57)

This shows that the average concentration @ obeys indeed
a diffusion equation and that the enhancement of the
dispersion due to the periodic flow is given by — (u;X; ).

It is in general a formidable task to explicitly solve (50)
to obtain the X; and thus to calculate DF. Note, however,
that we need to know “only” a “moment,” namely
(u;X;). Thus it is sufficient to solve (50) in the weak
sense: Let V be a closed function space of periodic func-
tions, such that u; EV. Then X is a weak solution of (50)
if

(fDVXi) —{fu-V X ) —(fu-eg)=0 (58)

for an arbitrary element f of V. Now, if u-e; is periodic
and (u-ex)=0, then (58) has a periodic solution and
uniqueness is guaranteed if (X )=0.13
|

u‘Vul =(u16x+u3az)u1

and
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To apply these results to convective flows let us consid-
er velocity fields of the form

~ T .
—A—
dSll’l

X
a=

cos |T—
d

z
d

(59)

~a
A—cos

sin |7—
d

ax z
d

d

where x €E(— w0, o) and zE(— o0, ). As in Sec. II we
consider only convective flows that are well described by
one spatial mode.

If we want to apply these considerations to the
Rayleigh-Bénard system, then the velocity field (59) corre-
sponds to an infinite stack of such systems. The applica-
tion of homogenization methods to periodic flows in finite
or semiinfinite geometries requires this mathematical
trick. It is somewhat awkward to take boundary condi-
tions into account using homogenization techniques. It is
for this reason that (41) was formulated on an infinite
domain. It will turn out, however, that the dispersions in
the three coordinate directions are independent. Thus the
result for DF. is not affected by the above mathematical
trick and can be applied directly to the Rayleigh-Bénard
system.

For convective flows of the form (59), the solution of
(58) is given by

1 d?
=% 60
X; D ik (60)
To prove this, note that DVX;=u;. So,

(fDV?X;) = fu;) for arbitrary f. Thus, the above asser-
tion is true if (fu-VX;)=0. Let V be the function space
whose elements are

f= 3 |Qmnsin ma> |cos |nmZ
mn=1 d d
+P,, ,cos ma—;— sin mr:zl- (61)
Clearly u,, u,, and u; are elements of V. We have
+22£ﬁcos a= |sin |7 % |sin |aZ [sin |7
d3 d d d d
(62)
+2212£cos a= |sin [7Z |cos |aZ |cos |7 Z
d? d d d d
(63)
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To evaluate ( fu-VX;) we have to calculate

(sin ma—)£ cos n1ri sin azc_ cos a~"i )
d d d d ’

<cos ma>= |sin |n7Z |sin aZ |cos |aX >
d d d d ’

<sin ma> |cos mri sin |72 |cos |7 % >
d d d d ’

and
<cos ma— |sin naZ |sin |7Z |cos rz )
d d d )

Clearly all expectations vanish which implies that indeed
(fu-vx;)=0.

Since (X;) vanishes, the solution (60) is unique and can
be used to calculate D§ . We find

d? (u})d?

DF=_< -Ll_4 ):—————-, 64)
= “UTD a2 YT Dt (
Dy, =0, (65)
1 a2 (u3)d?

DF=_< S S - >=——————. 66
=="\" "Dy ]"’ D(a*+7) (60

The off-diagonal terms of the diffusion matrix D¥ all
vanish,

ny=DyI;=0, since u, =0 (67)
1 _d?
el | bt b
Xz u) D a2+1r2 us
=0, since (sinf cos&)=0. (68)

The final result for the effective diffusion coefficient in
the x direction is

(u?)d?
D(a’+7%)
Note that D* is dependent on the wavelength of the con-

vective flow. Now (ul)=+4(4%7*/d* and if
a=a,=m/V?2, we find

*— ———
D ——D+6D .

D*=D + (69)

In order to compare this expression with (38) in Sec. II we
need to nondimensionalize length and time. In these
units, the relation between A4 in (2) and A4 in (59) is

-1

A=cda"'=e4

’

T
V2

so that
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24?2
D*=D + ,
3Dm?

which is exactly the result obtained in Sec. II.

