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The stochastic-trajectory-analysis technique is applied to the calculation of the mean—first-
passage-time statistics for processes driven by external shot noise. Explicit analytical expressions are

obtained for free and bound processes.

I. INTRODUCTION

In several recent papers exact expressions of mean
first-passage times have been obtained for systems driven
by dichotomous (not necessarily Markov) fluctuations.
There have been two different approaches to the problem.
In one approach,' based on the explicit construction of
trajectories, one obtains exact analytic expressions for the
mean first-passage time (MFPT) statistics even when the
fluctuations are not Markovian. The other approach,”?
based on the construction of evolution operators, only
deals with Markovian fluctuations. The aim of the
present paper is to apply the trajectory techniques to pro-
cesses driven by external shot noise, i.e., the noise that
arises in vacuum tubes and crystals because of the random
emission and motion of electrons in such devices.*

We shall study the extreme events for general one-
dimensional process of the form

Y()=G(Y)+g(Y)F(t) ,

where G(Y) and g(Y) are smooth functions and F(?) is
the random driving process

F(=Sv8t—1),

(1.1)

(1.2)

where {(y;,7;), i=1,2,3,...} is a sequence of random
points in the plane (y,t) with {y;} independent of {7;}.
We take the quantities y; to be positive and uncorrelated.
Therefore, the random process F(¢) may be viewed as a
sequence of pulses at random times 7;, each pulse having
an independent random weight y;. The effect of this in-
put noise on the output of the system (1.1) is a series of in-
dependent random jumps in the trajectory of the
system—that is, a discontinuous trajectory Y (¢), with the
discontinuities of independent random heights occurring
at random times.

We assume that the random times {r;; i=1,2,3,...}
are such that the time intervals ¢; =7; —7; _; constitute an
ordinary renewal process® with a given “switch” distribu-
tion (). When #(z)=Ae ™, the random times {r;}
form a Poisson sequence of random points and the process
(1.2) is delta correlated.* When t(¢) is an arbitrary distri-
bution, F(t) is in general not delta correlated® and the ran-
dom process Y(t) given by Eq. (1.1) is non-Markovian.
Here we should note that the term “shot noise” has tradi-
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tionally been applied only when {7;} is a Poisson sequence
of random points. However, in this paper we use the term
shot noise in a broader sense, applying it to the process
(1.2) even if the random times {7;} are not a Poisson se-
quence, i.e., even if ¥(z) is not exponential.

As is well known, the change of variables

Y dy'
X= 1.3
[ e (1.3)
turns Eq. (1.1) into an equation of the form
X(t)=f(X)+F(1) . (1.4)

Therefore, we can study the first-passage time for process-
es whose dynamical evolution is given by an equation of
the form (1.4) and relate these results to the more general
process (1.1) when the relation (1.3) between X and Y is
monotonic.

This paper is organized as follows. In Sec. II we detail
the dynamics of the system. In Sec. III we obtain the in-
tegral equations for the mean first-passage time and its
probability distribution. In Secs. IV and V we obtain
closed exact expressions for the MFPT for free processes
and bound processes, respectively. The conclusions are
drawn in Sec. VI.

II. DYNAMICS OF THE SYSTEM

Let X(¢) be the process described by Eq. (1.4), where
F(t) is the shot noise given by Eq. (1.2). {y;} (y;>0,
i=01,2,...) is a set of independent random variables with
probability distributions X(y;). The set of random times
{7;} is such that the time intervals ty =7 —7, _; form a
renewal process with a given distribution ¥(z;). We as-
sume that f(X) in Eq. (1.4) is smooth and such that the
solution X (¢) of Eq. (1.4) never becomes infinite in a finite
time.

We assume that ¥o=0. The solution of the differential
equation (1.4) during the time interval 0<t <t is then
given by

t=¢""X)—¢"(xo) , .1
where

xo=X(t=0) (2.2)
and
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X dx’'

W)= [T==—. 2.3)
o~'x)= [ 700

Equation (2.1) can be written in the form
X()=¢(t+d " xg)), O<t <ty . (2.4)

During the time interval ¢, <t<t;+t;, Eq. (1.4) is

equivalent to the integral equation
t
X(=x,+71+ [, FX(e)dt (2.5)
1

where

X()=¢(t+é (xg)), O<t<t,,

X(=d(t+d Uy, +d(t; +6 (xp))), t;<t<ti+1;,
X(D=d(t+¢ v+l +1,+¢ (v + (1, +6 7' (x0)

t, tirto  tetoets tetpetaety
TIME t

72"} ottt

FIG. 1. (a) trajectory when the critical levels z, and z, are
both greater than the fixed point x*, (b) trajectory when the crit-
ical levels z, and z, are lower than the fixed point x°. Observe
that in this case the lower boundary z, cannot be reached.

M), ti4t <t<ti+i+13,
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x=¢(t;+¢7'(x0)) . (2.6)

Using Eq. (2.3) we can write the solution of Eq. (2.5) in
the form
X(D=¢(t+¢"(y1+d(t; +6(x0))),

tlgt<t1+t2. (27)

Proceeding by induction we construct the following
discontinuous trajectory:

(2.8a)
(2.8b)
(2.8¢)

t, tvt, tetpetsy

TIME t

T b+t tetoets tyetoetaet,

TIME t

FIG. 2. (a) Trajectory when the critical levels are at distinct
sides of the fixed point x°. The initial location x, is greater
than x°. The lower boundary z, cannot be reached. (b) Trajec-
tory when the critical levels are at distinct sides of the fixed
point x°. The initial location x, is lower than x°. The lower
boundary z, cannot be reached.
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and so on. The use of the notation

Xk =t +¢" (Vi —1+Xk 1)) (2.9)
allows us to write the expression
X()=¢(t+¢~ ' Vn_14+xn_1)),

t1+"'+tn_1§t<tl+"'+t,,_1+tn (210)

for the nth term of the trajectory (2.8).
Let x° be an asymptotically stable fixed point of the
deterministic equation X(7)=f(X), i.e., x* is such that

f(x5)=0 2.11)
and

lim X(¢)=x". (2.12)

t— 0

If we are interested in finding the MFPT when the pro-
cess (1.4) first reaches certain “critical” values z; and z,
(with z, <z;), we must know these values relative to the
fixed point x°. Two different situations arise: (a) z; and
z, are either both greater or both less than x°,

z;>2,>x% or x°>z;>2, (2.13)

[Figs. 1(a) and 1(b)].
point x°,

(b) z, and z, surround the fixed

Z;>x°>2, (2.14)

(Fig. 2). In this case the system can only reach the upper
level z; which turns the level z, into a mere lower bound
for xy. This case is therefore equivalent to the problem of
MFPT to one critical level.

Finally, when the deterministic equation has no fixed
points, f(X) always has a definite sign and the determinis-
tic solution is monotonic. From a dynamical point of
view this case is completely equivalent to case (a) above.

III. INTEGRAL EQUATIONS
FOR THE MEAN FIRST-PASSAGE TIME
AND ITS PROBABILITY DISTRIBUTION

We define the first-passage-time probability density
p(t;x) as follows:

P(t;x)dt = Probability that the process
X(7) [given that X(0)=x,] crosses z; or
z, in the time range ¢t <7<t -+dt without
ever having crossed either of these levels
during the time span O0<7 <1t

(3.1

In terms of this probability density the MFPT is given by

T(xo)= [ dtep(t;xo) . (3.2)

Following Ref. 1 it is useful to denote the time between
two jumps as an “interval” and to define the auxiliary

Palt;xo)dt = Probability that the first
crossing of z, or z, occurs during the
nth interval in the time range (¢,f+dt).

(3.3)
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The first-passage-time probability density is

ptixo) =3 paltixo) . (3.4)

n=1

Now in order to evaluate p(t;x,) we must proceed
separately according to the location of the levels z; and z,
relative to the fixed point x°.

A. Critical levels at one side of the fixed point

(i) Let us assume first that both levels are greater than
the fixed point [Fig. 1(a)]

Z1>2;>x°. (3.5)

To construct the probability densities p,(¢;x,) from the
trajectory (2.7), we have to insure that no crossing of the
levels z; or z, has occurred in the first (n —1) intervals
and that a crossing does occur during the nth interval.

If no crossing has occurred in the first (k — 1) intervals,
then during the kth interval no crossing occurs if simul-
taneously

Xk =0t +¢ " (Vi _1+Xk_1)) > 2, (3.6)
and
Xk —+—’}’k <Zi . (37)
Condition (3.6) is equivalent to
% 1
fe < X —1+7k -1 xf(x) ke 3-8

The probability that the inequalities (3.7) and (3.8) hold is

Prob{xy >z3;x + Vi <21 | Xi > 225%; +vi <2y (i <k)}

Tk z2,—x;
=f0 dzk¢(tk)fo‘ dyi X(ve) . (3.9)

A crossing occurs during the nth interval if x, <z, (i.e.,
t,>T,) or x,+v,>z; (with x, >z,). The probability of
this crossing event is given by