IV. CONCLUSIONS

Using two different techniques, we have calculated the
effective diffusion coefficient for simple convective flows.
We find that

( u,'z )d 2
D(a*+7?)
for spatially periodic flows which are well described by
one spatial mode. Note that the limit of vanishing molec-
ular diffusion is a singular limit and (70) is not applicable
in this limit. This is very evident in both approaches. In
the treatment of Sec. II we need to take a long-time limit
in order to calculate D*. As is clear from, for instance,
(36), this limit is attained only for times such that
t=0(1/D), i.e., after the dispersing material has been
spread over a roll by molecular diffusion, or, in other
words, after the particles have sampled the velocity field
transverse to the direction of dispersion considered. Thus,
as the molecular diffusion becomes smaller and smaller,
the time scale on which the effective diffusive behavior is
established becomes longer and longer. Replacing the
nondimensionalized quantities of Sec. II by the original
ones, we obtain from this consideration the following con-
dition for the observation of effective diffusive behavior:
If at any time the dispersing material is spread over a re-
gion of dimension L in the x; direction, convection will
have given rise to effective diffusive behavior if

D:=D+ (70)

<u3)d2 d?
L2 D DN )
> 1D+ D(a?+7* | D
or, with U=({u}))"?,
%»L’Di:@ , (71)

where 2 is the Peclet number of the flow. As the
molecular-diffusion coefficient D goes to zero or the
Peclet number to infinity, the spatial scale, on which ef-
fective diffusive behavior is observed, diverges. The in-
equality (71) establishes a relation between the macroscop-
ic diffusive scale and the Peclet number; condition (71) is
exactly the same as the one derived by Taylor for
enhanced diffusion in Poiseuille flow [see (16) of Ref. 1].
If the molecular diffusion is strictly zero, there can be no
dispersion in a space-periodic flow with zero mean veloci-
ty, so D*=0. This follows indeed quite easily from (5)
and (10). In the homogenization method used in Sec. III
the limit of vanishing molecular diffusion is also a singu-
lar limit; D enters the equation for X, (50), multiplying
the highest-order derivative. Again, we obtain that
D*=0 if the molecular diffusion is zero. Indeed,
X.(r)=x and X,(r)=z for D=0, and thus
D§=—(uixj)=0.

Our result (70) shows that spatially periodic flows
enhance dispersion, though their average velocity is zero.
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In fact, we find that the excess diffusion has exactly the
same form as in the case of Poiseuille flow and linear
shear flows, which have a nonzero average velocity. We
are thus led to conjecture that it is a general feature of
laminar flows that dispersion is enhanced in proportion to
the square of a characteristic velocity and in inverse pro-
portion to the molecular diffusion. This form of the ex-
cess diffusion can be understood heuristically in the fol-
lowing way: The smaller the molecular diffusion, the
longer each particle will follow a given streamline of the
laminar flow. If there exists a velocity gradient, then the
different velocities between the streamlines will give rise
to a dispersion of the particles, which will be larger the
longer each particle stays near a given streamline. This is
the situation for small molecular diffusion. If the molec-
ular diffusion is large, then each particle will randomly
sample many streamlines, i.e., many different velocities.
Thus, for large D a velocity gradient will have only a
negligible effect on dispersion; the velocity gradient is
masked by the large random motion of the particles. We
therefore expect the excess diffusion to be proportional to
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an inverse power of D, the simplest case being D~!. It
then follows simply from dimensional arguments that the
excess diffusion is also proportional to the square of a
characteristic velocity times a characteristic length.

Since molecular diffusion in liquids is small, typically
D =10"° cm?/s, the flow-induced dispersion dominates
molecular diffusion even for small amplitudes of the con-
vective motion. Thus, experimental tests of our theoreti-
cal predictions should be relatively easy. Recall, however,
that our theoretical calculations are carried out for two-
dimensional flows and appropriate care has to be taken in
experiments to avoid any significant deviation from this
approximation.
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