Prob{x, <z, or (x, +V,>21;X, >23)}
© 7,, ©
= [, dun b+ [ dn ) [ dyaxty,)-
(3.10)

The probability density for the “continuous” crossing
event (x, <z,) is
S(t—(t +ty+ -+ +ty_1+E)) (3.11)

and the probability density for the “jump” crossing event
(X, +7v,>21)1s
8("‘(t]+t2+"' +t,,)). (312)

Collecting the results (3.9), (3.10), (3.11), and (3.12)
gives the expression for the probability density p,(#;x():
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T zZ,—Xx t, _ Zy =X,
paltixo)= [ ar ) [I1 ayixr o [ w0 [ Ay, X, )

- i, -
X fTH dty Y80 —(ty -t AT [Tt Yt [ dya X8 — (4 1) |

(In writing Eq. (3.13) [as we did in writing Eq. (3.9)] we
have assumed that the system is initially prepared in such
a way that we deal with an ordinary renewal process® for
the time intervals, i.e., the distribution for the first inter-
val ¥(1)(0<t <t;) is the same as for subsequent ones.)
From Eq. (3.13) we see that the Laplace transform of
Palt;xqo)
Bulsixo)= [ dt e~y (t;x0) (3.14)

satisfies the recurrence relation

T
Pusi(sixo)= [ 'ty e " 1y(e))

S | ~
Xfo dy Xy )Pp(s;x1+71)
(3.15)

(n=1,2,3,...) which immediately leads to the following
integral equation:

~ ~ ?1 —S!l
P(S;xo)=P1(S;xo)+fo dtye Y1)

zZ,—X
><f0] Ly X(r)p(six 1) -
(3.16)

Here

Blsixo)= 3, Pulsixo) (3.17)

n=1

is the Laplace transform of the first-passage-time proba-
bility density defined in (3.1),

- ) 1
tl_fxo dxf(x) )

(3.18)

and

ﬁl(s;xo)=e_s‘1 f: dt, ¥(ty)

7 s -
+f0’dt,e t‘¢(t1)le_xldy1)((yl). (3.19)

In terms of p(s;xy) the mean first-passage time T(xg)
defined in Eq. (3.2) is given by

dp(s;xo)

T(xo)=— (3.20)

as s=0

Applying Eq. (3.20) to Eq. (3.16) and taking into account
the normalization of p(¢;x,), i.e.,

P(0;x0)= fom dtp(t;xg)=1,

we arrive at the integral equation for the MFPT:

(3.13)

f

I 7
TGxo)=F, [ dey e+ [ dey gty
1

T z,—x
+ e [ dy Xy )Ty )
(3.21)

(ii) Let us assume now that the critical levels are both
lower than the fixed point

¥4 SZ](XS . (3.22)
In this case the trajectory (2.7) is an increasing function of
t [see Fig. 1(b)] and the system is only able to reach the
upper level z,. No crossing occurs during the kth interval
if [see Egs. (3.7) and (3.8)]

% 1 _
t =T; 23
k< xk_]+?’k_.|dxf()€) k 329
and
Xi+Yk <2y - (3.24)

Therefore, the Laplace transform p(s;xq) of the first-
passage-time probability distribution and the MFPT satis-
fy in this case the integral equations (3.10) and (3.21),
respectively, but with 7 instead of 7,.

Finally, we can write the integral equation for the
MFPT in the form

T(XQ)=h(X0)

7 z, —x
+ [yanve [1 dy XTG4y
(3.25)

where

h(xQ)E_Tf_T dty i)+ [ dey gty (3.26)
and 7 stands for 7, (7)) if the critical values are both
greater (lower) than the fixed point x°.

B. Critical levels at distinct sides
of the fixed point

In this case the system cannot reach the lower level z,
and the upper level z; can only be crossed by a suitable
jump and not by dynamical evaluation (see Fig. 2). There-
fore, instead of Eq. (3.13) for the auxiliary probabilities
Pn(t;x0), we now have the expression
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w(tixo)= [ " dy e [ dyixr)

f dtn—l‘/} n—l)f

n—lX(‘}/n—])fowdtn Il’(tn)

and the Laplace transform p(s;xq) given by Eq. (3.17) satisfies the integral equation

_st,w(tl) le

Pls;xo)=p(s;x0)+ fow dt,e

where

(3.29)

Pils;xo)= f dtie tl)fzw_x dy  X(y,) .

The mean first-passage time 7T'(x,) now satisfies the in-
tegral equation

T(xg)=7p+ [ dtyte)) [ dy Xy DT e, +1)
(3.30
where
Tmzfo“’ dr (1) (3.31)

is the mean time between jumps.

IV. MEAN FIRST-PASSAGE TIMES
FOR FREE PROCESSES

We will apply the results of Sec. III to a “free process,”
i.e., a process X(¢) given by the equation

X(1)=F(1), 4.1

where F(?) is given by Eq. (1.2). In this case the trajecto-
ry X (2) is given by the sequence of step functions

X(O)=Yp_1+Xn_1,
b+ a<t<ti+ 0 i+, (42)
where

Xp=Xo+V1+V2+ " +Vk-1 4.3)

(k=1,2,3,...). The time intervals 7; defined in Eq. (3.8)
are now
T=o0 . (4.4)

Therefore, the integral equation (3.16) for the MFPT
probability density reads

Pls;xo)=p(s;x0)
+36) [ dr X opsixetr) . @5)
where
s)Efow drye yie,) (4.6)
and
Bilsixo)=dls) [,

The integral equation for the mean first-passage time it-
self is

LAy X(ry) . (4.7)
0

dj/]X('}/l) (s;x14+71),

X le_x Ay, X(y, )8t —(ty4 -+ +1,))  (3.27)
(3.28)
Zl —xo
T(x)=Tm+ [, driX(y)Tlxo+y) .  (4.8)
The definition of the non-negative variable
u=z;,—xqy (x9>0) (4.9)

allows us to write Eq. (4.5) in the following convolution
form:

Pls;zy—u)=p(s;z,—u)
s) foudv)((u—v)ﬁ(s;zl——v). (4.10)
The general solution of this integral equation is
Pls;zy—u)=t(s)L ! liL{X(u)} , (4.11)
pl1—y(s)L {X(u)}]
where
Lixw}= [ " due Xw) (4.12)

is the Laplace transform of X(u«) and L ~! stands for the
inverse transform. Equation (4.11) represents the most
general solution to the problem since no specific forms of
¥(t) and X(y) have been used and all the first-passage-
time moments can easily be derived from it. In particular
the mean first-passage time is

1

T =7, L ! ,
X0)=7m L{X(z —xo)}]

(4.13)
pli—

where 7, is the mean time between jumps.

Before closing this section we will give the explicit ex-
pression of T(xg) for two important special forms of the
jump distribution X(u): the exponential distribution and
the 6 distribution.

A. Jumps sizes exponentially distributed

For this case we have
X(u)z%e‘“/” (u>0),

where 7 is the mean size of the jumps. The introduction
of Eq. (4.14) into Eq. (4.13) yields

(4.14)

Z1—Xo

T(xg)=7, |1+ (4.15)
B. Jumps of the same size
In this case
X(u)=6(u—vy) (4.16)
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1 F L->

-1 -075 -5 -025 00 025 050 075 10
Xo

FIG. 3. Mean first-passage time T (x,) as a function of the
initial location x, for a free process. ,, is the mean time be-
tween jumps. Mean jump size: y=0.25. Solid line, exponen-
tially distributed jumps; dashed line, jumps of the same size.

and from Eq. (4.13) we get the obvious solution

T(xg)=1,, 1+28(zl—x0—n7) ,

n=1

(4.17)

where O(x) is the Heaviside unit step function. These re-
sults are shown in Fig. 3.

V. MEAN FIRST-PASSAGE TIME
FOR BOUND PROCESSES

In this section we evaluate the mean first-passage time
T(xq) for the bound process (1.4). Explicit expressions of
T(xg) are given when the time-interval distribution ¥(z) is
exponential and the jump distribution is either exponential
or a § function.

As we mentioned in Sec. I, if the set of random times
{r;] is a Poisson sequence of random points, then the
time intervals t;=7; —7; _; are exponentially distributed,
that is,

— At

T(xo)-——%(l——e”)

+A f:dhe—kt‘ fol ld71X(?’1)T(X1+?’1) )

(5.2)

where 7=7,(7}) is given by Eq. (3.18) [Eq. (3.23)] if the
critical levels are greater (lower) than the fixed point.

1. Exponentially distributed jumps sizes

In this case
X(y)=Le M7 (5.3)
Y
and Eq. (5.2) reads

—}l;(l—e_)‘?)
2%

+§ [Tane™ [

T(X())=

lee‘Tl/rT(xl +71) .

(5.4)

We show in Appendix A that Eq. (5.4) is equivalent to the
following differential equation:

dzT(XQ) f'(xo) A _1_ dT(xo) _ 1/?/
dxé f(x()) f(Xo) Y de - (f(X())
(5.5)
with boundary conditions
(i) T(y)=0, (5.6)
(i) 2Tx0) L A7z)—1 (5.7)
i) ————— =— - .
de xg=z, f(zl) o ] ’

where y=z,(z;) if the critical levels are both greater
(lower) than x°. The solution of the problem (5.5)—(5.7) is
straightforward and is given by

Yt;)=re (5.1 x M(x) )
! T(xo)=f % dx € —l-fxdx’e‘M""—l-C , (5.8)
where A~ !=r7,, is the average time between two consecu- Y S |y
tive jumps. Now we will write the integral equations where
founded in Sec. III for this particular time distribution.
o ) M(x)-=—£+lp(x) , (5.9)
A. Critical levels at one side of the fixed point Y
In this case the integral equation for the MFPT is given plx)= f 3y dx, , (5.10
by Eq. (3.23). When (z) is the exponential form (5.1), S
Eq. (3.25) becomes and
|
z M(x)
—1+&f "dx £ fxdxe_M"‘)—LeM(z‘)ledxe_M(")
Cc= vy S L (5.11)

eM(x)

f(x)

M(z,) %
e 1 —kf dx
y
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As an example we will evaluate the MFPT for a linear

drift of the form
flx)=—x (x°=0). (5.12)

For simplicity we take A=1. In this case Egs. (5.8) and
(5.11) give

X
T(xg)=y |——— |+In —2|—C<I>(xo,y), (5.13)
Xo y
where
Y 2 ez'/y !
C=|X+In|— +P(zy,p) (5.14)
y y 1
and
v/y u/y
=" L Vg [ % g |2 ], .15
v Y Y

where Ei(u) is the exponential-integral function.” These
results are shown in Fig. 4.

2. Jumps of the same size

Now X(y,) is the & distribution

T‘O)(x0)=%+C(°)eAp(x°) :
-1 Ap(xg) o dx @ _ —
T(k)(x )= — 0 C(k)—}\. e kp(x)T(k l)(x
0 Y +e f Fx)
where
z,—2z
N= |12 (5.21)
Y
is the next lower integer portion of (z; —z,)/y, and
TW(xq)=T(xy) when z;—(k+1)<xo<z,—ky,
k=0,1,...,N—1, (5.22)
TM(xy)=T(x,) when z,<xo<z;—Ny . (5.23)
The solution (5.20) is continuous® at the points
XOZZI—N'}/, k:1,2, ...,N .
Therefore, the (N +1) constants C'?,C'V, ... C*™ can
be determined by the N relations of continuity
Tz, —ky)=T* Yz, —ky), k=1,2,...,N,
(5.24)

1+In

cV= [2z,(Inz; — 1) —(z, —y)n(z,+7y)]

zi{(2—In|z; )=y, if z,<z,<0.

Z+vy
2]

We show in Appendix B that the integral equation (5.2)
with X(y;) given by Eq. (5.16) is equivalent to the follow-
ing “initial”’-boundary value problem for a differential
equation with deviating arguments

ATx0) |\ A ty)— Txg)] = —

Ee— — X —_ X =",

dxo | flxg) bl OTY 0= o)
Xo<2Z1—Y (517)

T(xo)=%(1+C(°’eAP(x°)), Xo>2|—7 (5.18)

T(y)=0, (5.19)

where p(x,) is defined in Eq. (5.10), C'? is constant to be
determined, and y =2z, (z) if z; > x* (z; <x?).

The most general method to exactly solve the problem
(5.17)—(5.19) is the method of steps.® Following this
method the exact solution of (5.17)—(5.19) can be written
in the form

(5.20a)

+y)|, k=12,...,N (5.20b)

and the boundary condition (5.19).

As an example we consider again the case of the linear
drift (5.12), with A=1 and z,=2z,—2y, ie, N=2. In
this case Eq. (5.20) yields

(0)

T BT sTesE
T(Xo)z 0
1 (1) (0)
24 TN CIn X0ty )
Z)<Xp<z1—=Y , (5.25)
where
—1
zZ;+
co (z;—y—2z;) (1+In [ZTY—” , ifz;>2,>0
1
Zy, if22§21<0 (526)
and
-1
, ifz;>2,>0
(5.27)
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00 2,=05 15 ;=25

FIG. 4. Mean first-passage time T(x,) as a function of the
initial location xo, with parameter values A=1, y=1, z,=2.5
(—0.5), and z;=0.5 (—2.5). The linearly bound processes
shown have exponentially distributed jumps (— — —) and &-
distributed jumps ( ).

These results are shown in Fig. 4.

B. Ciritical levels at distinct sides of the fixed point

In this case we have

zy<x*<z, (5.28)

and the integral equation for the MFPT is given by Eq.
(3.30). When the time-interval distribution ¥(z) is ex-
ponential [Eq. (5.1)], Eq. (3.30) takes the form

1 © —A 2 =%
T(xo)=—-+A [ dtye ™ 7 dy X(yoTei+y0) .

(5.29)

The comparison of Eq. (5.29) with Eq. (5.2) shows, as we
already mentioned, that the replacement of 7 by + « in
Eq. (5.29) will only produce changes in the boundary con-
ditions. In fact, when xy=x?, then x, =x° and Eq. (5.29)
becomes

s
Z,—x

Th=+ [, dy Xy T +7) (5.30)

0
which confirms the intuition about the behavior of T(x)
at the fixed point [compare Eq. (5.30) with Eq. (4.8)].
Equation (5.30) is the general boundary condition for this
case.

1. Exponentially distributed jumps sizes

When X(y) is given by Eq. (5.3), the integral equation
(5.29) is equivalent to the differential equation (Appendix
A)

d’T(xg) [ f'(xo) A

1 dT(xg) 1/y
dx3 flxo)  flxo) v | dxg

 flxe)

(5.31)

which is the same as Eq. (5.50) but with different bound-
ary conditions. In this case the boundary conditions are

FIG. 5. Mean first-passage time T(xg) as a function of the
initial location x, with parameter values A=1, z;=1.5, and

z,=—0.5. The linearly bound process shown has exponentially
distributed jumps with y =1 (— — —), 5-distributed jumps with
y=1( ), and 8-distributed jumps with ¥y =1.6 (—- —- —-).

xS
Zl X

. 1 1 -7/ s
(i) T(x9)= 3+ [, drie Ty,

(5.32)
... dT(xg) A 1
(i) dxg  |xger,~ F(z1) (z))— X (5.33)
The general solution of Eq. (5.31) is
1 o 1 M(x x v, —M(x'
T(XO)="}/‘I dxme ()f dx'e M)
+Cy [Tax—E—eMw g, (5.34)
| f(x)]

where M(x) is defined in Eq. (5.9). The constants C; and
C, are determined by introducing Eq. (5.34) into Egs.
(5.32) and (5.33).
For the case of the linear drift (5.12), with A=1 and
z;>0>z;, Egs. (5.32)—(5.34) give
X0 l
y b

(5.35)

T(x¢)=C+1In | xo | +;7’—(e"°/’—1)—Ei
0
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where Ei(x) is the exponential-integral function and

= —Inz, +Ei(z, /y) . (5.36)

This result is shown in Fig. 5.

2. Jumps of the same size

Let X(y,)=8(y —y,); then according to the size of ¥ of
the jump we have to consider the cases ¥ >z;—x° and
Y <z1—x°

(a) Let us assume first that ¥ >z, —x°. In this case it is
easy to convince oneself that when x>z, —y the system
necessarily crosses the level z; in the first jump (see Fig.
2); therefore, T(x,) is the mean time between jumps

1

1
iR
When x, <z, —7, the integral equation (5.2) leads to a

differential equation with deviating arguments (Appendix
B). We thus have the “inital”-value problem

T(XO)=

ATx0) L A ey ) Tixg)] = ——1
— 4 ——[T(x —T(xo)]=——,
dxg T flxg) l¥OTY =50
Xo<zZ)—Y (537)
T(xo)zi—, X0>Z1—Y . (5.38)

The exact solution of this problem given by the method of
steps reads

T -, (5.39)
(Xo) A
1 Aplx,) X0 1 _ _
T(k) - a C(k)—}» d kp(x)T(k 1) , (5.40)
(xo)=+e f o (x+7)
. [
(k=1,2,...,N) where p(x), N, and T™(x) are defined by dT(xq) A —1
Egs. (5.10), (5.21), and (5.22), respectively. The constants dx, +—'"f(x0) [T(xo+‘}/)—T(xo)]=—~——~f(xo) ,
¢V, . ..,C"™) are determined by continuity [Eq. (5.24)].
For the case f(x)=—x(x*=0) with A=1, ¥ >z, and Xg<z;—y (5.42)
z;=z;—2y (n =2), we have the exact solution _
T(XO)‘:L [1+C(O)e}»t(x0,zl 12 L Xo>Zi—7
1, z;—y<xp<z A
T(xg)= - (5.441) (5.43)
2— x| zZ; =2y <xo<z;—V where
u
(Fig. 5. Hu,w)= fv dx o =plu)—p(v) . (5.44)
(b) Finally, we study the case ¥ <z, —x°*. The MFPT is flx
now given by the solution of the “initial”’-value problem The exact solution of (5.42) and (5.43) reads
J .
T (x ):l+ekp(xo> C(k)—kfxodx 1 e MOk =Dx Loy | (k=1,2,...,N). (5.45)
0 )\' f(x) <y > .
I
The (N +1) constants C'9,C'V, ..., C'™ are determined  where
by continuity [Eq. (5.24)] and by the boundary condition
Z1—Y
1 C=———— (5.49)
T"")(x’)z-)T+T""_”(x‘+y) , (5.46) 1—In(z,/7)
where m is such that (Fig. 5).
Zi—(m+Dy<x’<z,—my . (5.47) VI. CONCLUSION

For the case f(x)=-—x(x*=0) with A=1, z,>0,
Y <z, and z, =z, —2y, we have

C
I+—, z;—y<x0<2
X0

T(X0)= x
24+ S in 9
X0

1+7 , Ta—2y<x9<2z1—7,

(5.48)

We have studied the problem of the first-passage-time
statistics for general one-dimensional processes driven by
external shot noise. The problem has been reduced to the
solution of integral equations for the Laplace transform of
the first-passage-time distribution function. These in-
tegral equations are valid for the shot noise defined in Eq.
(1.2) which has arbitrary correlation properties and arbi-
trary distribution of pulse heights. The method used for
constructing such integral equations has been the one ap-
plied before to the dichotomous noise.! This method re-
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lies on the explicit construction of trajectories which al-
lows us to keep track of each trajectory and to select those
that reach the critical levels at a given time.

For free processes the above integral equations can be
solved in a completely general way. For the case of bound
processes we have obtained exact expressions of the mean
first-passage time when the time-interval distribution is
exponential (i.e., white shot noise) and the jump distribu-
tion is either exponential or a 8 function. Therefore, the
problem of the extrema statistics has been completely
solved for large classes of processes driven by external
shot noise.

We now summarize the principal results that can be de-
duced from the examples considered in Secs. IV and V.
From all these examples we clearly see that the statistical
properties of the distribution of jump sizes clearly affect
the smoothness of the mean first-passage time T(x,) and
the trapping efficiency of the driven process. Thus, when
the jump sizes are & distributed, T(x,) is not a smooth
function having either discontinuities of the first kind
(free process) or discontinuities in the first derivative
(linearly bound process). On the other hand, we see from
Figs. 3, 4, and 5 that T(x,) is larger for exponentially dis-
tributed jumps, except when both critical levels are greater
than the fixed point (cf. Fig. 4).

There are several generalizations that can be investigat-
ed. To name a few, we can consider nowhite shot noise
(either non- pulses or time-interval distributions that are
not exponential) or to allow pulse heights y; with variable
sign. These cases are presently under investigation.
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APPENDIX A: DIFFERENTIAL
EVOLUTION EQUATIONS
FOR EXPONENTIALLY DISTRIBUTED JUMPS

. 1. Critical levels at one side of the fixed point

It is convenient to introduce new variables of integra-
tion into Eq. (5.4). We make the change of variables sug-
gested by the dynamics of the system during the first time
interval

X1=¢(11+¢—](Xo)) (A1)
or, equivalently, by
= [l =xy,x0) (A2)

o f(X)

In terms of these new variable we can write Eq. (5.4) as

T(xo)=% [1—e'“"‘"°’]
A y 1 —At(x,x0)
AN d | Radt]
MR R TN

Z,—X
xfol ld'yle_y'/yT(xl—§-‘y1) ,  (A3)

where y =z, (z,) if the critical values are greater (lower)
then the fixed point x°. The xq derivative of (A3) is

dT(xo) |
de —f(x())

7\' Z,—X _
— 5 [ e T T4
0

[AT(xq)—1]

(A4)

Another x derivative, and integration by parts and reor-
ganization of terms, lead to Eq. (5.5):

dzT(Xo) f'(xO) _ A _‘l— dT(xo) _ I/K
dx% f(xo) f(xg) Y dx fxg) ’
(AS)

The boundary conditions are obtained by setting xy,=y
and xo=z, in Egs. (A3) and (A4), respectively,

() T(»=0, (A6)
(i) FLxo) L nre)-1 (A7)
ii = —~11.

dxo |wgmz,  flz) 0 E

2. Critical values at distinct sides
of the fixed point

The change of variables (A2) when applied to Eq. (5.34)
yields

1 A x* 1 —Alxy,x,)
T(xg)=—+= [* dx—— %o
(xo) k+y fxo xf(xl)
Lt —y./
<[y dvie Ty
(A8)

Taking one x, derivative, we have Eq. (A4) and a second
xo derivative gives the differential equation (A5). One
boundary condition is obtained by setting x,=z, in Eq.
(A4) which gives Eq. (A7). The other boundary condition
is given by Eq. (5.30).

APPENDIX B: DIFFERENTIAL
EVOLUTION EQUATIONS
FOR JUMPS OF THE SAME SIZE

1. Critical levels at one side of the fixed point

Introducing the & distribution (5.16) into Eq. (5.2) and
performing the change of variables given by Eq. (A2), we
get the following integral equation:
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6(21 '}’)

Xe"‘"""e)T(xlw), (B1)

where O(x) is the Heaviside function. Setting xo=y in
Eq. (B1), we have the boundary condition

T(y)=0, (B2)
where y=z, (z;) if z;>z,>x% (z,<z; <x®). The xq
derivative of Eq. (B1) yields
dT(xg)

-'dx_o_-'—f(xo) 21 —xo—Y)T(xg+7v)—T(xg)]
—1 (B3)

= flxo)

We have two cases.

() z;—y <x0<z;. Then O(z,—xy,—¥)=0 and Eq.
(B3) turns into an ordinary differential equation whose
solution is

T(xo)=—}1:+C‘°’eAp(x°) , (B4)

where C© is a constant and

plxo)= [ dx f(lx) (BS)
(i) z; <xg <z; —7. In this case Eq. (B3) becomes
dT(xy) A —1
— 4+ —T —T =
dxg T Flxg) LT otV =T (xo) =205
(B6)

Equation (B6) has to be solved along with the “initial”
condition (B4) and the boundary condition (B2).

2. Critical values at distinct sides of the fixed point
When
z1>x°>2z,,

instead of (B1) we have the equation

T(xg)=— +xf “dx

9(21 —xl——y)

(1)

—At(xy,xq)

(i) When ¥ >z, —x* and x¢ >z, —v, Eq. (B7) yields
1
T =—, B8
(x0) X (B8)

i.e., the system crosses the z; level at the first jump.
When x¢ <z, —7, Eq (B7) becomes

T(x4)= —+kf de L MR )

xi)
(B9)

The x, derivative of (B9) shows that it is equivalent to the
differential equation (B6).
(ii) When y <z, —x° and xy >z; —v, Eq. (B7) becomes

—At(xy,xq)

T — T( ),
(xo)= + f 1) e xi+y
(B10)
which is equivalent to the differential equation
dT(xg) A —1
——— T(xg)=—, (B11)
dxo  flxo) % flxo)
whose solution reads
T(xg)= —i— + ) (B12)
When x¢ <z; —v, Eq. (B7) becomes
1 x5 1 —At(xy,xq)
T(xo)=+A fxo dx,f(xl) T(x;+7),
(B13)

which is equivalent to the differential equation with devi-
ating arguments, Eq. (B6). In this case the system can be-
gin its evolution at xy=x? and, therefore, from Eq. (5.30)
we have the boundary condition

T(x’)=%+T(x’+'y). (B14)

1. Masoliver, K. Lindenberg, and B. J. West, Phys. Rev. A 34,
1481 (1986); 34, 2351 (1986).

2P. Hanggi and P. Talkner, Phys. Rev. Lett. 51, 2242 (1983);
Phys. Rev. A 32, 1934 (1985).

3M. A. Rodriguez and L. Pesquera, Phys. Rev. A 34, 4532
(1986).

4S. O. Rice, in Selected Papers on Noise and Stochastic Process-
es, edited by N. Wax (Dover, New York, 1954); R. L. Strato-
novich, Topics in the Theory of Random Noise (Gordon and
Breach, New York, 1967), Vols. 1 and 2; D. Middleton, An
Introduction to Statistical Communication Theory (McGraw-

Hill, New York, 1960); H. Hurwitz and M. Kac, Ann. Math.
Stat. 15, 173 (1944).

5D. R. Cox, Renewal Theory (Wiley, New York, 1962).

6K. Lindenberg and J. Masoliver (unpublished); H. Hurwitz and
M. Kac, Ref. 4, p. 180.

7E. Jahnke and F. Emde, Tables of Functions (Dover, New
York, 1945).

8L. E. Elsgolts and S. B. Norkin, Introduction to the Theory and
Application of Differential Equations with Deviating Argu-
ments (Academic, New York, 1973).



